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A Bayesian Predictive Classification Approach to Robust data by using particular parameter estimation techniques. Then, the es-

Speech Recognition timate(A, T') is plugged into the optimal, but unrealizable, rule in (1)
in place of the correct but unknowrn (T') to obtain aplug-in MAP
Qiang Huo and Chin-Hui Lee (PI-MAP) rule The performance of any such nonconservative rule de-

pends on the accuracy of the model assumptions, the choice of param-

eter estimation methods, the nature and size of the training data, the
tive classification(BPC) for robust speech recognition where unknown mis- rllature and degree of the mismatch between training and testing condi-
match between training and testing conditions exists. We then propose and tions.

focus on one of the approximate BPC approaches callequasi-Bayes pre-  In the past few years, we have been adopting a Bayesian paradigm

dictive classification(QBPC). In a series of comparative experiments where to address and formulate a class of robust speech recognition problems
the mismatch is caused by additive white Gaussian noise, we show that the, \which

proposed QBPC approach achieves a considerable improvement over the ) L ) - )
conventional plug-in MAP decision rule. * mismatches between training and testing conditions exist; but

. - I . * an accurate knowledge of the mismatch mechanism is unknown;
Index Terms—Bayesian predictive classification (BPC), plug-in max- . th | ilable inf tion is the test data al ith t of
imum a posteriori (MAP) decision, quasi-Bayes approximation, robust e onyaval able Information Is the es. .a a along with a set o
automatic speech recognition. pre-trained speech models and the decision parameters.

One way to achieve the performance robustness is to design and con-
struct a robust decision rule, by taking into account hier uncer-
tainty, which makes it less sensitive to the distortions of models for ob-
The modern automatic speech recognition (ASR) technologgrvations to be recognized. By directly modifying the above PI-MAP
is based on a communication theoretical view of the generatiatecision rule, we've been studying and developing a new robust deci-
acquisition and transmission, and perception of speech (e.g., [&jpn strategy calleBayesian predictive classificatiqgBPC) approach
It builds upon a statistical pattern recognition paradigm. For thte improve the robustness of an HMM-based ASR system [5]-[7], [11].
approach, let's view word W and the associated acoustic observation In this paper, the BPC formulation for robust speech recognition
X (usually, a feature vector sequence) as a jointly distributed randdsrfirst introduced in Section Il. The formulation of the approximate
pair (W, X). Depending on the problem of interestord here could quasi-Bayes predictive classification approach is proposed in Section
be any linguistic unit, such as a phoneme, a syllable, a word,lla The important issue of prior specification is discussed in Section
phrase, a sentence, a semantic attribute, etc. We make the followlivigin Section V, a series of experimental results along with discus-
assumptions. sions are reported. Finally, we summarize our findings in Section VI.

 The true joint distribution of (1¥,X) can be modeled by a
true parametric familyof pdf (probability density function)

Abstract—We introduce a new decision strategy calleBayesian predic-

|. INTRODUCTION

PW.X) = pa(X|W) - Bo(W), whereps (X|W) is known Il. BAYESIAN PREDICTIVE CLASSIFICATION APPROACH
as the acoustic model with parametersand Fr-(W) as the | our study, itis assumed that the language model is known and only
language model with parameters ~ acoustic models are adjusted. Suppose theré&aspeech units in the
* The full knowledge of the parameters,(I') of the above distri- recognizer, each being modeled by a Gaussian mixture continuous den-
butions is known. sity HMM (CDHMM). Consider a collection ofi/ such CDHMM's
With these assumptions, aptimaldecoder (speech recognizer) whichA = {A,},=1... s, where\, = (x(?, 4@, §(?) denotes the set

achieves thexpectedninimumword recognition error rate is the fol- of parameters of thgth N -state CDHMM used to characterize tfih
lowing MAP (maximuma posterior) decoder (see [16] for a more gen-speech unit, of whicht(? represents the initial state distributiotf,?’
eral discussion on statistical decision theory): is the transition probability matrix, anéf®’ is the parameter vector
composed of mixture parametets’ = {w!?, m'?, ©{D1 for state
W = arg max P(W|X) = arg max pa(X|W) - Pr(W) (1) i. The state observation pdf is assumed to be a mixture of multivariate
Gaussian pdf’s:

