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A Function Space Approach to Sampled Data 
Control Systems and Trackmg Problems 

Yutaka Yamamoto, Senior Member, IEEE 

Abstract-This paper presents a new framework for hybrid 
sampled-data control systems. Instead of considering the state 
only at sampling instants, this paper introduces a function piece 
during the sampling period as the state and gives an inhite- 
dimensional model with such a state space. This gives the advan- 
tage that sampled-data systems with built-in intersample behavior 
can be regarded as linear, time-invariant, discrete-time systems. 
As a result, the approach makes it possible to introduce such time- 
invariant concepts as transfer functions, poles, and zeros to the 
sampled-data systems even with the presence of the intersample 
behavior. In particular, tracking problems can be studied in this 
setting in a simple and unified way, and ripples are completely 
characterized as a mismatch between the intersample reference 
signal and transmission zero directions. This leads to the internal 
model principle for sampled-data systems. 

I. INTRODUCTION 
T is well recognized that digital control provides various I advantages over the usual time-invariant feedback controls. 

Deadbeat control, for example, makes a type of stabilization 
that cannot be achieved with continuous-time linear time- 
invariant feedback. We can also implement a much more 
complex logic in control actions making use of the recent 
advances in computer technology. For example, it is recog- 
nized that multirate sampling and/or generalized hold functions 
provide much greater capability in control; see, for example, 
[81, [lo]. 

On the other hand, sampled-data systems give rise to a dif- 
ficulty not encountered in the classical situation. In designing 
sampled-data systems, one usually designs the continuous-time 
system and then designs a discrete-time controller over the 
discrete-time domain. For example, the fundamental work of 
[12] shows that as far as the regulation of initial states is 
concemed, one needs only consider the discrete-time system 

h 

Wk+l  = eAhWk + e A r B U k  d7, 

Y k  = c w k  (1) 

where h is the sampling period and the matrices (A ,  B ,  C) 
are the system matrices of the linear time-invariant plant 

i ( t )  = Az(t) + Bu(t) ,  
y(t) = Cz( t ) .  ( 2 )  
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Certainly the stability of a sampled-data control system for the 
plant ( 2 )  is determined by the behavior of (1) (and the discrete- 
time controller), and this can be determined based only on the 
information at the sampled instants. A drawback in discretizing 
the continuous-time plant as above, however, is that it loses 
the intersample information (or makes it implicit, at least). 
Since the plant is continuous time, the overall performance 
must be evaluated in continuous time, but this is difficult once 
we discretize the plant and make it discrete time. A typical 
problem is that of ripples in servo control systems. In such 
a situation, the system is subject to continuous excitation by 
exogenous signals, and there can remain stationary ripples, 
even though the error tends to zero at sampled instants. One 
can compute the intersample behavior (after the control system 
design) via the modified 2-transform, but this is often very 
annoying due to the complexity of formulas [ 171. 

In view of this, recent investigations of sampled-data sys- 
tems place more emphasis upon intersample behavior, and 
there are now a number of investigations along this line: [5] 
and [3] for stability analysis; [3] and [ 141 for H2-optimization; 
191, [20], and [I]  for HE-problem; and [7], [22], [191, 1151, 
and [24] for tracking. 

The study of sampled-data systems with built-in intersample 
behavior induces another technical difficulty. Even though the 
(continuous-time) plant and the (discrete-time) controller are 
both time-invariant, the underlying time sets are different, so 
when combined together to form a hybrid sampled-data control 
system, the resulting system is not time-invariant and only 
periodically time-varying. This mixture of two types of time 
sets makes the analysis of sampled-data systems technically 
very awkward. In particular, it makes the classical state space 
formalism ineffective. 

To remedy this, we introduce a new framework for sampled- 
data systems. Since the fundamental issue lies in incorporating 
the intersample behavior, we take the basic idea of taking 
the full histories of each sampling period of input/state/output 
functions as input/state/output vectors and then derive linear, 
time-invariant, discrete-time transition rules. The difference 
here is that since we take functions as states, inputs, etc., 
the system becomes injinite-dimensional, but on the other 
hand it has the advantage that continuous-time systems can 
be viewed as linear, time-invariant, discrete-time systems. 
Thus it is particularly suitable for the study of sampled-data 
systems in that both digital and analog components can be 
placed into the unified framework of linear, time-invariant, 
discrete-time framework. This technique is a generalization 
to continuous-time systems of lifting employed by 1131 for 

0018-9286/94$04.00 0 1994 IEEE 



704 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39. NO. 4, APRIL 1994 

discrete-time periodic systems. It "lifts" the original system 
to that considered in a discrete-time yet with larger in- 
put/state/output spaces. Unlike the discrete-time case [ 131, 
however, the present case involves infinite-dimensional func- 
tion spaces due to the continuous-time nature of the plant. 

This new framework of lifting continuous-time systems 
has been introduced to control theory by [20], [24] and by 
[2], [ 11, independently. While we use infinite-dimensional 
state space, [20], [2] and [l] use a finite-dimensional state 
space. This difference actually induces some difference in 
formulas in the lifted system, and it is to be investigated 
in the future as to which is more advantageous. While [20] 
and [l]  studies H"-type problem for sampled-data systems, 
we are here concerned with tracking problems, in particular, 
characterization of ripples. 

The paper is organized as follows: Section I1 introduces 
a function-space valued sequence space and 2-transforms 
there. We then define the lifting of the continuous-time linear 
system in Section 111. After giving some facts on stability, 
stabilizability, and transfer functions in Section IV, we discuss 
ripple-free tracking conditions in Sections V and VI. Section 
V deals with the case of tracking signals generated by a simple 
pole. The key feature here is the notion of transmission zeros 
and their associated zero directions. This directional vector 
(naturally a function in the present setting) gives a proper 
intersample tracking signal, and roughly speaking, ripple-free 
tracking occurs when and only when this direction coincides 
with the intersample behavior of the reference signal. Section 
VI deals with the general case: Here the tracking problem for 
sampled-data systems becomes more delicate and interesting in 
that combination of a digital compensator and a hold element 
yields a continuous-time internal model, so that one can often 
split the internal model of the exogenous signal to the digital 
and analog parts. A necessity and also a sufficiency (under a 
mild assumption) of the internal model principle is obtained. 

