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Frequency Response of Sampled-Data Systems 
Yutaka Yamamoto, Senior Member, IEEE, and Pramod P. Khargonekar, Fellow, IEEE 

Abstract- This paper introduces the concept of frequency 
response for sampled-data systems and explores some basic prop- 
erties as well as its computational procedures. It is shown that 1) 
by making use of the lifting technique, the notion of frequency 
response can be naturally introduced to sampled-data systems 
in spite of their the-varying characteristics, 2) it represents a 
frequency domain steady-state behavior, and 3) it is also closely 
related to the original transfer function representation via an 
integral formula. It is shown that the computation of the fre- 
quency response can be reduced to a finite-dimensional eigenvalue 
problem, and some examples are presented to illustrate the 
results. 

I. JNTRODUCTION 

HE importance of the notion of frequency response for T continuous-time, time-invariant systems needs no justi- 
fication. It is used in various aspects of system performance 
evaluation and still is at the center of many design methods. 
This fact is only reinforced by the now-s&ndard H" control 
theory, and attempts have been made to generalize this design 
methodology to various new directions. In the setting of 
sampled-data systems, there are now quite a few investigations 
along this line-for example, [lo], 171, [171, [181, [31, f271, 
[26], and [29], to name just a few. The difference here from 
the classical theory lies in the emphasis upon the importance 
of built-in intersample behavior in the model, so that it is part 
of the design specifications. As a result, in this approach the 
sampled-data systems are viewed as hybrid systems, and their 
performance is evaluated in the continuous time. 

An important problem in this context of sampled-data 
systems is that of frequency domain analysis. In classical 
treatments (see, e.g., [25]) the frequency domain analysis 
of sampled-data systems has been carried out. The classical 
approach is via inffinite sum formulas for sampled signals 
and their transforms. The mixture of continuous- and discrete- 
time systems introduces a time-varying periodic characteristic 
in sampled-data systems, and this has made the classical 
frequency domain treatment of sampled-data systems rather 
awkward. It should be noted that in the classical treatment the 
signals are always a.ccompanied with (either real or fictitious) 
samplers, while in the modern point of view the actual 
continuous-time response is analyzed. Frequency domain anal- 
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ysis in the setting of sampled-data systems has been revisited 
in recent years from the modern operator theoretic standpoint 
in [20] and [ 111, and robust stability condition in the frequency 
domain has been analyzed in [9]. The works of [32], [l], and 
[2] pursue the justification of the notion of frequency response 
as a steady-state response; the former uses so-called lifting, 
and the latter impulse modulation. 

Since the advent of the lifting technique [3], [4], [19], [29], 
[30], it has become possible to view sampled-data systems as 
time-invariant discrete-time systems with built-in intersample 
behavior. This time-invariance gives rise to the notion of the 
transfer function operator G ( z ) ,  and for stable systems it is 
also possible to substitute z = eJW into G(x) .  This formal 
definition of frequency response, however, lacks the strong 
physical justification which applies to the standard linear time- 
invariant systems. For example, if we apply a sinusoidal input 
sin w t  to an asymptotically stable sampled-data system, its 
response is not stationary, especially if w is not commensurate 
with the sampling frequency. It turns out that this difficulty 
can be overcome by the steady-state analysis given in [30]. It 
is particularly so for the gain characteristic, and we will show 
that the changes induced by one sample period transition are 
merely a phase shift, and the total gain remains invariant in 
the steady state (see Section 111-A). 

In this paper, we take the viewpoint initiated in [32] and 
present a detailed analysis of frequency response of sampled- 
data systems. The main contributions of this paper are as 
follows. We first show that the above-mentioned notion of 
frequency response inherits some very desirable and important 
properties of its time-invariant, continuous-time counterpart. In 
Section 111-B, we show that it is possible to recover the lifted 
transfer operator from the frequency response operator. This is 
a version of the well-known inverse Fourier transform formula 
in the setting of sampled-data systems. 

