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LPC Interpolation by Approximation of
the Sample Autocorrelation Function

Jan S. Erkelens and Piet M. T. Broersen

Abstract—Conventionally, the energy of analysis frames is not taken
into account for linear prediction (LPC) interpolation. Incorporating the
frame energy improves the subjective quality of interpolation, but in-
creases the spectral distortion (SD). The main reason for this discrepancy
is that the outliers are increased in low energy parts of segments with
rapid changes in energy. The energy is most naturally combined with a
normalized autocorrelation representation.

Index Terms—LPC interpolation, speech coding.

I. INTRODUCTION

Speech signals are considered mostly stationary over relatively
short time intervals of about 25 ms in speech coding. In such
intervals, linear prediction-based (LPC-based) speech coders describe
the speech spectral envelope with an autoregressive model. Models
from consecutive frames can be very different in transition segments.
Updating the LPC model more frequently could be used to follow
changes in the spectral properties, but this would increase the bit
rate. A more efficient solution is interpolation of the LPC models
of consecutive analysis frames. Proper interpolation has a smoothing
effect, which turns out to be beneficial for speech quality.

For speech synthesis a stable LPC filter is required. The LPC
parameters themselves, i.e., the coefficients of the all-pole LPC syn-
thesis filter, do not ensure stability when interpolated. Representations
that satisfy the stability requirement are autocorrelation representa-
tions, reflection coefficients (RC’s), log area ratios (LAR’s), arcsine
of the reflection coefficients (ASRC’s) and line spectral pairs (LSP’s)
[1]–[4].

Some other studies on interpolation of the LPC model are reported
in the literature [5]–[10]. Most of these studies compared the interpo-
lation behavior of different representations by means of experimental
results on speech data. In this correspondence, we will follow a more
theoretical approach. A logical definition of an optimal interpolation
method is that the interpolated model for a subframe is as close as
possible to the true subframe model, i.e., the model that would be
obtained from LPC analysis for that subframe. From this definition a
new interpolation method is developed in Section II, which uses the
energy of the analysis frames. Experimental results will be given in
Section III. Conclusions follow in Section IV.
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II. I NTERPOLATION BY APPROXIMATION OF

THE SAMPLE AUTOCORRELATION FUNCTION

The purpose of interpolation of the spectral model is to avoid the
increase in bit rate resulting from an increased sampling rate of the
LPC parameters. Consider Fig. 1, where different frames and models
are defined: in LPC analysis of speech, models are obtained from
short time segments, calledanalysis frames. Suppose a model of
the signal is wanted more often, to follow changes in the spectral
properties of the signal. Estimating the LPC model more frequently
in the intermediate frameswould lead to an increase in the bit rate
of a speech coding system.Regular modelsare defined as the models
obtained from the analysis frames;reference modelsare obtained from
the intermediate frames. The increase in bit rate can be avoided by
interpolation of the regular models of the analysis frames. An obvious
requirement for an interpolation method is that the interpolated
models are as close as possible to the reference models from the
intermediate frames.

This definition of optimal interpolation is logical because an inter-
mediate frame could have been a regular analysis frame, if the coding
session had been started somewhat earlier or later. In this section, a
new interpolation method will be developed, maintaining the above
definition. The following conditions are assumed, although they are
not essential. The signal is stationary within the analysis frames; the
regular analysis frames are bordering, i.e., are not overlapping, and
no tapered data window is applied for LPC analysis. It will be shown
that the given definition of optimal interpolation requires the use of
the frame energy in the interpolation. Furthermore, it will be shown
that any interpolation method that assumes stationarity within an
analysis frame will not deal well with the low energy part of segments
with rapidly changing energy (for example, onsets), if these sudden
changes occur within a frame. In this case, the assumption that the
signal within the frame is stationary is not valid and it would actually
be better to adapt the location of the analysis-frame borders to the
signal characteristics, as is used in for examplephonetic segmentation
[11]. In this correspondence, only fixed borders will be considered.