This paper is the full journal version of the conference paper 
[24], in which the basic framework and preliminary tracking 
results were presented. 

11. SEQUENCE SPACE AND 2-TRANSFORMS 

Let h be a fixed sampling period. Our basic idea is to regard 
a trajectory z( t )  as the sequence of functions {zk(B))~ . l  
defined by 

(3) 5k(8)3 = x ( ( k  - 1)h + e)  
and give a discrete-time state transition rule of zk. To rigor- 
ously ictroduce this, we need a few preliminaries. 

Let C[O, co) denote the space of $1 piecewise continuous 
functions on [0, co). Similarly, let C(0, h] denote the space 
of all such functions p(t) on (0, h] with finite right limit at 0. 
The latter space will be denoted X in the sequel. X is clearly 
a Banach space with supremum norm 

llcpll: = SUPo<tJ<hl'P(m 

S:C[O,co)+X":  c p H { c p k ) g 1 :  

Defining the mapping s as 

pk(e) = c p ( ( l c  - i ) h  + e ) ,  o < e I h (4) 

I ' ' ' I  

I I l 
0 

Fig. 1 .  Mapping S .  

we see that C [ O ,  co) and the sequence space X" (the count- 
ably many direct product of X) are placed in one-to-one 
correspondence. This mapping S "lifts" the continuous-time 
signal cp(t) to an element { c p k )  residing in the sequence space 
X". The space X" can also be identified with the space of 
formal power series X[[z-']] with coefficients in X via the 
2-transform 

2 :  X" + x[[z-l]] 

( 5 )  
k = l  

With slight abuse of notation, we will also denote Z(cp) for 
Z(S(cp)) when cp E C [ O ,  m); it may also be denoted by @. 
Note that it is a function of 0.  

Let us introduce the sampling and hold operations. Let Sh 
be the delta function placed at h, i.e., (Sh, c p )  = cp(h), or 
Shcp = cp(h) for cp E X. The sampling operator S is identified 
with Sh acting on X. It has a natural extens_ion_: X" + R" (or 
S :  C [ O ,  co) ---t W" with identification S :  C[O, m) E X") 

(6) 

by 

S({cpli)): = {&(PIE1 = { c p k ( h ) ) L .  

3-t({x/C)): = {vk(e)), c p k + l ( ~ )  = H ( @ k ,  0 < I h 

The hold operator 3-t: W" + X" is defined by 

(7) 
where H ( 0 )  is a fixed hold function. We remark that 
Z(S(cp)) = p(kh)zPk, so it agrees with the usual 
2-transform of the sampled data {cp(kh)). We also remark 
that 

so that the sample-hold operation induces a unit-time delay 
(forward shift) operator. 

We note that the space X admits an algebra structure with 
respect to convolution 

0 

(cp * !b)(O = cp(0 - T)!b1(7) d7. (9) 

This naturally induces an algebra structure to X[[z-']], which 
we freely use in sequel. We remark that the multiplication 
of z and 2-l to an element in X[[z-l]] acts as the one-step 
backward and forward shift operators, respectively. 
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111. FUNCTION SPACE MODEL 
Using the lifting S : p(t) H { p k } ,  we can derive a discrete- 

time, time-invariant system equation for a continuous-time 
system. This has the obvious advantage that the underlying 
time set can be made the same for digital and analog elements. 

We start by giving the discrete-time, time-invariant model 
for a continuous-time system. Let (A,, B,, C,) be a given 
continuous-time system 

k( t )  = A,z( t )  + B,u(t), 
y ( t )  = Cc2(t), U E R", 2 E R", y E RP. (10) 

Let Z k ( 6 )  E X", Y k ( e ; !  E XP, U k ( e )  E X" be the functions 
obtained by applying S to 2, y ,  U, respectively, i.e., Z k ( e )  = 
z ( ( k  - 1)h + e), (cf. (4)), etc. Suppose that system (10) is 
at time t = kh. Then the past h second history of the state 
is Z k ( e )  E X". If input U k + 1 ( 8 )  E X" is applied on the 
interval (kh, (k + l)/h], then the state trajectory % k + 1 ( 8 )  and 
the output trajectory Y k ( 8 )  follows the transition rules 

e 
z k + 1 ( 8 )  = e A c e x k ( h )  + 1 e A ' ( e - T ) B & k + l ( T )  d7, 

I I 

Fig. 2. Hybrid closed-loop system E,/. 

t = k h  t = ( k + l ) h  

Fig. 3. Signal timing. 

that the closed-loop system, denoted C,l in the sequel, obeys 
the equations: 

y k ( 8 )  = c c x k ( e ) ,  0 < 6 5 h. (11) w k + l  = A d w k  + B d e k ( h ) ,  

Introducing the operators u k + l ( e )  H ( e ) C d w k -  (15) 

F :  X" + X" : .(e) H eAcez(h) ,  
e 

G :  X" -+ X" : .(e) H 1 e A c ( e - T ) B , u ( T )  dT, (12) 

H : x" -, x~ : .(e) H c c X ( e )  

z k + l ( e )  = e A c e s k ( h )  + e A c ( e - ' ) B c u k + l ( T )  d7 ,  

(16) 
Le 

'&(e) = C c X k ( e ) ,  0 < 8 5 h. 

(11) can be written simply as and 

x k + l  = F x k  + G U k + i r  e k ( e >  = T k ( e )  - y k ( e ) .  

Y k  = H X k .  (13) 
The one-unit time shift in the output equation in (15) is a result 
of hold operation (see Fig. 3 for the precise correspondence 
of timing of each signal). We then obtain the following model 
for cC1 

It is clear that (10) and (11) Or (13) give Precisely the Same 
input-statehtate-output correspondence. There is, however, a 
point that calls for more attention. On the right-hand side of 
(13), the input term is ?&+I, not Uk. Therefore, in the strict 
sense, the quantity l k + l ( e )  does not satisfy strict causality. 
To remedy this, one can introduce a new state variable 

and satisfies causality. In what follows, however, we will 
use mainly (13) because the unit-time delay induced by the 

continuous-time system C, is viewed as a discrete-time system 
under the lifting here, we will denote it by S(&) Or by E,. 

