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Lyapunov Stability Theory of Nonsmooth Systems 

Daniel Shevitz and Brad Paden 

Abstract-This paper develops nonsmooth Lyapunov stability theory 
and LaSalle's invariance principle for a class of nonsmooth Lipschitz 
continuous Lyapunov functions and absolutely continuous state trajec· 
tories. Computable tests based on Filipov's differential inclusion and 
Clarke's generalized gradient are derived. The primary use of these 
results is in analyzing the stability of equilibria of differential equations 
with discontinuous right-hand side such as in nonsmooth dynamic systems 
or variable structure control. 

I. INTRODUCTION 

There are many systems which have nonsmooth dynamics. Ex­
amples include systems with Coulomb friction, contact interactions, 
and variable structure systems where control inputs are allowed to 
be discontinuous. It is essential to rigorously analyze these systems 
and address such issues as the existence of equilibria, their stability, 
and quaiitative dynamics. As important as nonsmooth systems are in 
practice, techniques are still lacking for their analysis. All classical 
existence theorems for ordinary differential equations require vector 
fields which are at least Lipschitz continuous. The aforementioned 
examples, and many others, fail this requirement. With respect to 
these classical techniques, one cannot even define a solution, much 
less discuss existence of equilibria and stability. 

What is needed is a set of tools which allow the analysis of dif­
ferential equations with discontinuous right-hand sides. The seminal 
contribution in this area was made by Filipov [4] who developed 
a solution concept for differential equations whose right-hand sides 
were only required to be Lebesgue measurable in the state and time 
variables. Using this framework, theorems were proved for existence, 
uniqueness, and continuous dependence on initial conditions. One 
area missing from this program is the stability analysis of equilibria 
using nonsmooth Lyapunov functions. 

Yoshizawa [14] developed the Lyapunov theory for Lipschitz 
potential functions, but this work assumed a continuous vector field 
and smooth trajectories. In his book [6], Filipov studies the equilibria 
of differential equations with discontinuous right-hand sides, but deals 
with smooth Lyapunov functions. 

There has been work on Lyapunov stability theory in variable 
structure systems; see (12], (3] for a detailed list of references. In 
variable structure systems one tries to pick a sliding surface and show 
that nearby trajectories converge first to this surface, then once on 
the surface, to an equilibrium point. The control is chosen in such a 
way that the dynamics of the closed-loop system never pass through 
the surface and all analysis can be done from a single side of the 
switching surface, and then once the trajectory is on the switching 
surface and smooth dynamics are restored, ordinary Lyapunov theory 
is adequate. As a result of this piecewise approach, the nonsmoothness 
of the trajectory is unimportant and differentiable Lyapunov functions 
suffice in many cases. For our purposes, the "kinks" are an essential 
part of the dynamics, and this one-sided analysis is inadequate. 

The nonsmooth Lyapunov analysis of equilibria is present in the 
differential inclusions literature [1], [2], [7], of which Filipov's 
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differential inclusion is a special example. Theorems are developed 
which rely on the notions of set valued maps and derivatives. An al­
ternative formulation using Dini derivatives was developed by Roxin 
[11]. Although very general, both these techniques lack a calculus 
for computing derivatives of nonsmooth Lyapunov functions. We 
resolve this problem by exploiting the additional structure ofFilipov's 
solution to develop more useful tools in this context. Additionally, 
the motivation for studying general differential inclusions is different 
in that the fqcus is on integral funnels, in which one searches for 
monotone trajectories which tend to the equilibrium. 

The purpose of this work is to provide some tools of generalized 
Lyapunov analysis with which the stability properties of nonsmooth 
dynamic systems can be determined. These tools will turn out to 
be computable and easily applicable making nonsmooth Lyapunov 
analysis no more difficult than its smooth counterpart. Specifically, 
our contribution is weakening the restriction of differentiability to a 
broad class of nonsmooth Lipschitz continuous Lyapunov function!f; 
the trajectories are only required to be absolutely continuous: This 
is important because we will show there are nonsmooth dynamic 
systems whose equilibria cannot be proved stable using continuously 
differentiable Lyapunov theory. In addition, nonsmooth Lyapunov 
functions are natural for nonsmooth dynamic systems. 