In Fig. 2, an unvoiced/voiced transition is shown. Consider two
analysis frames in this figure, located from 0 ms to 20 ms and from
20 ms to 40 ms, respectively. The first analysis frame is entirely
unvoiced, the second one entirely voiced. The actual energy of each
analysis frame has no influence on the LPC parameters of that frame:
if one of the analysis frames is multiplied by a constant (changing the
energy of the frame), the same LPC model is obtained. However, the
situation is different for reference models of intermediate frames. For
example, consider an intermediate frame centered at the boundary,
located from 10 ms. to 30 ms. Suppose the energy of the first analysis
frame is increased, say by a factor 100, while the energy of the
second analysis frame is not changed. In this case, a completely
different model will be obtained from the intermediate frame, because
the energy of the first half is altered. However, the model obtained
by the interpolation of one of the conventional representations will
remain the same. This is not according to our definition of optimal
interpolation: a good interpolation method must aim at approximating
the reference model obtained from the intermediate frames. The main
conclusion is that the interpolation should depend on the energy of
the analysis frames, because the reference models are influenced by
these energies [10].
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Fig. 1. Definition of different frames used in the text. The regular LPC models are obtained from the analysis frames. Interpolation of these models
should approximate the reference models from the intermediate frames.

Fig. 2. Unvoiced-voiced transition; including the energy biases the interpo-
lation toward the frame with highest energy.

One way to incorporate the energies of analysis frames is to mul-
tiply the coefficients of an LPC representation with the energy of the
corresponding analysis frame and to interpolate this energy weighted
representation. For example, a vocoding algorithm is proposed in
[12] that puts great effort into accurately coding the time envelope of
the speech signal, because the energy contains important perceptual
information. In that algorithm the frame energy is used in the LPC
interpolation, in connection with LSP’s. It is mentioned that energy
weighting biases the interpolation toward the frame with highest
energy; improving the performance of the coder at rapid onsets. There
is, however, a more natural way to incorporate the frame energy in
the interpolation. Autoregressive models describe the autocorrelation
of a signal in the time domain and the spectral envelope in the
frequency domain. Since autoregressive estimation methods use the
sample autocorrelation function of the data to obtain LPC parameters,
the interpolation must aim at giving the best approximation of
the sample autocorrelation function of intermediate frames. The
sample autocorrelation function of analysis frames contains the
energy of these frames. Since intermediate frames contain a part
of two consecutive analysis frames, a reconstruction of the sample
autocorrelation function of intermediate frames can be obtained by
interpolation of the sample autocorrelation functions of the analysis
frames (if stationarity is assumed within the analysis frames). An
autocorrelation representation of the LPC model should be used
for interpolation, but one that includes the analysis-frame energy.
Autocorrelation representations have been used for interpolation in
the past (e.g., in [4] and [5]), but not one that uses the actual
analysis-frame energy.

Autocorrelation representations can be normalized in different
ways. To illustrate this, consider Fig. 3, where an all-pole filter
1=A(z) is excited by a white excitatione(n) to give a signalx(n).
Let �2e and �2x be the power ofe(n) and x(n), respectively. The

Fig. 3. The autocorrelation of the outputx(n) of an all-pole filter1=A(z),
with a white-noise signale(n) as the input, can be normalized in different
ways (see text).

following relationship exists between these powers:

�2x =
�2e

p

i=1
1� k2i

where p is the order of the all-pole filter of Fig. 3 and theki
are the reflection coefficients associated with it. Autocorrelation
representations that are of interest for the problem of interpolation
are defined as follows. Theautocorrelation coefficients(ACR’s)
describe the autocorrelation ofx(n) with �2x normalized to one. The
autocovariance coefficients(ACV’s) describe the autocorrelation of
x(n) with the input variance�2e normalized to 1. Interpolation of
ACR has been used for example in codebook design [13]. ACR’s
and ACV’s have�2x and �2e normalized to one, respectively, and
thereforedo not use the actual frame energy, but we are looking
for a normalization that does use it. Theautocorrelation function
(ACF) describes the autocorrelation ofx(n) when�2x is made equal
to the actual frame energy. Both ACR’s and ACV’s can be computed
directly from the LPC parameters [4]. ACR’s can also be computed
from the ACF by normalizing with the frame energy. At the decoder,
the ACF can be recovered by multiplying ACR with the frame energy.
Because the frame energy is usually transmitted to the decoder, this
does not cause an increase in bit rate.