Consider the hybrid control system depicted in Fig. 2. 
Here E d  and C, denote discrete-time and continuous-time 
systems ( A d ,  Bd,_Cd) and (A,,  B,, C,), respectively. Under 
the identification S introduced in the previous section, we note 
that at t = kh, the sampled values of signals e k ,  2 k ,  Y k ,  T k ,  

hold operation just cancels this effect of U k + l .  Also, when a Y k ( e )  = [O [2y8)] (19) 

where B(0) is given by 

B(B):  = eAC('-')B,H(.r) d ~ .  (20) I" 
We will denote the first operator on the right-hand side of (17) 

etc., are e k ( h ) ,  Z k ( h ) ,  y k ( h ) ,  T k ( h ) ,  respectively. It fOllOWS by A. 
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Remark 3.1: There are now several different frameworks 
incorporating intersample behavior to sampled-data systems. 
Francis and Georgiou [5] and Chen and Francis [3], [4] gave a 
finite-dimensional, periodically time-varying model. Hara and 
Kabamba [9], [l 11 used a mixed discrete-timekontinuous-time 
model. A similar lifting as presented here is also employed by 
[20], [2] and [l] with a finite-dimensional state space. In this 
model, xk: = z ( k h )  is taken as the state, and as a result one 
needs an infinite-dimensional direct transmission term from U 

to y to describe intersample behavior. On the other hand, this is 
built into 2 k  (e )  in our framework. While finite-dimensionality 
of the state has obvious merit-typically the input operator is 
of finite rank-our framework also has the (dual) advantage 
that the output equation is simply expressed as yk(e) = 
Ccxk (e ) ,  whereas an infinite-dimensional operator is needed 
in the former approach. The present framework also naturally 
exhibits the nature of sampling: it is an evaluation operator 
Sh (delta function). Of course, these two realizations yield 
entirely the same input/output behavior and hence the transfer 
function. Actually, in the definition of zeros (Definition 5.2), 
they yield almost the same relations. Again the difference lies 
in whether we allow infinite-dimensional operator either in the 
state or in the output equation. 

IV. SPECTRUM, STABILITY, 
STABILIZABILITY AND TRANSFER MATRICES 

Since our lifted model (17)-(19) is, in principle, infinite- 
dimensional, we need to investigate some basic system prop- 
erties. Let us start by characterizing the spectrum of system 
Ccl.  

Theorem 4.1: The spectrum of system C,l (17)-(19) is the 
union of (0) and the spectrum of the matrix 

Furthermore, except 0, they are all eigenvalues. In other words, 
the spectrum of the hybrid system is entirely determined by 
the evaluation at 0 = h. 

Proof: Let us note that the operator A in (17) is a 
bounded operator. It is clearly a finite-rank operator, so it 
is also compact [18, Theorem 4.181. Then A is not contin- 
uously invertible because X is infinite-dimensional so that 
zero belongs to the spectrum o(A), and any other point in 
the spectrum is an eigenvalue ([18, Theorems 4.18, 4.251). To 
compute the nonzero eigenvalues, suppose that X # 0 and 
(w', ~ ( 0 ) ' ) '  satisfy 

To solve these equations, first set B = h 

(XI - A d ) W  f BdCcx(h) = O 
-B(h)Cdw + (XI - eAch)x (h)  = 0. 

These have a nonzero solution if and only if X is an eigenvalue 
of (21) and (w'? ~ ( h ) ' ) '  is a corresponding eigenvector. Once 

these vectors are found, (22) can be trivially solved as 

This completes the proof. 0 
We now study the internal stability of C,I.  We say that C,Z 

is (asymptotically} stable if 

The norm 1 1  . 1 1  is the one induced from that of X". This 
condition holds if and only if Akz decay to zero uniformly 
for all x in the unit ball of X". 

The following theorem is well known (e.g., [3]), stating that 
the internal stability of C,I is determined by the behavior at 
the sampled instants, but is given in the time-invariant operator 
theoretic setting here. 

Theorem 4.2: The closed-loop system C,1 (17)-(19) is in- 
ternally stable if and only if the matrix A0 in (21) is a stable 
matrix. 

Proof: Since every nonzero spectrum is an eigenvalue, 
the condition is clearly necessary. Conversely, suppose A0 is 
a stable matrix. Theorem 4.1 implies that the spectral radius 
of rU(A) of A coincides with the magnitude of the largest 
eigenvalue of (21), which is less than one by hypothesis. Recall 
the well-known formula for spectral radius ([18, page 2351) 

Take any E > 0 such that rU(A) + E < 1. Then 

for all sufficiently large k, and hence the conclusion follows.0 
Theorem 4.2 shows that if the sampled digital sys- 

tem (eAch,  B(h), C,) is stabilized by a digital controller 
(Ad, Bd, Cd) as a finite-dimensional discrete-time system, 
then the closed-loop hybrid system C,l (17)-(19) is also 
internally stabilized. This agrees with the classical knowledge, 
and it shows the consistency of the present framework. 

We now discuss the preservation of stabilizability. In doing 
so, we make the following standard assumption: 

Assumption A (Spectrum Nondegeneracy Assumption}: 
None of the eigenvalues of A, with nonnegative real parts 
differ by 2k7rj/h7 k # 0. 

Now consider the sample-holded state feedback 

This yields the feedback system 

and as in Theorem 4.2, system (24) is stable if and only if 
eAch +B(h)K is a stable matrix. Therefore, we readily obtain 
the following theorem. 
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Theorem 4.3: The system (1 1) is stabilizable by sampled 
state feedback (23) if the original continuous-time system 
(Ac,  B,) is stabilizable and Assumption A is satisfied. 

