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on the segment E = [1/(2Afi + 1),1/(2fi)], where A 2 16. 
Then 

Proof: Since f”(X) I 0 on the segment E,  then the func- 
tion f ( X )  is a concave one and it reaches its minimum value on 
the borders of E 

1 A3/(4Afi + 2) A f i  
1 + A 2  2- 5 

( 2 A f i  + 1 )  1 +  
( 2 A f i  + 1)’ 

Lemma 5: The assertion of the theorem holds for a 2-dimen- 
sional case. 

Proof: Assume the same initial conditions yoo and So as in 
Lemma 2 with E sufficiently small. Then, Lemma 2 implies that 
w6 E W(T,A) for some T = E and A = A. Note that if wk E 
W(T, A) then from condition i) we obtain the following bounds 
for ‘P;/’P;-, = ‘P:/’P,‘: 

1 “ < - A + - .  
2 f i  

- A - - < -  
2 f i  ‘Pi -1  

Therefore 

and 

2 A f i  + 1 

‘Pk- 1 - 2 f i  . 
Lemma 1 states that if wk E W(T, A> then the only way for 

wkil to leave the set W(T, A) is to violate condition i). From 
(16) we derive that (2Afi - 1)/(2fi)  > 15 for the considered 
values of A. Thus, we conclude that for any E there will be a 
time T such that w T  $E W(T, A). On the other hand, the esti- 
mate given in (17) implies that T + as E + 0. This estimate 
implies that the conditions of Lemma 3 hold for qT- Applying 
subsequently Lemmas 3 and 4 we obtain the proposition of the 
lemma. 0 

We have proved the theorem for the 2-dimensional case. 
Other dimensions may be considered in the same way. Indeed, if 
we choose 

= ... = (P,” = 0, 80’ = ... = 8; = 0 

then all vectors qr and S, belong to 2-dimensional linear sub- 
spaces of RN and the results for the case N = 2 may be used. 
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Parameter Drift Instability in Disturbance-Free 
Adaptive Systems 

Dale A. Lawrence, William A. Sethares, and Wei Ren 

Abstract-Adaptive identification and control algorithms can exhibit 
local instability when certain ideal assumptions, such as satisfaction of 
SPR conditions, are violated. However, recent conjectures suggest that 
due to a “self-stabilization” mechanism, global boundedness may still 
hold despite local instabilities. We present counterexamples to these 
conjectures, showing that self stabilization is bypassed via “hidden” 
unbounded parameter drift. Although parameter drift instability is 
known to occur in adaptive systems with disturbances, concrete exam- 
ples are given to show that unbounded drift can also occur in the 
disturbance-free case when SPR conditions are violated. 

I. INTRODUCTION 

Under ideal conditions, adaptive systems have good asymp- 
totic properties, e.g., Lyapunov stability [l], [2], hyperstability [31, 
[4], and uniform exponential stability [5], [6]. This implies good 
system performance in the sense that parameter estimates are 
bounded and prediction errors converge to zero in the absence 
of disturbances. These ideal conditions constitute two classes of 
assumptions. 

In the first class there are “structural” assumptions, in which 
the form of the unknown plant (the system to be identified, 
matched, or controlled) is presumed to exactly match the form 
of the adjustable model. Under structural matching assumptions 
in a deterministic analysis, there are no unmodeled dynamics, 
there are no unaccounted for nonlinearities, and there are no 
disturbances such as measurement errors or roundoff errors. In 
short, it is assumed the model has the capability of exactly 
matching the dynamics of the unknown part of the system. 

In the second class there are “algorithmic” assumptions that 
relate the algorithm operational environment to the internal 
features of the adaptive system. Resulting conditions involve 
designer-selected coefficients (e.g., step sizes, error filters, etc.), 
conditions on parts of the unknown system (e.g., strictly positive 
real (SPR) assumptions), and conditions on the adaptive system 
signals (e.g., persistent excitation, persistent power). 

Nonideal situations where “structural” assumptions are vio- 
lated (persistent disturbances are present) have been treated by 
exploiting the properties of strong (i.e., uniform exponential) 
internal stability. If the internal stability can be made strong 
enough (large enough exponential convergence rate) relative to 
the disturbance, overall stability can be retained [5], [6]. Unfor- 
tunately, some ideal “algorithmic” assumptions, e.g., persistent 
excitation, are still required. In many applications, these condi- 
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tions cannot be satisfied. As shown in the infamous “counterex- 
ample to adaptive control” [7], undermodeling disturbances and 
improper excitation lead to explosive instability. In other cases, 
behavior ranges from recurrent bursts in the prediction error 
[8]-[10] to “random” behavior resembling chaos [ 111, [12]. 

