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Elimination of Delay-Free Loops in Discrete-Time
Models of Nonlinear Acoustic Systems
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Abstract—Nonlinear acoustic systems are often described by
means of nonlinear maps acting as instantaneous constraints on
the solutions of a system of linear differential equations. This de-
scription leads to discrete-time models exhibiting noncomputable
loops. We present a solution to this computability problem by
means of geometrical transformation of the nonlinearities and
algebraic transformation of the time-dependent equations. The
proposed solution leads to stable and accurate simulations even
at relatively low sampling rates.

Index Terms—Acoustic system modeling, Kirchhoff digital do-
main, noncomputable loops, nonlinear circuits, wave digital do-
main.

I. INTRODUCTION

A S physical modeling has become one of the most impor-
tant techniques for sound synthesis, some structural prob-

lems which limit the accuracy of simulations have arisen. As
an example, consider the case of a nonlinear exciter (e.g., the
reed) described as a nonlinear map relating two dual Kirch-
hoff variables (e.g., pressure versus volume velocity), and a res-
onator (e.g., the bore) described by means of digital waveguides
[1]–[3]. Fig. 1 shows that the signal flowgraph resulting from the
connection of exciter and resonator exhibits a noncomputable
delay-free loop due to the conversion between Kirchhoff vari-
ables and wave variables. More severe computability problems
appear when simulating dynamic exciters, since the linear equa-
tions used to describe the system dynamics are tightly coupled
with some instantaneous nonlinear map [4]–[6].

In this paper, a general method is proposed for solving com-
putability problems in nonlinear acoustic systems. The method
transforms the linear equations of the system in order to high-
light all noncomputable loops involving nonlinear maps, and
then operates a geometrical transformation on the nonlineari-
ties in order to cut the instantaneous dependencies. In general, it
would be possible to use iterative procedures for solving implicit
nonlinear relations. However, we propose a noniterative solution
based on a precomputed table storing the transformed nonlin-
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Fig. 1. Connection of a static reed model with a waveguide bore model.

earities. Therefore, an efficient realization of discrete-time sys-
tems simulating nonlinear acoustic systems can be readily im-
plemented on digital signal processors.

Other noniterative methods have been proposed in the litera-
ture of wave digital filters for solving circuits having nonlinear
elements without [7] or with memory [8]–[10]. These other ap-
proaches assume using wave variables rather than Kirchhoff
variables to describe every distributed or lumped component of
the equivalent circuit. Every circuit component is treated as a
scattering element having a reference impedance, and different
components are connected by adaptors.

The new method presented herein operates on nonlinearities
described in terms of familiar and more easily accessible Kirch-
hoff variables, and it is therefore called the K method. More-
over, while the literature of wave digital filters only deals with
nonlinear bipoles with or without memory, the K method can
manage nonlinear functions of any set of Kirchhoff variables
found in the circuit.

The K method is somewhat resemblant of other methods for
removing delay-free loops from digital filters [11], [12], since
it partitions the signal flowgraph into a subgraph having no
delay-free loops and another subgraph having delay-free loops.
However, while those other methods do only deal with linear fil-
ters, the K method allows arbitrary nonlinearities to be inserted
anywhere in the circuit.

In Section II, we give a general treatment of the K method. In
Section III, we validate the K method by applying it to a refer-
ence well-known nonlinear circuit, thus also demonstrating that
the method can be used for simulating nonacoustic systems. In
Section IV, we show how the K method improves the simulation
of hammer-string interaction in sound synthesis of piano tones.
In Section V, we show how the interaction of a dynamic reed
with a bore implemented as a digital waveguide can be solved
with the proposed method.

1063–6676/00$10.00 © 2000 IEEE
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II. K-M ETHOD

In this section, we present the general formulation of the K
method and we illustrate the assumptions and conditions for its
applicability.

A. System Decomposition

The underlying assumption for applying the K method is that
the continuous-time system can be decomposed into a nonlinear
instantaneous multiple-input multiple-output (MIMO) map
and a linear filter containing all the system dynamics. Even
more generally, the nonlinear map might be expressed in the
form of an implicit relationship , in which case
we don’t need to find an explicit in order to apply the
method. However, for ease of presentation, the structure we as-
sume to be working with is depicted in Fig. 2, where we have
introduced an exogenous vectorwhich can be interpreted as a
set of modulating signals in many practical cases. Namely, in a
sound synthesis model,should contain the signals generated
by user’s gestures. Moreover, a signal vectoris assumed to
be extracted from the linear block as an output from the system.
The reference structure we are adopting does not seem to be re-
strictive for acoustic modeling, because the linear part can be
arranged to include the dynamics of nonlinear exciters as well
as linear resonating elements.