Next we address the computation of the gain of the fre- 
quency response operator. Although the problem looks similar 
to the computation of the H"" norm of sampled-data systems, 
there is a very important and subtle difference. Since the H" 
norm is the supremum of the gain of the frequency response 
operator, the positivity of a certain operator (7'1 - D*D) is 
automatically satisfied for any y that exceeds the H" norm. 
This fact is crucial in the H" norm computation for sampled- 
data systems, e.g., [26], [18], and [31]. On the other hand, 
in the computation of the gain of the frequency response 
operator, this positivity condition can fail in a large region 
of frequencies. To obtain formulas for the gain computation 
similar to that for the H" norm computation problem given in 
[31], we need to guarantee that the gains can still be obtained 
as maximal singular values, and this requires a very different 
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argument from that in [31]. This is the subject of Section IV. 
We will show the following: 

The gain can be characterized as the maximal singular 
value of the operator G(ej"). 
The relevant operator singular value equation can be 
reduced to a finite-dimensional eigenvalue problem (The- 
orem 2). 
As a corollary, an H" norm-equivalent finite- 
dimensional discrete-time problem is derived (Theorem 
3). 

Some examples are included to illustrate the above computa- 
tion. In particular, it is seen that the obtained gain characteristic 
accounts for the aliasing effects as well as the frequency where 
they occur. 

Conference versions of this paper appeared as conference 
papers [32], [34]. 

A. Notation and Convention 

The notation is quite standard. L2[0, h] and L2[0 ,  m) are 
the spaces of Lebesgue square integrable functions on [0, h] 
and [0, CO), respectively. In general, we omit superscripts to 
denote the dimension of the range spaces. So we simply write 
L2[0, h] instead of (L2[0, h])", etc. Likewise, 1% is the space 
of (X-valued) square summable sequences with values in the 
space X .  For a vector x E Rn, its Euclidean norm will be 
denoted by 1x1 to make the distinction clear from the L2 
norm. In contrast, if we write llcpll, it will usually denote an 
L2 (or Z2)  norm or the operator norm induced by it. When 
precise distinction is desirable, we write (1x112. Laplace and z- 
transforms are denoted by L[cp](s) and Z[cp](z), respectively. 
When no confusion can arise, we may also write @(s), @(z) ,  
depending on the context. 

and the discrete-time controller 

xd,k+l =AdA?d,k + BdSYk 
vk =CdJ:d,k + DdSYk 

'1Lk (e )  =H((y)uk 

where S denotes the sampler SYk := Yk(0). Here we have 
taken the direct feedthrough term from w to y to be zero to 
keep the closed-loop operators bounded. The feedthrough term 
from U to y is taken to be zero for simplicity, and it ensures 
well-posedness of the feedback system. It is well known that 
via lifting correspondence (1) this system is represented by the 
time-invariant discrete-time equation 

Bwk(') [:;:::;] =[AA;: ?:I [:;::I + [ 0 ] (3) 

zk(@) = [cl(@) cr2(e)] [::1:] + DWk(0) (4) 

where X,,k = xc(kh) and xd ,k  denote, respectively, the 
continuous and discrete state variables and belong to Cnc 

operators B, D are of the following form: 
and end; matrices A,,, Acd, Ad,, ci(e), K(d) ,  w(e) and 

11. MODEL DESCRPTION VIA LIFITNG -k DuH(e)DdCg 

e We employ the function space model of sampled-data 
systems via lifting, following [SI, [191, E301, [291, [41, and 
[3]. Let h be a fixed sampling period throughout and W be 
the lifting operator that maps a function cp on [0, m] to a 
function-space valued sequence { cpl~}r=~ 

c2(e> = eAc(e-')13,H(r)Cd dT + DuH(6)Cd 

q e )  =: eAceBw 

W(0)  = D,6( 0) + CzeAceBw w: H { V k } r = o  : p k ( e )  := V ( k h  + 6). (1) 

The kth element represents, in general, an intersample signal h 
at the kth step. When considered over L2[0, 001, this mapping 
gives a norm-preserving isomorphism between L2[0, m] and 
Z ~ z [ o , h l ,  where the latter is equipped with the norm 

B: ~ 2 [ 0 ,  h] + p : w ( , )  H K ( h  - T ) W ( T )  d r  

pe 
D: L2[o, h] -+ L2[0, h] : w(.) H W(e - r)w(T) d r  ( 5 )  

10 

where S(0) is the delta function. 
Now consider the sampled feedback system Fig. 1 with Denote (3) and (4) simply as 

