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The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and

The ‘information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data procmsing technology needed for JSC’s main missions, including

RI CI S administrative, engmeermg and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986,t0 —— -

Conce t jointly plan and execute such research through RICIS. Additionally, under
p Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research. e

The mission of RICIS is to conduct, coordinate and disseminate rmrch on’

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of --

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.
Other research organizations are involved via the “gateway” concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

" having common research interests, to provide additional sources of expertise to
conduct needed research.
A major role of RICIS is to find the best match of sponsors, researchers and

“research objectives to advance knowledge in the computing and informatiofr -~ -

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperatlve goals of UH-Clear [ake and NASA/ JSC.
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Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by Q. Wang, J.L. Speyer, and H. Weiss of the
University of California, Los Angeles. Dr. A. Glen Houston, Director of RICIS,
served as RICIS research representative.

Funding has been provided by Navigation Control & Aeronautics Division,
Engineering Directorate, NASA/JSC through Cooperative Agreement NCC 9-16
between NASA Johnson Space Center and the University of Houston-Clear Lake.
The NASA technical monitor for this activity was David Geller, of the Navigation
Section, Navigation and Gridance Systems Branch, Navigation Control &
Aeronautics Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.
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System Characterization of Positive Real Conditionsl!

Q. Wang2, J. L. Speyer3, and H. Weiss4

"~ Abstract

Necessary and sufficient conditions for positive realness in
terms of state space matrices are presented under the assumption of
complete congollability and complete observability of square
systems with independent inputs. As an altemnative to the positive
real lemma and to the s-domain inequalities, these conditions
provide a recursive algorithm for testing positive realness which
result in a set of simple algebraic condidons. By relating the
positive real property to the associated variational problem, the
paper outlines a unified derivation of necessary and sufficient
conditions for optimality of both singular and nonsingular problems.

1. Introduction

Positive real systems play a major role in control theory,
especially in adaptive control, and in stability analysis. The
impressive devclopment of adaptive control and self-turning
regulation over the last two dmdes:[l,Zl is hinged on satisfaction

of some positive realness conditions. Alternatively, considerable

initial knowledge about the controlled plant must be given. The
prior knowledge is used to implement reference models, identifiers,
or obscrver-based controllers of about the same order as the plant.
Since the prior assumptions about the controlled plant may never be
entirely satisfied, the stability properties of the related adaptive
schemes are debatable. Therefore, a direct adaptive control
procedure which does not use identifier or observer-based
controllers in the feedback loop is preferred. The implementation of
such an algorithm requires positive real conwolled plants or
alternatively, a synthesis of a positive real plant on the basis of the
actual plant.

1. This work was partially sponsored by Eglin AFB under Contract F08635-87-
KO0417 and by NASA Johnson Space Ceater through the RICIS Program of the
Unuversity of Housion at Clear Lake,

2. Depanment of Acrospace Engineering and Engineering Mechanics, University
of Texas, Austin, TX 78712,

3. Mcchanical, Aerospace and Nuclear Engineering Department, University of
Califormia, Los Angeles, CA 90024-1597

4. RAFAEL P. 0. B. 2250, Huaifa, Isreal

The existing tools for analysis and synthesis of positive real
systems are based in the s-domain on complex variable inequalities
which are inconvenient or in the state space requiring the positive
real lemma equations. These tools are computationally complex and
there is a need for an easily used complementary tool. In Sections 2
and 3, necessary and sufficient conditions for positive real systems
with independent inputs are developed using optimal conwol theory
for the associated partially singular problem. It is shown that in the
totally singular case, these conditions are consistent with the
generalized Legendre-Clebsch condition {3,4]. The new conditions
are associated with the state space matrices of a minimal realization
of a square system. The resulting test for positive realness reduces
to recursively testing certain square matrices for positive definiteness
and the solution 10 an algebraic Riccati equation. As an immediate
result of the new necessary and sufficient condidons, we also show
that the zeros of a positive real system lie in the closed left half
complex plane. Some examples are given in Section 4 1o illustrate
the theory. Concluding marks are given in Section 5.

~ The derivation of the above results is related to dissipative
systems. Basic definidons and physical characteristics are presented
below.

