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Robust Speech Recognition Based
on a Bayesian Prediction Approach

Hui Jiang, Keikichi Hirose Member, IEEE,and Qiang HuoMember, IEEE

Abstract—In this paper, we study a category of robust speech in performance that these systems usually fail in the real-field
recognition problem in which mismatches exist between training applications.
and testing conditions, and no accurate knowledge of the mis- A gpstantial amount of work has been performed in robust
match mechanism is available. The only available information is . -
the test data along with a set of pretrained Gaussian mixture ASR area to ?Ch'eve performance. rObusm?SS under .V.a”'
continuous density hidden Markov models (CDHMM's). We Ous types of mismatches such as different kinds of additive
investigate the problem from the viewpoint of Bayesian predic- ambient noises; convolutional channel/transducer mismatch;
tion. A simple prior distribution, namely constrained uniform  acoustic variations caused by inter- and/or intraspeaker vari-
distribution, is adopted to characterize the uncertainty of the ability, different accents, stress, different speaking styles,

mean vectors of the CDHMM'’s. Two methods, namely a model . . . . .
compensation technique based on Bayesian predictive density andSPECIfic limitations in various tasks, etc. (see reviews in, e.g.,

a robust decision strategy called ViterbiBayesian predictive classi- [3], [6], [20], and [22]). Among many promising approaches,
fication are studied. The proposed methods are compared with the one is the feature (e.g., [1] and [29]) and/or model (e.g.,

conventional Viterbi decoding algorithm in speaker-independent [23] and [29]) compensation techniques to remove or reduce

recognition experiments on isolated digits and TI connected digit : : .
strings (TIDIGITS), where the mismatches between training and the acoustic mismaiches between the test data and a given

testing conditions are caused by: 1) additive Gaussian white S€t Of speech models. For this type _Of approac_h, some prior

noise, 2) each of 25 types of actual additive ambient noises,knowledge about the mechanism of mismatches is necessary to

and 3) gender difference. The experimental results show that design a suitable form of mapping function. Then tiwisance
the_adopted prior distribution and the proposed techniques h_elp parametersof the mapping function can be estimated based

to improve the performance robustness under the examined . N . oo

mismatch conditions on a certain criterion such as maximum likelihood (ML) or

_ o o o maximum a posteriori (MAP) only with small amount of
_Index Terms—Bayesian predictive classification, minimax de- gqaptation data or test data themselves.

cision, plug-in maximum a posterioridecision, predictive density, . . .

Viterbi Bayesian predictive classification. However, in practice we generally have no idea about the
sources of variability in speech signals, and no full knowledge
to figure out the mechanism of mismatches between training

|. INTRODUCTION data in the laboratory and test data in real field. In the extreme

N THE past decade, tremendous advances have bé&ége, the only available information is the test data along with
achieved in automatic speech recognition (ASR) (e.g., sa@&et of pretrained speech models. An attractive approach that
[21] for a sample of the state-of-the-art). These advanceéges not need accurate knowledge of the mismatch mechanism
promise to make speech recognition technology readind adapts the speech models using only the test data is the
available to the general public. However, as speech recognitig®rcalled online Bayesian adaptive learning algorithm (e.g.,
systems are applied in real-world applications, they must -{11]). This approach is suitable for those applications
operated in situations where it is not possible to control thevolving a recognition session which consists of a number
acoustic environment and application conditions. This ma&yf testing utterances. Besides, some recent approaches have
result in a serious mismatch between the training and testifggused on modifying the decision rule and the decision
conditions, which often brings about such a drastic degradatiparameters so that part of the mismatch can be compensated
and the decision performance can be improved. This scheme
becomes a potential approach for robust speech recognition
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to perform continuous speech recognition (CSR) because fie I') of the above distributions. Then, the optimal decoder
combination of uncertainty neighborhoods surrounding thiiepeech recognizer) which achievespectedninimum word
model parameters that need to be examined can become ggtsgnition error rate is the following MAP decoder:

large [25], [28].

In this paper, in the viewpoint of Bayesian prediction, we W = arg max p(W[X)
investiga;e two techniques.to address the ropgst recognition = arg max p(W, X)
problem in the above mentioned context to mitigate to some w
extent the difficulties of the minimax approach. We model = arg max pA(X|W) - pr(W) (1)

each speech unit with a Gaussian mixture continuous density .

hidden Markov model (CDHMM). In the first technique, wewvhereX is the observation an#él’ is the recognition result.
assume some uncertainty of the CDHMM parameters amtie decision rule in (1) is generally referred to @gtimal
use theBayesian predictive densityf each Gaussian mixture MAP decision rule

component to serve as the compensated distribution of this

component [15]. We thus call Bayesian predictive density A. Plug-In MAP Rule

based model compensati¢BP-MC) method. In this method, However, in practice, neither do we know threie para-

the decpding algqrithm for s_pt_'-:ech recognition St_i" uses tr}ﬁetric form of p(W, X), nor its true parameters. Therefore,
conventionalplug-in MAP decision rule (see the dISCUSSIon?he above optimal speech recognizer will never be achievable;

in, €9 [2].’ [12], and [13.)])' In the ;gcond technique, b%e can only approximate it. A simple heuristic solution is
modifying directly the plug-in MAP decision rule, we have st to assume a parametric form fptW, X) and then to

cently adopted a new robust decision strategy callagesian estimate its parameters from training data using a parameter

predictive classificatio{BPC) approach [12], [13], [16], [27] estimation technique (e.g., ML, MAP, discriminative training,
for robust speech recognition. We present here an approximg{g

. ) . S PpTo? ). Then, weplug in the estimaté A, ') to the optimal but
BPC algorithm called/iterbi Bayesian predictive Class'f'cat'onunavailable rule in (1) in place of the correct but unknown
(VBPC) [16]. We gather together and summarize in this_pap ( I') to obtain aplug-in MAP rule The plug-in MAP rule
those results scattered in [15]-{19] and some new experime 3[5 been widely adopted by the current speech recognizers.
results as well, in order to make it more accessible to t%e performance of plug-in MAP decision rule depends on

general readership. Whenever possible, we use the SRR choice of estimation methods, the nature and size of the

notations as those in [10}-[13]. . . training data, and the degree of the mismatch between training
The remainder of the paper is organized as follows. d testing conditions