As an illustration, we averaged the models of the previously
defined analysis frames in Fig. 2 by means of ACR, ACV, and ACF,
respectively (Averaging is interpolation with equal weights). When
the averaged models were compared with the reference model of the
intermediate frame, the spectral distortion (SD) measure was 5.55
dB, 3.80 dB, and 1.20 dB, respectively. Clearly, the actual energy
of analysis frames must be taken into account. When we decreased
the energy of the first analysis frame (increasing the relative energy
differences), ACR’s and ACV’s performed even worse. Only when
the frames are scaled such that their energies are equal, ACR’s and the
ACF give identical results, because then there is no energy difference.

The ACF is a new interpolation method that takes into account the
actual energy of analysis frames. The frame energy can be used in
connection with other representations. However, only with the ACF
is the frame energy incorporated in a natural way.

When energy weighting is applied for interpolation of a rep-
resentation other than ACR, a capitalE will be added to the
abbreviation of that representation. For example: energy-weighted
LSP interpolation will be referred to asELSP interpolation. Energy-
weighted interpolation is performed by multiplying the coefficients
of a representation with the frame energy and interpolating these
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Fig. 4. Definition of frames used in the experiments.

TABLE I
SD AND NUMBER OF OUTLIERS FOR INTERPOLATION IN TEN SPEECH SENTENCES. THE BURG METHOD WAS USED FORANALYSIS IN NONOVERLAPPINGANALYSIS

FRAMES OFLENGTH 25 ms. NO TAPEREDDATA WINDOW WAS APPLIED FOR THELEFT-HAND SIDE. A HAMMING WINDOW WAS APPLIED FOR THERIGHT-HAND SIDE.

energy-weighted coefficients linearly. In other words, the interpola-
tion weighting factors become dependent on the frame energy.

Although we have tacitly assumed bordering frames and no win-
dowing, it is clear that the frame energy should also be taken into
account when overlapping or windowed frames are used, because
large differences in the energy of consecutive frames must be properly
treated also under these analysis conditions.

III. EXPERIMENTAL RESULTS

In the previous section, it was argued that the energy of analysis
frames should be incorporated in the interpolation, and it was
shown that this can be done in a natural way with energy-weighted
ACR’s (ACF interpolation), if the signal is stationary in an analysis
frame. Experimental results are presented in this section to test
the new interpolation method, with different analysis conditions.
In the previous section, we focused on the subject of interpolation
for nonoverlapping nonwindowed analysis frames. In speech coders,
these assumptions are not always satisfied. Often, the autocorrelation
method is used to obtain LPC models from overlapping windowed
analysis frames. Therefore, experimental results will be given also
under these analysis conditions.

In the experiments, we used ten sentences from the TIMIT data
base, downsampled to an 8 kHz sample frequency. This set contained
five male and five female speakers. In Fig. 4, it is shown how
the frames are defined for these experiments. LPC analysis was
performed every 25 ms (200 samples). In some of the experiments, the
analysis frames are taken to be longer than 25 ms and are therefore
overlapping in these cases. Associated with each analysis frame is
a coding frame, which consists of four subframes (Figs. 1 and 4).
The coding frames do not overlap. The analysis frames are centered
around the middle of the coding frames. The regular models from
the analysis frames are interpolated with the different representations

and the resulting interpolated models are compared to thereference
modelsin terms of SD and number of outliers. These reference models
are obtained from theintermediate frames, which are centered around
the middle of the subframes (Fig. 4). The LPC residual signals in the
subframes were computed with the reference models. These residuals
will be used as the input for the interpolated filters in the listening
experiments. Hence, for all interpolation methods, the same excitation
is used for synthesis. This ensures that all objective and subjective
differences between the interpolation methods are due to inaccuracies
in the interpolation only.