11. MATHEMATICAL FRAMEWORK 

In this section we review the Filipov solution concept for differ­
ential equations with discontinuous right-hand sides, the nonsmooth 
analysis of Clarke's generalized gradient, and develop a connection 
via a new chain rule for differentiating regular functions along Filipov 
solution trajectories. 

Filipov Solutions 

We consider the vector differential equation 

:i: = J(x, t) (l) 

where f: Rn x R ____. Rn is measurable and essentially locally 
bounded. We must first define what it means to be a solution of 
this equation. 

Definition 2.1 ( Filipov ): A vector function x ( ·) is called a solution 
of (1) on [to, t 1 ] if x(·) is absolutely continuous on [to, tl] and for 
almost all t E (to , h] 

x E K[f](x, t) (2) 

where 

K[f](x, t) := n n co f(B(x, 6)- N, t ) (3) 
8> 011- N =O 

and n i-'N=O denotes the intersection over all sets N of Lebesgue 
measure zero. An equivalent definition [5], [10] is: there exists 
Nf C Rm, J1NJ = 0 such that for all N C R m, 11N = 0 

K[f](x) = co{!imf(x;) I x; ____. x, x ; rf. Nf UN}. (4) 

The content of Filipov' s solution is that the tangent vector to a 
solution, where it exists, must lie in the convex closure of the limiting 
values of the vector field in progressively smaller neighborhoods 
around the solution point. It is important in the above definition 
that we discard sets of measure zero. This technical detail allows 
solutions to be defined at points even where the vector field itself is 
not defined, such as at the interface of two regions in a piecewise 
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f[B(x,o)-N] 

Fig. I. The limiting procedure used to calculate K[f)(x, t) . 

defined vector field. Fig. 1 helps illustrate the limiting procedure used 
to define I<[!] ( x, t). This figure shows the vector images of a small 
neighborhood around the base point x. The interface is a neglected 
set of measure zero where the vector field is not defined. The set 
I<[f](x, t) reduces to the convex hull of two limit vectors as the 
neighborhood becomes vanishingly small. 

Example: A nontrivial example of a nonsmooth dynamic system 
is the following defined for almost all x E R2 

(0 -1) x = 1 0 Y'llxlh (5) 

where llxlh = lx1l + lx2l· The gradient in (5) is not defined on the 
x1 and x2 axes, sets of measure zero. Off the axes, the Filipov set 
I<[/] ( x) is a singleton 

{

{(-1, +1f} for x E quadrant 1 
K[/](x t) = {( -1, -1f} for x E quadrant 2 

' {(+1, -1)T} for x E quadrant 3 
{(+1, +1f} for x E quadrant 4. 

(6) 

On the x1 and x2 axes, K[f](x, t) is the convex hull of each 
of the vectors in (6) corresponding to the quadrants which the 
point x borders. For example, on the positive x1 axis K[fJ(x) = 
eo{ ( -1, 1 f, (1, 1)r }. Any Filipov solution to the differential equa­
tion (5) traces a square. observe that the trajectories in this example 
move along level sets of llxll1, a natural (nonsmooth) Lyapunov 
function for this system. 

In most applications the calculation of K[f](x, t) involves func­
tions f(x, t) expressed as sums, products, and compositions of other 
functions. Hence a calculus is needed for computing the Filipov set. 
This calculus was derived in our earlier work [10]. 

We do not require Lipschitz continuity of f(x, t) in x or t 
and therefore cannot in general expect uniqueness and continuous 
dependence on initial conditions, although we will assume both in 
what follows. Readers interested in more detailed discussions are 
referred to the original literature [4], [5] . 

Generalized Gradients 

As shown in the example above, nonsmooth Lyapunov functions 
arise naturally in the stability theory of differential equations with 
discontinuous right-hand sides. In the application of the machinery of 

nonsmooth analysis, Clarke's generalized gradient [2] is particularly 
useful in simplifying proofs. 

Definition 2.2 (Clarke's Generalized Gradient): For a locally Lip­
schitz function V: Rn x R-+ R define the generalized gradient of 
V at (x, t) by 

8V(x, t) = co{lim V'V(x, t) I (x;, t;)-+ (x, t), (x;, t ;) fi Dv} 
(7) 

where Dv is the set of measure zero where the gradient of V is not 
defined. 