first, several basic decision rules available for ASR are briefly

introduced in Section Il. Next, we describe the proposed tech- Minimax Rule

nigues, namely BP-MC and VBPC approaches in Sections TlI

and 1V, respectively. To examine the viability of the above As mentioned above, we generally have no full knowledge
proposed approaches, a series of comparative experimentst@réigure out thetrue parameters of models or/and decision
conducted on two speech databases: ATR isolated Japarigé® Instead of using the estimated values as in the plug-in
digit database and TIDIGITS English connected digit strinflAP rule, we assume that the unknowrne parameters\
database. The corresponding experimental results are repofte&iuncertain (random variables) and randomly distributed in

and brief discussions are presented in Section V. Finally, cmeighborhoodregion €2 around the estimated ones. If we
conclusions are summarized in Section VI. have no further knowledge abou, a reasonable decision
is to warrant the optimal outcome (e.g., minimum error) in
the possibly worst-case condition (e.g., maximum mismatch)
Il. DECISION RULES FORAUTOMATIC SPEECHRECOGNITION  [7]. Such aminimax decision rulevhich minimizes thaupper
In order to clarify the motivations of our work and toPoundof the worst-case probability of classification erréras

facilitate the discussions in the succeeding sections, we derfRREN Proposed in [25] as
and repeat here some of the discussions originally presented “
in [12] and [13]. Let's view aword W and the associated W = arg max [I,{l?% p(X[A, W) 'p(W)] (2)
acoustic observatioX (usually, a feature vector sequence%.
as a jointly distributed random pa{i¥, X). Depending on
the problem of interest, the meaning of therd here could
be any linguistic unit, e.g., a phoneme, a syllable, a word,
a phrase, etc. Also note that in this paper we simply use the
same symbol to denote both the random variable and the valuén attractive compromise between the risglug in MAP

it may assume. Suppose three joint distribution of (W, X) rule and the overdue conservative minimax approach is the
could be modeled by &ue parametric familyof probability decision strategy BPC [5], which can somehow make use
density function (pdf) ap(W, X) = po(X|W)-pr(W), where of the prior knowledge (albeit crude) about thossible

pa(X|W) is known as acoustic model with parametets mismatch, and at the same time take into account its un-
and pr(W) as language model with parametdts Further, certainty to compensate accordingly for the possible severe
suppose that we have the full knowledge on the parametemsmatch. As in [4], [8], and [10], we use a prior pelfA|e)

herefore, the minimax approach is considered to be the most
conservative decision strategy.

Bayesian Predictive Classification Rule
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with hyperparametep to represent our knowledge about thevith m;; being theD-dimensional mean vector ang, being
uncertainty of the unknown parametets An optimal Bayes the D x D precision (inverse covariance) matrix.
solutionis to choose a speech recognizer which minimizes theThe BP-MC method adopted in the study can be simply
overall recognition errorwhen the average is taken both wittdescribed as follows.
respect to the sampling variation in the expected testing datal) For each mixture component(x|6;;), a prior p.d.f.
and with respect to the uncertainty described by the prior pdf p(Bix]i) with hyperparametersp;;, is assumed to
p(Alg). Such a BPC rule is as follows: represent our knowledge about the uncertainty of the

s - CDHMM parameterd;.

W= arg mie p(WIX) 2) A Bayesian predictive density is computed as

= arg max p(W, X)

= axg max FX|W) - p(W) 3) fir(x) = / F(x10ix )p(Oirlpir) dOin. (7)
where 3) Computep;(x) = Ele wir fir(x) andplug it into the
decision rule in (1) in place of the state observation pdf
BXIW) = [ (XA Wp(Ale, WyaA @) a6

) o ) The choice of prior pdfp(6;x|vix) depends on the prior

is called the predictive pdf of the observatingiven the word | nowledge about bot#;, and the mismatch in question. In this
W. Generally speaking, the computation of this predictive pifaper, as the first step, we only consider the uncertainty of the
is the most difficult part of the BPC approach. Not like othehean vectors of CDHMM with diagonal covariance matrices
approaches such as tpgug-in MAP and the minimax where ang assume they are uniformly distributed in a neighborhood

only a single set of values (called point estimate [8], .uf pretrained means. The similar uncertainty neighborhood of
mode, mean, etc.) of prior distribution is taken into account, a5 defined in [25] is adopted as follows:

as shown in (4), the whole function of prior distribution can
be considered for decision-making in the Bayesian prediction 7(A) ={A |7 =7}, ai; = af}, wik = Wi, Tix = Tk
procedure. |mikg — migl < Cd tp, 1<i <N,
1<k<K 1<d<D} (8)
Ill. BAYESIAN PREDICTIVE DENSITY
BASED MODEL COMPENSATION APPROACH where hyperparameter€ (C > 0) andp (0 < p < 1)

There are many possible ways to apply Bayesian predictiBff used to control, respectively, the possible mismaizé
to CDHMM-based speech recognition. A straightforward ajind shape and {#, af;, mj,, rj} denote the pretrained
proach is described in this section. In this approach, insteZpde! parameters. The constrained uniform distribution in
of directly modifying the basic decision rule, we assume t{8€ a@bove uncertainty neighborhood is referred toless-
CDHMM parameters are uncertain. Then we useBhgesian m_forlmat.lveprl_or pdf to contrast W|_th other more informative
predictive densityof each Gaussian mixture component tglistributions (in terms of parametric form) such as the normal

serve as the compensated distribution of that component &figfribution. _ P _
plug these compensated distributions into the MAP decision'Ve then havefi(x) = [[,—; fira(xa) with

rule in (1). We thus call the approach Bayesian predictive L) 1 Mgt Cd™
density based model compensation method, or shortly BP-MG;;.,(x4) = <M> T /
method thereafter, to differentiate it from the BPC rule defined 2 20d72p% S, —ca-ipe
in (3) [12], [13]. o W Drialwa—mia)® A
We model each speech unit with &fstate CDHMM with 1 _ . g
parameter vectohn = (w, A, #), wherer is the initial state = 20d—1pd {‘I’(\/ Tika (Migg — Ta +Cd ™" p ))
distribution, A = {a;;|1 <4, j < N} is the transition matrix, _ . 14
andé is the parameter vector composed of mixture parameters _(I)(V Tika(Mixg = x4 = Cd™"p )>} (©)

0, = {wik, Mk, 7’ik}k=1,2,~~~,K for each state/, where K here
denotes the number of Gaussian mixture in each state. 'W1e

state observation pdf is assumed to be a mixture of multivariate B(y) = o /y o=@/ o (10)
Gaussian pdf’s: V2r Jo

K K As a remark, in [30], a similar idea has been explored in
p(x]60;) = Z wir f(x|0ir) = Z witN (x|mix, rix)  (5) the context of Bayesian speaker adaptation where a Gaussian
k=1

k=1 prior pdf for mean vector is adopted.
where the mixture coefficients);;’s satisfy the constraint
het @i = 1, andAN (x|, 72 is the kth normal mixture IV. VITERBI BAYESIAN PREDICTIVE
component denoted by CLASSIFICATION APPROACH
N (x|mg, ra) o |ri|Y? exp [—3 (x = mar)’ rar (x — M) In [12] and [13], we discuss how to apply the general

(6) BPC to CDHMM-based robust speech recognition, and finally
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focus on an approximate BPC method caltpthsi-Bayesian and
predictive classificationQBPC). Here, we focus our study 7 o ‘
on another approximate BPC method, namely Viterbi BPC i) —/p(a:th) p(A)dA. (7)
(VBPC) approach.