(6)  
(7) 

(note D := D).  Note that A is a matrix consisting of A,,, Acdr 
Ad,, and Ad. Now we make our fundamental assumption that 

continuous-time plant 
xk+l = f t x k  BWk 

&(t) =A,x,(t) + B,w(t)+ B,u(t) 21, = c x k  + DWk 

z ( t )  =CZxc(t)  + D,w(t)  + DUu(t) 
Y(t)  =C?Gc(t) (2)  



168 

z 
4 

EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 2, FEBRUARY 1996 

I 
1 

W 
t--- 

- 
Fig. 1. Sampled feedback system. 

A is a power stable matrix, i.e., A" + 0 as n -+ CO. Thls is 
equivalent to the eigenvalues of A all inside the unit circle. 

Introducing the z-transform 
CO 

Z[{pk}&]  := Vkz-' (8) 
k=O 

we can also define the transfer function operator of (6) and 
(7) as G ( z )  := D + C ( z 1  - A)-%. While this definition 
primarily makes sense as a formal power series (with x being 
an indeterminate), it also admits the Neumann series expansion 

G(X) = D + CA"'BX-'" =: D + Go(X) (9) 

at least for sufficiently large complex A. In fact, since A is 
stable, this series is uniformly convergent for 1x1 2 1 and is 
analytic there. In general, poles of G(X) are contained in the 
spectrum of A. Hence if (even without the stability assumption 
on A) G(X) is analytic in 1x1 2 1, we will say that G(z)  is 
stable. (For a detailed discussion on the correspondence of 
stability, see, e.g., [7], [30], etc). By the continuity of B,  C, 
and D, G(X) gives a bounded linear operator on L2[0, h] at 
least for each fixed 1x1 2 1. Furthermore, by the uniform 
convergence, G(X) is uniformly bounded for I X - l l  5 1, so 
that [22] its Ha-norm 

00 

k = l  

is finite. The second equality follows from the maximum 
modulus principle. It is also known that this norm is equal to 
the L2-induced norm in the time domain. Also, for each fixed A 
with 1x1 2 1, Go(X) in (9) converges in norm because A' + 0. 
Since B is a compact operator as an integral operator with L2 
kernel function K (  e )  as above, each CAk  B is also compact, so 
that as a uniform limit of compact operators, Go(.) is compact 
(but D, and therefore G(X), is never compact unless D, is 
zero). 

m. FREQUENCY RESPONSE-BASIC PROPERTIES 

Talung the viewpoint initiated in [32], we now introduce the 
notion of frequency response for (3) and (4). We review some 
basic facts as well as derive a new formula that gives a lifted 
transfer operator from the frequency response. 

A. Frequency Response as Steady-State Response 
GnzWn be the transfer function operator 

of this system introduced in the previous section. As noted 
above, for each fixed real w,  substitution x = ejwh also makes 
sense, and one might call the resulting operator G(eJwh),  
acting on L2[0, h], regarded as a function of w,  the frequency 
response of th~s system. This formal definition by itself, 
however, lacks the highly physical steady-state interpretation 
similar to that for continuous-time systems. Nonetheless, it is 
still possible to associate a very natural steady-state interpre- 
tation to this concept. 

Let G(z)  = 

We begin by recalling the following lemma from 1301. 
Lemma 1: Let G ( z )  be the transfer operator of (3) and (4), 

and let the input U be such that 

~ k ( 6 ' )  := X k u ( e ) ,  1x1 2 1, k = 0, 1,. . . . 

Then the output y asymptotically approaches 

y ( k h  + 6')  = X k ( G ( X ) ~ ) ( B )  

as k -+ CO. See [30] for a proof. 

can be expressed as a power function via lifting as follows: 
Now observe that a sinusoidal function u(t)  = exp ( jwt)vo 

{ U ~ ( B ) } P = ~  := {(eJwh)ku(6')}r=o, V(B) = eJwevo (11) 

with z-transform 

Then, by Lemma 1, the output asymptotically approaches 
(ejwh)'G(eJwh)v. While this is never in "steady state" in 
the strict sense unless X = 1, its modulus I(G(eJwh)u)(0)l 
remains the same. In other words, the essential part of the 
asymptotic response is (G(eJwh)w)(8), and each particular 
response (ejUh)'G(eJwh)u at the kth step is obtained by the 
phase shift with successive multiplication by eJwh.  