The main driving idea for the derivation of the K method is
to isolate any delay-free path connecting any element ofwith
any element of . Then, geometrical transformations are applied
to the system in order to get rid of those paths.

B. System Equations

To explain the K method, we assume that the continuous-time
linear dynamics is being discretized by means of Euler back-
ward differencing

(1)

where is the Laplace complex variable and is the
sampling rate. Other, more effective, discretization techniques
can be used and only affect the transformation matrices,1 while
the overall algorithm is maintained.

The continuous-time MIMO feedback system of Fig. 2 can
be expressed in state-variable form as

(2)

(3)

(4)

where is the state vector, and , ,
. The output variable and the matrices , , and

1Actually, as explained in Section II-D, a change of the discretization tech-
nique might induce a change in the procedure for setting the initial conditions.

Fig. 2. System block decomposition.

will not be hereafter considered because they are not involved
in any delay-free loop, and therefore the computation of (4) is
straightforward. In particular, if contains wave variables to
be fed into a waveguide model [2], and other wave variables are
returned via , it is assumed that there is at least a delay element
(or a waveguide section which is implemented with a couple of
unit delays) in any path connecting to on the right-hand
side of Fig. 2. This assumption allows decoupling the system of
Fig. 2 from any other blocks it might be connected with.

The system dynamics is all contained in (2), which is dis-
cretized by applying (1) to its Laplace transform

(5)

Here, , , and are the -transforms of the input,
output, and state vector signals, respectively.

As long as the matrix

(6)

exists (i.e., is not an eigenvalue of ), (5) can be rewritten in
the discrete-time variable as

(7)

From (3) and (7), the system of equations governing the non-
linear feedback scheme can be written as

(8)

(9)

where

(10)

is the weighting matrix for the delay-free path connectingto
, and is the contribution of previously-computed

and known (exogenous) terms.
Equation (9) is valid for other discretization techniques as

well. For example, if the bilinear transformation
is used instead of Euler differencing, the matrix
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TABLE I
SIMULATION STEPS NEEDED FOR

PRODUCINGONE OUTPUT SAMPLE FROM THE SYSTEM OF FIG. 2

is structurally unchanged,2 and the only difference is found
in the expression of that has to be rewritten as

(11)

C. Elimination of Delay-Free Loops

The formulation of (8) and (9) has isolated the implicit term
in the argument of the instantaneous nonlinear map. In

order to solve the computability problem due to delay-free loops
in (9) we have to transform the vector map

(12)

into an explicit form. Such a transformation is possible if the
assumptions of theimplicit mapping theorem(see, e.g., [13, p.
17]) are satisfied. In our multivariable formulation, the implicit
mapping theorem reads as

given the vector function ,
continuous with its derivatives, if there is a point

, where and the Jacobian determi-
nant

(13)

then there exists a vector function ,
continuous with its derivatives in an open neighborhood

containing , such that

(14)

and

(15)

Applying a little matrix algebra to our function
, the condition dictated by the implicit function theorem

for the existence of a local explicit form of the vector map (12)
reads as

(16)

In other words, if the matrix is not singular in
, the multivalued function can be made locally explicit. If

2This is evident if we writes = �((1�z )=(1+z )) = �(1�(2=(1+
z ))z ), where the instantaneous term is identical to the case of backward
differencing.

this condition holds for any , can be made globally explicit,
i.e., it is possible to construct a function such that .
In the more general case of a nonlinear map implicitly defined
by , the condition for finding an explicit
is .

The identification and separation of instantaneous contribu-
tions of the output of to its input, expressed in (9), induces a
geometric transformation that is a multidimensional shear

(17)

relating the two spaces and , so that the new non-
linear function can be computed by point-to-point trans-
formation of . The inverse transformation is, of course

(18)

So, the major burden left to the implementer would be that of
properly shearing the nonlinearity, a task that can often be ac-
complished off line.