Before closing this section, we give some facts on transfer 
matrices. Let (F,  G ,  H )  be a given system over X :  

Using the algebra structure of X[[z- ’ ] ] ,  especially { z X } k  = 
X k + l ,  we can compute the 2-transform of both sides of (25) 
to obtain 

where denotes 2-transform. Allowing formal division for 
( z I  - F)-’, H ( z I -  F) - lG  agrees with the 2-transform of 
the sequence 

H G ,  HFG,  . . . , HFk-’G, .  

and multiplication of H ( z I  - F ) - l G  with U gives the 
output in the 2-transform domain. On the other hand, by the 
standard technique of considering characteristic solutions of 
type X k  = X k - b 0 ( e ) ,  one can consider substituting a complex 
number X to (26), and using the fact that Z X k  = X k + l  = X X k ,  

it is obvious that the solution is obtained by solving 

In this case ( X I  - F)-’ appearing in the solution is the resol- 
vent operator. Therefore, by this formal agreement, the transfer 
function (26) may be computed by formally substituting z into 
H(XI - F)- lG  and vice versa. 

We now compute the transfer function of C,t (17)-(18). 
This will be given by solving 

e(0)  = r (6)  - Ccx(8) .  

Suppose X belongs to the resolvent set of matrix A. (21). 
Let (tu;, xb)’ be the solution of (XI - Ao)(wb, x;)’ = 

[r:] = [ -B(h)cd  X I - e A c h ]  [ 0 ] 
((Bdr(h))’,  0)‘: 

-1 
Bdr(h) . (28) X I - &  Bdc ,  

The second row of (27) yields 
1 
A 

.(e) = - {B(0 )wo  + eAc8xo}.  

Hence 

This correspondence P(z) H e(.) (or $ ( z )  with suitable 
changes) will be referred to as the closed-loop transfer matrix 

operator of system C,t. Combining (27) with (28), we see 
x ( h )  = ( l /X) {B(h)wo  + eAchxo} = 20. Therefore, we have 
the sampled-transfer matrix 

2(h) = P(h) - [O C,] 

This shows that, at sampled instants, the closed-loop transfer 
function is obtained by composing the discrete-time (finite- 
dimensional) transfer functions in the usual way, and this 
guarantees consistency of the present method with the classical 
approach. 

v. ZEROS AND TRACKING 

One of the problems in digital control is that it may induce 
ripples. If we focus our attention only on the discrete-time 
model describing the behavior at the sampled instants, it is 
difficult to analyze ripples, since during the intersample peri- 
ods the system works as an open-loop system. This makes it 
difficult to obtain the internal model principle for servo control 
problems as obtained by [6] (see [7], [22] for some extensions 
to the case of ripple-free tracking). Taking advantage of the 
present framework, however, we can give a much clearer view 
on the ripples. In this section, we first study the case where 
the reference signals are generated by a simple pole and give 
a ripple-free tracking condition for this case. The general case 
where the reference signals are generated by systems with 
multiple poles is studied in the next section. 

As it turns out, making use of the fact that the present 
approach allows transfer matrices, we can naturally talk about 
zeros of the transfer matrix, and then the ripple behavior can 
be clearly understood as a result of the mismatch between a 
directional function intrinsically associated with a transmission 
zero and the intersample function. To see the idea, let W ( z )  be 
a transfer matrix from the reference signal r to the error e of a 
finite-dimensional, discrete-time closed-loop system. Suppose 
that the tracking signal r is w/(z - A) where v is a vector 
giving the direction into the input channels. It is well known 
that the error e tends to zero if and only if 

W(X)v = 0. 

That is, not only W ( z )  has X as a transmission zero, but also 
should admit w as a directional vector associated to this zero A. 

Precisely the same result holds in the present situation, only 
that vector v must be replaced by a function .(e). We start 
with the following lemma. 

Theorem 5.1: Let Wer(z) be the closed-loop transfer ma- 
trix operator of c ,~  from the reference r to the error e given 
by (29). Suppose it is stable. Then its response to the input 
{Xk-lw(e)}, 1x1 2 1, asymptotically approaches 

In particular, 

0; 

We,( X)v( 0); 

1) there is no stationary ripple if and only if We, (X)w( S) 

2) when X = 1, the stationary ripple is given by 
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3) if 1x1 > 1 and if WeT(X)w(8) $ 0, then the response 

Proof: Since Wer(z) is stable, we can disregard the 
will always diverge. 

initial state response. Expand Wer(z)(w(8)/(z - A)} as 

According to Theorem 4.2 and formula (29), the second term 
R ( z )  is analytic outside the unit disk { z ;  IzI < 1). Therefore, 
the response (32) asymptotically approaches X"'Wer(X)t.(8>. 

0 
In summary, 
1) asymptotic tracking to X L - l w ( 8 )  is possible only when 

2) when this condition does not hold, and if 1x1 > 1, ripples 

The second property is suggestive. In practice, what we can 
implement precisely are almost exclusive_ly digital devices. 
Then, unless the continuous-time plant C, possesses X as 
a pole, the tracking condition Wer(X)w(0) 0 is hardly 
satisfied, so that the intersample ripples always diverge; see 
also [16]. (Tracking at sampled points is still possible by a 
digital compensator.) This suggests that from the engineering 
point of view, tracking to e p t ,  Re p > 0 is impractical, and the 
only practical cases are tracking to steps, ramps, and sinusoids. 

In what follows we specialize Theorem 5.1 to the particular 
form of (29). We start with the definition of zeros. We first 
make the following assumption throughout. 

Assumption B: Consider the closed-loop system C,I in Fig. 
2. Let C(z)  be the transfer function of E d ,  and P(s)  the transfer 
function of E,, with lifted (discrete-time) transfer function 
P ( z )  of the lifted system Cc of E,. We assume that 

for any unstable pole X of C(z) ,  no w E X satisfies 

for any unstable pole p of P(s ) ,  ep'" is not a transmission 

Since the poles of p(z) are precisely e p h  with p being 
poles of P(s) ,  this assumption simply requires that-there be 
no unstable pole-zero cancellation between E d  and E,. 

Definition 5.2: A complex number X is an invariant zero 
and a function w(8) E X" is an associated zero direction of 
the closed-loop system (17)-(18) if there exists (w', z(8)')' 
such that 

This readily yields the conclusions. 

wer(x)w(e) 0; 
always diverge. 

@ ( X ) w  = 0, and 

zero of C(z).  

