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Bias Propagation in the Autocorrelation
Method of Linear Prediction

Jan S. Erkelens and Piet M. T. Broersen

Abstract— A time-domain analysis of the autocorrelation The coefficients:; are the autoregressive parameters, called
method for autoregressive estimation is given. It is shown that a | PC parameters in speech coding. The autocorrelation method
§ma|| bias in a reflection .C(.)efflment close to one in absolute value assumes the signal to be zero outside the interval of observa-
is propagated and prohibits an accurate estimation of further . .
reflection coefficients. Tapered data windows largely reduce this tion of length N an_d_est'_mates thelR parame_:ters of ath
effect, but increase the variance of the models. order model by minimizing the residual varlan@é1 from

minus to plus infinity. This residual variance is given by

I. INTRODUCTION

1 o>
ANY low bit-rate speech coders use the autocorrelation 3[2;)] =N Z {zw(n) +arzw(n —1) + -
method (ACM) to find a linear prediction model of the n=—o0
speech signal. It is known that a tapered data window improves + aprw(n — p) ¥ 2)

the performance of the autocorrelation method in speech

analysis. Sometimes, the frequency domain interpretation wiiere thez,,(n) are samples of the windowed signal.

the ACM is given as the motivation for the use of a tapered Because of the infinite sum in (2), the parameters can be
window, but it will be shown that the reduction of thefound efficiently with the Levinson—Durbin algorithm

edge effects is important in the time-domain. A time-domain

analysis of the autocorrelation method will be presented that A iy [m—1] ‘

also gives theoretical support to the use of tapered data R(m) + Z %5 R(m — j)

windows with the ACM. foy = — f=12 . om=1-,p
For stochastic signals, the behavior of autoregressive es- Sim—1]

timation methods can be expressed in terms of bias and 3)

variance of the model parameters. Estimation methods have
been treated extensively in the literature (e.g., [1]-[11]). Some

studies express the bias in terms of the poles or the parameters 3[2m1 = 3[2m—11(1 — ern) (4)
of the autoregressive process [3], [4]. Although the bias is m] _ [m—1] [m—1]
described accurately, the formulas do not give insight in what a; = =4 + ki,
causes the bias and what are the consequences of it for higher al™ =k, (5)

order processes. We show that the edge effects in the ACM

may cause a large bias in the residual variance if a reflectigiere ;= is the mth estimated reflection coefficienil™ is
coefficient is close to one in absolute value. Propagation i 2
pag f¥fe jth parameter of anmth order model ands 2 . is the

this bias via the residual variance may lead to a large bias jqyal variance for theith order model. The autocorrelation

higher order reflection coefficients. coefficientsR(m) of the data are defined by
II. THE AUTOCORRELATION METHOD ~ 1 &
] ) ] R(m)=— Z Ty ()X (n +m). (6)
An autoregressive proces$n) of order K is described by N =

a weighted sum of preceding signal values plus an independent

id2entically distributed (i.i.d.) noise signaln) with variance  The autocorrelation coefficientd(m) are biased estimates

4 of the theoretical autocorrelation coefficienigm) of the
K process, becausg(m) contains only(N — m) nonzero prod-

x(n) + Z a;z(n — 1) =e(n). (1) ucts. This ensures that the resulting model is always stable.

i=1 There are other estimation methods that ensure a stable model

_ _ _ 1Lzl—[lo], but the ACM is the most popular one. The bias
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Ill. ANALYSIS OF THE AUTOCORRELATION METHOD From (2) it is seen that the residual variance for a first

The bias in the sample autocorrelation function (6) aldyder model is given by

causes bias in the estimated reflection coefficients. But there

are other sources of bias as well; the bias consists of dif- Ns[]L )+ Z{x )+ kiz(n — 1)}2

ferent parts. For example, the solution for the first reflection

coefficient &, is given by +{k1x( )}2. 9)

R R(l) The valuek, minimizing this equation is the estimate of
k1= R0 —-p(1) (7)  the first reflection coefficient. The discontinuities at the frame
0) edges causicompleteresidual terms in? such asz?(1) and

2 i 2 i
wherep(1) is the normalized autocorrelation coefficient of la F1a(N)}". The incomplete term:*(1) has no influence on

N A
one of the data. An expression for the bias in the reflecti e solution;; . The incomplete ternfkyz(V)}* causesh; to

coefficients can be found by making a second order Tayl Eve a small bias that makes it closer to zero in absolute value.

expansion and taking the expectation. For example, for (7) tﬁ e influence of the incomplete term |525ma}ll becalugtere
result is minimization with respect té;, all termsz*(»n) in the residual

variance are of the same order of magnitude. The triangular
bias in I%l is 1/N x kq, the true first reflection coefficient
of the process. Both incomplete term$(1) and {k1x(N)}?
. . are an important source of bias in the residual variasfcef