1.1 Dissipative System

Consider the system input-output descriptios H: U —» Y
where U = L R,) and Y = LJ (R.,). The nowdion L), (R,) is used
to denote the space of square integrable functons - R. — R!
where R, = [tg.0). The supply rate associated with this system is
defined as a function w: R’ xR™ — R where

_ Wluy) = yQy + 2y'Su +uRu (1.1

andQ e R™, Se R™, Re R™ are constant matrices, with
Q and R symmetric.

Definition 1.1 {§): A dynamical sysiem H is dissipative
with respect to the supply rate w(u,y) if and only if

i
| wlu(t), y()] dt 20 (1.2)
L

forally 2 andallu e L’z whenever the inidal state satisfies

x(tg) = 0.
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Remark 1.1: Eu_;;uny_ corresponds to dissipativeness
where Q=R =0,1=m, § =31y and Ly is moam identity marrix.

Remark 1.2: Positive realness corresponds to passivity
where the dynamical system is linear and time invariant,

Remark 1.3: The concept of a supply rate is related in the
general case 1o the "stored energy™ for the system. As an example,
suppose that the system under consideration is an electrical network,
whose elements are constants, and y(t) the vector of corresponding
port voltage. Then the system is dissipative with respect to the
supply rate w(uy) = u'y provided that all whe resistances,
inductances and capacitance are non-negative,

1.2 Energy, Power and Information Relationships in
Dissipative Systems

The class of dissipative systems which hag a finite .

dimensional internal state is completely described in terms of energy
storage and power dissipation. Considering this class, the various

facets of the standard state space model can be associated with the -

concepts of energy, power and information.
Assume that the system under consideration is described by
a linear, time-invariant system
% = Ax + Bu (13)
y=Cx+Du (1.4
wherex € R*, ue R, y € R™ and A, B, C and D are constant
matrices with appropriate dimension. Then, following [6], the
system matrices can be regarded as representing:
1. an energy-transformation and dissipation map, associared
with the marrix A.
2. a power injection map, associated with the matrices B
and D.
3. an information-extraction map, associated with the
matrix C.
Figure 1 describes the energy-power-information maps
associated with the sysmm matrices.

A— energy tansformation map

Fig. | Energy-Power-Information maps associated
with the System Matrices

The matrix B represents the input coupling between the
informarion represented by the applied input signals and the power
available for injection into the system states. The matrix C
represents the output coupling between the energy in the system
states and the information in the available output signals. The matrix
D represents the output coupling between the information

represented by the applied input signals and the injected power into
the available ourput signals.

1.3 Review of the Positive Reai Property

The positive real property is related directly to the transfer
function matrix description of the system. The positive real lemma,
presented in Section 2, connects the positive reainess to the
parameters of a system realization with complete controllability and
complete observability.

The Positive Real Property {7): LetG(s) beanm x m
matrix of functions of a complex variable s. then G(s) is 1ermed
positive real if the following conditions are satisfied:

(i) All the elements of G(s) are analytic in Re[s] > 0.

(ii) G(s) is real for real positive s.

(iii) G*(s) +G(s) 2 OforRe(s]>0
where (-)* denotes complex conjugate transpose. -

Remark L4: If G(s) is a real rational mawix of functions

_of s, then necessary and sufficient conditions for the positive real
property w hold are given by the following theoremn, -~

Theorem LI [7]: Let G(s) be a real rational matrix of
functions of . Then, G(s) is positive real if and only if:

(i) No element of G(s) has a pole in Re[s] > 0.

(i) G*(jw) +G(jw) 2 O for all real w, with jw not a pole of
any clement of G(s).

(ili) If jwy is a pole of any element of G(s), it is at most a
simple pole, and the residue matrix,

ko = s-sjto (s-jwp) G(s)  if jug is finite,

k. = “‘."mo Gls)s

if juwg is infinite,
$j if jup is infini

is nonnegative definite Hermitian, L
Following Definition 1.1, if the system is positive real, the

angle between the output vector y(t) and the input vector u(t) is
bounded below by - 90 deg. and above by + 90 deg.