The gradient V' includes the derivative with respect to time ( 8 j 8t). 
In this definition, Lipschitz means Lipschitz in (x, t) (discontinuities 
in tare not allowed). For notational brevity, if a function V(x, t ) has 
no explicit t dependence, we shall adopt the convention of dropping 
the last component of av which is identically zero. 

One way to view the generalized gradient at a point x is a set 
valued map equal to the convex closure of the limiting gradients near 
x. For example, the function 

V(x) = lx l, x ER 

has a generalized gradient which equals 

av c x) = { -1} x E R­

= {+1} X ER+ 

= [-1, 1] X= 0. 

(8) 

(9) 

The next lemma states that the generalized directional derivative, 
which is defined presently, is the support function in the sense of 
convex analysis for the generalized gradient. Both the definition and 
result are due to Clarke [2]. 

Definition 2.3: The generalized directional derivative is defined 

f
o( ) 

1
. f(y + tv)- f(y ) x; V = 1msup . 

y~x , ttO t 
(10) 

Lemma 2.1: Let f be Lipschitz near x, then 

rcx; v) = max{(~, v) I~ E 8f(x)}. (11) 

Our chain rule will be for a useful class of functions, called regular 
functions [2]. 

Definition 2.4: f(x, t ): Rm X R-+ R is called regular if 

1) for all v, the usual one-sided directional derivative !' (x; v) 
exists, 

2) for all V, j'(x; v) = r(x; v). 

Examples of regular functions include smooth functions and functions 
which can be written as the pointwise maximum of a set of smooth 
functions, such as llxll1- When x(t) is a Filipov solution to x = 
f(x, t) and V(x, t) is a regular function, then (d/dt)V(x(t), t) can 
be expressed in terms of 8V and K[f](x, t). 

Theorem 2.2 (Chain Rule): Let x(·) be a Filipov solution to x = 
f(x , t ) on an interval containing t and V: Rn X R --> R be 
a Lipschitz and in addition, regular function. Then V(x(t), t) is 
absolutely continuous, (djdt)V(x(t), t) exists almost everywhere 
and 

d !-
dt V(x(t), t)Ea.e V(x, t) (12) 

where 

V(x, t): = n ~T (K[f](~(t), t)). 
eEBV(x(t) , t ) 

(13) 
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Proof That V(x(t), t) is absolutely continuous and 

(dfdt)V(x(t), t) exists almost everywhere is a consequence 

of the fact that the composition of a Lipschitz function, V ( ·), with 

an absolutely continuous function, ( x ( t), t), is absolutely continuous 

(see, for example, [9]). At a point where x(t) and V(x(t) , t) are 

both differentiable (this is true almost everywhere) 

d 
dt V(x(t), t) (14) 

= lim V(x(t +h), t +h)- V(x(t), t) 
hto h 

(15) 

= lim V(x(t) + xh, t +h)+ o(h)- V(x(t), t) 
htO h 

(16) 

(17) 

(18) 

(19) 

= V'((x, tl; (x, 1f) 

= V
0 ((x, tl; (x, 1f) by regularity 

= max{(~i(x, 1)T)i~ E aV(x, t)}. 

a similar argument shows 

lim _V_,_( x__,_(_t +_h:..:..) ,_t _+::-h_,_) _-_V-'('-x~( t:..:..) ,-'-t) 
h!O h 

= min { (~i(x, 1)T)i~ E aV(x, t). 

Therefore 

:t V(x(t), t) =(~I (x, 1)T) V~ E aV(x, t). 

Now, x is a Filipov solution so that 

x(t) E K[f](x(t)), a.e. 

(20) 

(21) 

(22) 

(23) 

Thus almost everywhere, V = e (i) for all~ E aV(x, t) and 

some Tf E K[f](x, t). Equivalently 

V e·e.Y = n ~T (K[f](~(t), t)). 
{ E8V(x(t), t) 

D (24) 

Example: Let V(x) = llxll1 and f(x) as in the example, (5), 

above. Let x(t) be the solution passing through (1, O)T at time 

t = 0. We have 

aV(x(O), 0) = C-1,1 
+1]) (25) 

(where we have employed our convention of dropping the last term 

in aV(x, t) when V is independent of time) and 

K[f](x(O) , 0) = e-1
•
1 
+l]). (26) 

Let (1, 6), 6 E [-1, 1] be an arbitrary element of aV(x(O), 0) 

then 

[;
2

] K[j](x(O), 0) = 6 + [-1, +1] = [6 - 1, 6 + 1] (27) 

implies 

V(x(O) , 0) = n [6- 1, 6 + 1] = 0. (28) 

{ 2E[- 1, 1] 

'fhis does not guarantee that V = 0 (or even exists) at this point, but 

V ( x) ~ 0 by which we mean v < 0 for all v E V, does guarantee 

stability. The theorems of the next section formalize this. 