whereX is the observation anid’ is the recognition result. However, 7

in pfactlce, neither do we know thrie parametrlc.form ofa(I"I.', X.), p(xleg‘”) _ Z w§,3l,\f(x|n7§:;?, 2&%')) @)
nor itstrue parameters. We shall say that we havier uncertaintyin =

this case. Therefore, the above optimal speech recognizer will never be

realizable. Approximation to the optimal decoder is often needed. fhere the set of mixture coefficients.'?'} satisfy the constraint

simple heuristic solution is first tassumesome parametric form for K wfﬁ) =1, and.,/V’(x|7rzE§)wEE§)) is the kth normal mixture

p(W, X) and then teestimatdts parametersy, I') from some training component Withnf;{) being theD-dimensional mean vector aridi)

being theD x D covariance matrix with itslth diagonal element
beingafZL)f. For notational convenience, it is assumed that all the state
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Py (0) = {p(X(‘I)M(qO))} is a singleton set consisting of the hypothetis called thepredictive pdf[1], [3], [16] of the observatiorX given

ical (ideal, non-distorted) pdf of thegth class observatioX (? with  the wordW. The computation of this predictive pdf is usually the most
the model parameteosff) estimated from a training set. ¢f, > 0 difficult part of the BPC procedure.

(i.e., some distortions exist), there are many ways to model the posThe crucial difference between the plug-in and predictive classifiers
sible distortions between pre-trained models and testing observatidashat the former acts as if the estimated model parameters were the true
These will depend on whether parametric or nonparametric descrimes whereas the predictive methods average over the uncertainty in pa-
tions of the seP, (¢, ) are used [12]. A simple way to constrdei(e,) rameters. However, if we directly apply the decision rule in (4) and (5)

is to consider thenodel parameter uncertaings follows: as suggested in [15] to speech recognition, it will make little difference
from the conventional plug-in MAP rule. This is because whatever ini-
Pyleg) = {p(X|A); Aq € Qe)} tial prior pdf,p(A), is used, when a large amount of training datare

available, we will get a posterior pgf A|Y') with a sharp peak. This

where Q(e,) denotes an admissible region of the HMM parametépakes the predictive pdf in (5) of little difference fropiX|A, W)

space. The Bayesian inference approach provides a good wayWith the ML estimatel. In an extreme case, jf(A|X) = 6(A — A)

formalize this parameter uncertam’[y mode“ng prob|em with 5( ) denotlng the Kronecker delta fUnCtlon namely, the pOSteriOf
In a Bayesian framework, we intend to consider the uncertainty Bfobability mass oft is concentrated at the ML estimateobtained

the HMM parameterd. by treating them as if they were random. Oufrom X, then it is easy to see from (4) and (5) that the BPC decision

prior knowledge about is assumed to be summarized in a known joinfule coincides with the plug-in MAP decision rule.

a priori densityp(A|x(?)), with A € Q. whereQ denotes an admis- N our approach here, we adoptempirical Bayesnethod in which

sible region of the HMM parameter space, asid is the parameter @ specific parametric pdf(A|e) is used to represent the prior/poste-

set of the prior pdf (often referred to as thgperparametejswhich ~ rior pdf of the CDHMM parameters. Consequently, the predictive pdf

are assigned values by the investigator. Such prior information m&§duired for BPC decoding will be computed as

for example, come from subject matter considerations and/or from pre- )

vious experiences. We will drop the notatigff’ from time to time in HXW) = / P(XIA W)p(Alp, W) dA. 6)

cases where there is no confusion. Suppose a training set of the form Q

X = {X@"} is available, withX*") denoting therth training ob-

servation sequence associated withdgtiespeech unit. A posterior dis-

tribution can now be constructed as

p(X
/ p(X
Q

Usingp(Alp), instead ofp(A|X), to represenprior uncertaintypro-

vides a flexible way to incorporate and make use of possibly available

knowledge sources. For example, the set of hyperparamétarsuld

A)-p(A) 3) be estimated from some training data, or specified based on some em-
pirical reasoning, or their combination [7]-[9]. This provides the BPC

A)-p(A) dA approach a way to be different from the conventional plug-in MAP de-

coder. As for the relation between our BPC approach and other robust

to update our knowledge abait This posterior pdf(A|X) includes decision approaches such asdpproximate Bayesian decision rute

all of the information inherited from the prior knowledge and learne[d.3], theminimax decision rulén [14], readers are referred to [4] for

from the training data. Conventionally, we derivgaint estimatel  a detailed discussion.