X I - &  BdCc6h Bd6h 
-B(8)Cd X I  - eAce6h 0 ] [$;I =o. (33) 

[ O  C C  I 

The operator on the left-hand side is a clear analog of the 
system matrix in the finite-dimensional case. The difference 
here is that the matrix depends on the intersample parameter 
8. We call this operator the closed-loop system operator. 

Under Assumption B and closed-loop stability, unstable X 
(i.e., 1x1 2 1) is an invariant zero with associated zero direction 
w(8) if and only if 

wel.(x)w(e) = o 
i.e., it is also a transmission zero. Therefore, we can identify 
these two notions for tracking problems. Let us start by solving 

(33). The last row of (33) yields 

BdC,Z(h) + BdW(h) = 0 

so that we must have 

(XI - Ad)W = 0, 
-B(8)Cdw + XZ(O) - eAcez(h) = 0. 

(34) 
(35) 

Existence of a nonzero solution to (34) and (35) is a necessary 
iind sufficient condition for X to be an transmission zero of 
Wer(z) with w(8) = -Ccx(8) an associated zero direction 
function. Now (34) and (35) can admit a solution in the 
following way: 

1) there exists a solution (w', x(8)')' with nonzero w, or 
2) a solution of type (0, z(8)')' with .(e) $ 0 exists. 
In the first case, w is an eigenvector of -and X is a pole 

of E d .  In the second case, X is a pole of C, and z(8) is 
an eige_nfunction. This argument also shows that a pole of, 
E d  or C, always yields a transmission zero of Wer(z) under 
Assumption B. Therefore, we have the following proposition. 

Proposition 5.3: Let Wer(z) be the closed-loop transfer 
matrix operator from T to e of E,(, and let E d  and 3, be 
its digital and continuous parts, respectively. Assume closed- 
loop stability. Then, under Assumption B, unstable poles of C d  
or Cc induce a transmission zero of Wer(z) and vice versa. 

This proposition says nothing about the zero directions. To 
elaborate more upon this, we now confine ourselves to the case 
of zero-order hold H ( t )  1 and r ( t )  = e%o, R e p  2 0. 
The following theorems may be regarded as an internal model 
principle for the special case of tracking to signals generated 
by a single pole p. 

We first consider the tracking to steps: p = 0. 
Theorem 5.4: Consider the closed-loop system C,I in Fig. 

2. Assume that H ( t )  and C, are stabilizable and 
detectable. Consider the tracking to the step reference signal 
(represented in the continuous-time). 

1, and 

T ( t )  = 210. 

Assume the closed-loop stability. Then tracking without rip- 
ples is possible either by incorporating 0 into Cc or by 
incorporating one into E d  as a pole. 

Proof: The 2-transform of r ( t )  is given by VO/(Z - 1). 
Put w(8) E WO. Let us first consider the case where zero is 
a pole of E,. From (33), w(8) can be a transmission zero 
direction if and only if 

Cc.(8) +.(e) = 0 (36) 
(37) 

(38) 

for some w, ~ ( 8 ) .  Let zo be an eigenvector of A, correspond- 
ing to 0. Then (36)-(38) can be easily solved as 

( I  - Ad)W = 0 

-B(8)Cdw +.(e) - eAcez(h) = o 

.(e) = -cczo, = 0, .(e) = 20. 

In this case WO = -C,Q gives an allowable trackable direc- 
tion. (Note that C,ZO # 0 by the detectability of (A , ,  B,).) 

but not 
of 2,. As shown above, w(8) is a transmission zero direction 

We next consider the case where one is a pole of 
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if af?d only if (36)-(38) are satisfied. Since one is not a pole 
of E,, w must be an eigenvector corresponding to one, and 
this in turn yields a unique solution 

.(e) = {eAce(I  - eACh) - lB(h)  + B(e)}Cdw 

and .(e) = -Ccx(e) is a corresponding trackable direction. 
This x ( 0 )  is indeed a constant because 

so that .(e) above cannot contain the mode of e@.  Therefore, 
w(0) = Ccx(e) cannot be a zero direction associated to A, so 
stationary ripples exist. 

It remains to show that trackicg without ripples is possible 
by implementing X as a pole of E,. In this case we can solve 
(39)-(41) as 

1 
X 

.(e) = -ccx(e), w = 0, .(e) = -eAcezo 

) - l B ( h )  + B(0)) where 50 is an eigenvector of eAch. Now in view of Assump- 
tion A, 20 is also an eigenvector of A, with respect to p. This 
implies eAcexO = e@xo, and hence 

1 .(e) = --e@C,zo X 

Ace I - eAch %(e ( 
- - eAce(I - eACh)-lA,B(h) + eAceBc 

= 0. 

= eAce(l  - eACh)-’(eAch - I ) B ,  + eAceBc 

Finally, if zero is not a pole of C, and one is not a pole of 
Ed. then one cannot be a transmission zero of the sampling 
time closed-loop transfer matrix (30). Hence by the discrete- 
time internal model principle, the closed-loop system does not 

0 
We next consider the tracking to r ( t )  = e%O, R e p  # 0. 

Since the hold element is a zero-order hold, ripple-free tracking 
is possible only by incorporating p into C, as a pole and not so 
by incorporating a digital internal model l / (z  - e P h )  into Ed .  

Theorem 5.5: Consider the tracking to the reference signal 
(represented in the continuous time) 

track the step reference as above. 

r ( t )  = ePtwo, R e p  2 0 

under the same hypotheses on E,l and H ( t )  as in Theorem 
5.4. Assume p # 0. Then tracking without stationary ripples 
is possible only by incorporating p into Cc as a pole. 