In the CDHMM case, due to the nature of timéssing data
problem in HMM formulation (see related discussions in [10
[12], and [13]), it is not easy to compute the tpredictive pdf

Here, é;(¢) denotes the partial predictive value based on the
ptimal partial path arriving at stateat the time instant.
he corresponding best partial path is represented by a chain
of points started fromy, ().
PEXW) =>" / p(X, s, A, W)p(Alg, W)dA (11)  2) Recursion:For2 <t <T,1<j < N, do
s, 1 (2.1 Path-merging in statg and update partial predictive

wheres is the unobserved state sequencelardhe associated value with respect tda;; }:

sequence of the unobserved mixture component labels corre- gt(j) — max [6_1() - &, ] (18)
sponding to the observation sequeeConsequently, some 1<i<NT *
approximations are needed [12], [13]. One way to compute Pe(j) = arg max [6—1(1) -d;j]. (19)
the approximate predictive pdf is to use the following Viterbi lsish
approximation: The &; is the mean of the posterior pdf of the;
. based on the optimal partial path up to the time
BXIW) mmape [ p(X. 5, 14 Wop(al, W)dA. (12 ettt Lo,
The resultant BPC rule is named as VBPC rule: a;j for i # j
2 d: = ~(Loij ~(dij— . . (20)
W = arg max {p(W) - max / (X, s, J|A, W) 7 { agf ])/agjL =D for i = J

where L;; is the accumulated number of transitions
from state: to statej based on the optimal partial
path up to the time instarit &;; denotes the mean
of the prior pdf of the HMM paramete;;, and

afj‘) correspondingly denotes thah-order moment

mwgwmq. (13)

As shown in (11), when thmnissing data(s, 1} is unknown,
the summarization over all possiblgs,1} makes the true
predictive pdf unachievable. However, on¢g,1} is given

or hypothesized, the Bayesian prediction calculation becomes of a;;, ..,

straightforward. Here we present a frame-synchronous Viterbi

Bayesian search algorithm, which is extended from the con- aij = / a;j - p(A) dA (21)
ventional Viterbi search algorithm, to achieve the above VBPC

rule. ay = / afy - p(A) dA. (22)

e For every time instant, compute the predictive values for
all active hypothesized partial paths, respectively.

e Then for each node in the network, merge all incom-
ing partial paths via selecting the one with the largest
predictive value.

(2.2 Update the partial predictive value with respect to
state parametef);:
If [itis the first time to involve statg in computation
of &:(j)],% then

« The selected path is propagated and its predictive value N TN
is recomputed according to the extended partial path. 0uld) = 01(d) x by(wr). (23)
* The above search procedure is repeated until the end of Else
the utterance. -
Given a test utterancX = N =5.(j bil@i Tiay 0 Tiy)
- (xla L2, ", .’L'T), CDHMM 61(]) = 61(]) X = (24)
parameter vectak along with its prior pdfp(A), the recursive b, Tjp, s Ty, j,m)
search procedure fapproximately accomplishing the above .
VBPC rule (13) is described as follows. whereL; is the accumulated number of feature vec-

tors belonging to statg based on the optimal partial

1) Initialization: ¢t = 1 ) . °
path up to the time instart, «;, denotes theith

o1(6) =7 - bi(wy)  1<i<N (14) vector in the statg; andb;(x;,, @, -+, zj, ) de-
P1(i) =0 1<i<N (15) notes the contribution of dater;, , ,, -, ;,_},
residing at statej, to the partial predictive value

where 7; denotes the mean of the prior pdf of the HMM

parameterr;, i.e., 6:(J):

7~T7‘,=/7F7‘,-p(1\)d1\ (16) bi(@jy, Tjyy vy Tj,)
=/M%W%M%W%m%n

0;) - p(A)dA. (25)

strictly speaking, the search algorithm here is nonadmissible: It cannot
completely warrant (13) in theory because the partial predictive value (i.e.,
4¢) will possibly be recomputed partially in (24) during search. 2Including all states tied to stage
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3) Termination:
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. {(I)(, [CTika (miga — Tca + C’d_lpd))

PX|W) 2 mas $x(i) (26) 0 (/O (mia —Ta = €7 )} (33)
s5 = arg max 67(1). (27 . ] ]
g where @(-) is defined in (10), and
4) Path (State Sequence) Backtracking) w [
. . ¥ = exp {—% (T ka [xgd — (xcd)ﬂ } (34)
S't-:"(/)t+1($'ti+1) t:T—l,T—2, ey 1. (28) .
with
In this section, we also only consider the uncertainty of the ¢
mean vectors of CDHMM with diagonal covariance matrices. = _1 Z 72
So we have W
Ty = T, CNL“ = ;5 and CNLZL) = CLZ with 1 <4, J<N. and ¢
(29) = 1
Moreover, we follow the same choice of the less-informative Ha=e tz_:l Lrd-

prior pdf p(A) as in the last section [defined in (8), etc.] We

then have

K
bi(w) = > wit, - fiu(we)

=1

rwit; - fig (@)

D
=wjiy - H fivza(wea)

d=1

(30)

where f;1,a(z.a) follows (9) and I denotes the mixture
component label to which;, is “closest,” i.e.,

I} = arg max [wﬂt fllt(xt)}
t

D

arg max [wjlt . H fjltd(xtd)] .
k4

d=1

(31)

Similarly, b;(z;,, ©;,, - -

V. EXPERIMENTS AND DISCUSSIONS

A simple special case of mismatch situation is encountered
when the testing signal is corrupted by various additive noises,
while the training data are clean. In order to examine the
viability of the proposed BP-MC and VBPC algorithms, they
are applied to perform speaker-independent (SI) recognition
of isolated and connected digits in two sets of noisy speech
recognition experiments. In the first set of experiments, the
unknown mismatch is caused by additive Gaussian white noise
on the testing data. While Sl training is performed on clean
speech data, in the testing phase, computer-generated Gaussian
white noise, with various levels of intensity, is added to the
original speech waveform prior to the preprocessing [25].
We also study the influence of the uncertainty neighborhood
on recognition performance and report the corresponding
experimental results along with our findings. In the second set