from p(A|X) (e.g., MAP estimate) and then use the plug-in MAP de- Three key issues thus arise in the BPC formulation, namely,

cision rule in (1) for recognition. The conventional plug-in MAP de- . the definition of the prior density( A|,») for modeling the uncer-

cision rule based on the ML estimate of the HMM parameters can be  ainty of the HMM parameters;

treated as a special case of the above MAP estimate with a non-infor-. the specification of the hyperparameteps,

mative prior. « the evaluation of the predictive density.

p(AJY) =

In the following two sections, we will discuss how to address the above

B. BPC Formulation for Robust Speech Recognition three issues for the robust speech recognition applications.

The principle behind the BPC approach is quite straightforward. Be-
cause we assume no knowledge about the possible distortions, we thus
rely on a quite general prior pdf to characterize the variability of the

HMM parameters caused by the possible mismatches and errors if, the CDHMM case, due to the nature of téssing dataproblem

modeling and estimation. If we want to account for model paramg; the HMM formulation, it is not easy to compute the following true
ters’ uncertainty imecognition anoptimal Bayes solutigmamely the pregictive pdf:

Bayesian predictive classificatigBPC) approach exists which selects

a speech recognizer to minimize theerall recognition error(this is

when the average is taken both with respect to the sampling variation in
the expected testing data and the uncertainty described by the prior/pos- -
terior distribution). Readers are referred to [15], [16] for a brief proof = Z / p(X,s, 1A, W)p(A
of the optimality of the BPC rule. Such a BPC rule operates as follows:

I1l. A PPROXIMATE BPC APPROACH

p(X|W) = / (XA, W)p(Alp, W) dA

w, W) dA @)

wheres is the unobserved state sequence higlthe associated se-
quence of the unobserved mixture component labels corresponding to
the observation sequen2e Consequently, some approximations are
where needed.

One way to compute an approximate predictive pdf is to use the
Monte Carlo method. The simplest way is to first generate random sam-
plesAi, Az, - -+, A, from p(Alp, W). According to the law of large

W = arg max p(W|X) = arg max p(X|W) - Pe(W) (4)

(X|W) = / (XA, W)p(A|X, W) dA (5)
Q
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numbers, there is convergence of the aveftage) X/, p(X|A;,W) This is equivalent to use a normal distributidi(A|Arrap, V) to
to the right-hand-side (RHS) of (6) whergoes tox. Similarly, we can approximate the posterior pgf(A|X,W). So, this approximation
also perform a double-fold Monte Carlo simulation of both the HMMechnique is also known as tm@rmal approximatiormethod in the
parameters and the hidden processes (state sequences and mixtureBalyelsian community.
sequences) of the CDHMM. Following this, we then perform averaging For the simplicity of the discussion, let’s consider the isolated word
of thep(X, s, 1|A, W) over the generated random sample¢0fl, A}  recognition case where each word is modeled by a CDHMM. Let’s
and hence approximate the RHS of (7). Because of their computatioasio only consider the uncertainty of the mean vectors in CDHMM for
expense, the above Monte Carlo methods are only of academic inteBRE decoding. The prior pdf of the means for each word CDHMM is
in speech recognition. assumed to have a Gaussian Adf{mcq}|p, U):
Another way to compute the approximate predictive pdf is to use the
K D
w=11 11 11
1 k=1 d=1
1

z

following Viterbi approximation:

7

p({mikd}

P(X|W) = max /p(X7s, HA, W)p(Alp, W) dA (8)

YL — g1 2
) exp |:_("hkd Pikd) (15)

V2T Uid 2ufy,
A detailed algorithm to implement the above approximation and the
related experimental results are reported in [11]. with a collection of the related mean vectors denoted asvec{ ;x4 }

