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on Approximate Recursive Bayes Estimate
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Abstract—We present a framework of quasi-Bayes (QB) learn- acoustic mismatch, and this has been a long standing objective
ing of the parameters of the continuous density hidden Markov of many researchers over the past 20 years. Another way to
model (CDHMM) with Gaussian mixture state observation den- req,ce the possible acoustic mismatch between the training

sities. The QB formulation is based on the theory of recursive d testi diti is t dobt th ladapti
Bayesian inference. The QB algorithm is designed to incremen- ana testing conaitions 1s to adop € so-caliadapuve

tally update the hyperparameters of the approximate posterior l€arning approach. The scenario is like this: starting from
distribution and the CDHMM parameters simultaneously. By a pretrained (e.g., speaker and/or task independent) speech

further in_trod_ucing a si_mple forgetting mechanism to adjust recognition system, for a new user (or a group of users)
the contribution of previously observed sample utterances, the to use the system for a specific task, a small amount of

algorithm is adaptive in nature and capable of performing an on- . .
line adaptive learning using only the current sample utterance. It adaptation data is collected from the user. These data are

can, thus, be used to cope with the time-varying nature of some Used to construct a speaker adaptive system for the speaker
acoustic and environmental variabilities, including mismatches in the particular environment for that specific application.
caused by changing speakers, channels, and transducers. As arBy doing so, the mismatch between training and testing can
example, the QB learing framework is applied to on-line speaker 4anarqly he reduced. The most fascinating adaptation scheme
adaptation and its viability is confirmed in a series of comparative = . - . . .
experiments using a 26-letter English alphabet vocabulary. with a p_ractlcal valu_e is the_ so-called on-line (or mcrement_gl,
sequential) adaptation. This scheme makes the recognition
system capable of continuously adapting to the new adaptation
data (possibly derived from actual test utterances) without the
requirement of storing a large set of previously used training
data. It is this kind of approach that this paper focuses on.
. INTRODUCTION The advantage of a sequential algorithm over a batch algo-
LASSICAL parameter estimation methods of hiddefithm is not necessarily in the final result, but in computational
Markov model (HMM), such as maximum likelihoodefficiency, reduced storage requirements, and the fact that an
(ML) [4], [3], [24], [17] and maximuma posteriori (MAP) outcome may be provided without having to wait for all the
[21], [12], [14], generally imply batch algorithms that requirdlata to be processed. Moreover, the parameters of interest are
processing the available data as a whole. In a variety $#metimes subject to changes, e.g., they are time varying just
speech recognition applications, it is desirable to process i@ abovementioned acoustic mismatch problem frequently
data sequentially. For example, in many speech recogniti®fcountered in real speech recognition applications. In such
systems, there usually exists a performance gap betwé&@ses, different data segments often correspond to different
the recognition accuracies on training and on testing dag@rameter values. Processing of all the available data jointly is
One major reason lies in the possible mismatch betweBf longer desirable, even if we can afford the computational
the underlying acoustic characteristics associated with tig@d of the batch algorithm. To alleviate such problems, a
training and testing conditions. This mismatch may arise frofgquential algorithm can be designed to adaptively track the
inter- and intraspeaker variabilities, transducer, channel av@ying parameters.
other environmental variabilities, and many other phonetic andRecently, Bayesian adaptive learning of HMM parame-
linguistic effects due to a task mismatch problem. To bridgers has been proposed and adopted in a number of speech
this performance gap, one possible solution is to designl’@ognition applications. A theoretical framework of Bayesian

speech recognition system that is robust to the above typedesirning was first proposed by Le al. [21] for estimating
the mean and covariance matrix parameters of a continuous
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MAP framework provides an effective way for combining [T TTTTT T T T T T
adaptation data and the prior knowledge, and then creatin, ... acovsic |

a set of adaptive HMM’s to cope with the new acousticl > "I J
conditions in the test data. The prior knowledge, which is | I L
embodied in a set of seed HMM’s as well as in the assumed e T adaned unsupervised
distributions of the model parameters being adapted, is made

use of to mitigate the effect of adaptation data shortage teputspeecn
improve the system robustness. This approach works in a
batch adaptation mode using a history of all the adaptation
data. It can also be modified to work in a more attractive
incrementaladaptation mode. A related study was conducted
by Matsuoka and Lee [28] in which they used the segmental
MAP algorithm to perform the so-called on-line adaptation.
Due to its missing mechanism of updating the hyperparametemnbined acoustic hormalization and model adaptation based
of the prior and/or posterior distribution incrementally, albn a small amount of calibration data [41], [42].

the previously seen adaptation data need to be stored. AThe rest of the paper is organized as follows. A brief
full-scale on-line Bayesian adaptation approach should hetroduction of the concept of recursive Bayesian inference
able to update both the hyperparameters of the prior andfor CDHMM is given in Section Il. The difficulty of directly
posterior distributions and the HMM parameters themselvapplying the recursive scheme is also illustrated. The formu-
simultaneously upon the presentation of the latest adaptatlation of approximate quasi-Bayes estimation for incremental
data. One such approach for adapting the mixture coefficie@®HMM training is proposed in Section Ill. Some important
of SCHMM parameters was recently developed in [14] arithplementation issues are discussed in Section IV. In Section
[15]. In this study, we expand the above work and investigaté a series of experimental results along with discussions and
the incremental estimation of all of the CDHMM parametersinalyzes for an incremental speaker adaptation application are
The formulation given here can be straightforwardly extendeeported. Finally, we summarize our findings in Section VI.

to the DHMM and SCHMM cases.