-, x;.) is calculated based on theof experiments, we apply the VBPC and BP-MC approaches

“closest” mixture component label sequence correspondingttonoisy speech recognition where 25 types of additive noises

the data{z;,, z,,, ---, z;, }:

! '/L'jn)

K ,
L, 7
~ [ [ wiit - Fon
k=1

bj(lev Ljoy =t

<37l’;d7 R d) 32

k

where {lev Ljor

to statej in X, among whichl’f~~~l§, denote labels of the
. k

vectors “closest” to the mixture componentf state;j. Then,

recorded in actual environments are involved. Besides, some
discussions on experimental results are given to explain what
mismatch situations VBPC and BP-MC with less-informative
prior pdf work well and how they improve performance in
these cases. In the above experiments, the degree of mismatch
is measured by signal-to-noise ratio (SNR) level (dB) of the
contaminated speech, which is calculated on the average over
the whole testing set. No knowledge of the related mismatch
is explicitly employed in testing phase. Moreover, viability of

-, x;, } denote feature vectors belonginghe proposed approaches on more general mismatches, e.g.,

mismatch caused by gender difference, is also examined. In
other words, the speech models are trained on male (or female)

with m7,, andr},, being the pretrained mean and precisiospeakers’ data and then tested on female (or male) speakers’

parameters, respectively, we have
rn;kd+Cd71pd
/rn;kd—Cd‘ pt

) dmjgg

v
2Cd—1p¢

f;kd(xldv L2d, " x(d)

B Gﬂ (/2 ' 1
S\ 2x 2Cd—1pd

<
1 %
"€Xp | T3 Tjkd

> (@ — mjra)?
_ @ ((€-1)/2) ' 1 (1/2)
27 ¢

t=1

data. Finally, we also compare BP-MC and VBPC with other
robust methods, including stochastic matching, minimax, and
QBPC, under the mismatch caused by additive Gaussian white
noise to help the readers gain some insight into the behavior of
the proposed methods. In all experiments, we do not perform
cepstral mean normalization in either training or testing phase.
In our recognition experiments, two speech corpora are
used. The first one is called ATR Japanese isolated digits
database (ATR-JPD hereafter), which is selected from ATR
Japanese speech database and contains isolated utterances of
Japanese 0-9 digits from 60 speakers (half male, half female).
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100.0% ] p for VBPC and BP-MC at SNR= 29.6 dB in Tables Il
and lll, respectively. Strictly speaking, the performance of
VBPC and BP-MC depends on the appropriate choic&” of
and p, which in turn depends on the unknown amount of
riug-in-vap Mismatch. However, the results in Tables Il and Il show
vBpe that considerable improvement (though not optimal) can be
& obtained in a fairly large range of design parametgisp),
BE-me which suggest that exact knowledge®@fandp is not crucial.

2) Connected Digit RecognitionVBPC possesses the in-
trinsic nature of recursive search, thus VBPC can easily be
extended to continuous speech recognition, with the increased
cost of computation and/or memory requirement. As an exam-
ple, BP-MC and VBPC are examined on TIDIGITS corpus to
perform speaker-independent connected digit recognition. The

SNR (dB) feature vector consists of 12 LPC-derived cepstral coefficients,
Fig. 1. Performance (word accuracy in %) comparison of VBPC and BP-M@Nergy, and their delta features. When we are using the delta
with plug-in-MAP method at various SNR on ATR-JPD corpus when test dafeatures, the mean vectet;;, consists of static feature in the
are distorted by Gaussian white noise. low dimensions and delta feature in the high dimensions. The

uncertainty neighborhood of defined in (8) will be slightly
The database ATR-JPD is recorded in a quiet environmentyggdified as follows:

a sampling rate of 20 kHz with 16-b quantization accuracy.
The second one is TIDIGITS English connected digit-string
database [24], which includes utterances from a total of 32
speakers. [mika — Mgl < Cd~tp?,

75.0%

50.0%

25.0%

Clean 40.0 35.6 34.0 29.6 20.0 15.6 9.6

*
vk

* * * . —
A) I{A|7TZ =T;, aij = aij, Wik = wik, Tik = 7zk

Imik(D/2+a) = Mik(p/24a)l
<Cd'p!,1<i<N,1<k<K,1<d<D/2}
(35)

A. Noisy Speech Recognition—I: Gaussian White Noise

1) Isolated Digit Recognition:The database ATR-JPD is
selected in this experiment. Each digit is modeled by a left-
to-right four-state CDHMM without state skipping and each
state has six Gaussian mixture components with diagomdtere forl < d < D/2, mia’s correspond to the static
covariance matrices. Each feature vector consists of 16 LP€ature part whilen;;p/244)’s correspond to the delta feature
derived cepstral coefficients. For each digit, in total, we hawart. The SI model for each digit is a ten-state, ten-mixture-
56 tokens from 46 speakers for speaker-independent (8€r-state CDHMM. These digit HMM's are trained on 8623
training, and 24 tokens from other 14 different speakers fotterances from adult training data subset of TIDIGITS. The
Sl testing. algorithms are evaluated on 8700 utterances from the adult

Fig. 1 compares the averaged recognition accuracy of tigsting data subset distorted by various levels of computer-
VBPC and BP-MC algorithms with that of the standard pluggenerated Gaussian white noises.
in MAP based Viterbi algorithm at various SNR levels. The The recognition results of VBPC and BP-MC on TIDIGITS
corresponding optimal neighborhood parametgfs p) are at several SNR levels are listed in Table IV, wh&te stands
also listed in Table | as a reference. The experimental resuies string correct rate Wd-C for word correct rate Wd-A for
show that both VBPC and BP-MC are generally achievingord accuracy Del, Sub, andIns for deletion substitution
more than 20% recognition rate improvement over that of tiaad insertion error rates, respectivefyThe experimental re-
conventional plug-in MAP decoding in various mismatchegults show that by using VBPC and BP-MC algorithms, overall
cases. We also note that in the particular experiments hgigognition performance, say, digit correct rate, is improved
a slight improvement is achieved even in matched conditienore than 20% over that of normal plug-in-MAP based Viterbi
(tested on clean speech). This suggests that the proposed tdegoding in mismatched testing conditions (SNR 36.8,
niques could also compensate for, in this case, the inaccurate3, and 16.8 dB). On the other hand, VBPC and BP-MC
estimation of model parameters caused possibly by incorrégorithms also achieve very similar recognition performance
model assumption, insufficient training data, etc. as normal plug-in-MAP based Viterbi algorithm in matched

