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on Approximate Recursive Bayes Estimate
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Abstract—We present a framework of quasi-Bayes (QB) learn-
ing of the parameters of the continuous density hidden Markov
model (CDHMM) with Gaussian mixture state observation den-
sities. The QB formulation is based on the theory of recursive
Bayesian inference. The QB algorithm is designed to incremen-
tally update the hyperparameters of the approximate posterior
distribution and the CDHMM parameters simultaneously. By
further introducing a simple forgetting mechanism to adjust
the contribution of previously observed sample utterances, the
algorithm is adaptive in nature and capable of performing an on-
line adaptive learning using only the current sample utterance. It
can, thus, be used to cope with the time-varying nature of some
acoustic and environmental variabilities, including mismatches
caused by changing speakers, channels, and transducers. As an
example, the QB learning framework is applied to on-line speaker
adaptation and its viability is confirmed in a series of comparative
experiments using a 26-letter English alphabet vocabulary.

Index Terms— Recursive Bayesian estimation, incremental
maximum likelihood estimation, hidden Markov model, EM
algorithm, automatic speech recognition, speaker adaptation

I. INTRODUCTION

CLASSICAL parameter estimation methods of hidden
Markov model (HMM), such as maximum likelihood

(ML) [4], [3], [24], [17] and maximuma posteriori (MAP)
[21], [12], [14], generally imply batch algorithms that require
processing the available data as a whole. In a variety of
speech recognition applications, it is desirable to process the
data sequentially. For example, in many speech recognition
systems, there usually exists a performance gap between
the recognition accuracies on training and on testing data.
One major reason lies in the possible mismatch between
the underlying acoustic characteristics associated with the
training and testing conditions. This mismatch may arise from
inter- and intraspeaker variabilities, transducer, channel and
other environmental variabilities, and many other phonetic and
linguistic effects due to a task mismatch problem. To bridge
this performance gap, one possible solution is to design a
speech recognition system that is robust to the above types of
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acoustic mismatch, and this has been a long standing objective
of many researchers over the past 20 years. Another way to
reduce the possible acoustic mismatch between the training
and testing conditions is to adopt the so-calledadaptive
learning approach. The scenario is like this: starting from
a pretrained (e.g., speaker and/or task independent) speech
recognition system, for a new user (or a group of users)
to use the system for a specific task, a small amount of
adaptation data is collected from the user. These data are
used to construct a speaker adaptive system for the speaker
in the particular environment for that specific application.
By doing so, the mismatch between training and testing can
generally be reduced. The most fascinating adaptation scheme
with a practical value is the so-called on-line (or incremental,
sequential) adaptation. This scheme makes the recognition
system capable of continuously adapting to the new adaptation
data (possibly derived from actual test utterances) without the
requirement of storing a large set of previously used training
data. It is this kind of approach that this paper focuses on.

The advantage of a sequential algorithm over a batch algo-
rithm is not necessarily in the final result, but in computational
efficiency, reduced storage requirements, and the fact that an
outcome may be provided without having to wait for all the
data to be processed. Moreover, the parameters of interest are
sometimes subject to changes, e.g., they are time varying just
like abovementioned acoustic mismatch problem frequently
encountered in real speech recognition applications. In such
cases, different data segments often correspond to different
parameter values. Processing of all the available data jointly is
no longer desirable, even if we can afford the computational
load of the batch algorithm. To alleviate such problems, a
sequential algorithm can be designed to adaptively track the
varying parameters.

Recently, Bayesian adaptive learning of HMM parame-
ters has been proposed and adopted in a number of speech
recognition applications. A theoretical framework of Bayesian
learning was first proposed by Leeet al. [21] for estimating
the mean and covariance matrix parameters of a continuous
density HMM (CDHMM) with a multivariate Gaussian state
observation density. It was then extended to handle all the
parameters of a CDHMM with Gaussian mixture state obser-
vation densities (e.g., [12]) as well as the parameters of discrete
HMM’s (DHMM’s) and semicontinuous HMM’s (SCHMM’s,
also called tied-mixture HMM’s) (e.g., [14]). It was shown
that, for HMM-based speech recognition applications, the
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MAP framework provides an effective way for combining
adaptation data and the prior knowledge, and then creating
a set of adaptive HMM’s to cope with the new acoustic
conditions in the test data. The prior knowledge, which is
embodied in a set of seed HMM’s as well as in the assumed
distributions of the model parameters being adapted, is made
use of to mitigate the effect of adaptation data shortage to
improve the system robustness. This approach works in a
batch adaptation mode using a history of all the adaptation
data. It can also be modified to work in a more attractive
incrementaladaptation mode. A related study was conducted
by Matsuoka and Lee [28] in which they used the segmental
MAP algorithm to perform the so-called on-line adaptation.
Due to its missing mechanism of updating the hyperparameters
of the prior and/or posterior distribution incrementally, all
the previously seen adaptation data need to be stored. A
full-scale on-line Bayesian adaptation approach should be
able to update both the hyperparameters of the prior and/or
posterior distributions and the HMM parameters themselves
simultaneously upon the presentation of the latest adaptation
data. One such approach for adapting the mixture coefficients
of SCHMM parameters was recently developed in [14] and
[15]. In this study, we expand the above work and investigate
the incremental estimation of all of the CDHMM parameters.
The formulation given here can be straightforwardly extended
to the DHMM and SCHMM cases.