In view of this observation, it is natural to call this op- 
erator G(e3"') : L2[0, h] -+ L2[0, h] the frequency response 
operator. 

De$nition I :  Let G ( z )  be the transfer operator of the lifted 
system as above. Let w, := 27rlh. The frequency response 
operator is the operator 

(12) G(ejWh) : L2[0, h] a L2[0, h] 

regarded as a function of w E [0, ws) .  Its gain at w is defined 
to be 

By (lo), the least upper bound of the gain I(G(eJWh)(( as w 
ranges from 0 to w, is precisely the H" norm of G. We also 
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note that although we have considered frequency response 
on the interval [0, w,),' it is also possible to extend this 
function periodically over (-CO, CO). This is justified because 
ej(w+nws)h = ejwh for any integer n. This convention will be 
employed in Subsection B. 

We next remark on aliasing and the equality ej(wSnws)h = 
ejwh. Suppose that ,our input is ejwt, with w > w,. It 
is expressible as wk(0) = (ejw'h)k(ejwo) with some w' 
satisfying 0 5 w' < w, and w = w' + nw, for some integer 
n..This means that the effect of this high-frequency input 
ejwt appears at the frequency ejw'h = ejwh as an alias effect. 
The only difference between ejwt and ejwIt is that the initial 
intersample signal eJWe is different from ejwIe. Definition (13) 
thus takes all such aliasing effects into account by taking the 
supremum over all v E L2[0, h] on the right-hand side. 

B. Recovery of Transfer Operators from Frequency Response 
We have given a definition of the frequency response 

operator G(ejwh). Recall that for standard linear time-invariant 
systems, transfer functions can always be recovered from the 
frequency response. It is then natural to ask: How can the 
lifted transfer matrix operator G ( z )  be recovered from the 
knowledge of G(ejwh)? We also recall that in the standard 
lifting setup the system is specified in terms of the state-space 
representations, and transfer operators are defined using them. 
From the purely external point of view this is awkward, and 
it should be possible to give a formula for a lifted transfer 
operator without going through state-space representations. 
Here we give an answer based on the frequency response. 
To this end, we will need some material from [33]. 

Lemma 2: Fix any w E [0, w,], and let wn := w + nw,. 
Then every cp E L2[0, h] can be expanded in terms of 
I e j W n s  }n=-m 00 as 

m 

n=--00 

with 

where cp E L2[0, h] is embedded in L2[0, m] as a function 
having support contained in [0, m). Furthermore, the L2 norm 
IIcpII is given by 

00 

11911~ = h Ian12. (16) 
n=--00 

Proof: Expand e-jwecp(t9) in terms of eanjTeIh into 
Fourier series. This readily yields (14). Since Ile-jwe-cpII = 

Now let G ( z )  be a stable lifted transfer function, and let 
, j ( w + W t ,  0 < - w < w, be our input to G. According to 
Lemma 2, we have the following expansion: 

IIcpII, identity (16) follows from Parseval's identity. 

00 

where g i ( w )  are determined by 

Remark 1: Another notion of frequency response based 
upon a quantity equivalent to gb(w) is studied by [l] and 
[ 2 ] .  It is also used by [9] for the analysis of robust stability. 
An advantage of such an apprciach is that it is often possible to 
derive a formula for g i ( w )  without going through state-space 
representations of G(ejwh). We also note that the equivalence 
of these two notions of frequency response is recently shown 
by [33]. Therefore, once we establish the formula for lifted 
transfer operators in terms of g:(w) as given below, it can be 
obtained without recourse to the state-space representations as 
in (9). 