Furthermore, we have also examined the influence of dtesting condition (SNR= ~c) but the optimal choice of the
ferent choices of uncertainty neighborhood, i.e., neighborhooedighborhood parameters differs from that of the mismatched
parametersC’ and p, on the final recognition performance.case. In either mismatched or matched case, it is also observed
A similar behavior as in the minimax approach [25] that ththat the recognition performance is not sensitive to different
recognition performance tends to be relatively insensitive @hoices of neighborhood parameters in a certain region (similar
the shape of uncertainty regions and the performance holdstaghose listed in Tables Il and II).
well under a wide range of SNR values is also observed in both
VBPC and BP-MC. As an example, we list the recognition
performance as a function of neighborhood parameters C an#hlil of these recognition statistics are computed by using HTK.
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TABLE |
OpPTIMAL NEIGHBORHOOD PARAMETERS (C', p) oF VBPC anD BP-MC IN FiG. 1

SNR (dB) | oo (clean) | 40.0 | 356 | 340 | 296 | 200 | 156 | 9.6
VBPC 2,01) | (2,09 | 3,09 | (3,09 | 9,07) | (6,0.8) | (4,0.4) | (3,0.5)
BP-MC | (201) | (2,0.9) ] (3,0.9) | (3,09) | (6,0.8) | (3,0.8) | (3,0.7) | (4,0.7)

TABLE 1 TABLE 1l
RECOGNITION ACCURACY (IN %) AS A FUNCTION OF NEIGHBORHOOD RECOGNITION ACCURACY (IN %) AS A FUNCTION OF NEIGHBORHOOD
PARAMETERS C AND p oF VBPC AT SNR = 29.6 dB PARAMETERS C AND p OF BP-MC AT SNR = 29.6 dB
(PLuc-IN-MAP ATTAINS 55% QORRECT RATE) (PLuc-IN-MAP ATTAINS 55% QORRECT RATE)

C\p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 C\p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 54,2 | 54.6 | 54.6 | 53.3 | 54.6 | 55.4 | 54.6 | 60.4 | 66.3 1 56.3 | 56.3 | 57.5 | 58.3 | 58.8 | 62.1 | 64.2 | 65.8 | 67.1
2 54.6 | 53.3 | 52.5 | 56.7 | 62.9 | 67.9 | 65.8 | 70.4 | 69.6 2 57.1 | 579 | 60.8 | 64.6 | 68.3 | 68.8 | 70.0 | 74.6 | 75.4
3 53.8 | 52.9 | 60.0 | 65.4 | 65.0 | 70.0 | 69.2 | 71.3 | 77.9 3 57.5 | 60.0 | 67.1 | 68.3 | 71.7 | 72.1 | 72.5 | 746 | 779
4 53.8 | 55.0 | 64.2 | 679 | 704 | 70.0 | 67.9 | 76.7 | T1.7 4 58.8 | 63.8 | 679 | 70.0 | 69.2 | 68.8 | 70.0 | 77.1 | 76.3
5 53.3 | 62.1 | 62.1 | 70.0 | 68.8 | 64.6 | 73.3 | 80.0 | 50.8 5 58.3 | 67.1 | 68.8 | 70.0 | 67.1 | 67.1 | 70.0 | 79.2 | 66.3
6 52.9 | 629 | 69.2 | 68.3 | 66.3 | 67.5 | 76.7 | 78.8 | 36.3 6 59.6 | 67.1 | 68.3 | 67.5 | 63.8 | 67.1 | 73.3 | 81.3 | 55.8
7 529 | 629 | 70.8 | 679 | 63.3 | 679 | 783 | 783 | 271 7 61.7 | 68.3 | 66.7 | 64.2 | 62.5 | 65.4 | 75.4 | 81.3 | 47.1
8 55.8 | 64.6 | 67.5 | 62.1 | 63.3 | 70.0 | 79.6 | 75.4 | 25.8 8 63.8 | 70.4 | 646 | 61.3 | 63.3 | 67.1 | 76.3 | 80.4 | 41.3
9 59.6 | 67.1 | 63.8 | 63.8 | 64.2 | 70.8 | 82.1 | 729 | 23.8 9 654 | 70.8 | 63.8 | 61.7 | 638 | 69.2 | 76.3 | 78.3 | 33.3
10 62.1 | 70.0 | 629 | 63.3 | 67.5 | 74.6 | 80.8 | 67.9 | 20.8 10 67.9 | 67.9 | 63.3 | 629 | 654 | 7T1.3 | 79.6 | 77.5 | 313
11 63.8 | 704 | 646 | 62.1 | 67.9 | 742 | 81.7 | 62.9 | 18.3 11 67.9 | 67.1 | 61.7 | 62.9 | 66.7 | 71.7 | 80.0 | 75.0 | 28.3
12 62.5 | 69.2 | 646 | 642 | 70.0 | 75.8 | 80.8 | 58.8 | 16.3 12 67.1 { 65.8 | 61.3 | 63.3 | 654 | 729 | 804 | 70.8 | 23.3
13 64.2 | 66.7 | 64.6 | 62.5 | 69.6 | 77.1 | 80.8 | 54.2 | 12.9 13 67.1 | 65.4 | 61.7 | 629 | 654 | 72.1 | 78.8 | 65.8 | 20.8
14 63.3 | 64.6 | 63.8 | 65.8 | 704 | 73.8 | 79.2 | 48.3 | 13.3 14 67.5 | 66.3 | 61.3 | 62.9 | 646 | 71.3 | 779 | 63.8 | 20.8
15 63.3 | 62.1 | 64.6 | 64.2 | 69.6 | 75.8 | 77.1 | 39.6 | 14.2 15 68.8 | 63.8 | 61.3 | 63.3 | 65.0 | 71.3 | 78.3 | 62.5 | 204
16 63.3 | 61.7 | 629 | 654 | 688 | 75.8 | 77.1 | 36.3 | 12.1 16 69.6 | 625 | 62.5 | 64.2 | 66.3 | 71.7 | 77.9 | 59.6 | 19.2
17 65.0 | 61.3 | 64.6 | 64.2 | 70.0 | 77.9 | 75.0 | 34.6 | 12.1 17 69.2 | 61.7 | 62.1 | 63.8 | 66.3 | 71.3 | 78.3 | 56.3 | 16.7
18 66.3 | 61.3 | 63.3 | 642 | 679 | 77.9 | 75.0 | 34.6 | 10.0 18 67.9 | 60.8 | 62.1 | 63.3 | 66.3 | 725 | 79.6 | 55.0 | 14.6
19 679 | 61.3 | 62.1 | 63.3 | 71.3 | 76.7 | 70.0 | 35.8 | 10.4 19 679 | 61.3 | 625 | 642 | 67.1 | 74.2 | 788 | 52.5 | 12.5
20 68.3 | 60.0 | 61.7 | 646 | 69.2 | 78.3 | 71.7 | 30.8 | 12.1 20 67.5 | 60.8 | 63.8 | 64.2 | 679 | 754 | 78.8 | 50.8 | 13.8