Objective results are shown in Tables I and II. All results are
obtained from a total of 3600 intermediate frames. In Table I, results
are presented for the Burg method, with and without windowing.
The left-hand side of the table presents results when no window is
applied; the right-hand side shows results when a Hamming window
is applied. In Table II results are given for the autocorrelation method
with a Hamming window for different degrees of overlap. In the left-
hand part of the table, results are given for analysis frames of length
30 ms; for the right-hand part, analysis frames are of length 37.5 ms.
For all experiments, LPC analysis was performed every 25 ms. The
results show that using the frame energy in the interpolation leads to a
higher average SD and number of outliers.This is in contrast with the
subjective testto be described next: ACF interpolation subjectively
outperforms LSP interpolation.

Different conventional interpolation methods have been compared
in the literature, and those based on LSP perform very well, both
objectively and subjectively [6]–[9]. Our results show that the ACF
performs objectively the best of all energy-weighted representations.
To decide whether energy weighting improves the subjective quality
of interpolation, a direct confrontation between the ACF and LSP was
carried out by means of an AB-preference test with seven listeners.
For each of the ten sentences, the reconstructions obtained with ACF
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TABLE II
SD AND NUMBER OFOUTLIERS FORINTERPOLATION IN TEN SPEECHSENTENCES. LPC ANALYSIS WAS PERFORMEDEVERY 25 msWITH THE AUTOCORRELATIONMETHOD

IN OVERLAPPING ANALYSIS FRAMES OFLENGTH 30 MS FOR THE LEFT-HAND SIDE AND 37.5 MS FOR THE RIGHT-HAND SIDE. A HAMMING WINDOW WAS APPLIED

Fig. 5. (a) Energy of a speech sentence. (b) SD for LSP interpolation. (c)
SD for ELSP interpolation. Objectively, interpolation does not work well in
the low energy parts of segments with rapidly changing energy.

and LSP interpolation were played in random order, and the listeners
could listen up to three times to the reconstructions before giving their
preference. Preference was given to ACF in 61.4% of the cases. This
interesting result shows that the new interpolation method is indeed
better in a subjective sense, contradicting the objective results. The
main reason for this discrepancy is the higher number of outliers
in low-energy parts of the signal, as will be explained below. These
outliers do not influence the subjective quality in a negative way. This
means that a low SD is asufficientcondition for a good subjective
quality, but not always anecessaryone. This has also been observed
in the context of quantization [14].

SD and the number of outliers have been used successfully in
quantization as an objective measure of the quality of the quantizer. It
is known approximately when a quantizer achieves transparent quality
[15]: when the average SD is smaller than 1 dB, there are less than
2% outliers in the range 2–4 dB and there are no outliers larger than
4 dB. It has been observed [5], [7], [8] that the number of outliers for

interpolation is much larger than what is allowed forquantization.
This large number of outliers also influences the average value of
SD, which is larger than 1 dB for interpolation. The large number
of outliers can be explained. The energy of the intermediate frames
of one speech sentence is shown in Fig. 5(a), expressed in decibels.
In Fig. 5(b) SD is shown for LSP interpolation. It is clear that the
largest errors are made in segments where large changes in energy
occur, such as silence-speech and unvoiced-voiced transitions. Such
a sudden change in energy will generally not occur exactly at a frame
boundary. Suppose that in Fig. 2 the transition occurs somewhere in
the middle of the second analysis frame. Then an intermediate frame
located in this figure from 5 ms to 25 ms would be entirely unvoiced.
Interpolation will not give a good model for this intermediate frame
because the model from the second analysis frame (which is then
mixed unvoiced-voiced) does not fit well to the model from the first,
unvoiced, analysis frame. Using the energy biases the interpolation
toward the frame with highest energy, and will give a less accurate
approximation for the models for the low energy part of the transition.
This can be clearly seen in Fig. 5(c), where SD is shown for ELSP
interpolation in the same sentence. The listening experiment showed
that the larger number of outliers in low energy parts is not decreasing
the subjective quality. Energy-weighting gives a better model for
the high energy part of transitions. It has been reported in [12] that
energy-weighted interpolation improves the performance of a coder
at rapid onsets. The larger number of outliers in low-energy parts
does, however, influence the objective results in terms of SD. It is
therefore difficult to make a fair comparison between conventional
interpolation and energy-weighted interpolation exclusively on the
basis of SD and number of outliers.

