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Technical Notes and Correspondence 

The Use of a Bilinear I’ransformation of the 
Shift Operator in Subspace Model Identification 

Michel Verhaegen, David Westwick, and Robert Kearney 

Abstract-We propose a mechanism which can improve the numerical 
robustness of a subspace based system identification method, the PI 
scheme [14, Part m], when the unknown system has poles situated 
close to z = 1, a condition that often arises in applications where 
the sampling rate is too high. The PI method i s  capable of solving a 
deterministic MIMO identiecation problem in which the output can be 
corrupted by a very general perturbation including arbitrarily colored 
noise, transients due to nonzero initial conditions, and a deterministic 
zero bias. By performing a bilinear transformation on the shit operator 
we are able to move the poles away from the point I = 1 and a more 
robust identification results. The implementation of this transformation 
gives rise to a series of anticausal filters applied to the input/output data. 
Estimation accuracy is further improved by taking the unknown end 
conditions of the anticausal filters into account, particularly when only 
short data records are available. A numerical simulation highlights the 
improvements realized by our new algorithms. 

I. INTRODUCTION 
In linear system identification, the generality of an identification 

problem depends on the restrictions on the structure of the model to 
be identified and on the type of perturbations permitted on the input 
and output data. In this paper, we focus on the following general 
identification problem: 

Given a linear finite dimensional multiple-input, multiple-output 
(MIMO) state-space model that determines the linear stable op- 
erator G by 

and the measured output y k  is related to the output of G by the 
expression 

Y C  = Qk + vk (2) 

the task is to estimate this linear operator using the sequences 
of input and output data: [U]. UZ. ... . u.v.] and 
[yl . yz. . . . . y.v] under the following constraints a) the input 
( I  1. is zero-mean, sufficiently rich’ (persistently exciting), and 
exactly known,* b) a nonzero initial condition may be present, 
c) the additive perturbations v k  in (2) can be the sum of: c l )  
zero-mean stochastic process of arbitrary color and (statistically) 
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of the PI scheme analyzed in this paper, we refer to [14, Part III]. 
’Because of the linearity of the operator G in (l) ,  this assumption does not 

exclude the presence of zero-mean error of arbitrary color introduced by the 
transducers [15]. 

independent from the input U C,  and c2) a deterministic (constant, 
periodic, etc.) zero bias such that vc is statistically independent 
from U k  or such that lini,y-K c,”=, uk+,vf+, = 0 for vk,! in 
case both quantities are deterministic. 

In many applications it is the linear operator, G in (l), that is 
the chief quantity of interest. If the disturbance, vk in (2), is noise 
produced by the data acquisition apparatus, or perhaps by a nearby 
but unrelated system, then its modeling is of secondary, if any, 
importance. In some applications the goal is to obtain insight into the 
system, rather than to predict its output. Examples of this include the 
identification of the dynamics of a distillation column in the process 
industry [I31 as well as those of the human ankle joint [6]. There are 
several other applications within the field of biomedical engineering 

Despite the fact that the key quantity of interest in the above 
identification problem is a linear operator, it is well known (see, 
e.g., [8], [12], or [17]) that even simplified versions of the above 
output-error identification problem easily leads to difficult iterative 
optimization problems. Certainly when little (a  priori) knowledge is 
available about the linear operator, a noniterative approach is by far 
more preferred. 

One classical noniterative solution that solves the above identifi- 
cation problem consistently is to apply the Ho-Kalman realization 
scheme [4] and make use of estimated Markov parameters. Such an 
approach was evaluated using real data in [ 5 ] .  Apart from the fact that 
this approach requires the underlying linear operator to be represented 
accurately by a finite impulse response (FIR), preferably of low order, 
this approach suffers from a number of pitfalls: 

-The unknown initial conditions can only be taken into account 
asymptotically because the transient response in the data has to 
be discarded prior to estimating the FIR. For short data length 
batches this might lead to a drastic loss of information, especially 
when the underlying (discrete-time) system has its poles close 
to the unit circle. 

-Depending on the length of the FIR and the nature of the 
input signal, the estimation of the FIR can easily give rise to 
ill-conditioned least squares problems. 