A block diagram of the proposed on-line Bayesian adaptive
training of HMM'’s is shown in Fig. 1. Given a new block
of input speech, feature extraction (usually spectral analysis)
is first performed to derive the feature vector sequencesConsider anV-state CDHMM with parameter vector =
used to characterize the speech input. It is followed Hyr,A,8), wherer = [r1, 7, -, 7] is the initial state prob-
some kind of acoustic normalization to reduce the possibility vector, A = [ay], 4,7 = 1,2,---, N, is the transition
mismatch in the feature vector space. The processed featpiebability matrix, and? is the parameter vector composed of
vector sequences are then recognized based on the curfeidure parameters; = {wix, mix, 7ir}, k= 1,2,---, K for
set of HMM's. After the recognition of the current blockeach staté. The state observation probability density function
of utterances, the HMM's and the posterior distributions dpdf) is assumed to be a mixture of multivariate Gaussian pdf's
the related speech units are adapted and the updated models
are used to recognize future input utterance(s). The adap- - -
tation algorithm usually requires some form of supervision p(x[6:) = Zwikfik(x) = ZwikN(x|mik’”’“) (1)
in terms of the word (or phone) transcription of the speech k=1 k=1
utterances. Such a transcription can be provided either byyfere the mixture coefficients;;;'s satisfy the constraint
human traqscrlber or by thle correction made by the user ;1wik =1, and N (x | mix, %) is the kth normal mixand
the recognized output during actual usage. This adaptat@gf}mted by
scheme is often calledupervisedadaptation. On the other
hand, the supervision information can also be derived directl 12 1 .
from the recognition results and this is often referred t§' (|7, Tir) < |rit] eXp{_§(x_mik) ”k(x_mik)l
as unsupervisedadaptation. For real-world applications, the 2
unsupervised mode is usually more realistic and desirablgth m;; being theD-dimensional mean vector ang, being
For the acoustic normalization/equalization module shown ihe D x D precision (inverse covariance) matrix. Herex™
Fig. 1, many existing techniques can be applied. They includésnotes proportionality ani¢t| denotes the determinant of the
for example, the popular cepstral mean subtraction algorithmatrix ». Note that for notational convenience, it is assumed
[2], different cepstral normalization methods (e.g., CDCNhat the observation pdf's of all the states have the same
discussed in [1], ML-based feature space stochastic matchmgnber of mixture components. Whenever possible, in this
methods [7], [41], [33], signal conditioning techniques [30]paper, we try to use the same notations as in [12].

[31], etc. Acoustic normalization could even be integrated into Let ™ = {X;,X,,--,X,} ben independent observation
the feature extraction stage, e.g., speaker normalization s&mples which are used to estimate the CDHMM parameters
vocal tract length normalization using frequency warping [39). Our initial knowledge abouh is assumed to be contained
[11], [22]. Encouraging results have also been demonstratedrira knowna priori densityp(A). A formal Bayesian inference

recognition result

supervision
information
supervised

Fig. 1. Block diagram of on-line Bayesian adaptation of HMM’s.
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Il. INCREMENTAL BAYES LEARNING:
METHOD AND DIFFICULTY
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of X is based on the following posteriori density procedure proposed here is to apply the Bayes recursion
P A) - p(N) of (4) incrementally, with one or more observation samples
p(A| &™) = (3) considered at a time. It is followed by a suitable approximation

pr(Xn [A) - p(A)dA to the resulting posterior pdf so as to obtain recursive estimates
where() denotes an admissible region of the parameter spaoéthe hyperparameters of the approximate posterior pdf. This
The classical MAP solution of can be obtained by using theis typically accomplished by restricting the approximated pdf
expectation maximization (EM) algorithm [9] substantiated itp be in the class of conjugate pdf's of the complete-data
[12], which is an iterative algorithm working in batch modeistributions.
to find a local maximum of the posterior pdfA | ™).

Assume the training/adaptation sampkss are presented  |l|. A PPROXIMATE SOLUTION: QUASI-BAYES LEARNING
successively. Applying the Bayes theorem, we obtain a re-
cursive expression for tha posteriori pdf of X, given ™, A General Formulation

as i i The Bayesian algorithm for learning abowt considered
pA|X™) = pXn | A5 A) - p(A X" in this paper involves the specification of an initalpriori
p(Xp [ A7) density for A, and the subsequent recursive computation of
(X | A -p(n ] AT @) the approximate posterior density. For the general case of
- Jo (X | X) - p(A| X7=1)dX CDHMM, in which both the mean and precision parameters

) ) ) ) are assumed to be random, the initial prior pdia$ assumed
Starting with the calculation of the posterior pdf fromg, pe [12]

p(A] &%) = p()), a repeated use of (4) produces the sequence

of densitiesp(\ | A1), p(A| X?), and so forth. This provides Nk
a basis of making recursive Bayesian inference of parameters g = g(X) - H L1 otman, via) 6)
A [35]. i=1 k=1

Unfortunately, the implementation of this learning procewhere
dure for incremental CDHMM training raises some serious N
computational difficulties because of the nature of the missing- g()\') H
data problem caused by the underlying hidden processes, i.e., i=1

the state mixture component label sequence and the state N K
sequence of the Markov chain for an HMM. It is well known [m ]t H [ai]77 7t H[wik]"”"_l (7)
that there exist no reproducing (natural conjugate) densities J=1 k=1

[35], [8], [12] for CDHMM. To illustrate this problem more i . .

