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Correspondence

LPC Interpolation by Approximation of [l. INTERPOLATION BY APPROXIMATION OF
the Sample Autocorrelation Function THE SAMPLE AUTOCORRELATION FUNCTION

The purpose of interpolation of the spectral model is to avoid the
increase in bit rate resulting from an increased sampling rate of the
LPC parameters. Consider Fig. 1, where different frames and models

) . . are defined: in LPC analysis of speech, models are obtained from
Abstract—Conventionally, the energy of analysis frames is not taken hort ti ¢ lleghalvsis f S del of
into account for linear prediction (LPC) interpolation. Incorporating the shor . ime .Segmen S, cal alysis frames suppose _a model 0
frame energy improves the subjective quality of interpolation, but in- the signal is wanted more often, to follow changes in the spectral
creases the spectral distortion (SD). The main reason for this discrepancy properties of the signal. Estimating the LPC model more frequently
is that the outliers are increased in low energy parts of segments with i the intermediate framesvould lead to an increase in the bit rate
rapid changes in energy. The energy is most naturally combined with a of a speech coding systefRegular modelare defined as the models
normalized autocorrelation representation. : ! .
' _ ' obtained from the analysis framesference modelare obtained from
Index Terms—LPC interpolation, speech coding. the intermediate frames. The increase in bit rate can be avoided by
interpolation of the regular models of the analysis frames. An obvious
requirement for an interpolation method is that the interpolated
. ) ) . models are as close as possible to the reference models from the
Speech signals are considered mostly stationary over relat'v?rWermediate frames
§hort tlmg |ntervals. O,f about 25 ms in speech coding. In SuchThis definition of optimal interpolation is logical because an inter-
intervals, linear predlctlon-based.(LPC-based) spee_ch coders descﬁ%%liate frame could have been a regular analysis frame, if the coding
the speech spectral envelope with an autoregressive model. Mo%‘?ﬁsion had been started somewhat earlier or later. In this section, a

from consecutive frames can be very different in transition segments, interpolation method will be developed, maintaining the above

Updating _the LPC model more frequently _COUId be _used to follo efinition. The following conditions are assumed, although they are
changes in the spectral properties, but this would increase the

o T ) 8t essential. The signal is stationary within the analysis frames; the
rate. A more efficient solution is interpolation of the LPC model§

f i Ivsis f P int lation h " eqular analysis frames are bordering, i.e., are not overlapping, and
0! conseculive analysis frames. Froper interpolation has a smoo tapered data window is applied for LPC analysis. It will be shown
effect, which turns out to be beneficial for speech quality.

. . . . at the given definition of optimal interpolation requires the use of
For speech synthesis a stable LPC filter is required. The ng 9 P P q

ters th | ie. th Hicients of the all-nole LPC the frame energy in the interpolation. Furthermore, it will be shown
{:)haraimﬁlfrrsd err]nfe r\]/es; "et" bilﬁ Cvc\)/ﬁ Ir(:IiErz? sr‘ OI tedaR-pore nt tsi¥ﬁét any interpolation method that assumes stationarity within an
esis Titer, go not ensure stability wne erpolated. Representa c%ms‘alysis frame will not deal well with the low energy part of segments

that satisfy the stability requirement are autocorrelation representa- . . .
with rapidly changing energy (for example, onsets), if these sudden

tions, reflection coefficients (RC'’s), log area ratios (LAR’s), arcsin s . A
. e ) . . ,Changes occur within a frame. In this case, the assumption that the
of the reflection coefficients (ASRC'’s) and line spectral pairs (LSP’S e . . . . ;

gnal within the frame is stationary is not valid and it would actually

(11141 . . . b(;3 better to adapt the location of the analysis-frame borders to the
Some other studies on interpolation of the LPC model are reportg,l nal characteristics, as is used in for exangtienetic segmentation
in the literature [5]-[10]. Most of these studies compared the interp g ! g

lation behavior of different representations by means of experimen@l}]' In this correspondence, only fixed borders will be considered.