On the other hand, recent evidence [8], [9], [13]-[17] suggests 
that even if ideal conditions for internal stability are absent, a 
form of “self stabilization” can occur where overall stability may 
be retained. In e.g., [14], [E], SPR conditions are shown to be 
unnecessary if a “persistent power” condition on the informa- 
tion vector is satisfied. This condition can be temporarily satis- 
fied if signals in the information vector undergo bursting, sug- 
gesting a self-stabilizing effect [16], [17] which may result in 
bounded limit cycle or quasi-periodic behavior in the parameter 
estimates. Another heuristic argument [8], [9], [13] is that burst- 
ing can cause self-generated excitation, which restabilizes the 
algorithm via persistent excitation conditions, in spite of possible 
local instability in the neighborhood of a “tuned” parameteriza- 
tion. However, it is known [lo], [18]-[23] that bounded distur- 
bances can “mask” the stabilizing growth of prediction errors, 
allowing a slow “drift” of parameters to infinity. This drift, in 
turn, allows unbounded bursting behavior and can result in an 
unstable adaptive system. Hence, self stabilization does not 
always occur in the presence of disturbances. 

In this note, unbounded drift is shown to occur in adaptive 
systems even without “masking” disturbances, provided SPR 
conditions are violated. This parameter drift is unobservable in 
the prediction error, hence, the self-stabilization mechanism is 
defeated. The conjectures [13], [16], [17] are therefore incorrect 
in general. The implication of these results is that parameter drifi 
instability is not due solely to system disturbances. 

As the examples given here suggest, parameter drift to CC can 
be quite “singular,” and can be classified as a “rare” event in 
practical applications. Even so, very large bursting in prediction 
errors can be readily observed as a result of drift to moderate 
parameter values. A variety of algorithm modifications to pre- 
vent parameter drift have already appeared, including parameter 
projection, normalization, leakage, and deadzones, (see e.g., [24] 
and the references therein). In contrast, the results of this note 
contribute to a more complete understanding of the underlying 
causes of drift instability. 

11. DISTURBANCE-FREE PARAMETER DRIFT 

The class of adaptive systems considered are given by the 
following error model description 

e k +  1 G(q-’)(uk+ 1 )  - w k +  1 = +kT6k+l (1) 

(2) 6 k + l  = ik  - h + k u k + l  

where 

ek+ , is the (a posteriori) equation error, 

G ( q - ’ )  is a monic nth-order polynomial in the backward 

shift operator q - l ,  
U k + l  is the measured (aposteriori) prediction error, 

wk+ is the disturbance, 

+k is the information vector (regressor), 

6, is the parameter error vector, and 

h is the step size. 

This type of error model occurs in a variety of adaptive systems. 
Two common examples are explicit model reference adaptive 

control, e.g., [4], and recursive identification and adaptive filter- 
ing, see e.g., [l]. Adaptive algorithms in this class are of the a 
posteriori type, which use the latest information available in the 
update of the parameter estimates, and are generally considered 
to have good stability properties [21, [41, 1151. 

Equations (1) and (2) form a feedback system (the error 
model), whose stability properties characterize the adaptive sys- 
tem. See Fig. 1. Disturbances w to the error model are necessary 
for parameter drift to occur when l /G(q-’)  is SPR [1]-[4], 
[18]-[20]. However, when 1 / G ( q P 1 )  is not SPR, drift can occur 
in the absence of disturbances, as shown by the following two 
examples. 

Example I :  Drift of a numerator parameter in the predictor. 

Plant: Y k + l  = E:=la lyk - l+ l  + 
 priori Predictor: ? k + l  = ~ z = ~ a ~ j ~ - ~ + ~  + i kuk  
Aposteriori Predictor: jk+l  = C I = l a I j t - r + l  + t$+luk. 
A Priori prediction error (note no disturbances): i&+ = y k +  - 

A Posteriori prediction error: ,uk+ = yk + - j k  + 

Parameter estimate update: Ok+ = Ok + hukGk+ 1 / ( 1  + hu;). 