+ R cov[£(0), K(1)] (8) %, is close to one in absolute value, the magnitude of these

incomplete termsafter minimization is large in comparison

wherep(1) is the true normalized autocorrelation coefficient otvith the magnitude of the complete terms [after minimization
lag one of the procesp,,(1) is the normalized autocorrelations? is reduced with a factofl — k?)]. A consequence is that
coefficient of Iag one of the windome is the expectation the influence of the incomplete terms on the second reflection
of fz( ). Var[2(0)] and CO\[R( ) R(1)] are the variance of coefficient is much larger than on the first one.
fg(o) and the covariance betwe@xjo) and R( ), respectively. The residual variance for a second order model is
Fi_rst an gnalysis of the ACM wiII_ be.given when a rectangular NS[QQ1 :$2( )+ {x(2) + ,%1(1 + k2)$(1)}2
window is used. In speech applications, almost always a non-
rectangular window is used. Yet, the analysis for a rectangular
window is of interest, because it explains why the use of a - Z {a(n
nonrectangular window is necessary and what properties a )
window must posses when used with the ACM. + kﬂ(” = 2)} + {ki (1 + ko) ()

The first term on the right hand side of (8) shows the + kax(N = 1)} + {k2x(N)}2. (10)
explicit contribution of windowing to the bias i#;. For a
rectangular windowp,,(1) equals(1 — 1/N) and sincep(1)
equals—k; (the true first reflection coefficient of the process
this bias contribution is equal te 1/N x k. For all reflection
coefficients, the explicit bias contribution due to windowin

£(f) ~—pu(1)p(D) — 75 var A O)]

)+ k1 (1 + ky)a(n — 1)

The valuek, minimizing this expression, given the solution

1 for the first reflection coefficient, is the solution fés.

he complete terms in the sum are much smaller than the
incomplete terms ifk; is close to one in absolute value,

can be found by multiplying each normalized autocorrelati ecause for the first order the complete terms have already

coefficient of the process with the corresponding normaliz §en minimized with respect ¥, and 3[21 is reduced with a
autocorrelation coefficient of the window, and transforminfactor (1 — k7). Therefore, the incomplete terms have a much
the resulting modified normalized autocorrelation functiolarger influence otk than they had otk;. To put this another

to reflection coefficients. For a rectangular windaw,(m) Wway, the incomplete terms causg, to be considerably larger
equals(1 — m/N) and, therefore, this bias contribution willthan o2. The biased residual variancslt%u is propagated via
be calledtriangular bias because of the specific form. Thethe Levinson—Durbin algorithm (3) to the second reflection
triangular bias is only present in the ACM and not in otheroefficientk,, and this causes, to be considerably smaller
estimation methods, such as the Burg method or the covariatitan the true valuek,. Higher order reflection coefficients
methods. The second and third terms in (8) are due to tbennot compensate for this large bias because incomplete
variances of and the covariances between the autocorrelatierms are present for all model orders sﬁ; and are large
coefficients in the expressions and will be callBay/lor bias in comparison with the complete terms.

Such contributions of Taylor bias to the overall bias are presentThis effect will occur after the occurrence of a reflection
in the parameter estimates of all estimation methods aodefficient close to one in absolute value. For example, con-
contain an implicit contribution due to windowing. Here, onlysider a process of which theth reflection coefficient has a
the explicit triangular bias in the ACM is considered. Firstly, distance ofn/N from one, i.e.k,, equalsl—m /N in absolute
gualitative analysis of the effects associated with the triangulaalue. For reasons of clarity, it is supposed that all lower
bias will be given by looking at the residual for a first- anarder reflection coefficients are equal to zero. The+ 1)th
second-order model. Next, we will generalize the analysis areflection coefficient may have an arbitrary value. For such a
give an experimental illustration. processk,, equals—R(m)/R(0). The autocorrelation method
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0.05 : . . ; Hamming and Hanning windows, these are much closer to
o rectangular one. This means that severe bias propagation will only occur
* Hanning with these windows if the reflection coefficients of the process

0.04¢ 1 are much closer to one in absolute value thaf@N. The

application of a tapered data window also has a disadvantage:

8 When a data window is used, effectively, some information is
§0.03f thrown away. The result is that the variance of the estimated
S ] parameters is increased. We have observed that the increase
[ in variance as a result of windowing corresponds roughly to
D0.02¢ the decrease in effective number of observations as defined in
L [11], which makes sense because the theoretical variances of

LPC coefficients are inversely proportional to the number of
observations.