Proofi The signal r ( t )  is represented as Sr = 
{Ak-le”ewo}gl in the notation in Section 11, and its 
2-transform is given by 

e@ 
-210. 2 - X  

Put ~ ( 0 ) :  = e@wo. To prove that ripple-free tracking is not 
possible by incorporating A:_= eph into C d ,  suppose that X 
is a pole of Cd but not of E,. As shown above, .(e) is a 
transmission zero direction if and only if 

cc+) +.(e) = o (39) 
( X I  - A ~ ) w  = 0 (40) 

-B(e)cdw + h ( e )  - eAcex(h) = o (41) 

for some w, .(e). Since x is not a pole of 5,, this implies 
that w must be a (nonzero) eigenvector of Ad corresponding 
to A, and we have a unique solution 

1 
= -{eAce(XI X - eAch)-’B(h)  + B(e)}Cdw. (42) 

Since X is not an eigenvalue of eAch, p is not an eigenvalue 
of A,, so that eAce does not contain the mode of e@. Since 
H ( t )  1, we have 

e 
B(8) = 1 eAcTBcdT 

and such .(e) gives a trackable direction. (In particular, WO = 
-(l/X)Cozo.) Note also that C,xo # 0 by the detectability of 

Remark 5.6: Related results have been studied by [7], [22], 
etc. We note, however, that the present characterization in 
terms of poles and zeros has been made possible via the notion 
of transfer matrices resulting from lifting. 

(A,, Bc). 0 

VI. TRACKING AND l% INTERNAL MODEL PRINCIPLE 

The results in the previous section show that tracking to 
signals generated by a single pole can be well described by 
poles and zeros. In particular, when the tracking signal is 
v(O)/(z - 1) and if the internal model is in the digital part, 
then the only trackable intersample signal .(e) is necessarily a 
constant function for the case of zero-order hold; conversely, it 
is possible to track step functions by incorporating the pole one 
into the digital compensator Cd. This situation occurs because 
the cascade connection of l /(z - 1) and the hold element 
somehow works as a continuous-time internal model l/s. This 
is not, however, well described in the previous section. 

When the tracking signal is generated by a repeated pole, the 
situation is more complicated and cannot be easily described 
by simple pole-zero arguments. For example, take the ramp 
signal r ( t )  = t. The 2-transform (defined in Section 11) of 
this signal is 

e 
( 2  - 1)’ +- h 

( 2  - 1)2  

Since this is an output of a continuous-time plant 1/s2, how- 
ever, neither 1 / ( ~ - 1 ) ~  nor O/(z-l) can appear independently 
as the output of this plant. Therefore, we cannot separate 
the treatment of simple and double poles in such a case. 
This situation is quite different from the standard situation 
in the internal model principle for the usual finite-dimensional 
systems and requires a more elaborate treatment. 

Obtaining a tracking condition for the general case in the 
sampled-data systems has attracted recent research interest: 
Using a mixed continuous-timddiscrete-time model, Hara 
and Sung [19] derived a state-space necessary and sufficient 
condition for tracking. A geometric approach was taken by 
Kawano et al. [ 151 to get a necessary and sufficient condition. 
Somewhat earlier than these, Franklin and Emami-Naeini [7] 
gave an internal model principle in a more classical setting, 
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and Urikura and Nagata [22] gave a geometric condition for 
the case of deadbeat tracking. While they are more of state- 
space nature, we here look for a condition in the frequency 
domain. 

To see why the standard machinery does not work, let us 
write the loop transfer function of Fig. 2 as P ( z ,  O)/q(z). 
Here the denominator q(z)  is independent of 0 by (29). This 
means that if we consider intersample tracking, its continuous- 
time behavior is reflected only upon the numerator P ( z ,  e )  
and not the denominator q(z). On the other hand, the usual 
treatment of the internal model principle for finite-dimensional 
systems expresses it in terms of divisibility between the two 
denominators of the loop transfer function and the exogenous 
signal generator. This is clearly not suitable for the present 
case where the intersample information is represented by the 
numerator. 

To remedy this situation, it is desirable to recover the 
continuous-time transfer function to prove the internal model 
principle. To this end, let us first introduce the notion of finite 
Laplace transforms. 

Dejhition 6.1: Let cp be any function or distribution on the 
interval [0, h]. Thefinite Laplace transform, denoted & [ ( P I  is 
defined by 

h 
~ h [ c p l ( s ) :  = 1 e-*ecp(e) do. (43) 

The integral must be understood in the sense of distributions 
if cp is a distribution. 

Note that, in view of the well-known Paley-Wiener theorem 
[21], Lh[cp](s) is always an entire function of exponential type. 

The 2-transform of a function 4 on [0, m) and its Laplace 
transform can be related by the following lemma. 

Lemma 6.2: Suppose that 4 satisfies the estimate 

Il#'ll[kh, ( k + l ) h ]  5 CePk (44) 

for some C, p > 0, where I(f$l([kh, ( k + l ) h ]  is the L2-norm on 
[kh, (k + l)h]. Then the Laplace transform L[4] exists for 
Res > p, and 

L C ~ [ ~ [ ~ I I Z I I I ~ = ~ ~ S  = eh*L[41(s). (45) 

A remark on (45) is in order. Acgording to the definition of 
(5), Z[C$][Z] = Cf,fJkZ-le, where S(4) = { + k ) g 1 .  Here the 
multiplication operator by z acts as the one-step left shift: 
{ 4 k )  H { + k + l } .  In the time domain, this clearly corresponds 
to d ( t )  H q5(t+h), so that its Laplace transform is ehs.  Identity 
(45) claims that taking the finite Laplace transform of each 
piece (bk and expanding the sum via the substitution z H eh' 
actually yield the Laplace transform. The multiplication by eh' 
on the right-hand side becomes necessary to account for our 
definition of Z-transform starting with 

Pmofi That 4 is Laplace transformable and converges 
absolutely for R e s  > is obvious from (44). To show (45), 
observe 

rather than zo. 
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m 

k=l  

= e-hs . .&[2[4][Z]]1z=ehs. 