2. Relations Between Optima! Control
and Positive Realness

2.1 The Related Variational Problem

Consider the cost functional
4
Vixotou()l = | wlu(t). y()] &t (2n
, to
where the supply rate
w(u.y) = yu = u'D'u + x'Cu (2.2)

is associated with system (1.3} and (1.4), where the dimensions of
u and y are m. The problem is to find necessary and sufficient
conditions for optimality of u* (-) € U to minimize Vixg.to.u(-}],
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denoted V*[xo.t), subject to the dynamic equaton of (1.3) where
x(1p) = Xg is prescribed.
Remark 2.1: Since only the symmetric part of D
contributes 10 w(u,y), then
w(uy) =3 (wRu+2¢Cu) @3)

where
R=D+D (2.4)
Remark 2.2: IfR 20, and rank (R) =r <m, there exists
an orthogonal transformation I' = { I}, I'; ] such that

N I
where R, is positive. For instance, T, and I'; may consist of
normalized eigénvétors of R associated with nonzero and zero
cigenvalues, respectively (8]. There is a natural partitioning of the
control vector associated with this wansformation, a r-dimensional
nonsingular control and an (m-r)-dimensional singular control

2.2 Positive Real Lemma Equations

Necessary and sufficient condition for V*[xq,to} to be
bounded below over a finite time interval {to. t;] are presented in
Theorem IL3.3 of [9]. The required positive real conditions are
obtained via the extension of the optimality condition to the time-
invariant, infinite-time case [10].

Under the complete controllability and complete
observability assumption of system (1.3), necessary and sufficient
conditions for the nonnegativity of V{ 0, to, u(-)] are that there exist
n <0, L, and W such that

XA +A'n B+ C' L’ - 20 - 2

[ e w }-[w.]ww . ae
where W and L are matrices with proper dimension.

By ideatifying P = - &, the positive real Lemma is stated.

The Positive Real Lemma [7]: Let G(s) be an mxm

matrix of real rational functions of a complex variable s, with
G(e) < e». Let (A, B, C, D) be a minimal realization of G(s).

Then, G(s) is positive real if and only if there exist real matrices P,

L, and W with P positive definite and symmetric, such that:

PA+AP=-1L1 @n
BP=C-WL (2.8
WW=D+D' 2.9)

Remark 2.2: The generalized Legendre-Clebsch condition,
which is a necessary condition for Ve[xqt5] >- o in the totally
singular case, given in [3] for a linear time-invariant system can be

written as
%(Hu):CB-(CB)'=0 (2.10)
%(Hu)=CAB+(CAB)'so .11

where H is the variational Hamiltonian and A € R” is the associated
Lagrange muldplier

H=uCx+A'(Ax +Bu), "=-H..
By leuing R = 0, the necessary conditions (2.10) and (2.11) are
also obtained from the positive real lemma.

3. Positive Real Conditions in Terms
of State-Space Matrices

Necessary and sufficient conditions for the nonnegativity of
V{0, tg, u(-)] are given by the existence of 8 <0, L, and W which
satisfy (2.6). Let G(s) be an mxm matrix of degree n. Consider a
minimal realization {A, B, C, D} representing the finite-diniensional
linear time-invariant dynamic equations given by (1.3) and (1.4). In
terms of state space matrices A, B, C, and D, (2.6) gives necessary
and sufficient conditions for a positive real system. In this section,
new necessary and sufficient conditions are developed.

3.1 Standard Formulation of the Partially Singular
Problem
Assume that G(s) is a square matrix of proper rational

" function with independent columns. For any realization, the

matrices C and B are full rank. Without loss of generality, we
consider a minimal realization {A, B, C, D} of the form that A is an
nxn matrix which is partitioned as

Ay A
ae[ A Aa]
Ay An

where Ajp is a lxk matrix, and Ay is an (n-k)x(n-k) matrix,
where k is the dimension of the singular control,

B=(B, Bs], C=[g].

R, O
o)
where R, is a rxr nonsingular matrix corresponding to the
nonsingular control, B, is an nxr matrix, B, is an nxk matrix
related to the singular control, G is a rxn matrix, and G, is a kxn

‘and

D+D'=[

matrix, where r = m-k is the dimension of the nonsingular control.
If n >k, then C; has the following form

Ci=[Ca 0],
where C,, is a nonsingular matrix. Correspondingly, B, is written
as [g“ . We definc this as a standard realization.