A block diagram of the proposed on-line Bayesian adaptive
training of HMM’s is shown in Fig. 1. Given a new block
of input speech, feature extraction (usually spectral analysis)
is first performed to derive the feature vector sequences
used to characterize the speech input. It is followed by
some kind of acoustic normalization to reduce the possible
mismatch in the feature vector space. The processed feature
vector sequences are then recognized based on the current
set of HMM’s. After the recognition of the current block
of utterances, the HMM’s and the posterior distributions of
the related speech units are adapted and the updated models
are used to recognize future input utterance(s). The adap-
tation algorithm usually requires some form of supervision
in terms of the word (or phone) transcription of the speech
utterances. Such a transcription can be provided either by a
human transcriber or by the correction made by the user on
the recognized output during actual usage. This adaptation
scheme is often calledsupervisedadaptation. On the other
hand, the supervision information can also be derived directly
from the recognition results and this is often referred to
as unsupervisedadaptation. For real-world applications, the
unsupervised mode is usually more realistic and desirable.
For the acoustic normalization/equalization module shown in
Fig. 1, many existing techniques can be applied. They include,
for example, the popular cepstral mean subtraction algorithm
[2], different cepstral normalization methods (e.g., CDCN)
discussed in [1], ML-based feature space stochastic matching
methods [7], [41], [33], signal conditioning techniques [30],
[31], etc. Acoustic normalization could even be integrated into
the feature extraction stage, e.g., speaker normalization via
vocal tract length normalization using frequency warping [39],
[11], [22]. Encouraging results have also been demonstrated in

Fig. 1. Block diagram of on-line Bayesian adaptation of HMM’s.

combined acoustic normalization and model adaptation based
on a small amount of calibration data [41], [42].

The rest of the paper is organized as follows. A brief
introduction of the concept of recursive Bayesian inference
for CDHMM is given in Section II. The difficulty of directly
applying the recursive scheme is also illustrated. The formu-
lation of approximate quasi-Bayes estimation for incremental
CDHMM training is proposed in Section III. Some important
implementation issues are discussed in Section IV. In Section
V, a series of experimental results along with discussions and
analyzes for an incremental speaker adaptation application are
reported. Finally, we summarize our findings in Section VI.

II. I NCREMENTAL BAYES LEARNING:
METHOD AND DIFFICULTY

Consider an -state CDHMM with parameter vector
, where is the initial state prob-

ability vector, , is the transition
probability matrix, and is the parameter vector composed of
mixture parameters for
each state. The state observation probability density function
(pdf) is assumed to be a mixture of multivariate Gaussian pdf’s

(1)

where the mixture coefficients ’s satisfy the constraint
, and is the th normal mixand

denoted by

(2)
with being the -dimensional mean vector and being
the precision (inverse covariance) matrix. Here, “”
denotes proportionality and denotes the determinant of the
matrix . Note that for notational convenience, it is assumed
that the observation pdf’s of all the states have the same
number of mixture components. Whenever possible, in this
paper, we try to use the same notations as in [12].

Let be independent observation
samples which are used to estimate the CDHMM parameters

. Our initial knowledge about is assumed to be contained
in a knowna priori density . A formal Bayesian inference
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of is based on the followinga posterioridensity

(3)

where denotes an admissible region of the parameter space.
The classical MAP solution of can be obtained by using the
expectation maximization (EM) algorithm [9] substantiated in
[12], which is an iterative algorithm working in batch mode
to find a local maximum of the posterior pdf .