clearly, let us begin withp(A| X°) = p()\) and consider 1S th_e p_roduct of a series of Dirichlet pdf (some_tlmes called
what happens after a training utterance (samp¥e)s ob- multlyarlate beta pd’r),_ and thus tak_e_s the special form of a
served. For an observation sequede= (x;, X2, -, Xz), matrix beta pdf [27] with sets _of po_smve hyperparamet(_—zr_s of
let s = (1,50, +,s7) be the unobserved state sequencé’i}: {7:}: {vix}. If the Gaussian mixand has a full precision
and1l = (Ii,l5,---,l7) be the associated sequence of th@atnx, theng(m;y, ri,) is assumed to be a normal-Wishart
unobserved mixture component labels. The posterior pdf @¢nsity of the form [8]

A after observingX is glmin, rix) o |7,ik|(aik—D)/2

Tik
A X) ox ZZ X eXP[—Tk(mik — par) rin(ma, — Nik):|
s 1
1
X exp | — = tr{usp i } (8)
{Wslwslllj\/’(xl |m5111,7’5111) |: 2 ( )

T where{7;, pix, i, wir } are the hyperparameters of the prior
) density such thatv; > D — 1, 75 > 0, . IS a vector of
X gast_lstwstlt/\/(xt | mstztﬂsm)} PN dimensionD and u;;, is a D x D positive definite matrix.
Here, t(-) denotes the trace of a matrix. This class of prior
distributions actually constitutes a conjugate family of the
where the summations are taken over all possible state amnplete-data density and is denoted 7as The following
mixture component label sequences. So the exact posted@cussion and formulation will be based on the general
pdf p(A| X) is a weighted sum of the prior pgfiA) which assumption of full precision matrix case. However, many
includes(N - K)* terms. Successive computation of (4) intropractical COHMM-based speech recognition systems usually
duces an ever-expanding combination of the previous postergmopt the diagonal precision matrices. For completeness, we
pdf's and thus quickly leads to the combinatorial explosion afill also summarize the related formulation in Appendix A.
terms. As a result, formal recursive Bayes learning proceduredNe propose in this paper, at each step of the recursive
of this kind have been regarded as of purely academic interddayes learning discussed in previous section, to approxi-
In order to make it more practical, some approximationsate the true posterior distributigf A | ™) by the “closest”
are needed to alleviate the computational difficulties. Theactable distributiong(| @) within the given classpP,
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where (™ denotes the updated hyperparameters after ob-
serving the sampl&,,. The approximate MAP estimation of
CDHMM parameters at this time is then obtained by

7 | \\ -<—— approximate PDF

true PDF

AT = arg max g(A | ™). 9)

The term “closest” here depends, of course, on the particular
criterion adopted in making the approximation. From the |

viewpoint of density approximation, minimizing the Kull- p—
back-Leibler dlreCted dlvgrggnce of the ap.meIma.te paf froEi]g. 2. Schematic illustration of quasi-Bayes procedure: The true posterior
the exact posterior pdf will give an attractive solution distribution is approximated by a simpler distribution under the criterion that
both distributions have the same mode.

o Al X
o) = argmln/ p(A| X™)log Md)\, g(- | ¢) € P.

P g(A | ) (10) E-step: Compute

m=1 —

This procedure has an interesting decision-theoretical justi- ~ R(A | A®H5)) = p.log g(A ]| " 7V)

fication, as that which minimizes the expected loss when ) n—14m=l

the decision space consists of all available approximations + E[logp(Yn | V) | Xnv)‘( M )] (11)
and the utility function is a proper, local scoring rule [S]where0 < p < 1 is a forgetting factor angh = 1 means that
Unfortunately, no explicit closed-form solution exists for thishere is no forgetting.

problem and a general optimization procedure is needed to gekl-step: Choose

the hyperparameters estimate. Interested readers are referred (n—1-4m/M) ) (n—142=1)

to [6] for an example of such a Bayesian analysis of a simple A =alg mf“XR()‘ A ) (12)

mixture problem. Instead of direct use of above approximatiQpherem = 1.2..... M is the iteration index and/ is the
procedure, we suggest and highlight here a method callegl| iterations ;:)erf7ormed.

quasi-Bayes (QB) learning, which is both conceptually simple ¢ {he initial prior knowledge is too strong or after a lot

and computationally effective. of adaptation data have been incrementally processed, the
new adaptation data usually have only a small impact on
B. Quasi-Bayes Learning parameters updating in incremental training. To continuously

The quasi-Bayes procedure is an approximate solution tfheack the variations of the_ model pargmeters corresponding to
is motivated by aiming at achieving computational simplicit{’€ néw data, somrgetting mechanisrs needed to reduce
while still maintaining the flavor of the formal Bayes procethe effect of past observations relative to the new input data.
dure. In the context of finite mixture distribution identificationH€re we propose arexponential forgettingscheme by using
the quasi-Bayes approach was originally proposed by Mak@éyforgetting coefﬁqenb as shown in (11). This is analogous
and Smith [25], [34] to conduct recursive Bayes estimatidq that proposed in [40] and [18]. _ _
of the mixture coefficients while the mixture components are BY choosing the initial prior pdf to be the conjugate family
assumed fixed. In the sense that the approximate postefibrthe complete-datadensity, it can be similarly verified
distribution with a mean identical to that of the true posterigS in [12] that with an appropriate normalization fact@r
distribution, the convergence properties were established. We exp{R(A| \"=2T757))} belongs to the same distribution
previously adopted this approach to on-line adaptation of thmily as g(-), thus is denoted ag(X | ¢) with the hyperpa-
mixture coefficients in the SCHMM case [14], [15]. In thdametersy detailed as the following:

following, we will expand thls method to the_: CDHMM case. fi=p (m(n—l) —1) + 1+ (0 (13)
At each step of recursive Bayes learning, the proposed -
guasi-Bayes procedure approximates the resulting posterior fis=p- (772(;1—1) _ 1) L1 Z%(i’j) (14)