In this study, we adopt a numerical approximation techniquend a diagonal covariance matrix denotedlas= diag{u?,,}. To
namely, theLaplace approximationfor the integral (e.g., [17]), to facilitate the following discussions, we defing.y = o2/t
compute the approximate predictive pdf. Let us define Given an unknown utterance to be recogniZee- (x;, xz,- -, x7),

lets = (s1,s2,--+,s7) be the unobserved state sequence, and
R(A) = log{p(X|A, W)p(Alp, W)}. 9 1 = (li,lz,---,lr) be the associated sequence of the unobserved

mixture component labels. We can usedi@si-Baye$QB) algorithm
The value ofA that maximizedi(A) is the following MAP estimate, in[9], [10] to compute an approximate posterior pdfm..q}|X, W)

Amrap which is also a Gaussian pdf ({m.xa}|ft, U) with hyperparameters
Astap = arg max p(X|A, W)p(Alp, W). 10 jiipg = Dkaltikd ¥ CikTikd
map =arg max p(X|A,W)p(Ale, W) (10) ik e (16)
Let's consider a Taylor series expansiomoft ) aboutA i 4 p, s o2, an
‘s T ried + cik
R(A) =Tu(Aniapr) + (A= Apap) B (Apap)
’ Lo . where
+5(A = Anap) W (Ayar)(A—Anap)
+ o(||A = Arzar|?) (11) E(i k) = Pr(s, = i, 1, = k|X,\, W) (18)

where the superscript™ denotes the matrix transposk,(A) is the T ’
vector of first partial derivatives oi(A), and%” (A) is the Hessian Cik = Z (i, k) (19)
matrix of the second partial derivativesfafA ). Now, &' (Ayap) = 0 =1

becauséi(A) reaches a maximum aty; 4 p and so its first derivative T )

is equal to zero at that point. Dendite™" = —k" (Awrap), ie.,Vis R =y &ili k)xe/car. (20)
the M x M modal dispersion matrix witbt\! being the number of t=1

HMM parameters involved in the integrand in (6). Thus The above QB procedure is implemented by an iterative EM algo-

rithm. In practice, we observe that several iterations (typically 1 to
A(A) ~ h(Aar) — (A = Auar)'VTHA = Amar).  (12) 3 jterations) are enough to obtain a good recognition result. Now,
we can use the Gaussian pif({m..4}|ft,U) to approximatethe
The approximation in (12) does not always hold unléss close to  A(A|Arap, V). So, we obtain the MAP estimate of ;4 asiika-
Anrap, orh(A)is highly peaked aboutits maximut, 4 . Itfollows By further replacingy” in (14) with {7, we can evaluate the approx-

that imate predictive pdf in (14) and perform BPC-based recognition.
) The resulting BPC rule is thus named as thasi-Bayes predictive
PX|W) = / P(X|A, W)p(Ale, W) dA classification or QBPC, rule.
Q2
= / exp[R(A)] dA IV. PRIOR SPECIFICATION

- In principle, the efficacy of the BPC approach depends on the ap-
exp[fi(Aasar)] / propriateness of the prior pdf for the mismatch we are compensating.
fe—1 , If the prior pdf fails to cover the variability reflected in the CDHMM
expl=3(A = Awap) VTHA = Avar)] dA - (13) parameters, then BPC will not help much. Therefore, the prior should
. . . ) be carefully specified to make it work for robust speech recognition.
by (12). Recognizing the integrand in (13) as proportional to & mulisa 556 we have already assumed a specific parametric form for the
variate normal density gives the result prior pdf, this turns out to be a hyperparameter specification/estima-
tion problem. If the training data set is rich enough to cover the
PX|W) & p(X[Aurap, W) interested variability of speech signal which might possibly occur in
p(Aaraple, W) - 2m)M/2 V2. (14) the testing conditions, then timeethod of momerigorithm presented

Q
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in [8] can be used to automatically estimate the hyperparameters from TABLE |

the training datat’. Otherwise we have to use som@ hocmethod for PERCENT F():EOR,\ZSARQ@SE%/VEVSEGDE DA‘SS/:E’Z%YS':‘EAKERS o

hyperparameter estlr_natl_on. Reade_rs are referred to [5], [7] for some 5"\~ "MAP AnD OBPC RILES AS A FUNCTION OF SNR

examples. If the application scenario allows us to have access to some  on TI20 AWGN-CORRUPTED WORD RECOGNITION TASK

testing data, then by using the sequential Bayesian learning method

in [9], [10], we can obtain an increasingly improved prior pdf (i.e.Decoding SNR (dB)

more and more accurate knowledge about the uncertainty of the mc Methods 00 35 30 25 20 15 10

parameters). By using this improved prior pdf, the BPC-based rec(pi-MAP | 975 93.4 90.7 85.7 7.5 64.4 43.7

nition system can approach the performance achieved by the plu¢ ggpc | 97.6 | 947 | 923 | 879 | 812 | 722 57.0