In [14, Part 111 it is was shown that a better (numerically more 
reliable) altemative to the above classical approach is via subspace 
model identification (SMI). This is confirmed in the papers describing 
other, but related SMI algorithms, such as e.g., [7] and [l l] .  One 
variant of these SMI algorithms, namely the PI scheme, allows 
the deterministic identification problem be addressed consistently, 
overcoming the difficulties with the classical scheme mentioned 
previously. 

Despite the improved performances of the PI scheme over the 
classical approach, it was shown experimentally in [16] that the sensi- 
tivity of the calculations increases when the poles of the deterministic 
system approach very close to the unit circle, which can happen, 
for example, if the sampling rate is too high. In such situations the 
sensitivity of algorithms solving various system analysis and control 
design problems can be improved by the use of the so-called 5 -  
operator [9] or Laguerre polynomials [l]. Application of the latter 
polynomials in estimating the FIR of a linear operator is demonstrated 
in [18]. In this paper, we study the use of a bilinear transformation 
of the shift operator, which corresponds to the elementary Laguerre 
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polynomials used in [18], in improving the numerical sensitivity of 
the PI scheme. 

In the next section, we present the operator theoretic framework 
used throughout the paper. We then consider the representation of a 
linear state-space model under a bilinear transformation of the shift 
operator. Section 111 establishes its use in the PI scheme, paying 
special attention to the realistic case in which only short data records 
are available. The presence of the perturbations uk is considered 
in Section 111-C, where we study the consistency properties of the 
algorithms. In Section IV, a realistic simulation study is used to 
illustrate the improvements that can be obtained with the newly 
developed algorithms. 

11. MODEL AND DATA REPRESENTATION 

We will represent the LTI (linear time-invariant) finite dimensional 
system in an operator theoretic framework. Here, we denote a time- 
sequence .I' as a doubly infinite row vector sequence with entries in 
R" 

.I' = [.. .  .r- 1 

.rz = [. , , so 

...I. 

...I. 
The element in the square box is the element at time zero. Applying 
the shift operator Z 

Clearly, the shift operator Z represents an anticausal system. In 
general, an operator representing an anticausal linear system has a 
lower triangular matrix representation. To denote finite segments of 
these double infinite time-sequences, we introduce the notation [.I, k 

for k > j .  In this way 

and [.1.Ik equals X A .  This notation can also be used to take a finite 
time-window out of a matrix. 

Let I I  and y denote ( 2  sequences, with elements in R'" and R', 
respectively; then we are able to denote the classical discrete-time 
state-space model as 

. rZ  = -4s + BlI 
y = C'.r + Dit. (3) 

If .-I is asymptotically stable then .I' will also be an 12-sequence. Next, 
consider a bilinear transformation in the complex plane 

z - t l  11' + n 
( I '  = ~ e z =  - 1 < (1 < 1 w . 2  E a, 

1 - 1 1 :  1 + f l u  

(4) 

which maps the unit circle unto itself. In operator format, we have 
~ 7 1  

I \ - =  (Z- ( IZ)(Z-( IZ)- '  and Z =  ( l i - + a Z j ( I + a I i - ) - ' .  

Theorem I: Let the discrete-time and asymptotically stable state- 
space model induced by the shift operator Z be given as in (3). let the 
bilinear transformation 11' be given as in (4). and let the state-space 
model induced by this operator 11- be denoted as 

.rIl.- = F.r + G u ( I  + ( I T [ - )  

, y ( I  + a l l - )  = H.r + . J t r ( Z  + c i T I - ) .  ( 5 )  

Then: 
1 ) The <!<rem matrix F is asymptotically <table. and 

2 )  The quadruple of system matrices [: E ]  and [L 31 are 
related as follows 

Prm$ The proof is elementary and given in [17]. 0 
The observability and controllability of the state-space model (5) is 

defined in a similar way as with ordinary state-space models induced 
by the shift operator Z. Based on these definitions, it is easy to 
show that the minimality of the state-space quadruple [F. G. H .  J ]  is 
equivalent to that of the original system [--I. B. C. D ]  [17]. 

111. THE MODFICATION OF THE PI SCHEME 
UNDER THE BILINEAR TRANSFORMATION 

In this section we derive the PI realization method, under bilinear 
transformation (4). This new algorithm will be termed the PI- 
BTZ scheme, as it is a variant of the PI scheme under a bilinear 
transformation of the shift operator z. For a description of the PI 
scheme we refer to [14, Part 1111. 