distribution p(A | A™), by the “closest” tractable distribution

g(A|¢™) within the given classP, under the criterion o (1) _ 1) 11 tfl (15)
that both distributions have the same mode. This idea is D =p- (v ' —1)+1+ca

schematically illustrated in Fig. 2. More specifically, C(()n)sider i = pfi(,f_l) + cin (16)
at(nt)lme ms(tgnm, we have.a training utterandén_ = (x;", o pTi(’:L—l)ugz—l) T cinRin 17
x5" .-+, x5’ ), and our prior knowledge about is approx- flik = -1 17)
imated by g(A| ™). Let Y, = (X,,Z,) denote the m”“l + cik

associated complete-data aid = (s,, 1,,) be corresponding Qi =p - (0452_ ) - D) + D+ cik (18)
missing data withs,, = (s§">,s§">,...,s§ﬁ>) being the un- ) g o8 ey,

observed state sequence dnd= (z§">,z§">,...,z§;j>) being Wik = Pl ik oD o

the associated sequence of the unobserved mixture component ~ (n—1)y /o ik (n—1) Z

labels. We get thepproximate MAPestimateA(™ of A\ by Rk =) (Rie— )

repeating the following steps. (29)
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where C. Discussion
(i) =Pr(st =4,8041 = 7| X,A) 1<t<T -1 (20) The above forward-backward type procedure can be easily
(i) =Pr(s, =i|X,\) 1<t<T (21) extended to a segmental (or Viterbi) one by replacing (20)—(22)
G k) =Pr(sy =il = k|X,\) 1<t<T (22) Wit
o L - Ye(é,5) = 8(st — 1)6(st41 — J) (33)
= 2 Gl @3) 20(i) = 8(s: — i), (34)
- . . wirN (X | s Tire)
o Gli k) = () =% (35)
Rik = Y Guli, k)xe/cin (24) S wiN (xe [ mij, i)
t=1
T wheres = (s1, s2,---, s7) is the most likely state sequence
Sir = Z Gl k) (xe — R ) (% — Ri)'! (25) corresponding to observation sequeXe- (x;, Xa, -+, Xr),

=1 and 6(-) denotes the Kronecker delta function.
and these terms can be computed efficiently by the forward-In the above quasi-Bayes learning framework, if each time
backward algorithm [17], [29]. Note that for notational simobtaining a training sample, only one EM iteration is per-
plicity, we have dropped the related subscripts and/or sigrmed and no forgetting is activated to update the CDHMM
perscripts which indicate the iteration index and trainingarameters and the associated hyperparameters, then the whole
sample index. The EM reestimation formulas of the CDHMNNcremental quasi-Bayes learning process becomes the fol-

parameters can thus be derived by taking the modg bf )
and are shown as follows:

) i — 1
M= 5N A
Ej:l(nj -1)
I VAt \ R0 )
S e (7Y = 1) + ()]
-1
B SARN U
e Y =) (i) o
Ek;l[ (771(1? g ) + Ef:l%(ia If)]
Y (7 — 1)
_ p T =)+ SR 8)
Simle (57 = 1) + 06
Mk = flik (29)
Pl = (Gir — D)7t dugg
B e i e A | G e 0
( (n Y ) + Et:l (i, k)
Zt 1 G, k) (e — mhvan ) (x¢ — 1)t (30)
p( wY - )+Et L G, k)

By repeating the above EM iteration, we can get a series
approximate pdfg(\|¢) whose mode is approaching to the

modé of the true posterior pdf
PXn | ) -
Jop(Xn|X)-

g(A e )

PAIXn) = P

(31)

lowing recursive EM version for approximate MAP estimate
originally suggested by Titterington in [37] as follows.
E-Step: Compute

Ly(N) = Elogp(Y | V) | X, A" D]+ Luoa (V). (36)
M-Step: ChooseX = A to maximize L,,(\) and also
update hyperparameters to geft).

In (36), one can initialize using
Lo(A) =logp(\) = logg(A | )

wherep(+) is the initial prior density for\, with modeA(®) and
hyperparameters(?. This also shows that the quasi-Bayes
procedure proposed in this paper is truly both computationally
efficient and retains the flavor of the formal Bayes solution.

We have discussed the incremental training procedure to
process one utterance at a time. Actually, the quasi-Bayes
learning framework is flexible enough to include the batch
or block mode learning as a special case. If the application
permitted, one can also update the parameters by taking
observations in batches, small enough to ensure that the
computational requirements of the related Bayesian updating
is within reasonable limits, so that the user will not be
aware of the long delay. To an extreme, one can update the
parameters by using all of the history data and the initial prior
distribution. In this case, the QB method will degenerate to be
tgp conventional batch mode MAP estimate.

The QB framework can also be used to implement an
incremental version of the ML estimate of CDHMM. Given
all of the training data, one first runs one batch-mode EM
(Baum—Welch) iteration, and thus gets an initial prior pdf
estimate by using (38)—(44) in the next section. Starting from

37)

Thus, the hyperparametegs™ are obtained at the last (actu- this initial prior pdf, one can go through the training data

ally Ath) EM iteration by using (13)—(19) to satisfy
9(A ™) o exp{ R(A| A1) L (32)

and the CDHMM parameters(™ are updated accordingly.