. . In Fig. 2, an unvoiced/voiced transition is shown. Consider two
results on speech data. In this correspondence, we will follow a more_, . N
: . o . . . analysis frames in this figure, located from 0 ms to 20 ms and from

theoretical approach. A logical definition of an optimal |nterpolatloa . ) . . .
0.ms to 40 ms, respectively. The first analysis frame is entirely

method is that the interpolated model for a subframe is as close ansvoiced the second one entirely voiced. The actual enerav of each
possible to the true subframe model, i.e., the model that would Be ! y : ay

obtained from LPC analysis for that subframe. From this definition%fIaIySIS frame has_no |nf|uer_lce on.th_e LPC parameters of tha_t frame:
new interpolation method is developed in Section Il, which uses theone of the analysis frames is multiplied by_a cons_tant (changing the
energy of the analysis frames. Experimental results will be given fil'eray Of_ the_ frame), the same LPC model IS obtalne_d. However, the
Section Ill. Conclusions follow in Section IV. situation is dlffe_rent for_referencc_a models of intermediate frames. For
example, consider an intermediate frame centered at the boundary,
located from 10 ms. to 30 ms. Suppose the energy of the first analysis
frame is increased, say by a factor 100, while the energy of the
second analysis frame is not changed. In this case, a completely
different model will be obtained from the intermediate frame, because
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This work was supported by the Dutch Technology Foundation under Grant . - . . .
DTN11.2436. The associate editor coordinating the review of this manuscr th_e interpolation O_f O_ne of the Co.nventlonal rePr‘?Se”ta“O”S_ wil
and approving it for publication was Dr. Douglas D. O’Shaughnessy. remain the same. This is not according to our definition of optimal
J. S. Erkelens is with the Faculty of Information Technology and Systemisiterpolation: a good interpolation method must aim at approximating
Delft University of Technology, 2628 CD Delft, The Netherlands (e-mailihe reference model obtained from the intermediate frames. The main

j.s.erkelens@et.tudelft.nl). Lo . .
P. M. T. Broersen is with the Faculty of Applied Physics, Delft University OPondusmn is that the interpolation should depend on the energy of

Technology, 2628 CJ Delft, The Netherlands (e-mail: broersen@tn.tudelft.rifje analysis frames, because the reference models are influenced by
Publisher Item Identifier S 1063-6676(98)07790-6. these energies [10].

Jan S. Erkelens and Piet M. T. Broersen

. INTRODUCTION

1063-6676/98$10.00]1 1998 IEEE



570 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 6, NOVEMBER 1998

Intermediate frame
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Analysis frame 1 Analysis frame 2
(Regular model 1) (Regular model 2)

Fig. 1. Definition of different frames used in the text. The regular LPC models are obtained from the analysis frames. Interpolation of these models
should approximate the reference models from the intermediate frames.
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Fig. 3. The autocorrelation of the outpufn) of an all-pole filter1/A(z),
with a white-noise signak(n) as the input, can be normalized in different

g ways (see text).
2
=
E following relationship exists between these powers:
©
2 0?
Oy = =5 713 197
5:1 {1 - k:Z}
3 ‘ ) ) where p is the order of the all-pole filter of Fig. 3 and the
~o 10 20 30 40 are the reflection coefficients associated with it. Autocorrelation
time (ms) representations that are of interest for the problem of interpolation