Assume the training/adaptation samples’s are presented
successively. Applying the Bayes theorem, we obtain a re-
cursive expression for thea posteriori pdf of , given ,
as

(4)

Starting with the calculation of the posterior pdf from
, a repeated use of (4) produces the sequence

of densities , and so forth. This provides
a basis of making recursive Bayesian inference of parameters

[35].
Unfortunately, the implementation of this learning proce-

dure for incremental CDHMM training raises some serious
computational difficulties because of the nature of the missing-
data problem caused by the underlying hidden processes, i.e.,
the state mixture component label sequence and the state
sequence of the Markov chain for an HMM. It is well known
that there exist no reproducing (natural conjugate) densities
[35], [8], [12] for CDHMM. To illustrate this problem more
clearly, let us begin with and consider
what happens after a training utterance (sample)is ob-
served. For an observation sequence ,
let be the unobserved state sequence,
and be the associated sequence of the
unobserved mixture component labels. The posterior pdf of

after observing is

(5)

where the summations are taken over all possible state and
mixture component label sequences. So the exact posterior
pdf is a weighted sum of the prior pdf which
includes terms. Successive computation of (4) intro-
duces an ever-expanding combination of the previous posterior
pdf’s and thus quickly leads to the combinatorial explosion of
terms. As a result, formal recursive Bayes learning procedures
of this kind have been regarded as of purely academic interest.
In order to make it more practical, some approximations
are needed to alleviate the computational difficulties. The

procedure proposed here is to apply the Bayes recursion
of (4) incrementally, with one or more observation samples
considered at a time. It is followed by a suitable approximation
to the resulting posterior pdf so as to obtain recursive estimates
of the hyperparameters of the approximate posterior pdf. This
is typically accomplished by restricting the approximated pdf
to be in the class of conjugate pdf’s of the complete-data
distributions.

III. A PPROXIMATE SOLUTION: QUASI-BAYES LEARNING

A. General Formulation

The Bayesian algorithm for learning about considered
in this paper involves the specification of an initiala priori
density for , and the subsequent recursive computation of
the approximate posterior density. For the general case of
CDHMM, in which both the mean and precision parameters
are assumed to be random, the initial prior pdf ofis assumed
to be [12]

(6)

where

(7)

is the product of a series of Dirichlet pdf (sometimes called
multivariate beta pdf), and thus takes the special form of a
matrix beta pdf [27] with sets of positive hyperparameters of

. If the Gaussian mixand has a full precision
matrix, then is assumed to be a normal-Wishart
density of the form [8]

(8)

where are the hyperparameters of the prior
density such that is a vector of
dimension and is a positive definite matrix.
Here, tr denotes the trace of a matrix. This class of prior
distributions actually constitutes a conjugate family of the
complete-data density and is denoted as. The following
discussion and formulation will be based on the general
assumption of full precision matrix case. However, many
practical CDHMM-based speech recognition systems usually
adopt the diagonal precision matrices. For completeness, we
will also summarize the related formulation in Appendix A.

We propose in this paper, at each step of the recursive
Bayes learning discussed in previous section, to approxi-
mate the true posterior distribution by the “closest”
tractable distribution within the given class ,



164 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 2, MARCH 1997

where denotes the updated hyperparameters after ob-
serving the sample . The approximate MAP estimation of
CDHMM parameters at this time is then obtained by

(9)

The term “closest” here depends, of course, on the particular
criterion adopted in making the approximation. From the
viewpoint of density approximation, minimizing the Kull-
back–Leibler directed divergence of the approximate pdf from
the exact posterior pdf will give an attractive solution

(10)
This procedure has an interesting decision-theoretical justi-
fication, as that which minimizes the expected loss when
the decision space consists of all available approximations
and the utility function is a proper, local scoring rule [5].
Unfortunately, no explicit closed-form solution exists for this
problem and a general optimization procedure is needed to get
the hyperparameters estimate. Interested readers are referred
to [6] for an example of such a Bayesian analysis of a simple
mixture problem. Instead of direct use of above approximation
procedure, we suggest and highlight here a method called
quasi-Bayes (QB) learning, which is both conceptually simple
and computationally effective.

B. Quasi-Bayes Learning

The quasi-Bayes procedure is an approximate solution that
is motivated by aiming at achieving computational simplicity
while still maintaining the flavor of the formal Bayes proce-
dure. In the context of finite mixture distribution identification,
the quasi-Bayes approach was originally proposed by Makov
and Smith [25], [34] to conduct recursive Bayes estimation
of the mixture coefficients while the mixture components are
assumed fixed. In the sense that the approximate posterior
distribution with a mean identical to that of the true posterior
distribution, the convergence properties were established. We
previously adopted this approach to on-line adaptation of the
mixture coefficients in the SCHMM case [14], [15]. In the
following, we will expand this method to the CDHMM case.