At this point, it is interesting to compare the bias in the
reflection coefficients with that in the log area ratios. An
0 : ' : : 10 estimated model has a certain spectrum distortion with respect

model order to the original process. It has been shown [12] that the
Fo 1 N lized residual vari tor different model ord btai reflection coefficients are more sensitive to quantization than

1g. 1. ormalized residual variance ftor airrerent model orders obtain : : : H H
with the autocorrelation method, with a rectangular window (“0”) and Zﬂe IOQ area ratlos. if the|r absolute Value_ IS C.|OS€‘ to one. This
Hanning window (“*"). Edge effects in the autocorrelation method mayneans that the bias in the log area ratios is larger than the
cause serious bias in the residual variance and reflection coefficients, whesigs in the reflection coefficients, if the latter have an absolute
rectangular window is applied. A tapered window largely reduces this biaﬁi‘/alue close to one. If the reflection coefficients are small in
absolute value, they are approximately linearly related to the

o
(e]
pucd

uses estimates oR(m) that are biased with a factqil — log area ratios [12]. In that case, the log area ratios have
m/N), and, therefore, the reflection coefficient correspondirias properties similar to the reflection coefficients, e.g., if
to this biased autocorrelation will bg — m/N)k,, = (1 — the bias in a reflection coefficient is a factor one half, it also

m/N)? ~ (1—-2m/N); a bias of only ordet /N. If the biased is approximately a factor one half in the corresponding log
value (1 —2m/N) for k,, is used in (4)s?, , will get a value area ratio.
twice the value it should have had. This leads to a value of The bias propagation can be illustrated by a simulation
km-+1 With (3) which is one half the true value and the resuktxperiment. We have generated 5000 realizations of length
is a large bias of order 1 (as compared to the biaﬁ@m), N = 100 samples of a tenth-order autoregressive process with
which is of orderl/N). the reflection coefficient vector in (11), shown at the bottom
This example is of practical interest because the first ref the page.
flection coefficient of sampled bandlimited data can be closeThe first reflection coefficient is equal tel + 1/N. From
to —1. The first reflection coefficient equalsk(1)/R(0) and these realizations we have estimated LPC models with a
this quotient approachesl if the continuous signal is sampledrectangular window and with a Hanning window. The average
with a very high sampling frequency. In fact, the first estimate@flection coefficient vectors for these 5000 realizations are,
reflection coefficient often is close tel in voiced speech respectively, for the rectangular window and the Hanning
(and the second one close+d). The conclusion to be drawnwindow as shown in (12) and (13), at the bottom of the page.
is that the autocorrelation method in its basic form without In Fig. 1, the product of I — kf) j=1,-.., 14, for orders
windowing is not a useful method for parameter estimation; = 1, ---, 10, is shown, which is the normalized residual
A tapered data window smoothly brings the amplitude of theariance. Results for the rectangular window are denoted by
signal down at the edges. Such windows reduce the bias in tB¢’ results for the Hanning window are denoted by “*.” From
autocorrelation function. Only the normalized autocorrelaticthis figure, and from the average reflection coefficient vectors,
coefficients of the window up to the LPC analysis ordehe phenomenon of bias propagation can be clearly seen. The
are of importance. For the rectangular window, these db@s in the first estimated reflection coefficient is small, but
equal to 1—m/N; for other windows such as the populathe residual variance for the rectangular window is close to

[I -099 0.83 -0.47 011 0.10 0.71 0.25 -0.00 -0.37 0.52] (11)

[I -098 0.46 006 -0.03 -0.05 0.14 0.22 0.18 0.07 0.06] (12)
[I -099 0.82 —-047 0.06 0.06 0.64 0.10 -0.09 -0.33 0.41] (13)
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denominator of the Levinson—Durbin recursion and causes

higher order reflection coefficients to be seriously biased as

well. A tapered data window decreases the edge effects, but
increases the variance of estimated models, because effectively
the number of data available for estimation is decreased.
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Fig. 2. Original spectrum (solid unmarked line) and spectra obtained with
the autocorrelation method, with a rectangular window (“0”) and a Hanning{B]
window (“*").

[71
a factor 2 larger than for the Hanning window for this order,g
due to the influence of the triangular bias. The bias in the
second estimated reflection coefficient consequently is largé
for the rectangular window the second reflection coefficient
is close to one half that obtained with the Hanning window?10]
The decrease in residual variance for the rectangular wind?ﬂ]
is therefore smaller than for the Hanning window.

The spectrum of the process that was used in the simulatidtd
is the unmarked solid line in Fig. 2. The spectra obtained with
the rectangular and Hanning window are marked by “0” and
“* " respectively. It is clear that the Hanning window greatly
reduces the bias.

We have explained the influence on the reflection coeff
cients due to the edge effects in the ACM. It is difficult to relat
this bias in the reflection coefficients quantitatively to the bie
in individual formant frequencies and bandwidths. Howeve
the bias always tends to make the reflection coefficients sma
in absolute value, and this means that in general the poles \
stay away further from the unit circle. Therefore, an importai
effect of the bias propagation is an increase in the bandwic
of spectral peaks.

IV. CONCLUSIONS

It is shown that the autocorrelation method of autoregressive
estimation is not suitable if reflection coefficients are clos
to + or —1. This result is of practical interest because fc
sampled continuous signals the first reflection coefficient
often close to—1 unless the sample frequency is low. Th
poor performance of the autocorrelation method is due
edge effects; incomplete terms in the residual cause a la
bias in the residual variance, this bias is propagated via t

T
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