1strictly speaking, the EM algorithm can only guarantee the mode of t
approximate pdf to approach a local maximum of the above true poste

pdf.

ri

again by using QB framework to incrementally update the
related parameters. After the pass of the whole training data
(called oneepoch), one carrefreshthe posterior pdf by using
(45)—(51) in the next section and thé&edbackhe refreshed

df to be the initial prior pdf (callegrior/posterior feedback
%he whole process can be repeated until convergence. In this
regard, we wish to draw the reader’s attention to the concurrent
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and independent work of Gotadt al. [13], who have used a from the densityg(\ | <p(°>). When enough SI training data
similar method as the above quasi-Bayes learning procedare available, the method of moment as discussed in [14] can
from a different viewpoint of speeding up the convergence bk used to estimate the hyperparametef8. Otherwise, the
CDHMM training by using the above incremental algorithnfollowing ad hocmethod can also be used.

instead of standard batch training one. In their work, however,By viewing the last Sl training iteration as MAP estimation
they did not emphasize the underlying approximate naturewith the noninformative prioy we get the estimate of the
the updated posterior distribution to the exact one, thus failegiperparameters,(?) in the same spirit as in quasi-Bayes
to provide a sound formulation of the forgetting mechanisnearning framework as follows:

albeit their awareness of its importance. We think this insight is

. : ) 0 _ (8D,

important for developing other alternative methods as well as n =l+e -7 (1) (38)
further studying some important issues such as the asymptotic 771‘(?) —14¢ - Z%(SD(Z', 7) (39)
convergence properties and the associated regularity conditions T

that have yet to be resolved. The existing literature on this ljgg) —14¢ _ZCt(SI)(i k) (40)
topic, together with the ideas presented in this paper, should " n ’

provide a starting point for such analyses. In fact, based on the 0 S

general approximation theory discussed in Section IlI-A, apart Ti(k) T Z Ct( )("’ k) (41)
from the QB learning method, we have also developed some © (SI;

other inference procedures which can be viewed, in a unified Hig = My (42)
manner, as approximations to the formal recursive Bayesian 0452) =D +e - ZQ(SI) (i, k) (43)
solution demonstrated in Section Il. We will report those t

results elsewhere. In the following sections, we will show by uz(g) — e - (7,521))—1 Z Ct(SI)(iv k) (44)

a series of experiments that the proposed QB algorithm does
converge to a reasonable solution in terms of improving speech

recognition rate. Before that, in next section, some importafifere 0 < e < 1 is a weighting coefficient to control
implementation issues will be first discussed. the importance of the prior knowledge or to balance the

contribution between the SI training data and the adaptation
data. This parameter can be specified by a user. It can

t

IV. IMPLEMENTATION ISSUES also be determined posteriori by measuring in some way
the similarity between the coming adaptation data and the
A. Initial Hyperparameter Estimation existing models. This could be a topic for further research.

In previous sections, the initial prior densigyA | ¢(9) is By (_:hoosmg th_ese estimators for_ the hyperparameters, we
: . sacrifice the ability of the prior density to accurately model the
assumed to be a member of a preassigned family of prior

distributions. In a strict Bayesian approach, the hyperparameI etFrspeaker variability but we obtain more robust estimators

. : , . n case when only insufficient Sl training data are available.
vectoro(©® of this family of pdf's {g(- | (@)} is also assumed | : - <
known based on a subjective knowledge abautn reality, On th(_a other hand, if a sufficient amount of Sl training data
it is difficult to possess a complete knowledge of the prio'? available, the first method (method of moment) can lead to

distribution. One solution is to adopt tleenpirical Baye{EB) a more accurate_ h_yperpara_meter eSt'mate by con3|der|ng_the
interspeaker statistics. In this way, the importance of the prior

Z%a)roach [32], [26] to estimate the initial hyperparamete snowledge is determined directly by the available SI training
Prior density estimation and the choice of density pararﬁ?ta'

eters depend on the particular application of interest. In the
speaker adaptation (SA) application presented later in s
study, the initial prior density(\ | ©(*)) represents the initial  In the Bayesian adaptive learning framework, the adaptation
information of the variability of a certain model among a set afffects depend heavily on the suitability of the prior distribu-
different speakers. Taking the empirical Bayes approach, ttign to the new data. The motivation of on-line adaptation
speaker-independent (SI) training data.étD for estimating (OLA) is to adapt a recognizer continuously to the coming
hyperparameters,(® can be divided into different subsetsblock of new utterances, and then hope this adapted recognizer
A1, &b, -+, Xg correspond ta different speakers or speakewill do better for the next test utterance than the one without
groups so that each token of the SI training data is associatggplying OLA. We usually start OLA from a general initial
with a speaker (group) ID. With those clustered training datmodel (e.g., SI model), and then continuously adapt to the
one can estimat@ sets of HMM'sA = (A, A, -+ -, o) with new data. As discussed in Section I, if the initial prior
the classical Baum—Welch or segmentaineans algorithm. knowledge is too strong, or after a lot of adaptation data
One can also perform an Sl training at first by using all of theave been incrementally processed, some forgetting mecha-
training data. At the last iteration of Sl training, with the helpism is needed to help continuously track the variations of
of the speaker (group) ID information associated with eathe model parameters corresponding to the new data. There
training token, one can accumulagesets of related statisticsare many ways to implement the forgetting mechanism to
and thus correspondingly derivg sets of HMM’s. One then reduce the mismatch between updated posterior distribution
pretends to vieV\{S\i} as a collection of random observationgnd the coming data, and to track the varying conditions. The

Refreshing Hyperparameters
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exponential forgetting is expected to be helpful for handlingnd eight males. Among them, data from four males were
the slow changes of acoustic conditions between consecutiveomplete. Therefore only 12 speakers were used in this
utterances by deemphasizing the contribution of the histosjudy. Each person uttered each of the letters 26 times. Ten of
data. If at a certain time the condition changes abruptly, saytreem were collected in the same session. They are collectively
change of speaker, then the prior (or the updated posteridenoted as DAT1 in this study. The remaining 16 tokens
distribution may not provide much useful information fodenoted as DAT2 were collected in eight different sessions in
this new speaker and thus deteriorate the efficacy of tiich two tokens of each letter were collected in each session.
OLA. In this case, exponential forgetting may be too slowve divided DAT2 equally into two sets denoted, respectively,
and not able to handle such fast changes. Refreshing #s&DAT4 and DATS.