At each step of recursive Bayes learning, the proposed
quasi-Bayes procedure approximates the resulting posterior
distribution , by the “closest” tractable distribution

within the given class , under the criterion
that both distributions have the same mode. This idea is
schematically illustrated in Fig. 2. More specifically, consider
at time instant , we have a training utterance

, and our prior knowledge about is approx-
imated by . Let denote the
associated complete-data and be corresponding
missing data with being the un-

observed state sequence and being
the associated sequence of the unobserved mixture component
labels. We get theapproximate MAPestimate of by
repeating the following steps.

Fig. 2. Schematic illustration of quasi-Bayes procedure: The true posterior
distribution is approximated by a simpler distribution under the criterion that
both distributions have the same mode.

E-step: Compute

(11)

where is a forgetting factor and means that
there is no forgetting.

M-step: Choose

(12)

where is the iteration index and is the
total iterations performed.

If the initial prior knowledge is too strong or after a lot
of adaptation data have been incrementally processed, the
new adaptation data usually have only a small impact on
parameters updating in incremental training. To continuously
track the variations of the model parameters corresponding to
the new data, someforgetting mechanismis needed to reduce
the effect of past observations relative to the new input data.
Here we propose anexponential forgettingscheme by using
a forgetting coefficient as shown in (11). This is analogous
to that proposed in [40] and [18].

By choosing the initial prior pdf to be the conjugate family
of the complete-datadensity, it can be similarly verified
as in [12] that with an appropriate normalization factor,

belongs to the same distribution
family as , thus is denoted as with the hyperpa-
rameters detailed as the following:

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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where

(20)

(21)

(22)

(23)

(24)

(25)

and these terms can be computed efficiently by the forward-
backward algorithm [17], [29]. Note that for notational sim-
plicity, we have dropped the related subscripts and/or su-
perscripts which indicate the iteration index and training
sample index. The EM reestimation formulas of the CDHMM
parameters can thus be derived by taking the mode of
and are shown as follows:

(26)

(27)

(28)

(29)

(30)

By repeating the above EM iteration, we can get a series of
approximate pdf whose mode is approaching to the
mode1 of the true posterior pdf

(31)

Thus, the hyperparameters are obtained at the last (actu-
ally th) EM iteration by using (13)–(19) to satisfy

(32)

and the CDHMM parameters are updated accordingly.

1Strictly speaking, the EM algorithm can only guarantee the mode of the
approximate pdf to approach a local maximum of the above true posterior
pdf.

C. Discussion

The above forward-backward type procedure can be easily
extended to a segmental (or Viterbi) one by replacing (20)–(22)
with

(33)

(34)

(35)

where is the most likely state sequence
corresponding to observation sequence ,
and denotes the Kronecker delta function.

In the above quasi-Bayes learning framework, if each time
obtaining a training sample, only one EM iteration is per-
formed and no forgetting is activated to update the CDHMM
parameters and the associated hyperparameters, then the whole
incremental quasi-Bayes learning process becomes the fol-
lowing recursive EM version for approximate MAP estimate
originally suggested by Titterington in [37] as follows.

E-Step: Compute

(36)

M-Step: Choose to maximize and also
update hyperparameters to get .

In (36), one can initialize using

(37)

where is the initial prior density for , with mode and
hyperparameters . This also shows that the quasi-Bayes
procedure proposed in this paper is truly both computationally
efficient and retains the flavor of the formal Bayes solution.

We have discussed the incremental training procedure to
process one utterance at a time. Actually, the quasi-Bayes
learning framework is flexible enough to include the batch
or block mode learning as a special case. If the application
permitted, one can also update the parameters by taking
observations in batches, small enough to ensure that the
computational requirements of the related Bayesian updating
is within reasonable limits, so that the user will not be
aware of the long delay. To an extreme, one can update the
parameters by using all of the history data and the initial prior
distribution. In this case, the QB method will degenerate to be
the conventional batch mode MAP estimate.

The QB framework can also be used to implement an
incremental version of the ML estimate of CDHMM. Given
all of the training data, one first runs one batch-mode EM
(Baum–Welch) iteration, and thus gets an initial prior pdf
estimate by using (38)–(44) in the next section. Starting from
this initial prior pdf, one can go through the training data
again by using QB framework to incrementally update the
related parameters. After the pass of the whole training data
(called oneepoch), one canrefreshthe posterior pdf by using
(45)–(51) in the next section and thenfeedbackthe refreshed
pdf to be the initial prior pdf (calledprior/posterior feedback).
The whole process can be repeated until convergence. In this
regard, we wish to draw the reader’s attention to the concurrent
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and independent work of Gotohet al. [13], who have used a
similar method as the above quasi-Bayes learning procedure
from a different viewpoint of speeding up the convergence of
CDHMM training by using the above incremental algorithm
instead of standard batch training one. In their work, however,
they did not emphasize the underlying approximate nature of
the updated posterior distribution to the exact one, thus failed
to provide a sound formulation of the forgetting mechanism,
albeit their awareness of its importance. We think this insight is
important for developing other alternative methods as well as
further studying some important issues such as the asymptotic
convergence properties and the associated regularity conditions
that have yet to be resolved. The existing literature on this
topic, together with the ideas presented in this paper, should
provide a starting point for such analyses. In fact, based on the
general approximation theory discussed in Section III-A, apart
from the QB learning method, we have also developed some
other inference procedures which can be viewed, in a unified
manner, as approximations to the formal recursive Bayesian
solution demonstrated in Section II. We will report those
results elsewhere. In the following sections, we will show by
a series of experiments that the proposed QB algorithm does
converge to a reasonable solution in terms of improving speech
recognition rate. Before that, in next section, some important
implementation issues will be first discussed.