The first step in the derivation of a subspace model identifica- 
tion type of algorithm is the organization of the input-output data 
into structured (Hankel) matrices. For state-space model (3), this 
organization leads to the following data equation, given in operator 
form 

(7) 

Similarly, the state-space model induced by the bilinear transforma- 
tion (5) gives rise to 

s-t 

Applying finite length time-windows to (7) and (8) results in re- 
lationships between finite sized matrices, such as (7) in [14, part 
11. 
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A. The PI-BIZ Realization Scheme 

Let us define the matrices [ [ - " . I p  and [[-,,.If as 

f / ( I  + o i l - )  

and let [I;r], be defined as [I-,,.], but from the sequence y. We can 
then write data equation (8), multiplied on the right by IT7,', as 

[i;t.l, = r,, .[.r~~-s] - + H ~ [ [ - ~ ] ~ .  (9) 
The rows of [[-,,.If can be obtained by filtering the input sequence 
with an anticausal filter. Thus, the sequence [ U (  I + oI17)], ,,\- is 
generated by the filter 

<: = o < l + l  + u ~ . ( l  - 0 2 )  with end condition < . \ + I .  (lo) If we denote the underbraced term as 
Similarly, [ y ( I  + all-)]l,2v is generated by the filter 

r.11 Ei.21 Ei.22 ] [E%] <: = + yk ( 1 - a 2  ) with end condition < . \ - + I .  (1 1 )  

are Et.11 E< 12  The sequences [ u ( I +  ~ l l - ) l l - ~ ]  l,., and [y(I+ olf7)11-J] 
generated by the following series of filter operations then (9) can be rewritten as - <; = o<;+, + <;.;; - a<;-' [I u.1 =r $,. [ . r ~  1-"] , -\ 

with end condition (12) 

<; = o<;+, +<;+: - .<;-I + [H,,. 1 [H,,.Ec.li - J ~ ' E . I I  1 H , , . E ~ . ~ s  - E < . I ~ ] ]  
with end condition &+Ifor i = 1 : j .  (13) 

These time sequences cannot be computed explicitly since the end 
conditions of the anticausal filters are unknown. As stated in [18], 
the effect of these end conditions will vanish with increasing record 
length. As illustrated in [17], however, when dealing with short 
data records the end conditions need to be taken into account, 
otherwise extreme biases can result. To cope with the end condition 
in the PI-BTZ scheme, we split the anticausal filter outputs into two 
components: a "forced response," due to the input, and a "transient 
response," due to the end conditions. We shall use a hat to denote 
terms in the forced response. Then, the output of the filter (IO) can 
be written as 

[CY " '  C L  <",I <?. I  = [CP . ' .  ti--, <",-I CY 
+ [o" ' ' ' 2 2 n ] 

and the output of the anticausal filter (11) is 

[<? . ' '  E ? - 2  E L I  <? 1=ri: ... K2 i?-I & 1 
+ < : + l [ n l  " '  f l 3  n 2  .I. 

(14) 

To define the output of filters (12) and (13), we define the sequence 
[ U  \ . . . n ' n 2  U ]  as 1,: and define I+ 6 as the output of the filter 

t - 1  c i, = U c', for t 2 1 

with zero end conditions at time instant S+ 1. Then we can write the 
output of anticausal filters (1 2) and ( 1  3) when nonzero end conditions 
<;+, and are present, as 

,=O 

and 

Based on this data equation and the RQ factorization considered 
in the PI scheme [14, Part I], we will consider the following RQ 
factorization 

h 

By the last two expressions, we have that 

If s > 7 1 ,  the pair [ F  H ]  is observable, and 
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then we can retrieve the column space r,, via an SVD of the matrix 
R 3. Furthermore. when 

where 1-1 E R2'"''s and I 
(24) can be written as 

E R2' " ' .  Then, the term R,' Rzl in 

R22 is invertible (22) R;iRL1 = (C-S"[I~])-' ( I - S " [ l ~ l ] )  

knowledge of the column space of r,, allows us to reduce (19) to or altematively 
(rt RILRL; 

= ( T ~ ) ' [ H , E , ~ 1  - & I I  I H , E ~ L L - E E I L ]  
I -S"[I ;] (R;;RL~)  = C-S"[I~i]. 

and therefore when Therefore, when S" is nonsingular the matrix (Ryt R21 ) equals 

R11 is invertible (23) (RLiR21) = [ I ; ] - l [ I ; ] .  