When it is neither possible nor convenient to find an explicit
, it might still be possible to solve for the other vector

variable just by using the inverse of the linear system, when
it exists [14].

From a computational viewpoint, it is advantageous to intro-
duce a vector variable , that is an intermediate product of
the computation of . With the proper definition of , the
system of Fig. 2 can be simulated (in the case of backward dif-
ferencing) by the four steps reported in Table I. After all the
variables have been properly initialized, the simulation can pro-
ceed by iteration of the four steps of Table I.

D. Setting Initial Conditions

As far as initial conditions are concerned, we see that the
procedure is quite dependent on the discretization method that
is chosen. For example, if we adopt the backward difference
scheme, we note thatdoes not depend on, so that the knowl-
edge of at time 1 is sufficient3 to start the simulation al-
gorithm with proper initial conditions. On the other hand, if we
adopt the bilinear transformation scheme, we notice that
doesdepend on , and so we must somehow guess the ini-
tial value of the output variable in order to start the simulation.

In this second situation, we can solve (3) with and
. Since this usually must be done once in the algorithm

lifetime, any suitable iterative method can be used. However,
it should be noted that in many practical cases we can assume
that the system starts from a situation in which both the state
and the output variables are known (and quite often are zero).
Obviously, in these cases there is no need to solve the nonlinear
equation (3).

As a concluding remark, we can compare the initial condition
setting procedure of the K method with the one required by wave
methods [10]. In our case, we have to determine the initial value
for , but this step is often unnecessary if we suitably choose the
discretization method or the starting point. With wave methods,

3We assume here that the first simulation output sample will be produced at
time 0.
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the problem is that of expressing the initial values of wave vari-
ables given the Kirchhoff counterparts, and this always requires
the solution of a linear system of equations.

E. A Special Case: The Linear Map

The K method can still come useful when the function (3)
degenerates in a linear map, as in

(19)

In this case, instead of solving the whole system, we can apply
the K method by just finding the closed form solution for the
linear version of (12)

(20)

and then use (20) in the algorithm shown in Table I.
This method becomes convenient when considering a piece-

wise linear map, as in the case of the elastic force law of a linear
piano hammer (see Section IV).

III. V ALIDATION BY SIMULATION OF THE CHUA–FELDERHOFF

CIRCUIT

In order to show that the K method gives consistent results
in practical cases, we need an application example with the fol-
lowing characteristics:

• it is a simple dynamic nonlinear model;
• its behavior has been extensively studied in the literature;
• its behavior is sensible to discretization.

The Chua–Felderhoff circuit [8], [10], depicted in Fig. 3, has all
the characteristics that we seek, thus being a good testbed for
validating the K method. The circuit is parameterized as follows:

H (21)

with V in our specific example. The nonlinear capac-
itor has the voltage-charge characteristic

(22)

where pF and V.
The equations of the circuit are easily derived as

(23)

where the meaning of symbols is clear from Fig. 3 and the dotted
notation is used for time derivatives. The matrices of (2) and (3)
are found

(24)

(25)

(26)

Fig. 3. Chua–Felderhoff circuit.

The matrices and of (10) and (8) are, respectively,

(27)

and

(28)

If the bilinear transformation is used, (28) is superseded by

(29)

Since in this example the nonlinear mapping (22) is one-to-one,
the shearing transformation is simply

(30)

and the condition for the existence of an explicit map is

(31)

Since (31) is valid for all values of, can be made globally
explicit. The explicit function can be tabulated by
linear transformation of the points . In this case, it is also
possible to work out a closed form expression for the explicit
function.

In Fig. 4, we show the steady-state phase portrait, ob-
tained when a simulation is run with and

MHz. The results are “close
quantitatively and similar qualitatively”4 to those obtained
with wave methods [8], [10] and the subharmonic oscillation is
preserved under different sampling rates.

IV. HAMMER–STRING INTERACTION

For sound synthesis of piano tones, a hammer model based
on a mass and a nonlinear spring has been extensively studied
[5], [16]. The continuous-time equations for such a model are

(32)

(33)

(34)

4Quotation from [15, p. 82].
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where the meaning and typical values of the symbols can be read
in Table II.