The interchange of integral and summation in the second 
line is justified by the absolute convergence of the Laplace 
transform. 0 

Let us now see the finite Laplace transforms of the transfer 
functions of digital and analog components in Fig. 2. Let 

be the discrete-time and continuous-time transfer matrices 
of Ed and E,, respectively. By Lemma 6.2, the transfer 
function of the continuous-time plant in the sense above 
is ehsP(s).  The finite Laplace transform L h [ ~ ] ( s )  of the 
hold function is an entire function of s by the Paley-Wiener 
theorem [21]. The digital part C(z)  becomes C(ehs)  by the 
finite Laplace transform. Therefore, the loop transfer function 
(in continuous-time) becomes the product of these three: 
G(s): = eh"C(eh")Lh[H](s)P(s). This falls into the category 
of pseudorational transfer functions studied in [23]. Roughly 
speaking, a transfer function W ( s )  is said to be pseudorational 
if W ( s )  admits a fractional representation W ( s )  = p ( s ) / q ( s )  
such that p ( s )  and q(s) are Laplace transforms of distributions 
with compact support in (-00, 01. (There is one more technical 
condition which does not concern us here [23].) In view of the 
facts eh* = L[b-h](s),  s = .C[S'],  we see immediately that our 
loop transfer matrix G is pseudorational. 

Since C(z )  and P(s )  are both rational, they admit coprime 
factorizations over polynomials (in z and s, respectively). 
Also, Ch[H](s)  is itself the Laplace transform of a distribution 
with compact support in [0, h],  and it admits a coprime 
factorization eh*Lh[H](s)/ehs (this looks odd, but eh* does 
not appear as a common factor after multiplication with 
&[H](s ) ) .  Furthermore, since P(s )  has only finitely many 
poles, the product of these three functions admits a coprime 
factorization G(s) = Q-l(s )P(s )  [23]. Now define 

C ( Z )  = C~(ZI - Ad)-'Bd and P ( s )  = CC(SI - AC)-'B, 

XQ: = {. E LfOC[O, CO) : Q * ZI(0, ..) = 0) 

where Q is the inverse Laplace transform of Q(s),  and * 
denotes convolution. Then the following fact is known. 

Fact 6.3 [23]: If W = Q-'(s)P(s) is a coprime factor- 
ization, then the closure of the set of all input-free outputs 
generated by W ( s )  is precisely XQ. Furtherm!re, for another 
such D(s ) ,  X D  c XQ holds if and only if Q = II * for 
some matrix II over the ring of distributions with compact 
support in (--00, 01. When this holds, we write D(s)lQ(s).  

Let us now consider the tracking problem. Suppose that the 
reference signal generator is represented by a left coprime fac- 
torization D-' (s )N(s)  over polynomials. By the fact above, 
the input-free outputs of this system are precisely X D  which 
is the same as those generated by D-l(s ) .  Therefore, we may 
as well take D-l(s )  as the reference signal generator. The 
following theorem gives the necessity of the internal model 
for the hybrid sampled-data system Fig. 2. 
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0-'(a) U - 
Fig. 4. Steady-state mode. 

Theorem 6.4: Consider the unity feedback system given 
in Fig. 2. Suppose that the exogenous signal is generated 
by D-l(s )  with poles only in the closed right-half plane. 
Suppose also that the closed-loop system is internally stable, 
and let G(s) = Q-l(s )P(s )  be a coprime factorization of the 
loop transfer function. If the closed-loop system asymptotically 
tracks any signal generated by D-l(s ) ,  then D(s )  divides 

Proof: Let ~ ( t )  be any signal generated by D-'(s),  and 
y ( t )  the corresponding output tracking ~ ( t ) .  Let us also write 
T k  and Y k  in accordance with the notation in Section 11. 
We first consider the system in the discrete-time mode. If 
the asymptotic tracking occurs, then it follows that the error 
e ( t )  must also converge to zero at the sampling instants, i.e., 
e ( k h )  = ek(h) --f 0, k + 00. By the linearity of the system 
we can decompose the response as 

& ( S I *  

where yi(8) is the initial-state response (corresponding to the 
state at time kh), and YE(@) is the response corresponding to 
the input e (kh) .  Since the input e k ( h )  + 0, yE(e) approaches 
0 as k -+ 00. This means that 

y;(e) - T k ( e )  -, o as k -, 00. (46) 

(See Fig. 4 for the steady-state interpretation.) Since T is 
an output generated by D-'(s) and it is shift invariant and 
arbitrary, (46) and Fact 6.3 imply that there exists a sequence 
of states zk in XQ whose corresponding outputs approach 
~ ( t ) .  But since Q-lP is coprime, the closure of the set of 
outputs generated by this system is precisely XQ by Fact 6.3. 
Since XQ is closed, it follows that 

xD c XQ. 
Again by Fact 6.3, this implies D(s)lQ(s).  0 

The necessity theorem above is still unsatisfactory because 
the delay element C(eh") contains too many poles and zeros. 
For example, l/(ehs - 1) has 2nnj/h, n = 0, f l , . . .  as 
poles, but the corresponding digital compensator is just l /(z- 
l ) ,  and it need not have the capability of producing continuous- 
time signals that can be produced with l / ( e h s  - 1). Only in 
combination with the hold device can the digital part produce 
continuous-time signals. Therefore, we make the following 
assumption. 

Assumption C: The finite Laplace transform $(s) of the 
hold function H ( t )  is expressible as the ratio $ ( s )  = 
r(z)s2-1(z)Q(s)-11Z=,h, where r ( z )  and R(z) are poly- 
nomial matrices in z and Q(s) is a polynomial matrix in 

Since $(s) must be entire, all zeros in +(s) must be 
cancelled by r(eh").  This assumption is satisfied for most of 

S. 

the practical cases; for example, 

Remark 6.5: A similar hypothesis is made in [15]; see also 

Let us now state and prove the sufficiency of our internal 
Example 6.8. 

model principle. 
Theorem 6.6: Let C ( z )  and P(s )  be the transfer matrices 

of the digital and analog parts in Fig. 2, and C ( z )  = 

Pc(z)Qc(z) - l  and P(s )  = Qp(s) - lPP(s)  be their 
coprime factorizations over polynomials. Let $(s) = 
r(z)R2-l(z)~(s)- 'IZ, ,hs be the transfer function of the hold 
element satisfying Assumption C. Suppose that the exogenous 
signal is generated by D-l(s )  with polynomial matrix D(s) .  
Assume the following five conditions: 

1) The closed-loop system C,l is stable. 
2) Q c ( z )  = r(z)II(z) for some polynomial matrix II(z). 
3) Q(s) :  = Qp(s)Q(s)  = N ( s ) D ( s )  for some polynomial 

matrix N ( s ) ,  i.e., Q(s )  contains D(s )  as an internal 
model. 