: o _ : TABLE IV
B. Noisy Speech Recognition—II: Real-World Noises PERFORMANCE (IN %) COMPARISON OF VBPC AND BP-MC

An attempt has also been made to cover a class of mismatch W PLUG-IN-MAP METHOD ALGORITHM ON TIDIGITS CorpPus
. . . . . . WHEN TEST DATA ARE DISTORTED BY GAUSSIAN WHITE NOISE
situations as wide and general as possible. In this section,

we evaluate the proposed algorithms in noisy speech recogSNR | [ Str [Wd-C [ Wd-A] Del | Sub [ Ins
nition where 25 types of additive noises recorded in actual Plug-in-MAP | 89.95 | 98.91 | 97.76 | 0.31 | 0.79 | 1.15
environments [14] are involved. o }i,‘;l;’lg o e Tt e

1) Description of Actual NoisesWe choose the Japan YIS 17:83 67:49 66:39 16:.11 16'_40 1:11
Electronic Industry Development Association (JEIDA) Noise 4 g(4p) BPMC o235 | 9135 | 8042 | 398 | 466 | 104
database for our experiments. The included noise data are VBPC 61.08 | 90.30 | 89.09 | 5.13 | 4.57 | 121
collected in various kinds of environments under which speech Plug-in-MAP | 0.20 | 45.19 | 43.80 | 25.15 | 29.66 | 1.39

input devices are expected to be typically used [14]. TheiR?-3(d8B) | BP-MC 2232 3025 78'?6 1‘;;; 1%9665 zg;
characteristics are summarized in Table V. From Table \; Plu:_ilfﬁAP 0:05 22:05 ;ioi 21 3971 1ot
we notice that these noises differ much in both nature andsss) BP-MC 11.87 | 56.07 | 54.98 | 29.39 | 1454 | 1.09
characteristics. Most of these noises are very difficult to deal VBPC 591 | 45.86 | 4547 | 3841 | 15.74 | 0.39
with because they are nonstationary in time domain, and have

a complex spectrum with a wide bandwidth.

2) Noisy Speech Recognition Resulwke first evaluate general size or degree of mismatches caused by adding the
VBPC on noisy speech recognition problem involving theelated noises. Various noises are scaled to achieve several
above mentioned 25 types of actual noises. Our task SR levels before added to the clean speech.
again isolated digit recognition on corpus ATR-JPD. The We depict the experimental results of VBPC and plug-in-
experimental setup is the same as that of Section V-A1. TN#AP method at SNR levels 0, 10, 20, and 30 dB on the above
mismatch between test and training conditions is caused & actual noises, respectively, in Figs. Z-fhe experimental
adding those actual noises on test data at various SNR levEgSults clearly show that VBPC approach works well for most
It is not easy to define a proper SNR measure for nonstation&@ythese actual noises under a wide range of SNR values (we
signals [1]. In this study, we simply adopt an SNR measur%e,‘" these cases Type |, such as noises no. 6, 11, 16, 21, 22, 24,
which is defined as the ratio between the signal Variance‘The results on noise no. 17 are not included here because we had data-error
and the noise variance. This SNR measure only reflects theeading noise no. 17 from disc.




JIANG et al. ROBUST SPEECH RECOGNITION 433

TABLE V
TweNTY-FIvE TyPes oF ACTUAL NOISES USED IN THE EXPERIMENTS
No. Noise description Bandwidth Spectrum Stationary
1 Automobile cabin in street(Medium-size car) Narrow simple,smooth O
2 Automobile cabin in highway(Medium-size car) Narrow simple,smooth O
3 Automobile cabin in highway(Compact car) Narrow simple,smooth O
4 Automobile cabin in street{(Compact car) Narrow simple,smooth O
5 Exhibition hall A(In a booth) wide complex,jagged X
6 Exhibition hall B(In a passage) Middle simple,smooth X
7 Railway station(Near ticket vending machines) Wide complex,jagged X
8 Railway station (In a passage) Middle complex,jagged X
9 Telephone booth (Downtown) Narrow simple,smooth O
10 Factory (Machinery) Wide complex,jagged X
11 Factory (Press) Wide complex,jagged X
12 Parcel classification works (1) Wide complex,jagged X
13 Parcel classification works (2) Middle complex,jagged X
14 Trunk road Wide complex,jagged X
15 Road crossing Middle one high-freq comp. X
16 Crowded street Middle smooth X
17 New trunkline train Narrow complex,jagged X
18 Ordinary train Wide simple,smooth X
19 Computer room A (Minicomputers) Wide complex,jagged O
20 Computer room B (Workstations) Middle smooth O
21 Large air conditioner Middle jagged O
22 Air conditioning fan coil Middle Jjagged O
23 Ventilation duct Wide jagged X
24 Elevator passage (Hospital) Narrow smooth X
25 Elevator passage (Department store) Middle complex,jagged X

etc.) and is also helpful for the remaining ones (we call thege comparable with the “distance” between models in some
cases Type Il, such as noises no. 15, 19, and 25). It is qusense. The benefit of using VBPC and BP-MC approaches
encouraging that the VBPC is effective for a great variety ofecreases as the size and/or degree of mismatches become too
mismatches examined here. small or too large. The unconfusable vocabulary task, which
Once again, we observe that the performance of VBPCiigplies large enough “distance” between models, warrants
fairly insensitive to the hyperparamete€s and p in these that the VBPC and BP-MC approaches have more chances
experiments. To show this, we list in Table VI, the optimalo work well for various mismatches with different nature and
recognition rates of VBPC averaged over four SNR levefiegree. Although the discussion here is based on isolated word
(0, 10, 20, and 30 dB) in each of above 25 noise type&cognition results, the same behavior can be observed and the
as well as the corresponding optimal values 6f (). For Same conclusion can also be drawn from experimental results
comparison, the corresponding results of conventional plug-@0 connected word recognition.
MAP method and that of VBPC 4C' = 2, p = 0.9) are also
listed. For type | mismatch, VBPC works well by choosing &. Cross-Gender Speech Recognition
relatively wider neighborhood, i.e(e[1, 3], pe[0.8, 0.9]. For
type Il mismatch, VBPC only works by choosing a relativel
smaller size of the neighborhood, i.€, = 1, pe[0.1, 0.3].