3

"Notce that the realization can be obtained by cﬁbosing
suitable bases for the state space and the input/output space. For
example, suppose (A, B, C, G(ee)) is a minimal realization of
G(s). Let the column veciors of I, where I' is described in

Remark 2.2, be s basis of the input/output space, then the
following ransformation y = I'n, u =Tv is defined. Furthermore,

let q1. Q2. - » Qa-ks Qn-kels -+ » Qn De 2 basis of the state space,
where Qniets ... Gy Span the null space of I, 'C, and qy. qz, ...
Qn.k are arbimary vectors such that Q = [q;, Q2. -+ Qa-ke Qn-k+1»
.-+ qn] is nonsingular, This defines a transformation x = Q5. The
resulting dynamic equaton can be written as
é = AE + Bv 3.
n=CE +Dv, 3.2

where A = Q1AQ, B =Q!BI, C=T"CQ.and D = "G(>=)". The

transfer function mamix of this system is 'G(s)I", the positve

108 ey



realness of G(s) is equivalent to the positive reainess of "'G(s)I".
The application of (2.6) and development of the new necessary and
sufficient conditions for the partiaily singular problem will be
discussed under assumption of a standard realization as discussed.

3.2 Derivation of New Necessary and Sufficient
Conditions
Necessary and sufficient condition for nonnegative of
V[0,to.u(-)]) as given by condition (2.6) can be restated in the
following equivalent forms: There exista x <0 and a matrix V
such that

nA+An B+ C
=VV. 3.3)
B'n + C R

Furthermore, R being positive semi-definite is a necessary
condition for satisfying (3.3). If R >0, then (3.3) can be reduced
to a condition based upon a Reccati equation. That is, there exists a
negative definite solution X 1o the algebraic Riccati equation

n(A-BRIC)+(A-BRIC)r-xBRB'x-CRIC=0.
3.4
If R is singular, (3.3) can be written as
A + A'x &B,+ C, B+ C,
B,/x +C, R, 0 =V'V
B,x + C, 0 0
or, equivalently, there exista % <0 and a matrix V, such that
xB,+C' =0 (3.5
and
[ A + A'K B, + C, ] i a6
B/x + C, R,

If the dimension of the state is less than or equal to the
dimension of the singular control, i.e.,n €k, x can be determined
from equation (3.5). If and only if & X < 0 is solvable from (3.5)
and the same & satisfies (3.6), the system is positive real. If n >
k. the fact x <0 and equation (3.5) imply that

CBy=(CB,)=-B,'x B, >0. 3.7
Since Cs=[Cq1, 0}, and C; is nonsingular. Equation (3.7)
also implies that B, is nonsingular. Furthermore, (3.5) provides a
linear constraint on x which is discussed in Lemma 3.1 below.

Lemma 3.1: x<0, xB,+C, =0 if and only if C,B,
>0and

- [ '(Bll')'lcsl*(Bﬂ')'le"lB:Z(le)'l «(By1)'1By2'xy ]
-x1By2 (Byy)! x|

(3.8)
for some x; <0.

Rir Xi2

.

Proof: Dencte mas n = [
T2 R

sufficiency, we assume that =y <0, G,B, >0, and
T = - (By)1C, + (Byy)1B2'®; B2(Byy)! 3.9)

®i2 = - (By)!Byo'x,. (3.10)

[ -mya(my)!

Define F =
0 [

]. then F is nonsingular and

]. To prove

I -ry(my)! x 4 I
FrcF=[ n2{m, ][ 1 12} 0
0 I mi2 my (M) 'y

_{ Tem(m) g 0 ]_ [ -(By)1Cy 0
) 0 n ) 0 ) }
B, = ;B >0,

- (Bs1)'Cyp = - (Byi)'C1 By (Byy)! < €.

Since C,

Therefore FRF < 0, and it also implies that & < 0. Furthermore.,

by using ®qy and x;; defined in (3.9) and (3.10), we get
7B, + Cy' =[K“B” * 1‘28’2}[ C"1= [O] . @y
®12'Bsy + 11Bya 0 0
Next, we prove the necessity. If x <0, then n; < 0. From nB, +
C, =0 we get
By + ®3Byg + C'=0 (3.12)
M2’ By + "By =0 (3.13)
By solving (3.12) and (3.13), the expressions of m;; and r;3 are
obtained which are the same as shown in equations (3.9) and
(3.10). Q.E.D.