(18) is reduced to 

( r ' i I7  - R$3RTiR21]RT11 = (r';)'Hw. (24) 

The basis of the PI-BTZ scheme, summarized in this section, are (20) 
and (24), which were derived from the triple set of (18)+20). The 
calculation of the column space of r,. from (20) and the formulation 
of (24) is feasible, when conditions (21)-(23) are satisfied. The crucial 
condition (21) is analyzed in Theorem 2. 

Let the state-space model ( 5 )  be controllable, let 
s > t i .  let F" G 0, and let the matrix R3:i be invertible, then 
condition (21) is satisfied. 

Proof: With the state-space model ( 5 )  and the expression for 
[CTtr][> given in (15) we can write [.rTI-"],,,- as 

Theorem 2: 

Furthermore, when S" contains small singular values, we are able to 
approximate the quantity ( R;; Rzl ). To explain this, let the SVD of 
the matrix [ R ~ I  Rz2] now be denoted as 

and 

[,rll-a]l -\- = F"[.r],, . ,  + [F"-'G . ' '  FG GI ( R ; ; R ~ ~ )  =: ~:~i-~~ (25)  

where [ . I $  denotes the right pseudoinverse of the matrix [.I, 
V I Z  v:~ = I .  Hence, instead of checking the condition number of 
the matrix Rz2 in monitoring the operation of the PI-BTZ scheme, 
we have to check whether 

[[El,, + [Ei.ll 0 1 [ ; ; ] ] .  

With F" 
following equality 

0 and the RQ factorizations (16) and (17), we obtain the 

R , I Q I  + Rr2Q2 + Rr,iQ3 + RX.+Qr 
= [F'-'G . . .  FG G ]  the matrix I -1 2 has full row rank (26) 

( R S I Q I  + Ri2Qa + R:j:jQ:3) and this can be done by evaluating its condition number again. We 
+ [ F " - ' G  . . .  FG G][E<. l l  01 refer to the simulation study section to evaluate the usefulness of this 

x (R2iQi + RzzQz). altemative strategy for constructing (24). 

B. P I - B E  Algorithm Multiplying on the right with Q: and using the orthogonality of the 
different 4,  matrices yields 

Given: The following quatities are specified as input quantities 
R,r = [F'-IC; . . .  FG G]R33. to the algorithm: a) an estimate of the underlying system order t t ,  

Therefore, the conditions of the theorem guarantee that (21) is 
satisfied. 0 

0, which is 
generally not satisfied. The goal of the bilinear transformation, 
however, is to map the poles of the original system close to the origin. 
In which case we may assume that F" = O ( : ) ,  i.e., [\Fall 5 :, and 
the theorem would still hold, since 

RL1 = [F"- 'G . . .  FG G]R3:3 + < I ( : ) .  

The experimental simulation study in Section V supports the above 
assertion. 

Theorem 2 shows that the successful operation of the PI-BTZ 
scheme can be checked by evaluating the condition numbers of 
matrices like R I  1 ,  etc, defined in (16), which can be retrieved from 
the data matrices. By selecting the nature of the input signals, we 
can influence the condition numbers of the matrices R I  I and R M .  
The condition number of R22 is harder to control since this matrix 
mainly depends on the deterministic sequence r:,, defined in (14). 
This is not so critical, as we shall see, because we need not compute 
its inverse explicitly. Consider the following SVD 

One condition stipulated in Theorem 2 is F' 

:I?:! R-.! = r-.s"[I; I l l  

b) a dimension parameter s,  satisfying s > t i ,  c )  the parameter o 
determining the bilinear transformation U in (4), with a E R and 
o < 1, and d) the input and output data sequences, [ U ] ,  \. and [ U ] ,  , 
with Y >> tt1.s 

Step 1 Construct the data matnces [ C T W ] ! , .  [ I ; , ]  f .  and 
A h -  

as in (15). 