This results in the error system of (1) and (2) with 

?k+ 1’ 

6 k + l  = 8 - e k + l  = e k  - hUkUk+l (3) 
and 

where A(q- ’ )  = 1 - E:=,aiq-’, and e and U are the aposteriori 
errors. For simplicity, choose A ( 4 - l )  = (q-’ +p)’  where p - l  
= -tan r / 5 .  Thus, l / A ( q - ’ )  has magnitude m = ( p 2  + 1)-5’2 
and phase - fl at the frequency w = r / 2  rad/s. To construct a 
drift example, choose the input uk to cause 

ek+l = i k + l U k  = Sin(kT/2 + ?T/4) (5) 
so that when initial conditions are properly chosen, the steady- 
state solution is obtained: 

uk+’ = -ms in (k r /2  + r /4) .  (6) 

Substituting for uk and uk+l in the parameter error update (3) 
yields 

hm sin2 ( k r / 2  + r /4 )  - hm 
e k + l  = ek + = e k  f 7. (7) 

1 2 e k +  1 

The two solutions for ik+ given ik are found from 

6 k + l  = 5 2 + - 2  ‘4!+2hm. (8) 

Taking the pcsitive solution at each k shows that 6 is monoton: 
increasing if$ > 0. $so, from (7) a supposed bound B on0 
would imply O k + l  2 + hm/(2B) ,  for all k, contradicting any 
bound B. Hence, 0 is unbounded. The expression (5) for ek+’ 
can then be used to find the required input sequence U .  Note 
uk 4 0, and thus y ,  + 0. The predictor output j k f l  converges 
to sin(kr/2 + r/4). A A A  

Remarks: 
1) The parameter estimates are unbounded in this example, 

but tend to a, slowly (0, = In (k)), while the prediction error is 
bounded. This is a ‘‘nonexplosive’’ form of instability that has 
been termed [lo], [25] parameter drifi. 

2) The approach of Example 1 is only used to construct the 
drift example, and does not correspond to an implementation of 



586 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 4, APRIL 1993 

the adaptive system. For example, a simulation of this example 
may be obtained by implementing the plant, a priori predictor, 
and the parameter estimate update recursions. Given any initial 
parameter error (any e,, > 0 in this example), compute U ~ from 
(5) ,  and choose initial conditions on the plant and predictor to 
cause v, to equal the steady state solution (6) for k s 0. Define 
a parameter e* by 

e,* 14- e,*+, = - + - (e;)’ + 2hm,  e,* = 6,. (9) 
2 2  

and compute uk using the idea in (5): 
sin (k?r/2 + ~ / 4 )  

= (10) e,*+ 1 

The parametef: estimate update then generates 6, such that 

3) Note that the construction of the excitation sequence 
is completely “open loop.” It is not computed based on a 
feedback of the current parameter estimate e,, and the entire 
sequence can be determined off-line, before the adaptive system 
is implemented. 

4) The operator l/G(q-’) in this example is not SPR, and 
in fact acts as a simple gain -m under the sinusoidal error 
signals of this example. The error system is unstable in the sense 
that a bounded excitation signal U, exists -which drives the 
parameter estimates to M, but the growth of 8, observed in the 
error ( 5 )  is simultaneously “masked” by the decrease in uk, and 
the prediction error remains bounded 

5 )  The prediction error can also become unbounded in 
systems where parameter drift occurs. As in [lo], a scenario can 
be constructed where intervals of parameter drift are alternated 
with intervals of persistent excitation. Bursts in the prediction 
error occur when large parameter errors are suddenly “ob- 
served” on the persistent excitation intervals. Forcing parame- 
ters to drift to increasingly large values on the drift intervals 
produces increasingly large *bursts in the subsequent excitation 
intervals, and both vk and e k  are unbounded. 

In Example 1, the poles of the predictor were fixed at stable 
locations. The conjectures [13], [16], [17] were based on adaptive 
systems where predictor poles drift outside the unit circle. The 
instability in the predictor was seen to cause additional “self- 
generated” excitation, resulting in improved “observation” of 
parameter errors (self stabilization). However, it is also possible 
to force a pole of the predictor to drift to unobserved. Hence, 
self stabilization does not always occur. 

Example 2: Drift of a denominator parameter in the predictor. 

e k  = e;, and 8, drifts to Co. 