MAP rule under matched conditions [6]. Furthermore, if some know c.p) | 1o | (209 | 607 | 208) | (20.8) | (4,04) | (13,02)

edge on how the speech signal is distorted and/or varied in differemt

acoustic conditions is available, it will guide us to design a better prior

pdf and/or develop a better hyperparameter estimation method. We give

an example here for additive white Gaussian noise (AWGN) compeRhis is known to be the besiormal approximatiorto the above uni-

sation to show hovknowledgeandexperiencéelp. form distribution to minimize the Kullback-Leibler directed divergence
In [14], the power spectral density (PSD) of a block of speech sign@fiany normal pdf from the above uniform distribution. Its effectiveness

(one speech frame of short-time spectral analy$is),), is assumed to Will be examined in the following experimental section.

be represented by a rational functioredf . If the cepstral coefficients

are defined as the inverse Fourier transfornogfS(w)

V. EXPERIMENTS AND RESULTS

g 2 /W d_““ e’ log S(w) (21) A series of speech recognition experiments are designed to examine
x 27 the viability of the proposed BPC algorithm. The task is multispeaker
) ] o eight female and eight male speakers) recognition of 20 isolated Eng-
then the perturbation reflected in the cepstral coefficients caused | words which include ten digits and ten commands nareatr,
a spectral mismatch between two PSI¥s(w) and S»(w) is bound  grase, go, help, no, rubout, repeat, stop, start, yes. The 20-word

above as follows: subset (T120) of the TI46 corpus is used [8]-[10]. Throughout the fol-
(1) (2) g lowing experiments, each word is modeled by a left-to-right five-state
leg’ —cg | < Cd™ p" ford>1 (22)  whole word CDHMM with arbitrary state skipping. Each state has four

Gaussian mixture components with each component having a diag-
whereC (C' > 0) is a proportional term andl < p < 1 denotes the onal covariance matrix. The speech data are down-sampled to 8 KHz.
maximum modulus among those zeroes and polégoj’s. Although  Each feature vector used in this study consists of 12 bandpass-liftered
in many practical speech recognition systems, some empirical cepstiC-derived cepstral coefficients with a 30 ms frame length and a 10
representations such as MFCC (mel-frequency cepstral coefficienisy frame shift. Utterance-based cepstral mean subtraction (CMS) is
and LPCC (linear predictive coding cepstrum) are actually used, thgplied for acoustic normalization both in training and testing. In the
above result still approximately holds for these speech representatigiigg-in MAP recognition, the decision rule determines the recognized
This fact motivates the authors of [14] to adopt a uniform distributioword as the one which attains the highest forward-backward proba-
for mean vectors of CDHMM in an uncertainty neighborhoodafs  bility.

follows: The type of mismatch to be examined is caused by additive white
Gaussian noise (AWGN). For each speaker and each word, about ten
n(A) ={ A7 = 7], ai; = aj, wik = Wi, Sik = Sik, training utterances and 16 testing utterances are used. While training is
mikd — mial < C a~tp? performed on the original clean data, in the testing phase, machine-gen-
ik kd] = V@ »
erated, zero-mean, white Gaussian noise, with various levels of inten-
1<i<N,1<k<K,1<d<D} (23)

sity, is added to the original waveform prior to the preprocessing to get
) the desired signal-to-noise ratio (SNR). The SNR is defined in a global
where the hyperparametersandp are used to control respectively they,anner (utterance level), that is, if the clean sigria) of one utter-
possible mismatckizeandshape and{x/, ai;, w;i, mjra. X7k} d&-  ghce containg” samples and the noise samplea {$), then

note the pre-trained model parameters. This constrained uniform distri- ’

bution is shown in [14] to work well in a minimax-based recognition of T

isolated digits for compensating the AWGN-caused distortion as well Z s2(t)

as the cross-condition mismatch between two different databases. How SNR2 1010g,, =" (26)
to choose the optimal values@fandp for different mismatches is still 10 )

an interesting open question though. > n3(t)