Step 2: kalchate the RQ factorization as indicated in (16). 
Step 3: Compute the SVD of the matrix RM as R.19 = [C-,t I 

1 3 [  d' 0]  1.' with 1-,, E R ' y X "  and singular values 

ordered in descending order. Then calculate the pair 
[F,. H7.1 as follows 

H.I = C T r t ( 1  : t . : )  

l- ,<(l:  ( ( S - ~ ) . : ) F . I . = I - ~ ~ ( C + I : ~ . S . : )  

where the matrix partitioning used is conformal with the 
notation used in MATLAB [IO]. 

Step 4: Construct the (24), with (R,' Rzl ) computed either using 
the pseudoinverse of the matrix R22, which we shall call 
the C-l variant. or using (25), the C-2 variant. 
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The matrix pair [GI J ]  appears linearly in this equation when the 
matrices F7 and H i  are known. An explicit reformulation of this 
equation such that [GI J ]  appears linearly can exactly be obtained 
in the same way as the overdetermined set of equations (45) of [14, 
Part I] was obtained in the PI scheme. For the sake of brevity we 
refrain stating this set of equations explicitly for the present scheme. 

The conditions for solving the equations in Steps 3 and 4 of the PI- 
BTZ scheme are exactly the same as their counterpart in the original 
PI scheme. These are discussed in [14, Parts I and 1111. 

C. The PI-BlZ IdentGcation Scheme 

In the identification problem defined in the introduction, we 
assumed the output quantity y to be perturbed by the additive error 
quantity v ;  see Fig. 1. As a consequence, the underlying system to 
be identified is modeled as 

.rZ = -4s + Bu 
y = Cs + Du + v 

and In terms of the shift operator TI- as 

.rll- = F z  + G u ( I +  al.$-) 

y(I+ a l l 7 )  = H x  + J u ( l +  aT17) + v(l+ rill-). (28) 

Therefore, we see that our basic data (9) changes into 

[ l -u]J = r,[.rll;"], ,% + H x [ c - u ] l  ,\ + [ \ ; I f  (29) 

where the matrix [I:], is similarly defined as [ C 7 u ] ,  to be equal to 

v ( I +  all-)l.I.7" [ t 1 '  
v( I + alv)1172"-' \ 

The effect of these errors V k  on the consistency of the PI-BTZ 
scheme is studied in our final theorem. We will examine the stochastic 
processes within the ergodic-algebraic framework proposed in [ 14, 
Part I]. In this framework, the sequences U and 1 1  are treated as 
realizations of ergodic stochastic processes, U and v respectively, 
and limits are probablistic, and hold with probability one. 

Let the LTI system to be identified be given by (27) 
and let 

E [ U ~  vT] = o Vj.1 (30) 

and let the RQ factorizations (16) and (17) be given with the 
dependency on of the different submatrices of the RQ factorization 
denoted explicitly by an additional superscript S. let the matrices 
Rt, and R& be invertible for S 2 L Y ~ .  and let the assumption of 
ergodicity hold, then 

Theorem 3: 

1 1 
liiii - R z  = lim -T,Rp3. 

.\--= fl .v-= 0 
Proof: The proof of this theorem is again elementary and for 

the sake of brevity not included in this paper. The interested reader 
is referred to [ 171. 0 

The theorem shows that when condition (30) is satisfied, the 
quantities & R,", and & R4", , computed by the PI-BTZ scheme, are 
consistent estimates of the two quantities &r,, Ryl + & H,. R k  
and &ru. Rr3, respectively. These two quantities are equal to the 
left-hand side of ( I  8) and (20), respectively, and we remark that the 
derivation of the PI-BTZ scheme is completely based on knowledge 
of these two quantities. Because in the theorem the case S -+ x is 
considered. the effect of the unknown end conditions in (18) and (20) 

has vanished since ( I  was assumed to be smaller then one. Condition 
(30) is satisfied for the class of perturbations indicated by item c l )  
and c2) in the problem statement in the introduction. Finally, we 
remark at this point that the presence of unknown initial conditions 
is automatically taken into account in the use of data equation (8). 

As a consequence, the quantities, such as the column space of 
r, and the quadruple of system matrices [-41 . BI  . Cr.  D ] ,  which 
are derived from these two key equations, can also be obtained in a 
statistically consistent manner. 