In a model of hammer–string interaction, the connection be-
tween the hammer model (exciter) and the string model (res-
onator) has to be specified [4]. The hammer, in its mathematical
description of (33) and (34), is a lumped element. The string
is usually modeled as a distributed structure such as a digital
waveguide, where discrete-time velocity waves are propagated.
In the case of an ideal string, having wave impedance, the
relation between transverse force and velocity is governed by
[16]

(35)

where is the sum of the velocity waves coming from the two
halves of the string.

For convenience, let us write the resulting equations of the
hammer–string system during contact in terms of the felt com-
pression

(36)

Whichever method we decide to use in order to translate these
equations into discrete-time form, we obtain an implicit system
relating the th sample of the force and the th sample of
the felt compression .

This implicit relationship can be made explicit by assuming
that , thus inserting a fictitious delay element
in a delay-free path. Although this trick has been extensively
used in the literature, Fig. 5 shows that the insertion of a fic-
titious delay element has severe consequences on the simula-
tion of high-pitched notes at normal audio sampling rates. On
the other hand, the K method rearranges the equations in such
a way that instantaneous dependencies across the nonlinearity
are dropped. In this way, artificial instabilities are avoided and
a reliable force signal is reproduced (see dashed line in Fig. 5),
resulting in a much more natural sound. In fact, while the small
bumps in the dashed line of Fig. 5 correspond to reflections from
the string ends, the force spikes in solid line have no correspon-
dence in physical measurements [17] and they are responsible
for a buzzy character of sound.

Starting from (36), the K method gives the following ma-
trices:

(37)

(38)

(39)

Fig. 4. Steady-state phase portrait of the Chua–Felderhoff circuit.

TABLE II
SYMBOLS USED IN THE HAMMER–STRING MODEL

Fig. 5. Time evolution of the hammer force for a C6 (fundamental at 1046.5
Hz) with F = 44100 Hz, v = 6:8 m/s (fortissimo). Dashed line: delay-free
loop resolution by the K method. Solid line: delay-free loop resolution by
insertion of fictitious delay element. The bilinear transformation is used in both
cases.
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In this case, the matrices and of (10) and (8) are, indeed,
the scalars

(40)

and

(41)

It is also easy to verify that if the bilinear transformation is used,
becomes

(42)

while matrix is left untouched. In both cases, the condition
for the existence of an explicit map is

(43)

Since (43) is valid for all values of, is again globally
explicitable, and our explicit function can be tabulated
by linear transformation of the points . In some simple
cases, namely for and it is possible to solve
in order to get the closed form expression for .

V. REED–BORE INTERACTION

In this section we give another example of application of the
K method in musical acoustics, for an instrument character-
ized by a sustained interaction between exciter and resonator.
Namely, we derive the matrices for the dynamic reed coupled to
a bore. The model here presented differs from the over-simpli-
fied static reed model of Fig. 1 for the presence of reed dynamics
which is tightly interwovenwith the nonlinear characteristics.

According to Schumacher [18] and Keefe [19], [6], a suffi-
ciently accurate model of the dynamics of a reed is a second
order damped oscillator

(44)

where the meaning and typical values of the symbols can be read
in Table III. In (44), the effect of the Bernoulli force on the reed
is neglected.

The pressure drop at the reed opening is nonlinearly related
to the volume flow [19, eq. (73)] via

(45)

where the flow through the slit is given by

(46)

Equation (45) can be summarized by expressing the mouthpiece
acoustic pressure as a nonlinear function ofand

(47)

TABLE III
SYMBOLS USED IN THE REED–BORE MODEL

There are two fundamental simplifications behind (45) and (46):
1) the air inertance is neglected and 2) the effective reed area is
assumed to be constant.

There is a third fundamental component in any model of the
reed. Namely, the connection between the reed (exciter) and
the bore (resonator) has to be specified [4]. We notice that the
reed model, in its mathematical description of (44) and (47),
is a lumped element which is coupled with a distributed struc-
ture such as a digital waveguide model of the bore, where dis-
crete-time pressure waves are propagated. In the case of a loss-
less cylindrical tube having wave impedance, the resulting
relation between volume flow and pressure is

(48)

where is the pressure wave coming from the waveguide res-
onator.