4) The minimal realizations of D-l(s )  and Q-l ( s )  both 
satisfy the spectrum nondegeneracy Assumption A. 

5) For any pole p of D-'(s),  e P h  is not a pole of 

Then the closed-loop system asymptotically tracks any 
signal generated by D-' (s). 

Proof: By property 2, the numerator F(z) of $ is can- 
celled by the denominator Q c  ( z ) .  This means that by suitably 
setting an initial state in C ( z ) ,  one can get a continuous- 
time output generated by +(s)-l by combination of the 
digital element C ( z )  with the hold element. Therefore, we can 
regard the loop transfer function as the cascade connection of 

Since D(s)IQ(s),  if we look at only the sampled instants, 
the closed-loop system contains the discrete-time internal 
model. Therefore, by the internal stability, at least tracking at 
sampled instants occurs. Therefore, the error input to the loop 
transfer function tends to zero, and the sampled output y ( k h )  
approaches the sampled reference signal r (kh) .  In the same 
way as in the proof of Theorem 6.4, we see that there must 
exist a sequence z j  of initial states in the forward-loop system 
such that their corresponding responses approach the sampled 
reference signal r (kh) .  Therefore, there exists an initial state z 
in the forward-loop system such that its corresponding output 
agrees with ~ ( t )  at sampled instants kh, IC = 1, 2 , . . .  . Now 
by property 5, the digital part Pc(z)II-l(z)R-'(z> cannot 
contribute to this output. Therefore, this initial state must lie 
in the continuous-time part Q-'(s)Pp(s).  Thus we return to 
the steady-state diagram Fig. 4. In this steady-state mode, the 
output ~ ( t )  must be cancelled by y ( t )  at sampled instants. 
Since both the exogenous signal generator D-'(s) and the 
continuous-time part Q-l ( s )  satisfy Assumption A, however, 
and since D ( s )  divides Q(s) ,  if y(t) agrees with ~ ( t )  at 
sampled instants, it must agree with ~ ( t )  on the intersample 
intervals. (Otherwise, there would be ep' E XD that agrees 
with some output in XQ at sampled instants but not on the 

rI-1 (z)R-1 ( 2 ) .  

Pc ( 2)rI-l ( z)R-' ( Z )  and Q-l (s)Pp( s). 
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Fig. 5. Closed-loop system. 

intersample intervals. But this is clearly impossible under 
Assumption A, by the linear independence of exponentials.)O 

Remark 6.7: The spectrum nondegeneracy condition on 
both the exogenous signal generator and the augmented plant 
Q-'(s) cannot be removed in Theorem 6.6. For example, if 
we have s = 0, 27rj/h both as poles in the continuous-time 
part, then it may well happen that the closed-loop system may 
track to the sine wave even if the exogenous signal is a step, 
because the closed-loop system does not have the capability 
of knowing the intersample error. The same can be said of the 
exogenous signal generator. 

To summarize: Theorems 6.4 and 6.6 give variants of 
the continuous-time internal model principle for sampled- 
data systems. The z and s domains are linked by the finite 
Laplace transform and the substitution z = eh*. With this, the 
combination of some part of the digital compensator with the 
hold element can work as a continuous-time system and hence 
an internal model (cf. Fig. 5).  'Qpical examples now follow. 

Example 6.8: The conditions of the theorem are satisfied 
for the following system with D(s )  = s2 + w2:  

h 
2 - 1  

H ( t )  = sin (w t ) (p ,  y, 

C(z )  = - 

w = 27r/h 

1 
s + 1 '  

P(s )  = - 
- , -  

Here Q ( s )  = (s + 1)(s2 + w 2 )  and contains the internal 
model s2 + w2.  Hence the closed-loop system Fig. 5 can 
track a sinusoidal wave with w = 27r/h. The internal model is 
made up with combination of 1/(z - 1) and the hold element 
(I - e-hs) / ( s2  + w 2 ) .  

One of the consequences of the above theorem is that we 
can incorporate an internal model for sampled-data systems in 
such a way that we can split poles to analog and digital parts. 
A typical example is the case of tracking to ramp ~ ( t )  = t, 
where we can incorporate one pole A = 1 into the digital 
compensator and the other to the analog plant P(s ) :  

Example 6.9: 
Consider the unity feedback sampled-data system Fig. 5 

with 
h 

2 - 1  
C ( Z )  = - 

l - e d h s  2 - 1  +(s)  = ~ - - -. I1 
z s 

4s + 1 
s(s2 + 4s + 6)' 

P(8) = 

It is easy to see that they satisfy the conditions of Theorem 
6.6. The Laplace transform o f t  is 1/s2, and the loop transfer 

0 2 4 6 a 10 

Fig. 6. Tracking to ramp. 

function is 

h(4s + 1) 
ehss2(s2 + 4s + 6 )  

so that it surely has the internal model 1/s2. Here one pole s = 
0 is in the plant P(s)  and the other is made by the combination 
of the hold (1 - e-hs)/s and the digital compensator h / ( z  - 1) 
through the cancellation (1 - e - h s ) / ( z  - l)lehs=+ = l/z. 
Asymptotic tracking is achieved as seen in Fig. 6. 

VII. CONCLUDING REMARKS 

We have given a function space approach to sampled- 
data control systems. The introduction of a time-invariant, 
though infinite-dimensional, model made it possible to discuss 
tracking and ripples in terms of the familiar notions of poles 
and zeros and associated zero directions. A new element here 
is that this theory enables us to regard intersample ripples as 
the problem of transmission zero directions just as in the case 
of the finite-dimensional multivariable systems where zero 
directional vector also governs tracking properties. 

The general case allowing multiple poles is more interesting 
in that it exhibits a nonclassical internal model splitting 
into digital and analog parts. Although we have made some 
restrictive assumptions on the type of a hold device for the suf- 
ficiency part of the internal model principle, this assumption is 
satisfied for most practically encountered cases. Generalization 
to the case of more general hold devices is a topic for future 
investigation. 
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