Some other interesting points can be noticed in the tables. The-
oretically, the Burg method does not need a tapered data window.
Table I shows that application of a tapered data window decreases
the objective performance for the Burg method. The autocorrelation
method does need a tapered data window and Table II shows that
increasing the overlap of analysis frames increases the performance.
This was also observed for the Burg method. A more detailed analysis
of the autocorrelation method and the role of windowing is presented
elsewhere [16].

The reflection coefficient based representations (RC, LAR, and
ASRC) perform worse than the other representations. It can be
shown that the coefficients of these representations may have strong
nonlinear dependencies [10], [17], which are undesirable for linear
interpolation.
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IV. CONCLUSION

In this work, it is shown that the actual energy of analysis frames
should be taken into account for interpolation. The required approx-
imation of the sample autocorrelation function can be implemented
by multiplying the autocorrelation coefficients with the frame energy
and interpolating this function (ACF interpolation). ACF interpolation
outperformed LSP interpolation in a subjective test, contrasting the
objective results.

The main reason for the discrepancy between subjective and
objective results is that the largest outliers occur in low energy parts
of segments with rapidly changing energy and it turned out that these
do not have much influence on the subjective quality.
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An Improved (Auto:I, LSP:T) Constrained Iterative
Speech Enhancement for Colored Noise Environments

Bryan L. Pellom and John H. L. Hansen

Abstract—In this correspondence we illustrate how the (Auto:I, LSP:T)
constrained iterative speech enhancement algorithm can be extended
to provide improved performance in colored noise environments. The
modified algorithm, referred to here as noise adaptive(Auto:I, LSP:T),
operates on subbanded signal components in which the terminating
iteration is adjusted based on thea posteriori estimate of the signal-
to-noise ratio (SNR) in each signal subband. The enhanced speech is
formulated as a combined estimate from individual signal subband
estimators. The algorithm is shown to improve objective speech quality
in additive noise environments over the traditional constrained iterative
(Auto:I, LSP:T) enhancement formulation.

I. INTRODUCTION

THERE are numerous areas where it is necessary to enhance
the quality of speech that has been degraded by background

distortion. Some of these environments include aircraft cockpits,
automobile interiors for hands-free cellular, and voice communi-
cations using mobile telephone. Speech enhancement under these
conditions can be considered successful if it i) suppresses perceptual
background noise and ii) either preserves or enhances perceived
speech quality. As voice technology continues to mature, greater
interest and demand is placed on using voice-based speech algorithms
in diverse, adverse, environmental conditions. It is suggested that
the success of advancing speech research in the fields of speaker
verification, language identification, and automatic speech recognition
could be improved by incorporating front-end speech enhancement
algorithms [1].

A number of speech enhancement algorithms have been proposed
in the past. A survey can be found in [2], as well as an overview of
statistical based approaches in [3]. Several enhancement approaches
have been proposed using improved signal-to-noise ratio (SNR)
characterization [4], linear and nonlinear spectral subtraction [5], [6],
and Wiener filtering [7]. Traditional speech enhancement methods
are based on optimizing mathematical criteria, which in general are
not always well correlated with speech perception. Several recent
methods have also considered auditory processing information [8],
[9], and constrained iterative methods using various levels of speech
class knowledge [10]–[12].

In this study, we focus on an extension to a previously pro-
posed constrained iterative speech enhancement algorithm termed
(Auto:I, LSP:T)1 [10] (described briefly in Section II). Basically,
this method employs spectral constraints on the input speech fea-
ture sequence across time and iterations to ensure more natural
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1The term (Auto:I, LSP:T) formulated in [10] is derived from the notion

that spectral constraints are applied across iterations (I) to the speech autocor-
relation lags as well as across time (T) to the speech line spectrum pair (LSP)
parameters. For simplicity, (Auto:I, LSP:T) will be referred to asAuto-LSP
throughout this work.
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