IV. I MPLEMENTATION ISSUES

A. Initial Hyperparameter Estimation

In previous sections, the initial prior density is
assumed to be a member of a preassigned family of prior
distributions. In a strict Bayesian approach, the hyperparameter
vector of this family of pdf’s is also assumed
known based on a subjective knowledge about. In reality,
it is difficult to possess a complete knowledge of the prior
distribution. One solution is to adopt theempirical Bayes(EB)
approach [32], [26] to estimate the initial hyperparameters

.
Prior density estimation and the choice of density param-

eters depend on the particular application of interest. In the
speaker adaptation (SA) application presented later in this
study, the initial prior density represents the initial
information of the variability of a certain model among a set of
different speakers. Taking the empirical Bayes approach, the
speaker-independent (SI) training data set for estimating
hyperparameters can be divided into different subsets

correspond to different speakers or speaker
groups so that each token of the SI training data is associated
with a speaker (group) ID. With those clustered training data,
one can estimate sets of HMM’s with
the classical Baum–Welch or segmental-means algorithm.
One can also perform an SI training at first by using all of the
training data. At the last iteration of SI training, with the help
of the speaker (group) ID information associated with each
training token, one can accumulatesets of related statistics
and thus correspondingly derive sets of HMM’s. One then
pretends to view as a collection of random observations

from the density . When enough SI training data
are available, the method of moment as discussed in [14] can
be used to estimate the hyperparameters. Otherwise, the
following ad hocmethod can also be used.

By viewing the last SI training iteration as MAP estimation
with the noninformative prior, we get the estimate of the
hyperparameters in the same spirit as in quasi-Bayes
learning framework as follows:

(38)

(39)

(40)

(41)

(42)

(43)

(44)

where is a weighting coefficient to control
the importance of the prior knowledge or to balance the
contribution between the SI training data and the adaptation
data. This parameter can be specified by a user. It can
also be determineda posteriori by measuring in some way
the similarity between the coming adaptation data and the
existing models. This could be a topic for further research.
By choosing these estimators for the hyperparameters, we
sacrifice the ability of the prior density to accurately model the
interspeaker variability but we obtain more robust estimators
in case when only insufficient SI training data are available.
On the other hand, if a sufficient amount of SI training data
is available, the first method (method of moment) can lead to
a more accurate hyperparameter estimate by considering the
interspeaker statistics. In this way, the importance of the prior
knowledge is determined directly by the available SI training
data.

B. Refreshing Hyperparameters

In the Bayesian adaptive learning framework, the adaptation
effects depend heavily on the suitability of the prior distribu-
tion to the new data. The motivation of on-line adaptation
(OLA) is to adapt a recognizer continuously to the coming
block of new utterances, and then hope this adapted recognizer
will do better for the next test utterance than the one without
applying OLA. We usually start OLA from a general initial
model (e.g., SI model), and then continuously adapt to the
new data. As discussed in Section III, if the initial prior
knowledge is too strong, or after a lot of adaptation data
have been incrementally processed, some forgetting mecha-
nism is needed to help continuously track the variations of
the model parameters corresponding to the new data. There
are many ways to implement the forgetting mechanism to
reduce the mismatch between updated posterior distribution
and the coming data, and to track the varying conditions. The
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exponential forgetting is expected to be helpful for handling
the slow changes of acoustic conditions between consecutive
utterances by deemphasizing the contribution of the history
data. If at a certain time the condition changes abruptly, say, a
change of speaker, then the prior (or the updated posterior)
distribution may not provide much useful information for
this new speaker and thus deteriorate the efficacy of the
OLA. In this case, exponential forgetting may be too slow
and not able to handle such fast changes. Refreshing the
hyperparameters may be more helpful forfast forgetting. The
simplest way is to back-off to the general (e.g., SI) initial
models, which usually provide a reasonable performance and
a robust initial hyperparameters’ estimate. If the situation
permitted, it will be helpful to maintain multiple sets of
prior (updated posterior) distributions and select upon some
criterion the best one to refresh. Finally, we can also normalize
the updated hyperparameters themselves to deemphasize their
contributions to the new adaptation data as follows:

(45)

(46)

(47)

(48)

(49)

(50)

(51)

where is a weighting coefficient to control the
degreeof the forgetting.