Our objective here is to derive a formula for lifted transfer 
operator based upon the knowledge of g; ( w )  . Let 

03 

k=O 

be the Neumann series expansion of G(X). Under the hypoth- 
esis of exponential stability, this series converges uniformly at 
least for 5 1. Substitute X = ejwh into (18), multiply 
both sides by ejwkh, and then integrate on the unit circle to 
obtain 

Take any f E L2[0, h] with iexpansion 

according to Lemma 2. Here we have emphasized the depen- 
dence of a1 on w. By (15), aq(w) is given by 

where f ( s )  is the finite Laplace transform 

Introduce the change of variable (T := w1 = w + Zw, and note 
e j w h  - - ejwih to obtain 

n=--03 

'Some authors take ( -ws /2 ,  w s / 2 )  instead. 
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By (17), we have 

n=--00 

where 1 = [a /w, ] .  This yields the following theorem. 

coefficient GI, f of the lifting G ( z ) f  is given by 
Theorem 1: Let G ( z )  and f be as above. Then the kth 

f ^ ( ja )  do (22) . e~(ov+nw,) (kh+@) 

where [a/w,] is the integer part of a/ws and U-, := o - 

Prooj? The first formula is precisely (19). The second 
one is obtained by substituting (20) into (19). Observe that I = 
[ 0 / w S ] ,  w = a-Zw,, and wn = w+nws = n-t (n- [a/w,])w,. 

0 
The formula above gives the response at k h  + I9 via the 

inverse Fourier transform. In general, the formula becomes 
involved due to the correction factor ej(n-[u/wsl)wst arising 
from aliasing. For the lifted transfer function of a continuous- 
time plant G,( s), however, the relationship is particularly 
simple, as shown in the following. 

Corollary 1: Let G,(s) be a stable continuous-time transfer 
function. Then its lifted transfer function G ( z )  or its kth 
coefficient operator GI, is given by 

[o /ws ]  Us. 

where t = kh  + 6'. 
Proof: If we apply an input 

output Gc(ja)ejut in the steady state. Hence 

G( eJUh) ( eJu8) = Gc(ja)e3u'. 

to Gc(s),  we get the 

In other words 

Substituting these into (21) or (22) yields (23). U 
Remark 2: Combining the formula above with the formula 

for the sampler will again yield the general case (22) since the 
frequency response defined ,here is clearly multiplicative. 

We here give an example to assure that (22) indeed recovers 
the lifted transfer function G(eJWh)). 

Example 1: Consider the system depicted in Fig. 2. If the 
input is w ( t )  = e x p ( j w l t ) ,  then 

in the steady state. It turns out that [33] 

I 1 - e-jhwn 1 .~ 
jhw,  j w l f l '  

9, = 

Fig. 2. Sampled first-order system. 

Now let f E L2[0, h]. If this f is applied to system Fig. 2, 
the corresponding y ( t )  is given by 

h 

g ( t >  = i e-(t-')f(T) d-r. 

Hence we readily have 
h 

(G,f)(O) = y ( k h )  = 1 e-("-')f(T) d ~ .  (25) 

Let us see that this is also obtained via (22). Indeed, from 
(24) we have 

where t = k h  + 0, a = w + h,, and enJwSt = enjws8. By 
Lemma 2 we have 

so that 

because eJwkh = ellukh. By the inverse Fourier transform 
fortnula, the last term clearly agrees with (25). 

IV. COMPUTAITON OF FREQUENCY RESPONSE 
The frequency response operator introduced here is infinite 

dimensional. How can we compute the gain of this operator? 
An answer to this question will lead to the analog of the Bode 
magnitude plot for standard linear time-invariant systems. In 
this section, we give a procedure computing the gain of the 
frequency response operator. This is done by reducing the 
problem to a finite-dimensional eigenvalue problem. Although 
the procedure is apparently similar to the computation of H" 
norm of sampled-data systems [17], [18], [31], there is a very 
important difference. In the case of H" norm, llGlloo 2 IlDll 
always holds, and this simplifies the whole procedure. On the 
other hand, in the present context the norm I I G( eJwh) I I actually 
can be less than \\D\\, so that reduction to an eigenvalue 
problem is nontrivial. This problem is the subject of this 
section. 
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A. Characterization as Singular Values 
Let G(eJwh) be the frequency response operator as intro- 

duced in the previous section. Its gain is the norm induced 
from that of L2 [0, h]. If we resort to an analogy to the ordinary 
finite-dimensional case, we may attempt to compute this norm 
via the singular value equation 

(7'1 - G*G(ejWh))w = 0. (26) 

However, in the present context the operator G(eJWh) is 
infinite dimensional, and when D, # 0, it is not even compact. 
As a result, the induced norm JJG(eJUh)JJ need not be attained 
as the maximal singular value that satisfies (26). To remedy 
this, we need the following developments. 