hyperparameters may be more helpful fast forgetting The For all the experiments, each letter in the vocabulary was
simplest way is to back-off to the general (e.g., Sl) initialmodeled by a single left-to-right five-state CDHMM with
models, which usually provide a reasonable performance aamtbitrary state skipping. Each state had four Gaussian mixture
a robust initial hyperparameters’ estimate. If the situatiocomponents with each component having a diagonal covari-
permitted, it will be helpful to maintain multiple sets ofance matrix. Each feature vector used in this study consisted
prior (updated posterior) distributions and select upon somé&12 bandpass-liftered LPC-derived cepstral coefficients with
criterion the best one to refresh. Finally, we can also normaliaeé30-ms frame length and a 10-ms frame shift [20]. Although
the updated hyperparameters themselves to deemphasize theire are other alternatives (e.g., [33]), only utterance-based
contributions to the new adaptation data as follows: cepstral mean subtraction (CMS) was applied for acoustic
normalization. In all of the experiments, three EM iterations

i=1te (1) (45) " Were performed for batch mode MAP training and incremental
iy =14 e (mi; — 1) (46) QB training. The initial hyperparameters were estimated by
Vipn=14e (vir—-1) (47) using the second method discussed in Section IV-A. In the
Fix = €3 Tix (48) particular expenmer!ts here, Fhe weighting coeﬁ|0|elnnygs

. chosen to bel/W with W being the number of SI training
Hik = ik 49)  tokens corresponding to each HMM. This was equivalent to
Gip = D+ ez (vir — D) (50)  control the importance of the initial prior knowledge to be
Ugpe = €2+ Uk (51) comparable with the contribution from a single training token.

In recognition, the decision rule determined the recognized

where0 < ¢; < 1 is a weighting coefficient to control the |ger a5 the one which attained the highest forward-backward
degreeof the forgetting.

probability.
In the following subsections, we study the convergence
V. SPEAKER ADAPTATION EXPERIMENTS property of the algorithm, the effects of different initial con-
ditions, and the utility of the forgetting mechanism. All of the
A. Experimental Setup experiments were performed in a supervised mode.

To examine the viability of the proposed techniques, the
incremental quasi-Bayes adaptive learning framework is ap-
plied to on-line speaker adaptation. We report on a series
recognition experiments using a vocabulary of the 26-letterTo examine the convergence property of the proposed
English alphabet. Two severely mismatched speech databaagsrithm, we started with the Sl initial models and performed
were used for evaluating the adaptation algorithm. These twopervised on-line adaptation by using DAT4 as the adaptation
corpora, the OGI ISOLET and the TI46, were recorded aet. After each OLA step, we test the recognizer by using
two separate sites with a time gap of ten years. The sped2AT5 as the testing set. We plot in Fig. 3 the OLA perfor-
data were digitized at sampling rates of 16 kHz with 16-tmance, averaged over 12 speakers, as a function of the number
guantization and 12.5 kHz with 12-b quantization respectivelgf adaptation tokens per letter (labeled as “si-ini-ol-dat4”),
The ISOLET corpus was recorded with a Sennheiser HMD 22&hough OLA is actually performed after each utterance is
close-talking noise-cancelling microphone and the T146 corpasailable. For comparison, the adaptation results by using
was recorded with an Electro-Voice RE-16 cardoid dynamhlitch MAP training method are also plotted and labeled as
microphone positioned two inches from the speaker’'s moutisi-ini-map-dat4.” The results showed that both OL and batch
They have, therefore, very different acoustic characteristidd AP adaptation can consistently and continuously improve
The speech data in the two corpora are lowpass-filteredtlag recognition performance when more and more adaptation
3.3 kHz and downsampled to 8 kHz so that hopefully, theyata were available. The small performance difference between
will become more compatible to each other. For speakéire two methods confirms that the proposed quasi-Bayes
independent training and initial prior density estimation, th@proximation to the true posterior distribution is viable and
OGI ISOLET database was used. It consists of 150 speakeasfiicient. One advantage of the OL implementation over its
75 females and 75 males, each speaking each of the lettgsitch counterpart lies in its computational efficiency and
twice. For incremental speaker adaptive training and testirrgduced storage requirements. More importantly, by incremen-
the English alphabet subset of the T146 isolated word corptaly updating hyperparameters and introducing the forgetting
was used. It was produced by 16 speakers, eight female®chanism, the algorithm is truly adaptive in nature and can

Convergence Property



168

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 2, MARCH 1997

T ' i T : 95 . . . . - . .
90 | %
* g0t * 85
© o 80F
© 70 b si-ini-map-dat4 —e— . ® 75
- si-ini-ol-dat4 —+- H
o si-ini-ol-datl -&-- g 10
5 60 b [0}
4 S 65
-
o -4
5 sof ) g 60
: g 55
S 40 f . S 50
45 |/ 1
o 1+ 2 3 4 5 6 71 8 Y1 2 3 4 5 6 71 8

number of adaptation utteran \
P ces per letter number of adaptation utterances per letter