V. SPEAKER ADAPTATION EXPERIMENTS

A. Experimental Setup

To examine the viability of the proposed techniques, the
incremental quasi-Bayes adaptive learning framework is ap-
plied to on-line speaker adaptation. We report on a series of
recognition experiments using a vocabulary of the 26-letter
English alphabet. Two severely mismatched speech databases
were used for evaluating the adaptation algorithm. These two
corpora, the OGI ISOLET and the TI46, were recorded at
two separate sites with a time gap of ten years. The speech
data were digitized at sampling rates of 16 kHz with 16-b
quantization and 12.5 kHz with 12-b quantization respectively.
The ISOLET corpus was recorded with a Sennheiser HMD 224
close-talking noise-cancelling microphone and the TI46 corpus
was recorded with an Electro-Voice RE-16 cardoid dynamic
microphone positioned two inches from the speaker’s mouth.
They have, therefore, very different acoustic characteristics.
The speech data in the two corpora are lowpass-filtered at
3.3 kHz and downsampled to 8 kHz so that hopefully, they
will become more compatible to each other. For speaker
independent training and initial prior density estimation, the
OGI ISOLET database was used. It consists of 150 speakers,
75 females and 75 males, each speaking each of the letters
twice. For incremental speaker adaptive training and testing,
the English alphabet subset of the TI46 isolated word corpus
was used. It was produced by 16 speakers, eight females,

and eight males. Among them, data from four males were
incomplete. Therefore only 12 speakers were used in this
study. Each person uttered each of the letters 26 times. Ten of
them were collected in the same session. They are collectively
denoted as DAT1 in this study. The remaining 16 tokens
denoted as DAT2 were collected in eight different sessions in
which two tokens of each letter were collected in each session.
We divided DAT2 equally into two sets denoted, respectively,
as DAT4 and DAT5.

For all the experiments, each letter in the vocabulary was
modeled by a single left-to-right five-state CDHMM with
arbitrary state skipping. Each state had four Gaussian mixture
components with each component having a diagonal covari-
ance matrix. Each feature vector used in this study consisted
of 12 bandpass-liftered LPC-derived cepstral coefficients with
a 30-ms frame length and a 10-ms frame shift [20]. Although
there are other alternatives (e.g., [33]), only utterance-based
cepstral mean subtraction (CMS) was applied for acoustic
normalization. In all of the experiments, three EM iterations
were performed for batch mode MAP training and incremental
QB training. The initial hyperparameters were estimated by
using the second method discussed in Section IV-A. In the
particular experiments here, the weighting coefficientwas
chosen to be with being the number of SI training
tokens corresponding to each HMM. This was equivalent to
control the importance of the initial prior knowledge to be
comparable with the contribution from a single training token.
In recognition, the decision rule determined the recognized
letter as the one which attained the highest forward-backward
probability.

In the following subsections, we study the convergence
property of the algorithm, the effects of different initial con-
ditions, and the utility of the forgetting mechanism. All of the
experiments were performed in a supervised mode.

B. Convergence Property

To examine the convergence property of the proposed
algorithm, we started with the SI initial models and performed
supervised on-line adaptation by using DAT4 as the adaptation
set. After each OLA step, we test the recognizer by using
DAT5 as the testing set. We plot in Fig. 3 the OLA perfor-
mance, averaged over 12 speakers, as a function of the number
of adaptation tokens per letter (labeled as “si-ini-ol-dat4”),
although OLA is actually performed after each utterance is
available. For comparison, the adaptation results by using
batch MAP training method are also plotted and labeled as
“si-ini-map-dat4.” The results showed that both OL and batch
MAP adaptation can consistently and continuously improve
the recognition performance when more and more adaptation
data were available. The small performance difference between
the two methods confirms that the proposed quasi-Bayes
approximation to the true posterior distribution is viable and
efficient. One advantage of the OL implementation over its
batch counterpart lies in its computational efficiency and
reduced storage requirements. More importantly, by incremen-
tally updating hyperparameters and introducing the forgetting
mechanism, the algorithm is truly adaptive in nature and can
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Fig. 3. Convergence and performance comparison of on-line and batch
adaptation (starting from SI initial models,� = 1, averaged over 12 speakers).

continuously track the changing conditions. We will provide
more experimental evidences in the following subsections.
Before that, we also plotted in Fig. 3 the OLA results by
using DAT1 as adaptation set and testing on DAT5 to show
the session effects between adaptation and testing data. The
corresponding performance curve is labeled as “si-ini-ol-dat1.”
As expected, it is inferior to “si-ini-ol-dat4,” because DAT1
and DAT5 were collected in completely different sessions.
Whereas for each testing token in DAT5, there correspondingly
exists an adaptation token in DAT4 coming from the same
session.