Let the matrix shown in (3.6) be denoted as M( &, R, )
A + A'r xB,+ C/
B/r+Cr R } ’
For any nonsingular matrix T, (3.6) is equivalent to TM( , R, )T
= V' V1, where Vyis a matrix with proper dimension. By defining

0 By 07
T,=( I B3 O }
0 0 1

and using x dcﬁnéd in (3.8) as a function of x;, then T, is
nonsingular, and

M(u.R,)=[

My Mz Mg

TM(%,R )T, = [Mtz' M»n Mn}

, My’ Mz’ My
where

ro

Mu={01 0] M(zR) 1}

LO

=R1( Az - Ba(Bu)'Ar2) + (Azz2 - Ba(By1) A1)y
[ By

Mi2=[0 I 0] M(x,R) 3-2]= % ( A21Bgi+ AgB,3-
. O -

B,2(B41) 'AiBy1-Bia(Byy)TA12B5g) - CyyA¢,

le
Mz = [ By;', By2', 0] M(x.R) [ Bsz]
0
= - (C,AB, + B,'A'C,)

0
Man=[By, B¢, 0] M(n,R) [0}
I

= - Cth +B,'G

0
M33=[0.0.I]M(n.R)[0] = R,
!
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By defining
A=Ay - B,(By)lAp (3.14)
By =[ A21Bai+ AnBya- Bia(By) A1 Byr-
Bs2(B,1)'A12B2, Bg) (3.15)

Cy=[-ChA 0] (3.16)
_ [ -(C,AB,+ B,/A'C,) -C,B,+B,'C/
Ri= [ B,C,'+C,B, R, ] G171

a condition which is equivalent to (3.6) can be stated as the follows:
There exista m; <0 and a matrix V; such that
A+ Ay 1B+ Cy’
! b = V'V, (3.18)
L Bim+ Gy Ry
According to the positive real lemma, Equation (3.18) implies that

{ A, B, Cy, -&21 } is positive real.

3.3 Necessary and Sufficient Conditions for Positive

Realness

The results in Section 3.2 are summarized in the next
theorem as an altemative necessary and sufficient conditon for
testing positive realness of a square system.

Theorem 3.1: The necessary and sufficient condition for
{A, B, C, D} to be positive real is that

@HR2C0

(i) If R >0, there exists a positive definite solution P to the
following algebraic Riccati equation

P(A-BRIC)+(A-BRIC)P+PBRI!BP+CRIC = (;

(iii) f rank R = r<m, and n S m-r, there exists

P = C,B,'(B,B,")! > 0 satisfying PB, = C,' and
-PA-AP -PB,+C/
[Cspac, w2

(iv) IfrankR =r<m, and n > m-r, then C,B, = (C,B,)' >

Oand { Ay, By, €, 31 is positive real, where Ay, By, Ci, and

Ry are defined in equartions (3.14) 1o (3.17).

Condition (ii) is obtained by identifying P with - x in
equation (3.4). Condidon (iii) is the interpretation of (3.5) and (3.6)
forthecase ng (m-r). If P=- x> 0exists, then PB,= (',
PB,B;' = C,'B,, and P = C,B,(B,B,)! > 0. Condition (iv)
corresponds to the suuanon we discussed thmugh (3.7 10 (3.13)

Remark 3.1: Allemanve msfomunon approaches to the
singular problem using ‘the Kelley transformation for the linear
quadratic problem are given in [9] for the matrix casc. The approach
hcre is different via the structure of x pven by Lemma 3.1.

Remark 3.2: If {A, B. C. D} is a minimal realization,
then it is rcquxrcd for a positive real system that lherc exists a
posmve dcﬁmte matrix P such that

PA+AP <0
Therefore, it is required that Re A; [A} <0 and the Jordan form of
A 'has no blocks of size greater than Ix] with purc imaginary
diagonal elements. ' 7 '

Remark 3.3: If G(s) is strictly proper, the minimal
realization is wtally singular, then the characteristic polynomial of

= Ay - B;2(By1) YA 1 is equal to the zero polynomial of the
system up to & nonzero scalar factor,

y(s)
Proof: Let det G(s) =det (C(Is- A)''B) = m . where
s
A(s)=det(Is-A)

and y(s) is the zero polynomial of the system. Since state feedbacks
do not change the numerator of the transfer function matrix, for any
matrix K,
det (Gy (5)) = det  C(ls - A - BK )1B) =YL