IV. IDENTIFYING PHUGOID AIRCRAFT DYNAMICS 

In this section, we report the results of a realistic simulation study 
to highlight the usefulness of the algorithms and their consistency 
analysis presented in this paper. For a discussion of additional 
simulation studies, we refer the interested reader to [17]. 

The dynamics of the longitudinal long motion, or phugoid, of an 
F-8 aircraft [2], flying at an altitude of 20.000 ft, an airspeed of 620 
ft/sec and an angle of attack 0.078 rad, the discrete-time second- 
order system that describes the phugoid dynamics of this airplane 
when using a sampling period of 0.05 sec. is 

I 
] (31) 

1.0021P + 00 3.3948f. - 01 
-1.7169~ - 03 9 .9116~  - 01 "' 

-2..537.5~ + 00 ] h d  

[ 
+ [  -1 .7173~ + 00 

s h + l  = 

-3 .1312~ - 01 4 .9137~ - 01 M,= [ .5.9204~ - 04 .5.14.54~ - 02 'l" 

1 1 . 4 8 5 3 ~  - 02 + [  -2.1234~ - 03 "" 

where 11 is the horizontal component of the airspeed, 0 is the pitch 
angle, and 15, the deterministic elevator deflection angle. The poles 
of system (31) are equal to (0.9966 =t 0.00.53j) (with j now equal 

In the simulation, the input he  , k  was taken a zero-mean white noise 
to J--i). 
sequence with standard deviation 0.4 and the measured output was 

where 1 ' 1  and ('2 are additive zero-mean white noise sequences inde- 
pendent from 6, and with standard deviation 4 and 0.15, respectively. 

The objectives of this simulation were to evaluate the sensitivity 
of the eigenvalues of the -47 matrix under both the PI and PI-BTZ 
schemes, as well as the sensitivity of the estimated impulse response, 
using the C-1 and C-2 variants described in Section 111-B. In the 
computation of the pseudoinverse in the C-1 variant, we discarded 
all singular values of the matrix R.22 smaller than 10-' [3]. The same 
threshold was used for s in (24) of the C-2 variant. Note that these 
two variants only differ in the calculation of the BT and D matrices. 

We performed a Monte-Carlo simulation study where we generated 
a new perturbation sequences, 1'1 and (12 ,  as well as a new input 
sequence, 6,, for each run. The ( I  parameter was set equal to 0.97 
and the dimension parameter s = 10. In the PI scheme we also set s 
equal to 10. Fifty trials using 1200 point records were performed. 

The results of this experiment are: 
1) The eigenvalues of the matrix -47. and F L  estimated with the 

PI-BTZ scheme (see Fig. l(a)) and related singular values (see 
Fig. l(b)) which allows one to anticipate the accuracy of the 
calculated column space of r,. . 

2) The eigenvalues of the matrix -47  estimated with the PI scheme 
(see Fig. 2(a)) and related singular values (see Fig. 2(b)). Note 
that in the singular value plots of both Figs. 1 and 2, only 
the four dominant singular values (sv's) were included for the 
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Fig. 1 .  
The eigenvalues of F /  have been shifted by b = 1-0.2351 0.2354)'. . j .  

Estimated eigenvalues (a) of the F ( + )  and .-I-matrix (0) and relevant singular values (b), as computed by the PI-BTZ scheme for a = 0.97. 

sake of clarity. The rest are of the same order of magnitude 
compared as the third and fourth sv's in both cases. 

3) The impulse response of the quadruple of system matrices 
[.-If . Br . C1 . D] estimated by the two variants C-1 and C-2 
of the PI-BTZ scheme is plotted in our final figure. 

In this experiment, the PI-BTZ scheme was able to identify the 
phugoid dynamics, despite the complete failure of the PI scheme. 
Specifically, we note that the following: 

There is a clear gap between the second and third singular 
values plotted on the right-hand side of Fig. 1, suggesting that 
the underlying system might be of second order [ 14, Part 1111. 
The singular values computed using the PI scheme, shown in 
Fig, 2(b), show no such gap. As stated in [14, Part 1111, the 
actual decision on the system order should be made based on 
additional measures, such as the prediction errors. 
In support of Theorem 3, we note the eigenvalues of F z ,  
shown as '+'-signs in Fig. ](a), are unbiased estimates of the 
true eigenvalues, indicated by the center of the dashed cross. 
Furthermore. the eigen\alues of the -4. matrix cluster very 

closely around their true value, and all of the estimated systems 
remained stable. 