C. Effects of Initial Conditions

In speaker adaptation based on Bayesian learning frame-
work, one hopes to use prior distribution of CDHMM param-
eters to represent the information of the variability of a certain
model among different speakers, so SA effects depend heavily
on the suitability of the prior distribution to the new speaker.
To show effects of OLA under different initial conditions, apart
from starting OLA from SI model, other initial conditions
are also tried. Specifically here, we first arbitrarily choose
two speakers, one female (f4) and one male (m8). Starting
from SI models, we perform OLA, respectively, on f4 and
m8 by using DAT1 as adaptation data. Then start from these
SA models, we perform OLA on other ten speakers by using
DAT4 as adaptation data. Once again, DAT5 is used to test
the recognizer after each OLA step. In Fig. 4, we plot the
performance comparison averaged over seven female speakers
under different initial conditions. We can see that the OLA
performance from SA initials of f4 and m8 is inferior to the
one from SI initial model. This is partly due to the severer
mismatch between the prior distribution (e.g., for m8) and the
new adaptation data, and partly because after OLA with DAT1
for f4 and m8, the updated hyperparameters represent too
strong prior information in comparison with the contribution of
new data from new speakers, especially when new adaptation
data is insufficient. The latter is confirmed by the fact that
when no new adaptation data is available, the recognition rate
with SA initial models of f4 is better than the one with SI
model, but the OLA performance starting from f4 initials is

Fig. 4. Performance comparison under different initial conditions as a func-
tion of number of adaptation data (� = 1, averaged over seven female
speakers).

Fig. 5. Performance comparison under different initial conditions as a func-
tion of number of adaptation data (� = 1, averaged over three male speakers).

still inferior to the one from SI initials. This also confirms
the necessity and importance of some kind of forgetting
mechanism for the efficiency of OLA, especially in gender
switching conditions. We will show in the next subsection
that the introduction of this mechanism does help improve
the OLA’s efficacy. A similar observation can also be derived
from the performance comparison averaged over three male
speakers as shown in Fig. 5.

D. Effects of the Forgetting Mechanism

To examine the effect of the exponential forgetting factor in
the case of slowly changing acoustic conditions, we performed
for each speaker OLA starting from the SI initials with DAT1
as the adaptation data. Then we activated the exponential
forgetting mechanism and continued OLA by using DAT4
as the adaptation data. After each OLA step we tested the
recognizer with DAT5. The performance comparison by using
different forgetting coefficients (fc) is plotted in Fig. 6. In the
particular experimental setup here, the results showed that even
with 18 tokens per letter, the performance has not saturated
yet. Although the effect of the forgetting mechanism was
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Fig. 6. Performance comparison with different forgetting coefficients to cope
with slow varying conditions (averaged over 12 speakers).

Fig. 7. Performance comparison with different forgetting schemes to cope-
with fast varying conditions (starting from SA initials of f4, averaged over
seven female speakers).

small, we can still see some improvement by activating the
forgetting mechanism. The smaller the forgetting coefficient,
the faster the forgetting process converged. However, a smaller
forgetting coefficient also means a less weight assigned to
the latest history data during adaptation. This may sometimes
hamper the performance improvement, especially in the cases
of insufficient and/or slowly changing adaptation data. The
optimal value of forgetting coefficient should be situation
dependent and its effect will be more apparent when large
amount of adaptation data have been processed. Unfortunately,
with the corpus we were using, we did not have enough data
to conduct such a simulation.

To examine the effect of the forgetting mechanism in the
case of abrupt switch of conditions (e.g., change of user), as
an example, in Fig. 7, we plot the performance comparison
averaged over seven female speakers to show the effects of
different forgetting schemes. Starting from the SA initials of
f4, when no forgetting mechanism, the OLA performance (“f4-
ini-fc1.0”) is much inferior to the one from the SI initials
(“si-ini-fc1.0”). By activating exponential forgetting (“f4-ini-
fc0.9”), we can see it helped improve the OLA performance,
but it seemed not enough. By further including the mechanism

Fig. 8. Performance comparison with different forgetting schemes to cope-
with fast varying conditions (starting from SA initials of f4, averaged over
three male speakers).