A(s)
where Ay(s)=det(Is-A-BK)

Lat K =(0, (Bg)'A12], then
A+BK=[A” 0 ]:[A“ 0 ]
Ay Az- Ba(By)lA); A Ay

Is-A
Ak(S)=dct(Xs-A.By()=dct[ s-Apyp 0 ]
Ay Is-Ay

=det (Is-Apy) det (Is-Ay)

det (Gy (s)) =det ( C(Is - A - BK )1B) = det (G, (Is-Ayy ) ' Bgg)
~ et (Cy det (B1)
det (Is-Ayy)

Therefore,
W(s) = Ay(s) det (Gy (s)) = det (G;y) det (B, ) det (Is-Ay)
Q.ED.

Remark 3.4: From (3.18) and Remark 3.3, we conclude
that there are n - m finite zeros for a positive real system and all the
zeros lie in the closed left half complex plane. In other words, the
system is minimum phase.

4, Examples

Theorem 3.1 introduces a recursive procedure for testing

" positive real systems, requests only for testing a series of matrices

CiBi; >0, for i=0,1,2,...,1, and the solution to a algebraic
Riccati equation Py >0, where i is the index associated with the
new system obtained from the i-th iteration, and i = 0 corresponds
to B,, C,, and P. The testing stops when R, becomes nonsingular,
or the dimension of the state is Icss or equal to the dimension of the
singular control.

The following examples illustrate the application of Theorem
3.1,

) (s + 2)?
Example 4.1: Given G(s) = ¢~ ys+ 3y + 2"

observable realization of G(s) is

-410 1
A=l -3 01 |, B=H. C=[1,0.0]. D=0
0 00 4
First iteradon:
R=0

CB=(CB)=1>0

aoon



A -4 1 1
1= 40 . Bl‘[o]' Cl‘[".ol, R)=0~

Second iteration:

Ry =0

CiBy=(CBy)'=-1<0

Therefore, the system is not positive real,

Example 4.2: Given G(s) = s + 1) an
- s(s+2)(s+4)"
observable realizadon of G(s) is
-6 10 1
A=l -8 0 1 |, B={2}. C=[1,0,0], D=0
0 00 !
First iteradon:
R=0

CB=(CB)=1>0

=2 1 1
Ay = ' By = R =2[-1, R = 8.
1 [-l 0] 1 [4] Ci=2[-1,0], R;=8

Second iteration:
Ry =8>0, the algebraic Riccati equation is

[-15 8 ~15 —4
Pl + Pl*’
-4 0 8 0

1 4 10
+ P Pl + = (
[ 4 16 ] [ 00 ]
which has a positive definite solution
[ 0.0394 -0.0225
P = >0
~0.225 0.1557

Therefore, the system is positive real,

. 5+ z2 ..
Example 4.3: G(s) = w A minimal
realization of G(s) is
0 10 1 ,
A=l —p2 01 |, B‘[O]. C=[1,0,0], D=0.
0 00 z
First iteration:
R=0

CB=(CB)=1>0

_ 0 1 22.p?
Al—[_zz 0]. 31=[ 0 ]. Ci=[-1,0],

Ry =0.

Second iteration:

Ry =0,

CiBy=(CiB))=p2-22>0 ifandonlyif p?> 22
Ay=0, Ba=-23(z2-p?), C3=1, Ry=0.
Third iteraton:

R =0.

P2 = C;B2(B:B;)! = >0if p?> 22

1
zl( p2.12 )
-PiAs- APy = 0.
Therefore, the system is positive real if and only if p2 > z2.

5. Summary and Conclusions

This paper reviews positive real system as & subclass of
dissipative systems and states the positive real lemma equations. By
using the variational problem associated with the parially singular
problem, necessary and sufficient conditions for a system to be
positive real are derived. These conditions are particularly
transparent by using Lemma 3.1 which provides a uniquely
structure for the matrix x. These positive realness conditions are
expressed in terms of the state space matrix inequalities and
algebraic Riccati equations and do not deal with inequalities in the s
domain or with solutions of the positive real lemma equations.
These tests are direct, and a system either satisfies these conditions
or not. There is no requirement 1o search over all matrices o
determine if a condition can be satisfied as in the positive real
lemma. Examples are given which demonstrate the power of this
approach.
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