Let T be an operator in a Hilbert space X. Its spectrum and 
essential spectrum are denoted by o(T),  ae(T),  respectively 
[23] and [16]. Also, their radii r (T ) ,  re(T)  are defined by 

r ( T )  := sup { \XI ;  X E a(T))  

Since oe(T) c o(T),  re(T)  5 r (T) .  The key lemma is the 
following fact on perturbations by compact operators. 

Lemma 3: [16] Let T = TO + 7'1 be an operator in a 
Hilber space where 2'1 is compact. Then, ae(T) = ae(To) and 
T e ( T )  = T e ( T 0 ) .  In other words, perturbation by a compact 
operator does not change the essential spectrum. Furthermore, 
if ae(T) is at most a countable set, then every point X E 
a(T) \ae ( T )  is an eigenvalue. 

Now let us return to the sampled-data transfer function G(z )  
given by (9). Note that the operator D can be decomposed as 
D,+Do where D, is the multiplication operator by the matrix 
D, and Do is an integral operator with L2 kernel function 
Wo(0) = CzeAceB,, and hence compact. This implies that 
for each fixed X (1x1 2 l), G(X) can be decomposed as 

where Gl(X)  = DO + Go(X) is a compact operator. Since 
the composition of a compact operator with a bounded op- 
erator is again compact, V(X) := G*(X)G(X) admits the 
decomposition 

where Vl(X) is compact. Clearly, IlV(X)ll = IIG(X)112, and 
since V(X) is self-adjoint, its norm is given as the spectral 
radius, i.e., IlV(X)II = r(V(X))  [28]. We then have the 
following result. 

Proposition 1: Fix any X with 1x1 2 1 and let y := IlG(X)(l. 
Then, y2 = r(V(X)) 2 re(V(X)).  Moreover, only one of the 
following two possibilities can occur: 

1) either y2 = re(v(X)) = ~ ~ D w ~ ~ 2 ,  or 
2) y2 > re(V(A)) and it is an eigenvalue of V(X). 

Proofi Let us first prove that 

o~(v(x)) = {of?; i = l,...,p} (27) 

where oi, i = 1, , p  are tlhe singular values of the ma- 
trix D,. To this end, let us first observe that ae(V(X)) = 
ae(DkDw) by Lemma 3. Since 020, is a Hermitian matrix, 
we may assume, with a suitable change of basis, that it is a 
diagonal matrix 

D;D, = diag [U:, . $ .  , o,"]. 
It is seen easily that ker (0: I - DkD,) is infinite dimensional, 
so that ae(DGDw) = {a:; i = I,... , p } .  This shows (27). 

11D,112. Hence if y2 = re(V(A)), it is also equal to )JD,112. 
Now suppose y2 > re('V(X)) = 11D,112. As noted 

above, IlV(X)II is attained as the spectral radius r(V(X)). 
Also, since o(V(X)) is a closed set, y2 must belong to 
o(V(X))\o,(V(X)). By (27), oe(V(X)) is a finite set, so 
that again by Lemma 3, y2 must be an eigenvalue of V(X). 

0 

This also implies re(D;Dw) = max{a,2; i = I,... ,PI = 

This yields Case 2), completing the proof. 
This proposition shows the following: 

JJD,JJ gives a lower bound for IJG(z)JI. 
If IlG(z)II > IIDwll, it can be found as the maximal 

Therefore, we can essentially resort to an eigenvalue problem 
for computing the frequency response of G(z ) .  

singular value. 

B. Reduction to a Finite-Dimensional Eigenvalue Problem 
We have seen that when IIG(eJWh)ll > llDwll it is charac- 

terized as the maximal singular value of G(eJwh).  So we are 
led to solving the singular value equation 

(7'1 - G*G(eJUh))w = 0. 

We now have the following tlheorem. 

value of D. Define 
Theorem 2: Assume y > llD,ll and y is not a singular 

R, = (y21 - D*D). 