Ill. STABILITY THEOREMS 

In this section we state two existing Lyapunov theorems (uniform 

stability ~d uniform asymptotic stability) in terms of the set val­

ued map V. The proofs are omitted because they are identical to 

their smooth counterparts except for some relations holding "almost 

everywhere" instead of everywhere. See Khalil and Vidyasagar [8], 

[13] for the smooth versions. Proofs exist for the other versions of 

stability, such as nonuniform, global, etc., but for the sake of brevity 

we have omitted them. An application of this theorem is made, and 

the stability of the spring-mass-coulomb friction system is proved. 

Theorem 3.1: Let x = f(x , t) be essentially locally bounded and 

0 E K[f](O, t) in a region Q :J {x E Rn l ll x ll < r} X {tito ~ t < 
oo}. Also, let V: Rn x R --+ R be a regular function satisfying 

V(O,t)=O (29) 

and 

(30) 

in Q for some V1 , V2 E class K. (See [8] for a definition of class 

K functions.) Then 

1) V(x, t) ~ 0 in Q implies x(t) = 0 is a uniformly stable 

solution. 
2) If in addition, there exists a class lC functions w ( ·) in Q with 

the property 

V(x, t) ~ - w(x) < 0 (31) 

then the solution x( t) = 0 is uniformly asymptotically stable. 

Example ({6], [10]): Let R(x, t) be a matrix which is continuous 

and uniformly positive definite when symmetrized and 

x = -R(x(t), t) \7llxlll· (32) 

Then x(t) = 0 is asymptotically stable. 

Proof: Choose V(x) = llxlh- Then 

V(x , t) = n e K[-R(x , t) \7llxlhJ(x, t ) (33) 

{E&IIxlll 

(since V is time independent) and by the calculus for J( [10], we have 

V(x, t) = n -~T R(x, t )aii xlll · (34) 

{ Eollxll1 

Since R is uniformly positive definite when symmetrized, there exists 

p > 0 such that 

aJJxlll is convex so 

satisfies 

~o(x, t) = argmin e (R(x, t) + RT (x, t) )~ 
eE&IIxlh 2 

e ( R(x, t) ~ RT (x, t) )~a (x, t ) 

;:::: ~o(x, t)T ( R(x, t) ~ RT(x, t) ) eo(x , t) 

;:::: Pli~o (x , t)ll2 

(35) 

(36) 

(37) 

for all ~ E a 11 X Il l. Equation (37) is a consequence of the fact 

that for a convex domain D and a smooth function f at the point 

xo = arg min f ( x ), the point x0 satisfies 

\7f(xo)·(y-xo);::::O forallyED. (38) 
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This shows 

(39) X: 

At .r = 0, 8llxll1 = [-1, +1t. Since llxll1 is convex, 8llxll1l:r:;to n 
(-1, +1)" = 0 (this follows from [2, Proposition 2.2.9]). Thus 

argmin 11~11 2 2:: 1 
~Eollxlltlxo;o!o 

(40) 

so V ~ -p almost everywhere. This implies x(t) ---+ 0 asymptot­
ically (converges in finite time in fact by the finite time stability 
theorem in [10]). 

The proof just demonstrated shows, with minor modifications, the 
example in the last section where 

R(x, t) = (~ ~1 ) (41) 

has zero as a stable equilibrium point. We now argue that this 
equilibrium cannot be shown stable by any smooth time independent 
Lyapunov function. 

The trajectories of this dynamic system are squares. Any nonin­
creasing function along a closed curve must be a constant, therefore 
the level sets of any proposed Lyapunov function must be squares. 
The level sets of any smooth function with nonzero gradients are 
smooth precluding the possibility of any smooth Lyapunov function 
for this example. A similar argument also shows the impossibility of 
finding a continuously differential time dependent Lyapunov function. 