Fig. 3. Convergence and performance comparison of on-line and baE:

adaptation (starting from Sl initial modejs.= 1, averaged over 12 speakers). -g. 4. Performance comparison under different initial conditions as a func-
tion of number of adaptation data (= 1, averaged over seven female

speakers).
continuously track the changing conditions. We will provide
more experimental evidences in the following subsections. 100 . . . . . "
Before that, we also plotted in Fig. 3 the OLA results by
using DAT1 as adaptation set and testing on DAT5 to shows, 90
the session effects between adaptation and testing data. Ttre
corresponding performance curve is labeled as “si-ini-ol-dat1.) 80
As expected, it is inferior to “si-ini-ol-dat4,” because DAT1 5 70
and DATS5 were collected in completely different sessions.§
Whereas for each testing token in DATS5, there correspondingl 60
exists an adaptation token in DAT4 coming from the sameg

session. g S0
9
" . Hog0 §
C. Effects of Initial Conditions ;
30 1 1 L A 1 A 1

In speaker adaptation based on Bayesian learning frame-
work, one hopes to use prior distribution of CDHMM param-
eters to represent the information of the variability of a certain
model among different speakers, so SA effects depend hea\('?ﬂ&
on the suitability of the prior distribution to the new speaker.
To show effects of OLA under different initial conditions, apart .~ L ) i
from starting OLA from SI model, other initial conditionsSt'” inferior .to the one from Sl initials. Th|§ also conflrm's
are also tried. Specifically here, we first arbitrarily choodd9€ Nnecessity and importance of some kind of forgetting
two speakers, one female (f4) and one male (m8). Startififchanism for the efficiency of OLA, especially in gender
from SI models, we perform OLA, respectively, on f4 ana;wnchmg_ condltlo_ns. We YVI|| show in the next sub_sectlon
m8 by using DAT1 as adaptation data. Then start from the%'jlt the’lntro_ductlon O.f t,h's mechan[sm does help improve
SA models, we perform OLA on other ten speakers by usir‘iBe OLA's efficacy. A similar opservatlon can also be derived
DAT4 as adaptation data. Once again, DAT5 is used to 4™ the performance comparison averaged over three male
the recognizer after each OLA step. In Fig. 4, we plot thaP€akers as shown in Fig. 5.
performance comparison averaged over seven female speakers . _
under different initial conditions. We can see that the OLR- Effects of the Forgetting Mechanism
performance from SA initials of f4 and m8 is inferior to the To examine the effect of the exponential forgetting factor in
one from Sl initial model. This is partly due to the severethe case of slowly changing acoustic conditions, we performed
mismatch between the prior distribution (e.g., for m8) and tHer each speaker OLA starting from the Sl initials with DAT1
new adaptation data, and partly because after OLA with DA®k the adaptation data. Then we activated the exponential
for f4 and m8, the updated hyperparameters represent foggetting mechanism and continued OLA by using DAT4
strong prior information in comparison with the contribution oas the adaptation data. After each OLA step we tested the
new data from new speakers, especially when new adaptatienognizer with DAT5. The performance comparison by using
data is insufficient. The latter is confirmed by the fact thatifferent forgetting coefficients (fc) is plotted in Fig. 6. In the
when no new adaptation data is available, the recognition ratarticular experimental setup here, the results showed that even
with SA initial models of f4 is better than the one with Slwith 18 tokens per letter, the performance has not saturated
model, but the OLA performance starting from f4 initials iget. Although the effect of the forgetting mechanism was

1 2 3 4 5 6 7 8
number of adaptation utterances per letter

5. Performance comparison under different initial conditions as a func-
of number of adaptation data & 1, averaged over three male speakers).
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Fi_g. 6. Perfor_mance c_qmparison with different forgetting coefficients to COR&y. 8. Performance comparison with different forgetting schemes to cope-
with slow varying conditions (averaged over 12 speakers). with fast varying conditions (starting from SA initials of f4, averaged over
three male speakers).
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Fig. 7. Performance comparison with different forgetting schemes to cope- number of adaptation utterances per letter

with fast varying conditions (starting from SA initials of f4, averaged ove

seven female speakers). hg. 9. Performance comparison with different forgetting schemes to cope-

with fast varying conditions (starting from SA initials of m8, averaged over
seven female speakers).

small, we can still see some improvement by activating the
forgetting mechanism. The smaller the forgetting coefficie f
the faster the forgetting process converged. However, a sm

refreshing hyperparameters (the weighting coefficient
s chosen to ba/WW; with W; being the number of SA

tfkens corresponding to each HMM used for speaker f4

the latest history data dur.ing adaptation. This.may. Sometim.?&aptation), we can see that OLA performance (“f4-ini-rf-
hamper the performance improvement, especially in the B .9") was improved significantly and quickly approach to the

for the cases of starting from the SA initials of m8 as well

dependent and 't§ effect will be more apparent when lar the performance comparison averaged over male speakers
amount of adaptation data have been processed. Unfortunatg 'shown in Figs. 8, 9, and 10. Note that all of the above

\tN'th thde C?rpushwe vyerel Li.smg’ we did not have enough daé?periments were performed in a supervised mode. However,
01(_:on uc _suctha sflfmuta 'fotnh' ¢ . hanism in t in some applications, the recognition system has to be run
0 éxamin€ the etrect of the lorgetling mechanism in r\ﬁ an unsupervised mode. In this case, how to automatically

case of abrup_t SW'tCh of conditions (e.g., change of user), &Stermine when to refresh the priors is an important research
an example, in Fig. 7, we plot the performance comparis

averaged over seven female speakers to show the effects(%)f '

different forgetting schemes. Starting from the SA initials of

f4, when no forgetting mechanism, the OLA performance (“f4- VI. DISCUSSION AND CONCLUSION

ini-fc1.0”) is much inferior to the one from the SI initials In this paper, we have presented a theoretical framework
(“si-ini-fc1.0”). By activating exponential forgetting (“f4-ini- of QB learning of CDHMM with Gaussian mixture state
fc0.9"), we can see it helped improve the OLA performancepservation densities based on a unified view of approximate
but it seemed not enough. By further including the mechanismcursive Bayesian inference. The implied algorithm can be
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100 . . . . . . that obtained without adaptation. Moreover, OLA only uses
the history data once. If it performs wrong adaptation at