We have also examined the viability of the proposed al-
)éorithms in a more general mismatch caused by gender dif-

. . . ference. The corpus ATR-JPD is chosen again for the cross-
However, no major performance improvement is observed

; nder recognition experiment. The gender-dependent models
type Il case. It is expected that the performance of VBPg:}e trained %y male ?or female) sp?eech datap but tested on
will converge to that of the normal plug-in MAP when thqz

. £ th iahborhood h h gemale (or male) speech data. The experimental results are
Size€ o the neighborhoo approaches to zero. In the spec ifown in Table VII. The recognition results show that VBPC
experiments here, the results in Table VI suggest {iat=

X ] : and BP-MC also work in the case of cross-gender mismatch,
2, p = 0.9) is an acceptable choice for most noises.

but improvement is generally minor. Only about 3-5% abso-

We have also examined the BP-MC approach in thegge recognition rate improvement is achieved on the average.
25 types of noises and a similar behavior as the VBPC

is observed. As an example, the results of five types are ) )

shown in Fig. 5. From the results in Figs. 2-5, we notice th® Comparative Study with Other Robust Methods

one necessarycondition for VBPC and BP-MC approaches In this section, we present a comparative study of BP-MC
to profit most is that the size and/or degree of mismatend VBPC with other robust techniques, including QBPC [12],
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Fig. 2. Performance (word accuracy in %) comparison of VBPC with normal plug-in-MAP method on 25 types of actual noises at GNR,
20, 30 (dB): Part I.

[13], minimax [25], and stochastic matching (SM) [29], under The detailed description about QBPC can be found in [12]
the condition that neither the knowledge of mismatches nand [13]. In the current experiment, for simplicity, we only im-
adaptation data is available. The experimental setup is thlement the Viterbi version of the quasi-Bayes approximation
same as in Section V-Al. The mismatch between training amdQBPC computation. We also only consider the uncertainty
testing conditions is caused by adding Gaussian white nosthe mean vectors and only one iteration is performed at each
into test data prior to the preprocessing at three SNR levéd8 approximation step. The prior pdf is chosen as the best
(10, 20, and 30 dB’s, respectively). normal approximation to the constrained uniform distribution
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Fig. 3. Performance (word accuracy in %) comparison of VBPC with normal plug-in-MAP method on 25 types of actual noises at GNR,
20, 30 (dB): Part Il (continued).

(8) to minimize the Kullback—Leibler directed divergence (se& single random bias with a Gaussian pdf is adopted. In both
[13] for the details). methods, the bias vector or the mean of the random bias is

As for StOChaSt'C, matchlng, as discussed in [29], we Coryiifialized to zero. In model space method, the variance of the
pensate for the mismatch in either feature space or mode

space. In the feature space method (denoted as SM-FSl5_‘:"%d_Om b@s is initialized to a smalll p03|.t|ve number. Two to
single fixed additive bias in cepstral domain is used for eaéMe iterations are performed for the Miuisance parameters

utterance. In the model space method (denoted as SM-MSd3timation.
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Fig. 4. Performance (word accuracy in %) comparison of VBPC with normal plug-in-MAP method on 25 types of actual noises at GNR,
20, 30 (dB): Part lll (continued).

In [25], Merhav and Lee perform the minimax classifi- ¢ In each iteration, first decode the optimal path I*
cation as in (2), where the parameter neighborhébds using the Viterbi algorithm; then the model parameter
assumed to follow (8). In their implementation, to approximate is reestimated according t&, I*.
maxa.n p(X|A, W) in (2), the following iterative procedure < If the new A falls in €2, it is used to update the old;
is used. otherwise, the parameter withf which is closest to the

« Initialize A with the values obtained in the training phase. New A is chosen.
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Fig. 5. Performance (word accuracy in %) comparison of BP-MC, VBPC with normal plug-in-MAP method on five selected types of actual noises at
SNR = 0, 10, 20, 30 (dB).

In this paper, Merhav and Lee’s minimax is denoted as The experimental results of these methods are compared in
minimax1. Besides, another so-called modified minimax usd&dble VIII. In the table, for VBPC, BP-MC, QBPC, minimax1,
in [13] works as follows: and minimax2, we only show the best performance achieved
under the optimal choice of hyperparameters (i®©.,and
W = arg max p(X|Avap, W) (36) ») within a certain range (i.e.C¢[1, 10] and pe[0.1, 0.9]).

w According to the results, several observations can be made. At
first, the results show that both BP-MC and VBPC outperform
the Viterbi implementation of the QBPC. It is experimentally
shown here that the VBPC achieves a better approximation of
the true BPC than QBPC, but at the expense of much higher
computational overhead. Second, as expected, we note that
with the prior pdf p(Ale, W) chosen in the same way asthe performance improvement of the stochastic matching is
the QBPC. This modified minimax method is denoted amoderate, especially in the low SNR level. However, several
minimax2 here. points should be noted in this comparative experiment. In

where

Amap = arg max p(X|A, W) - p(Ale, W)
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TABLE VI
RECOGNITION RATES OF NORMAL PLUG-IN-MAP METHOD AVERAGED OVER FOUR SNR LEVELS OF (0, 10, 20,AnD 30 dB) IN EACH OF 25 Noise TYPES
CORRESPONDINGOPTIMAL RECOGNITION RATES OF VBPC WITH OPTIMAL VALUES OF (C', p), RECOGNITION RATES OF VBPC wiTH (C' = 2, p = 0.9)

Noise No. | Plug-in-MAP | Optimal VBPC | Optimal (C, p} | VBPC at (C=2,p=0.9)

1 87.81% 91.67% (2,0.9) -

2 83.96% 85.21% (2,0.9)

3 87.08% 92.40% (2,0.9)

4 88.75% 93.23% (2,0.9)

5 67.08% 70.62% (2,0.9)

6 72.81% 82.08% (2,0.9)

7 49.49% 55.83% (2,0.9)

8 55.21% 61.77% (2,0.9)

9 84.58% 88.54% (2,0.9) -
10 47.50% 52.71% (1,0.9) 50.73%
11 35.94% 48.85% {2,0.9)