are defined as follows. Thautocorrelation coefficient{ACR’s)
describe the autocorrelation ofn) with ¢ normalized to one. The
autocovariance coefficienfACV's) describe the autocorrelation of
x(n) with the input variances? normalized to 1. Interpolation of
One way to incorporate the energies of analysis frames is to mMAIER has been used for example in codebook design [13]. ACR’s
tiply the coefficients of an LPC representation with the energy of thmd ACV’s haves? and ¢2 normalized to one, respectively, and
corresponding analysis frame and to interpolate this energy weightedreforedo not use the actual frame energyut we are looking
representation. For example, a vocoding algorithm is proposedfor a normalization that does use it. Tlaitocorrelation function
[12] that puts great effort into accurately coding the time envelope (ACF) describes the autocorrelation ofr) wheno? is made equal
the speech signal, because the energy contains important percegtuttie actual frame energy. Both ACR’s and ACV'’s can be computed
information. In that algorithm the frame energy is used in the LP@irectly from the LPC parameters [4]. ACR’s can also be computed
interpolation, in connection with LSP’s. It is mentioned that energiyom the ACF by normalizing with the frame energy. At the decoder,
weighting biases the interpolation toward the frame with highettie ACF can be recovered by multiplying ACR with the frame energy.
energy; improving the performance of the coder at rapid onsets. Th&8gcause the frame energy is usually transmitted to the decoder, this
is, however, a more natural way to incorporate the frame energydoes not cause an increase in bit rate.
the interpolation. Autoregressive models describe the autocorrelatiotAs an illustration, we averaged the models of the previously
of a signal in the time domain and the spectral envelope in tliefined analysis frames in Fig. 2 by means of ACR, ACV, and ACF,
frequency domain. Since autoregressive estimation methods usertpectively (Averaging is interpolation with equal weights). When
sample autocorrelation function of the data to obtain LPC parametetss averaged models were compared with the reference model of the
the interpolation must aim at giving the best approximation oftermediate frame, the spectral distortion (SD) measure was 5.55
the sample autocorrelation function of intermediate frames. Thi8, 3.80 dB, and 1.20 dB, respectively. Clearly, the actual energy
sample autocorrelation function of analysis frames contains tbéanalysis frames must be taken into account. When we decreased
energy of these frames. Since intermediate frames contain a fhd energy of the first analysis frame (increasing the relative energy
of two consecutive analysis frames, a reconstruction of the sampliéerences), ACR’s and ACV's performed even worse. Only when
autocorrelation function of intermediate frames can be obtained the frames are scaled such that their energies are equal, ACR’s and the
interpolation of the sample autocorrelation functions of the analys#CF give identical results, because then there is no energy difference.
frames (if stationarity is assumed within the analysis frames). An The ACF is a new interpolation method that takes into account the
autocorrelation representation of the LPC model should be usadtual energy of analysis frames. The frame energy can be used in
for interpolation, but one that includes the analysis-frame energyonnection with other representations. However, only with the ACF
Autocorrelation representations have been used for interpolationisnthe frame energy incorporated in a natural way.
the past (e.g., in [4] and [5]), but not one that uses the actualWhen energy weighting is applied for interpolation of a rep-
analysis-frame energy. resentation other than ACR, a capitél will be added to the
Autocorrelation representations can be normalized in differeabbreviation of that representation. For example: energy-weighted
ways. To illustrate this, consider Fig. 3, where an all-pole filtdrSP interpolation will be referred to d&sLSP interpolation Energy-
1/A(z) is excited by a white excitation(n) to give a signalke(n). weighted interpolation is performed by multiplying the coefficients

Let o2 ando? be the power of(n) and z(n), respectively. The of a representation with the frame energy and interpolating these

Fig. 2. Unvoiced-voiced transition; including the energy biases the interp
lation toward the frame with highest energy.
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Intermediate frame
(coding frame 2, subframe 2)
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Fig. 4. Definition of frames used in the experiments.

TABLE |
SD AND NUMBER OF OUTLIERS FOR INTERPOLATION IN TEN SPEECH SENTENCES THE BURG METHOD WAS USED FORANALYSIS IN NONOVERLAPPINGANALYSIS
FRAMES OF LENGTH 25 ms. Nb TAPEREDDATA WiNDOW WAS APPLIED FOR THELEFT-HAND SIDE. A HAMMING WINDOW WAS APPLIED FOR THERIGHT-HAND SIDE.

Burg method, no window, 25 ms Burg method, Hamming, 25 ms
interp. SD outliers (%) interp. SD outliers(%)
method (dB) 2.4 dB > 4 dB method (dB) 2.4 dB > 4dB
ACR 1.72 17.8 8.9 ACR 1.93 26.5 9.5
ACV 1.55 17.0 6.6 ACV 1.77 26.6 6.7
ACF 1.77 16.6 10.2 ACF 2.05 273 11.5
LSP 1.44 16.3 45 LSP 1.62 233 4.8
ELSP 1.80 14.2 10.9 ELSP 2.08 24.5 12.2
LAR 1.63 17.3 7.9 LAR 1.85 25.1 8.5
ELAR 1.88 19.2 11.0 ELAR 2.16 282 12.8

energy-weighted coefficients linearly. In other words, the interpoland the resulting interpolated models are compared toefezence

tion weighting factors become dependent on the frame energy. modelsn terms of SD and number of outliers. These reference models
Although we have tacitly assumed bordering frames and no wiare obtained from thimtermediate frameswhich are centered around

dowing, it is clear that the frame energy should also be taken inee middle of the subframes (Fig. 4). The LPC residual signals in the

account when overlapping or windowed frames are used, becagabframes were computed with the reference models. These residuals

large differences in the energy of consecutive frames must be propemyl be used as the input for the interpolated filters in the listening

treated also under these analysis conditions. experiments. Hence, for all interpolation methods, the same excitation
is used for synthesis. This ensures that all objective and subjective
IIl. EXPERIMENTAL RESULTS differences between the interpolation methods are due to inaccuracies