Equations (44), (47), and (48) can be translated into the sym-
bols of Section II. The vector quantities of (2) are set to

(49)

The vector contains three kinds of variables: is a parameter
that is likely to remain fixed during simulation; is a slowly
varying modulating signal used to control the model;is the
wave signal coming from the bore model.

The matrices used by the K method are easily computed from
(44), (47), and (48)

(50)
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(51)

(52)

The matrix turns out to be

(53)

and it does not contain any of the control variables of, thus
indicating that the shear transformation (17) of the two-variable
function can be precomputed. Such transformation can be
explicitly rewritten as

(54)

where is the th component of the vector of previously-com-
puted and known terms, which is given by (8) if backward
differencing is used for discretization or by (11) if the bilinear
transformation is used. Thanks to this shear transformation, we
can turn (47) into the explicit

(55)

Fig. 6 shows the nonlinear function (45), and Fig. 7 shows
its sheared version computed by point-to-point transformation.
The components of vectorhave been computed by the trans-
formation (54). Their explicit form is

(56)

(57)

The shear transformation is easily visualized by comparison of
the contour plots on the floor of Figs. 6 and 7.

At every step of simulation, the incoming pressure wave and
the mouth pressure are used to calculate the vector. Then,
the sheared function can be used to give the value of the
outgoing pressure wave at the same sampling instant

(58)

A. Practical Issues for High-Dimensional Systems

The reed–bore interaction model might be as well expressed
by means of a three-variable function whose domain contains

Fig. 6. Acoustic pressure as a nonlinear function of reed displacement and
flow through the slit.

Fig. 7. Acoustic pressure as a sheared function of variablesp andp .

the state variables and , and the volume flow [20]. The re-
alization here presented has a reduced domain dimensionality,
thus allowing an easier computation and display of the sheared
function.5 However, for other acoustic systems it might be im-
possible to reduce the domain dimensionality to less than three.
For such systems, it would be easier to perform a simulation
where the nonlinearity is computed by means of an iterative
method (e.g., Newton). As a byproduct of this simulation, a uni-
form sampling of the space of variables in their range of vari-
ability can be produced, and a sheared table directly computed
when it is needed for hard real-time implementation. As a matter
of fact, even the direct implementation of the iterative solution
can run quite fast on modern superscalar architectures due to
fact that the iteration is all comprised in a tight loop.

In these cases, the nonlinearity should be replaced by an im-
plicit equation such as

(59)

5We are thankful to F. Avanzini for pointing out this clearer formulation.
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Fig. 8. Time evolution of the incoming pressure at the mouthpiece obtained
with the bilinear transformation. The sampling rate is set toF = 12000 Hz
(solid line) andF = 44100 Hz (dotted line). The bore is an ideal lossless
cylinder and the reflection at the bell is approximated with a multiplication by
�0:95. The mouth pressure signal is a step function (P = 2100N/m ).

and the Newton iterative method can be summarized by the for-
mula

(60)

where is the iteration counter and the derivative is computed
with respect to .

As it was in the case of the hammer–string simulation, the K
method allows to obtain a qualitatively correct behavior of the
signals even when a very low sampling rate is used in the model,
and regardless of the discretization technique that is chosen. It
is clear that by increasing the sampling rate, and using the bi-
linear transformation (possibly with some control on the degree
of frequency warping) instead of backward differencing, it is
possible to achieve more accurate results. However, the impor-
tant point here is that, as long as the frequency components gen-
erated by the nonlinearities do not alias, the simulation degrades
gracefully and even a very economical implementation can be
used reliably without severe impairment in timbre quality. For
instance, Fig. 8 shows the incoming pressure waveform at the
mouthpiece obtained when using the K method with the bilinear
transformation at two different sampling rates. The qualitative
behavior is similar in the two waveforms and differences in the
ripples are due to the frequency warping introduced by the bi-
linear transformation.

VI. CONCLUSION

We have proposed a general method for solving com-
putability problems in systems containing linear and non-
linear components. The method has been validated on the
Chua–Felderhoff circuit whose nonlinear dynamic behavior
is sensitive to the discretization technique. Two important
examples in musical acoustics have been presented: the
hammer–string interaction shows how the K method avoids the

artifacts introduced by other nonexact solutions; the bore–reed
interaction is an example where all the matrices introduced in
the general formulation are nontrivial.
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