Plant: Yk+l = C:=2azyk- ,+ l  + By, + buk. 
ApriOn‘ Predictor: Y k + l  = C:=za,jk-,+1 + 8kjkA+ buk. 
 posteriori Predictor: j k + l  = C ~ = 2 a , j k - l + 1  + e k + l j k  + bu,. 
A Priori prediction error (no disturbances): fik+ = yk+ - j j k +  1. 
A Posteriori prediction error: U,+ = yk+ - j k +  1. 
Parameter estimate update: ik+, = ik + hjkfik+,/(l + 

e k + l  = e’,+,j, = sin(k?r/2 + ?r/4) (13) 
so that when initial conditions are properly chosen, the steady- 
state solution is obtained: 

v , + ~  = -msin(k?r/2 + ~ / 4 ) .  (14) 

Substituting for j k  and v , + ~  in the parameter error update 
yields 

As argued for (8), the solution- of (15) for e’ is monotone 
increasing and is unbounded if e,, > 0. From (13), this implies 
that j k  + 0. The plant output can be found from Yk+l = V k + l  

+ j k +  which converges to -m sin (k?r/2 + ?r/4). The re- 
quired input is given by bu, = A ( q - ’ ) y , + ,  which converges to 
sin(k?r/2 + ?r/4). As before, specifying initial conditions and 
the U_ sequence yields unique solutions for the system signals, 
and 0 drifts to infinity. A A A  

Remarks: 
6) An implementation of this example proceeds along the 

lines of Remark 1, where a recufsion on e* is constructed based 
on the initial parameter error e, as in (9). The required excita- 
tion U, is then computed off-line, without feedback from the 
current parameter estimates 0, as follows: 

sin (k?r/2 + ?r/4) 
jk* (16) 

y;+ = -m sin (kn-/2 + ~ / 4 )  + j z +  (17) 

e;+ 1 

Using this bounded U,, e’, = 0; for all k, and 6, drifts to CO. 

7) Example 2 is a direct counterexample to the conjecture 
of [16], [17]. However, while Example 2 has the same drift 
behavior as Example 1, large magnitudes of 0 are unlikely for 
Example 2 in simulation or in practice since the predictor itself 
becomes unstable. The predictor output j remains small (or 
goes to zero) only if the errors in computing the particular input 
uk are vanishingly small. Thus, the analysis holds for infinite 
precision calculations only, explaining why unbounded behavior 
was not observed in the simulation studies [81, [91,[131, [161, [171. 
In this sense, an input uk which causes parameter drift can be 
thought of as an “open-loop control” for an unstable system [20]. 
As long as is computed accurately, the instability of the 
predictor is not apparent in the prediction error, and the param- 
eter estimates continue to drift to infinity. 

IV. CONCLUSION 

Drift instability can exist when inadequate levels of persistent 
excitation are present. Disturbances are necessary to cause drift 
when the internal SPR condition is satisfied. This paper has 
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demonstrated that drift can also occur without disturbances 
when the SPR and persistent excitation conditions are violated. 
This unbounded parameter drift can lead to unbounded bursts 
in the prediction error, and self stabilization [81, [131, D61, [171 
does not occur in general. 

In Example 1, the drift of e’ does not lead to an unstable 
predictor, in the sense that freezing 0 at some large value does 
not result in an unstable transfer function for the predictor. 
Hence, some small errors in computing the U sequence which 
causes drift can be tolerated. This “robustness” of the drift 
behavior has been verified by simulation, where errors in simula- 
tion initial conditions result in the same long term drift behav- 
ior, in spite of a period of transient errors in the calculated U 
sequence. 

However, when drift occurs such that a pole of the predictor 
moves outside the unit circle as in Example 2, errors in comput- 
ing uk are not tolerated because they excite the unstable modes 
of this predictor. Here, unbounded drift should not be expected 
to occur in practical applications, because computation and 
measurement errors are always available to perturb the delicate 
“masking” effect of the special excitation sequences causing/al- 
lowing drift. Unfortunately, even moderate amounts of parame- 
ter drift can cause large bursts in prediction errors and poor 
adaptive system performance. 
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Eigenstructure Assignment by Decentralized 
Feedback Control 

Jin Lu, H. D. Chiang, and James S. Thorp 

Abstract-The problem of eigenstructure assignment (eigenvalue and 
eigenvector assignment) plays an important role in control theory and 
applications. In this note, we introduce a new approach to eigenstruc- 
ture assignment using decentralized control. First, several analytical 
results are presented to characterize the set of decentralized controllers 
which achieve desired eigenvalue assignment. Then, a method is pro- 
posed to simultaneously assign eigenvalues and eigenvectors of a linear 
system using decentralized control. The method is applied to the control 
of a power system to illustrate its effectiveness. 

I. INTRODUC~ON 

The problem of eigenstructure assignment (simultaneous as- 
signment of eigenvalues and eigenvectors) is of great importance 
in control theory and applications because the stability and 
dynamic behavior of a linear multivariable system are governed 
by the eigenstructure of the system. In general, the speed of the 
dynamic response of a linear system depends on its eigenvalues 
whereas the “relative shape” of the dynamic response depends 
on the associated eigenvectors. Eigenstructure assignment by 
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