In the previous section, it was argued that the energy of analyg?sth(af |nt.erpolat|on only. .
frames should be incorporated in the interpolation, and it wasOPiective results are shown in Tables I and Il. All results are
shown that this can be done in a natural way with energy-weightgatamed from a total of 3600 |ntermed|a.te frames.. In Tablg I, re§ults
ACR's (ACF interpolation), if the signal is stationary in an analysi&r® Presented for the Burg method, with and without windowing.
frame. Experimental results are presented in this section to td&i€ eft-hand side of the table presents results when no window is
the new interpolation method, with different analysis condition@PPlied; the right-hand side shows results when a Hamming window
In the previous section, we focused on the subject of interpolatib?]app“ed- In _Table_ Il results are given for the autocorrelation method
for nonoverlapping nonwindowed analysis frames. In speech codéM{h @ Hamming window for different degrees of overlap. In the left-
these assumptions are not always satisfied. Often, the autocorrelafidRd part of the table, results are given for analysis frames of length
method is used to obtain LPC models from overlapping windowetf ms; for the right-hand part, analysis frames are of length 37.5 ms.
analysis frames. Therefore, experimental results will be given al58" all experiments, LPC analysis was performed every 25 ms. The
under these analysis conditions. results show that using the frame energy in the interpolation leads to a

In the experiments, we used ten sentences from the TIMIT ddtigher average SD and number of outliéFhis is in contrast with the
base, downsampled to an 8 kHz sample frequency. This set contaifgljective testo be described next: ACF interpolation subjectively
five male and five female speakers. In Fig. 4, it is shown ho@utperforms LSP interpolation.
the frames are defined for these experiments. LPC analysis wa®ifferent conventional interpolation methods have been compared
performed every 25 ms (200 samples). In some of the experiments, ithghe literature, and those based on LSP perform very well, both
analysis frames are taken to be longer than 25 ms and are therefifijectively and subjectively [6]-[9]. Our results show that the ACF
overlapping in these cases. Associated with each analysis framgésforms objectively the best of all energy-weighted representations.
a coding frame which consists of four subframes (Figs. 1 and 4)To decide whether energy weighting improves the subjective quality
The coding frames do not overlap. The analysis frames are centeoéihterpolation, a direct confrontation between the ACF and LSP was
around the middle of the coding frames. The regular models frooarried out by means of an AB-preference test with seven listeners.
the analysis frames are interpolated with the different representatiéits each of the ten sentences, the reconstructions obtained with ACF
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TABLE I
SD AND NUMBER OF OUTLIERS FORINTERPOLATION IN TEN SPEECHSENTENCES LPC ANALYSIS WAS PERFORMEDEVERY 25 MSwITH THE AUTOCORRELATION METHOD
IN OVERLAPPING ANALYSIS FRAMES OFLENGTH 30 MS FOR THE LEFT-HAND SIDE AND 37.5Ms FOR THE RIGHT-HAND SIDE. A HAMMING WiNDOwW WAS APPLIED

Autocorrelation method, Hamming, 30 ms Autocorrelation method, Hamming, 37.5 ms
interp. SD outliers (%) interp. SD outlicrs(%)
method (dB) 2.4 dB > 4dB method (dB) 24 dB >4 dB
ACR 1.83 243 8.0 ACR 1.63 20.0 6.5
ACV 1.69 249 5.6 ACV 1.47 18.6 4.2
ACF 1.95 25.8 10.0 ACF 1.72 20.2 8.4
LSP 1.55 21.7 4.1 LSP 1.35 17.2 25
ELSP 1.98 233 11.0 ELSP 1.75 18.2 9.3
LAR 1.78 235 7.6 LAR 1.57 18.4 6.1
ELAR 2.07 26.5 11.8 ELAR 1.86 2211 10.0