—~ 95 the very beginning, the system may diverge. In order to
~ make OLA also work well in an unsupervised mode, it
2 g0 is desirable to minimize the effects of wrong supervision.
8 Research along this line of thought is in progress. Another
5 gs issue is about improving adaptation efficiency using data
a collected in mismatch acoustic conditions. In the acoustic
E 8ol e B Si-ini-fcl.0 —e— | normalization module in Fig. 1, we have only used the so-
g m8-ini-fel.0 -+ called blind equalization method in this study. Combining
T ng_a iniT£e0.9 |  other acoustic normalization techniques with the current on-
line adaptation framework is an important research topic.

70 . L ! L L On the other hand, to improve the rate of adaptation when

1mb 2 c d3 A S 6 7 8 the data amount is insufficient, one may combine on-line
npumoer of adaptation utterances per letter  pavaq adaptation with other methods such as vector field
Fig. 10. Performance comparison with different forgetting schemes to coggmoothing (VFS) technique [36], [38], transformation-based
with fast varying conditions (starting from SA initials of m8, averaged oveqmethods [10], [23], and other Bayesian techniques [19]' where
8 male speakers) the dependency or correlation between HMM’s is exploited to
o ) help adjust those HMM parameters without adaptation data.
adaptive in nature so that it can be used to perform a f“ﬂ(ctually, by combining with the so called extended MAP
scale on-line adaptive learning of the CDHMM parametelainog [19], we have extended the current QB framework
only using the current available data to continuously tragy cope with the correlated CDHMM's [16]. As a final
the varying acoustic conditions. To examine the viabilityomary although the experiments discussed in this study are
of the proposed algorithm, the QB leaming framework ig, sneaker adaptation, the same formulation can also be
applied to an on-line speaker adaptation application usifideq to handle varying channels, environments, and transducer

the 26-letter English alphabet vocabulary. In a series fismatch problems in speech as well as speaker and other
comparative experiments, we studied the convergence prop?g&em recognition problems

of the algorithm, the effects of different initial conditions, an
the utility of the forgetting mechanism. We have found the
following. APPENDIX A

« The QB learning algorithm does converge to a reasonableFORMULATION FOR DIAGONAL PRECISION MATRIX CASE

solution in terms of improving recognition rate and has a If the Gaussian mixand in (1) has a diagonal precision
similar behavior with the batch MAP algorithm in casesgnatrix, theng(mx, 7i) is assumed to be a product of normal-

when no forgetting mechanism is imposed. gamma densities [8] with the form
¢ A good initial prior distribution is a key for improving
the efficacy of on-line adaptation. gmg, rik)

* The forgetting mechanism is useful in handling the slow D
: . ; _ (ina—1/2) _1 S e )2
changes of acoustic conditions between consecutive utter x H Tikd exp 2nkdukd(mzkd Hikd)

ances and coping with the abrupt switch of speaking con- d=1

ditions (e.g., change of user). Two methods, exponential X exp|—BikdTikd] (52)
forgetting and hyperparameter refreshing, are proposed,

and their usefulness has been confirmed. where the hyperparametersiq, ird, Birg > 0, d =

In the experimental study of this paper, OLA is supervised, 2, - - -, D. The updating formulas of hyperparametérs},
i.e., the true transcription of the adaptation data was assuniex; }, {¥ix} have the same form as (13)-(15) and the
known. In practice, for on-line applications, unsupervise@maining ones are as follows:
adaptation is often more realistic than the supervised one.

The efficiency and effectiveness of unsupervised adaptation Tikd = pn(fd_l) + Cig (53)

depend on the' qualle of the recognizer being used. If the o PTi(z?d_l)NEZd_I) + CinFird

current recognizer gives poor recognition results, then the flika = 1) (54)

supervision information is often wrong. This often results PTikg T+ Cik

in an adapted model which gives worse performance than Qikd =p - (aggd—l) —0.5) 4+ 0.5 + 0.5¢ix (55)
Tikd = flikd (59)

e 1)/ 1)\ 2 . .
A1 _ 2pﬁz‘(kd Y+ pTi(kd Y (rtira — Nz(kd 1)) + Ethl Co(i, k) (eg — ting)”

Tikd = - )
p(2a§kd Y- 1) + EtT=1 Ge(iy k)

(60)
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(n—1)

A n 1 i [12]
Braa = pBli Y+ 5 Siwa + ik
2(mikd +cir) 3]
e 13
X (fikd - Ngkd 1))2 (56)
where
T (14]
Fira = 3 Geli, k)zra/cin (57)
t=1 [15]
T
Sikd = Z Ce(i, k) (weq — Tina)®. (58)  [16]
t=1
The updating formulas of COHMM paramete{s;}, {a:;}, [17]

{w;r} have also the same form as (26)—(28), and the ones of
{mix, i} are shown in (59) and (60), at the bottom of th?lg]
previous page. Accordingly, the estimation formulas of the
initial hyperparameters in (43) and (44) will be changed to

[19]

5221 = 0.5+ 0.5¢; - Z C(SI) (61)
[20]

B = 0.5 - (r2))” Z ¢ (i (62)
[21]

and the refreshing formulas of hyperparameters in (50) and

(51) will become [22]
&ikd =0.5+¢€- (Oéikd — 0.5) (63) [23]
Bika = €2 Pikd- (64)
[24]
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