Fig. 9. Performance comparison with different forgetting schemes to cope-
with fast varying conditions (starting from SA initials of m8, averaged over
seven female speakers).

of refreshing hyperparameters (the weighting coefficient
was chosen to be with being the number of SA
tokens corresponding to each HMM used for speaker f4
adaptation), we can see that OLA performance (“f4-ini-rf-
fc0.9”) was improved significantly and quickly approach to the
one obtained with the SI initials. Similar results were observed
for the cases of starting from the SA initials of m8 as well
as the performance comparison averaged over male speakers
as shown in Figs. 8, 9, and 10. Note that all of the above
experiments were performed in a supervised mode. However,
in some applications, the recognition system has to be run
in an unsupervised mode. In this case, how to automatically
determine when to refresh the priors is an important research
topic.

VI. DISCUSSION AND CONCLUSION

In this paper, we have presented a theoretical framework
of QB learning of CDHMM with Gaussian mixture state
observation densities based on a unified view of approximate
recursive Bayesian inference. The implied algorithm can be
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Fig. 10. Performance comparison with different forgetting schemes to cope-
with fast varying conditions (starting from SA initials of m8, averaged over
3 male speakers).

adaptive in nature so that it can be used to perform a full-
scale on-line adaptive learning of the CDHMM parameters
only using the current available data to continuously track
the varying acoustic conditions. To examine the viability
of the proposed algorithm, the QB learning framework is
applied to an on-line speaker adaptation application using
the 26-letter English alphabet vocabulary. In a series of
comparative experiments, we studied the convergence property
of the algorithm, the effects of different initial conditions, and
the utility of the forgetting mechanism. We have found the
following.

• The QB learning algorithm does converge to a reasonable
solution in terms of improving recognition rate and has a
similar behavior with the batch MAP algorithm in cases
when no forgetting mechanism is imposed.

• A good initial prior distribution is a key for improving
the efficacy of on-line adaptation.

• The forgetting mechanism is useful in handling the slow
changes of acoustic conditions between consecutive utter-
ances and coping with the abrupt switch of speaking con-
ditions (e.g., change of user). Two methods, exponential
forgetting and hyperparameter refreshing, are proposed,
and their usefulness has been confirmed.

In the experimental study of this paper, OLA is supervised,
i.e., the true transcription of the adaptation data was assumed
known. In practice, for on-line applications, unsupervised
adaptation is often more realistic than the supervised one.
The efficiency and effectiveness of unsupervised adaptation
depend on the quality of the recognizer being used. If the
current recognizer gives poor recognition results, then the
supervision information is often wrong. This often results
in an adapted model which gives worse performance than

that obtained without adaptation. Moreover, OLA only uses
the history data once. If it performs wrong adaptation at
the very beginning, the system may diverge. In order to
make OLA also work well in an unsupervised mode, it
is desirable to minimize the effects of wrong supervision.
Research along this line of thought is in progress. Another
issue is about improving adaptation efficiency using data
collected in mismatch acoustic conditions. In the acoustic
normalization module in Fig. 1, we have only used the so-
called blind equalization method in this study. Combining
other acoustic normalization techniques with the current on-
line adaptation framework is an important research topic.
On the other hand, to improve the rate of adaptation when
the data amount is insufficient, one may combine on-line
Bayes adaptation with other methods such as vector field
smoothing (VFS) technique [36], [38], transformation-based
methods [10], [23], and other Bayesian techniques [19], where
the dependency or correlation between HMM’s is exploited to
help adjust those HMM parameters without adaptation data.
Actually, by combining with the so called extended MAP
method [19], we have extended the current QB framework
to cope with the correlated CDHMM’s [16]. As a final
remark, although the experiments discussed in this study are
for speaker adaptation, the same formulation can also be
used to handle varying channels, environments, and transducer
mismatch problems in speech as well as speaker and other
pattern recognition problems.

APPENDIX A
FORMULATION FOR DIAGONAL PRECISION MATRIX CASE

If the Gaussian mixand in (1) has a diagonal precision
matrix, then is assumed to be a product of normal-
gamma densities [8] with the form

(52)

where the hyperparameters
. The updating formulas of hyperparameters

have the same form as (13)–(15) and the
remaining ones are as follows:

(53)

(54)

(55)

(59)

(60)
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(56)

where

(57)

(58)

The updating formulas of CDHMM parameters
have also the same form as (26)–(28), and the ones of

are shown in (59) and (60), at the bottom of the
previous page. Accordingly, the estimation formulas of the
initial hyperparameters in (43) and (44) will be changed to

(61)

(62)

and the refreshing formulas of hyperparameters in (50) and
(51) will become

(63)

(64)
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