3) Although the PI-BTZ scheme is able to accurately recover the 
poles of the phugoid, the identification of the full dynamics 
can be sensitive. The left and right of Fig. 3 show the 
impulse responses estimated using the C-1 and C-2 variants, 
respectively. Clearly, the C-2 variant is the more robust of 
the two. For the C-1 variant, the condition number of the 
approximation used in computing the pseudo inverse of R 2 2  

is O(  lo4) ,  whereas that of the 1'12 matrix, used in the C-2 
variant, is O( 1). 

V. CONCLUDING REMARKS 

In this paper we have shown that the use of a bilinear transforma- 
tion of the shift operator 2 in the complex plane can lead to dramatic 
improvements in the accuracy of the PI subspace model identification 
algorithm, originally proposed in [14, Part 1111. This is especially 
true when the poles of the deterministic system to be identified 
cluster around the point : = 1. This situation can easily arise in 
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pseudoinverse of Rrr (variant C1) and using the pseudoinverse of 

Estimated impulse responses by the PI-BTZ scheme using the 
(variant 

C2). 

practice, particularly if the sampling rate too high. Furthermore, in 
this situation one can easily end up with short length data batches, 
where the length is compared to the (dominant) time constants. Also 
for this situation the outline strategy of this paper allows to improve 
the accuracy of the estimates. 

An important feature of the PI-BTZ algorithms, developed in this 
note, is the ability to check the reliability of the identification by 
evaluating certain condition numbers, which can be calculated from 
the experimental data. Thus unlike previous SMI schemes, [14, part 
I], [7] and [ l l ] ,  the user is able to monitor the performance of the 
algorithm explicitly. 
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Stability of Nonlinear 
Parameter-Varying Digital 2-D Systems 

Jerzy E. Kurek 

Abstract-A general state-space model for nonlinear parameter-varying 
digital two-dimensaional (2-D) systems is proposed. Sufficient conditions 
for system stability are given. Presented theorem can be considered as 
a generalization of the Lyapunov stability theorem for one-dimensional 
nonlinear systems. Given results can be useful in stability analysis for 
systems described by 2-D models. 

I. INTRODUCTION 
The Lyapunov stability theorem is one of the most powerful tools 

used in control theory. It enables one to test stability of linear time- 
invariant and time-varying systems as well as nonlinear systems. 
Approaches based on the Lyapunov equation are also often used in 
analysis and design of robust control systems. 

Two-dimensional (2-D) systems have found many applications, 
e.g., in analysis of time delay oneedimensional (I-D) systems [7]. 
One of the main problems in analysis and design of 2-D systems, 
however, is stability. Whereas they may be viewed as a generalization 
of 1-D systems, the extension of I-D stability tests to 2-D systems 
is, unfortunately, rather difficult. 

The first formulation of the Lyapunov-type equation for a linear 
2-D system was presented in [14]. Then, a number of papers were 
published where the stability problem for linear 2-D systems was 
considered based on a Lyapunov equation approach. There were two 
different approaches to the problem. The first one was based on 2-D 
Lyapunov equation with real matrices [I]-[4], [ I l l ,  [12]. The sec- 
ond one, [5], employed polynomial matrices in Lyapunov equation. 

Manuscript received January 28, 1994; revised August 19, 1994 and January 
9, 1995. This work was supported by the Region of Brussels, Belgium, and 
in part by the Intemational Research and Exchanges Board, USA. 

The author is with the Instytut Automatylu i Robotyki, Politechnika 
Warszawska, ul. Chodkiewicza 8, 02-525 Warszawa, Poland. During the 

Mathworks Inc., Version 4.1,-1992. 
[ 111 P. Van Overschee and B. De Moor, “An exact subspace algorithm 

for the identification of combined deterministic-stochastic systems,” 

research the author was also with the Universite Libre de Bruxelles, Service 
d’Automatique, AV. F.D. Roosevelt 50, C.P. 165, 1050 Brussels, Belgium. 

IEEE Log Number 941 1660. 

0018-9286/95501.00 C 1995 IEEE 