In this study, we try to exploit the abokmowledgeand theexperi- =1

encein [14] to get a better hyperparameter estimation for BPC-basedBy using the hyperparameter specification method described in

recognition. Because we are using a Gaussiathpdfrm.;« ,U)to . .
9 - 9 - mm{m."d}l" ) . Section IV, Table | compares, for several SNR values, the recogni-
serve as the prior, weetthe mean and variance of this Gaussian dis-

oo . . ... .tion accuracy of the standard plug-in MAP decision rule to that of
tribution to be the mean and variance of the above uniform distribution . A .
. . he QBPC approach (1 EM iteration is used) for the best mismatch
respectively as follows:

neighborhood parameter valueS: in the range [1,20], ang in
the range [0,1]. As can be seen, the QBPC introduces considerable
improvement, especially at low SNR values. Strictly speaking, the
performance of QBPC depends on the appropriate choiqe arfd

C, which in turn depends on the unknown nature and the amount
Uy = 2C7 A7, (25) of mismatch. However, in our experiments, it is observed that the

Pikd = Mpq (24)
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recognition performance tends to be relatively insensitive to these
control parameters in a reasonably wide range for QBPC [7]. This[l]
suggests that the exact knowledge mfand C is not crucial to
achieve improvement. However, in order to achieve the maximal[2]
performance improvement, it will be important to develop a simple
on-line adjusting procedure to tune the neighborhood parameters
based on only very few training/adaptation data which remains (3]
a topic for future research. Readers are also referred to [5]-[7], 4]
[11] for more comparative experimental results among approacheé
of QBPC, Viterbi BPC (VBPC), and minimax on other types of
mismatch such as general cross-condition mismatch, cross-gendge]
mismatch, and mismatches caused by many other types of additive
noise.

As far as the issue of computational complexity is concerned,[e]
the QBPC algorithm is relatively simple to implement and no
big increase in computational complexity when compared with the 7
conventional plug-in MAP decoding. The overhead of the QBPC
approach is mainly determined by the number of EM iterations in
the quasi-Bayes approximation of computing the approximate pos-[8]
terior density. In the case of one EM iteration, in comparison with
the standard plug-in MAP approach, the increased computation of[g]
the QBPC involved in (14), (16) and (17) is negligible. In the case
of multiple, sayN EM iterations, the decoding speed of the QBPC
is approximatelyN times that of the plug-in MAP decoder. In our
experiments, we observed that for the QBPC approach, one EW10]
iteration is usually enough. When applying the QBPC approach to
the continuous ASR problem, it can be operated under an N-best
hypotheses re-scoring mode. [11]

As for the QBPC itself, two issues remain to be addressed. One is the
question of whether a more accurate approximation method in the BPfz2)
procedure to compute the approximate predictive pdf for classifica-
tion will lead to a better performance. Another concerns the sufficiency13]
of considering only the uncertainty of the mean vectors of CDHMM.
More theoretical work is needed if we want to consider the uncertain
of the other parameters in BPC.

VI. SUMMARY [15]
In this paper, we introduce a new decision strategy caIIed[ls]
Bayesian predictive classificatiofior robust speech recognition
where unknown mismatch between training and testing condition§l7]
exists. We propose and focus on one of the approximate BPC
approaches called QBPC. In a series of comparative experiments,
we have shown how the QBPC approach leads to a considerable
reduction of the recognition error rate over the standgiug-in
MAP scheme. The BPC procedure relies on a quite general prior
distribution to characterize the variability of the HMM parameters
and does not make rigid assumptions about the possible distor-
tions. Consequently, it might help for many distortion types. This
suggests the potential of the BPC approach to serve as a gen-
eral tool for robust ASR in real applications where any types of
mismatch might happen. It is believed that a better understanding
and more experience of thknowledgeand experienceon how
the speech signal is varied under different acoustic conditions will
guide us to design a better prior pdf. Although some success has
been observed for certain problems, the general issues related to
mismatch and robustness are still largely unresolved. The greatest
challenge might come from those applications which only involve
a couple of utterances, but every utterance involves a distinct “dis-
tortion channel” from the intended message to the received signal.
How to reliably and efficiently recover and/or extract the interested
message from this signal poses a big challenge for the so-called
robust ASR in this context.
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