We now prove a nonsmooth version of LaSalle's theorem. 
Theorem 3.2 (LaSalle): Let n be a compact set such that every 

Filipov solution to the autonomous system x = f(x), x(O) = x(to) 
starting in 0 is unique and remains in 0 for all t 2:: to. Let V: 0 ---+ R 
be a .time jndependent regular function such that v ~ 0 for all 

v E V (if V is the .empty set then this is trivially satisfied). Define 

s = {x E n I 0 E V}. Then every trajectory inn converges to the 
largest invariant set, M, in the closure of S. 

Proof· Let x(t) be a Filipov. solution starting in 0. Since 

V(x(t)) is absolutely continuous, V is bounded below zero, and 
V is bounded above zero, V(x) tends to a constant, a, as t ---+ oo. 
Uniqueness of trajectories implies continuous dependence on initial 
conditions so the positive limit set, L +, of x ( t) is an invariant 
set. Moreover, L+ C 0 because 0 is closed. By continuity of V, 
V (p) = a for all p E L +. Since L + _is invariant we have V = 0 

on L + , hence by Theorem 2.2, 0 E V ( x), a. e. in t. It follows by 
the lemma below that L + C S. Since L + is contained in the largest 
invariant set in S the theorem is proved. 0 

Lemma 3.3: Under the conditions of the theorem above 

(42) 

Proof· Let xo E £+ and s(t, xo, to) be the solution 
to x = f(x), xo x(to). Since s(t, xo, t9) lies in L+, 

(d/dt)V(s(t, xo, to)) = 0. Since V(x(t)) E V(x) a.e., in t, 
we have s(t, x0 , t0 ) E S a.e. Thus s(t, x 0 , t 0 ) E S for some 
t E [to, t0 +b) and all b > 0. Since s(t, x0 , t 0 ) is continuous 
(absolutely) we have that there are points in S arbitrarily close to x 0 

implying x 0 E S. Hence L + C S. 0 
The following theorem is a special case of a viability result in the 

study of differential inclusions (see [1, p. 180] for a general statement 
and complete proof). 

Theorem 3.4: If M is an invariant set in a smooth k-dimensional 
manifold S, then 

TmS n K[/](m) I 0 (43) 

for all m E M. 

2 3 

X 

Fig. 2. The phase portraitofmx+bsgn (:i:)+kx = 0 with m= b = k = 1. 

Example: Consider a harmonic oscillator with Coulomb friction 

mx + bsgn (x ) + kx = 0 

or equivalently 

:t [~] = [-~ sgn~x)- ~x] = f (x, x). 

Choose the (smooth, time independent) Lyapunov function 

V( . ) 1 . 2 1 k 2 
_ x, x = 2mx + 2 x . 

Then 

~ n T ·[ x ] V= eR. b • k • -- sgn(x)- -x 
I;EBV(x, x) m m 

Since V is smooth 

where 

V= V'V K b • k ~ T [ x ] 
-;:n sgn (x)- ;;;-x 

C [!: r [ - ~K[sgnx(x)]- ~x] 
= -bxSGN(x) 

= -blxl 

{

--'1 x< O 
SGN (X) = [ - 1' 1] X = 0 

1 X> 0. 

This implies ( x, x) approaches the largest invariant set in 

s = cl({(x, x) I 0 E V(x, x )}). 

By Theorem 3.4 

TmS n K[f)(m) I 0 

for all m E M. We can compute 

TmS =Span[~] 
and 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

The intersection of (52) and (53) is [0, of provided kx E [ -b, b) im­
plying the largest invariant set is contained in ([-(b/k), (b/k) ], 0). 
See Fig. 2 for a phase portrait. 
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IV. CONCLUSION 

In this paper we have extended basic Lyapunov stability theorems 
to the nonsmooth case using the Filipov solution concept and Clarke's 
generalized gradient. The result is a theory applicable to systems 
with switches for which natural Lyapunov functions are often only 
piecewise smooth. This machinery should find application in variable 
structure control theory, the analysis and control of mechanical 
systems, and the analysis of pulse width modulated control systems. 
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