T T . . interpolationis much larger than what is allowed fguantization

B 80 This large number of outliers also influences the average value of
360 SD, which is larger than 1 dB for interpolation. The large number
L%40 of outliers can be explained. The energy of the intermediate frames

of one speech sentence is shown in Fig. 5(a), expressed in decibels.
In Fig. 5(b) SD is shown for LSP interpolation. It is clear that the
largest errors are made in segments where large changes in energy
T ' i ' occur, such as silence-speech and unvoiced-voiced transitions. Such
a sudden change in energy will generally not occur exactly at a frame
boundary. Suppose that in Fig. 2 the transition occurs somewhere in
the middle of the second analysis frame. Then an intermediate frame
located in this figure from 5 ms to 25 ms would be entirely unvoiced.
Interpolation will not give a good model for this intermediate frame
because the model from the second analysis frame (which is then
mixed unvoiced-voiced) does not fit well to the model from the first,
unvoiced, analysis frame. Using the energy biases the interpolation
toward the frame with highest energy, and will give a less accurate
approximation for the models for the low energy part of the transition.
; ! This can be clearly seen in Fig. 5(c), where SD is shown for ELSP
0 05 }ime (s) 15 2 interpolation in the same sentence. The listening experiment showed

that the larger number of outliers in low energy parts is not decreasing
Fig. 5. (a) Energy of a speech sentence. (b) SD for LSP interpolation. (&) subjective quality. Energy-weighting gives a better model for
SD for ELSP interpolation. Objective_ly, intgrpolation QOes not work well irfhe high energy part of transitions. It has been reported in [12] that
the low energy parts of segments with rapidly changing energy. . . L

energy-weighted interpolation improves the performance of a coder

at rapid onsets. The larger number of outliers in low-energy parts
and LSP interpolation were played in random order, and the Iistendr%es’ however, influence the objective results in terms of SD. It is

. . . . nerefore difficult to make a fair comparison between conventional
could listen up to three times to the reconstructions before giving their P

- . erpolation and energy-weighted interpolation exclusively on the
preference. Preference was given to ACF in 61.4% of the cases. ‘IJlBIsS P gy-welg P y

int i it sh that th int lati thod is ind is of SD and number of outliers.
interesting resuft shows that the new interpolation method IS INAehg e giner interesting points can be noticed in the tables. The-

better in a subjective sense, contradicting the objective results. T&%tically, the Burg method does not need a tapered data window.

main reason for this discrepancy is the higher number of outlief§p|e | shows that application of a tapered data window decreases
in low-energy parts of the signal, as will be explained below. Thegge ghjective performance for the Burg method. The autocorrelation

outliers do not influence the subjective quality in a negative way. Thisethod does need a tapered data window and Table Il shows that
means that a low SD is sufficientcondition for a good subjective jncreasing the overlap of analysis frames increases the performance.
quality, but not always aecessaryne. This has also been observed hjs was also observed for the Burg method. A more detailed analysis
in the context of quantization [14]. of the autocorrelation method and the role of windowing is presented

SD and the number of outliers have been used successfullydRewhere [16].

quantization as an objective measure of the quality of the quantizer. ItThe reflection coefficient based representations (RC, LAR, and

is known approximately when a quantizer achieves transparent qUaJSRC) perform worse than the other representations. It can be

[15]: when the average SD is smaller than 1 dB, there are less thglown that the coefficients of these representations may have strong
2% outliers in the range 2—4 dB and there are no outliers larger thaonlinear dependencies [10], [17], which are undesirable for linear

4 dB. It has been observed [5], [7], [8] that the number of outliers fanterpolation.

20
0
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IV. CONCLUSION An Improved (Auto:l, LSP:T) Constrained Iterative

In this work, it is shown that the actual energy of analysis framesSpeech Enhancement for Colored Noise Environments
should be taken into account for interpolation. The required approx-
imation of the sample autocorrelation function can be implemented Bryan L. Pellom and John H. L. Hansen
by multiplying the autocorrelation coefficients with the frame energy
and interpolating this function (ACF interpolation). ACF interpolation

outperformed LSP interpolation in a subjective test, contrasting ti‘;

Abstract—n this correspondence we illustrate how the (Auto:l, LSP:T)
Snstrained iterative speech enhancement algorithm can be extended

objective "_E‘SU“S- _ o to provide improved performance in colored noise environments. The
The main reason for the discrepancy between subjective amddified algorithm, referred to here as noise adaptive(Auto:l, LSP:T),

objective results is that the largest outliers occur in low energy pafgerates on subbanded signal components in which the terminating

of segments with rapidly changing energy and it turned out that th
do not have much influence on the subjective quality.
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é’%ation is adjusted based on thea posteriori estimate of the signal-
to-noise ratio (SNR) in each signal subband. The enhanced speech is
formulated as a combined estimate from individual signal subband
estimators. The algorithm is shown to improve objective speech quality
in additive noise environments over the traditional constrained iterative
(Auto:l, LSP:T) enhancement formulation.
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