12 61.56% 62.40% (2,0.9) -
13 49.69% 51.56% (1,0.9) 49.72%
14 58.12% 61.04% (1,0.9) 59.48%
16 68.23% 75.31% (2,0.9) -
18 70.83% 72.81% (1,09) 70.83%
20 60.31% 64.48% (2,0.9) -
21 50.21% 57.81% (3,0.9) 56.77%
22 59.48% 70.10% (2,0.9)

23 69.38% 74.21% (2,0.9)

24 66.15% 73.23% (2,0.9)

15 65.83% 65.83% (1,0.1) 65.73%
19 51.04% 51.24% (1,0.2) 47.29%
25 53.33% 53.85% (1,0.3) 51.15%

the mismatch situation caused by additive noise, the bias TABLE VII

is additive in linear spectral domain. but not in the Ced?ERFORMANCE(WORD ACCURACY IN %) CompARISON OF VBPC, BP-MCwiTH
. . ’ . . H_lfG-IN-MAP METHOD ON CROSSGENDER I SOLATED DIGIT RECOGNITION TASK

stral domain. Therefore, the bias compensation in cepstra

domain makes the assumption behind the ML-based stochastic  Training data | Testing data | Plug-in-MAP | VBPC [ BP-MC

matching method invalid. But when we adopt cepstrum based sI sI 98.8 99.6 | 99.6
feature, the ML-based stochastic matching in linear spectral Male Female 73.6 761 | 753
domain does not possess a straightforward form to implement. Female Male 49.0 538 | 540

Moreover, ML-based stochastic matching approach is a fully
automatic procedure where ML criterion helps to determine . ) ) ]
all the nuisance parameters. In all of the other robust methdif¢h & great variety of mismatches. However, strictly speaking,
we studied here, including VBPC, BP-MC, QBPC, minimaxlt,he _performa_nce of these methods depends on the ap_proprlate
and minimax2, we have to manually choose a few contrbieice of neighborhood (e.g., the values@fand p), which
parameters (i.e{’ and p). The optimal performance of thesgn turn depends on the unknown amount and nature of the
methods shown in the Table VIII are better than that of tHBiSmatch. Although it has been experimentally shown that the
stochastic matching. We also observe in the experiments tHformance is not sensitive to the choice of neighborhood
apart from the optimal choice of and p, these methods in the examined mismatch conditions, as mentioned above,
also perform better than the SM in a certain rangecof if we expect to benefit most from the method, e.g., to deal
and p. Next, the BPC performance depends heavily on thdth simultaneously various types of possible mismatches
appropriate choice of the prior distribution. In the case &f Practice, it will be important to develop a simple online
the mismatch caused by the additive Gaussian white noidgjusting procedure to tune the neighborhood parameters based
the chosen prior distribution seems to be able to model tR8 only very few training/adaptation data for attaining the
mismatch appropriately. At last, we also notice that both tt@ptimal performance in various cases (e.g., both mismatched
VBPC and the BP-MC outperform minimax1 and minimax2nd matched cases). This remains a topic for future research.
in this case. In terms of computational complexity, BP-MC is obviously
more costly than the conventional plug-in-MAP based Viterbi
decoding in computing component densities [e.g., (9)], in
either isolated word or continuous speech recognition. Since
In principle, the methodology of BP-MC and VBPC is suitthese calculations usually are followed by a log operation
able to any possible mismatches. By using a less-informatif@ a table look-up), the increased cost is not negligible,
prior pdf in this study, the algorithms are quite flexible that wespecially in large vocabulary applications. Like BP-MC,
only need to adjust/adapto hyperparameter§ andp to deal VBPC also consumes many more computations in calculating

E. Discussions
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TABLE VI
PERFORMANCE (WORD ACCURACY IN %) ComPARISON OF VBPC, BP-MCwiTH PLuG-IN-MAP, QBPC, SocHASTIC MATCHING (SM-FS1AND SM-MS1),
MiINIMAX (MINIMAX1 ), AND MODIFIED MINIMAX (MINIMAX2) WHEN TEST DATA ARE DISTORTED BY GAUSSIAN WHITE NoISE. (THE NUMBERS IN PARENTHESES
DeNOTE THE OPTIMAL NEIGHBORHOOD PARAMETERS (C',p) FOR THE CORRESPONDINGMETHOD TO ACHIEVE THE SHOWN PERFORMANCE AT EACH CASE)

SNR,_| Plug-in-MAP | SM-FSI [ SM-MS1 [ VBPC | BP-MC | QBPC | minimax] | minimax2

30(dB) 62.08 65.0 6875 | 79.17 | 8281 | 71.25 | 73.33 7167
6,0.7) | (10,07 | (1,0.7) | (2,0.5) (1,04)
20(dB) 26.10 31.25 3292 | 60.83 | 6292 | 4583 | 57.92 53.33
(6,0.3) | (9,04) | (1,0.7) | (3,04) (1,0.6)
10(dB) 5.42 6.25 958 | 33.33 | 37.08 | 2458 | 2833 26.25
(703) | 9,04) | (205) | (7,03) (5,0.2)

the predictive density than the conventional algorithm [e.g., Otherwise, no considerable gain will be expected.

(33)]. Besides, extra efforts such as the repeated backtracing\part from the issues we discussed in the previous sections,
and the related bookkeeping are further required in VBRfge are still not sure whether VBPC and BP-MC formula-
search procedure. Although this might be affordable in smaibns can work well in a more confusable vocabulary case
vocabulary recognition tasks, either for isolated words @ecause these methods improve the performance robustness in
continuous speech, we will encounter serious computationgismatched conditions at the expense of decreasing the dis-
difficulty when we apply the VBPC method to large vocabucriminative ability of the models. Moreover, although VBPC
lary continuous speech recognition. This is because during #¢d BP-MC improve the performance over the nonrobust
frame-synchronous search of the VBPC, the computation @fkthod in the mismatched cases we examined, the absolute
the partial predictive pdf depends on the hypothesized partiatognition rate of VBPC and BP-MC in mismatched case is
optimal path up to each time instant. In a large vocabulary casgl far inferior to matched condition results. How to bridge
this will easily lead to a combinatorial explosion, thus make thgjs performance gap is still a challenging topic for further
problem untractable. Therefore, some simplified schemes aseearch.
needed to make the VBPC algorithm computationally feasible.

For instance, a narrobeam VBPC search strategy might

mitigate the difficulty somehow. We can also use the normal
search algorithms to first obtain a@w-best list of the possible
paths and then select the final results from th&¥sbest paths
based on the VBPC approach.
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