There exists a nontrivial solution w to the equation 

(7'1 - G*G(ejwh))w = 0 

det (ejwhi: - A) = 0 

(28) 

if and only if 

(29) 

where E and A are given by 

A32 I 0 
A41 A2 0 I 

(30) 

€13 = - BR,lK*(fL - .) 
h 

€33 =AEs + C,*(B)DR;'K"(h - - ) d B  

h 

E43 =AEd + 1 c;(~e)DRT1K*(h - . )dB 
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h 

= -1 C,"(B)(I + DR;'D*)C2(8) dO 

$242 = - C,*(8)(1 + DR,1D*)C2(6) d8. (31) ih 
Outline ofProofi To express (28) in terms of the state- 

space equations, write down U = G(ejwh)w and r = 
G*(eJwh)w, w ,  'U, r E L2[0, h] ,  and set r = y2w. If G ( z )  
is represented by (3) and (4), then by the standard duality 
theory its dual system is given by 

p k  =A*Pk+l + C*vk (32) 
'rk =B*pk+1 + D*Uk. (33) 

Therefore, the singular value equation (28) admits a nontrivial 
solution w if and only if there exist w ,  U, r ,  not all zero, such 
that 

G(eJWh)w : eJWhx = Ax + Bw, v = Cx + Dw (34) 
G*(eJwh)u : 

(35) 

p = eJWhA*p + C*u 
r = y2w = eJwhB*p + D*v 

where x := [x:, x:]', p := [p:, p:]'. Combining (34) and 
(35) leads to 

y2w = D*Dw + eJWhB*p + D*Cx 

so that 

R,w = (y21  - D*D)w = ejwhB*p + D*Cx. 

By the discussion in Subsection A, any number y2 > 11D,112 
in the spectrum of D*D must be its eigenvalue. Since y is 
not a singular value of D, R, becomes invertible and w can 
be solved as 

w(8) = RG1(ejWhB*p + D*Cz) .  

Substituting this for w in (34) and (35) and computing the 
precise dual operators A*, B*, C*, D* in (32) and (33) as 
in [31] implies that (28) holds if and only if the generalized 
eigenvalue problem 

e jwhEt  = 4 (36) 

Remark3: Some remarks are in order on computational 
aspects. For y to be a singular value of G(eJwh),  characteristic 
equation (29) must be satisfied precisely for each frequency 
w. This is in marked contrast to the H" norm computation, 
where the same equation may be satisfied for some frequency. 
This in tum leads to an inequality condition y > JJG(eJUh)JJ  
from which a bisection type algorithm can be derived [31], 
[24]. In the present case, checking (29) is numerically a much 
more delicate problem. Fortunately, it has been found recently 
that one can give fairly good upper and lower bound estimates 
for IIG(ejwh)ll as well as a bisection algorithm. We refer the 
reader to [13] and [21] for details. 

As an application of Theorem 2 obtained above, let us now 
derive a finite-dimensional discrete-time plant (A, B, 6, B )  
whose H" control problem is equivalent to that of the 
original sampled-data system in Fig. 1. This problem has 
been extensively studied, and several solutions have been 
obtained [17], f181, [3], [15]. We here show that once the 
generalized eigenvalue problem (Theorem 2) is obtained, it is 
straightforward to obtain such a norm-equivalent system. 

We start with the following lemma which is an easy 
consequence of the computation above. 

kmma 4: Let= G(z) = - be a finite-dimensional 

discrete-time system, and let y >_ JIG ( e J w ) J J  for some O F 
w < 2n. Then, l/cllm < y if and only if there exists no X 
of modulus 1 such that 

[%I- 
- 

det(A[l 0 -BB*/y2j z* - [ -cc -*- A I 01) = 0. (37) 

This is an easy counterpart of the well-known continuous-time 
result [5];  see also [12], [31], and [24] for details. 

Observe that (29) has the same form as above, with 
- 
A = A + BR;'D*[C1(8) Cz(8)] 

n * / y 2  = BRJIB* 

-*- 
C C =[C1(6) Cz(O)]*(I + D R ; l D * ) [ C ~ ( 0 )  C Z ( ~ ) ] .  

(38) 

Since all these terms on the right are matrices, the H" norm 
bound condition l lG( .~)11~ < y is equivalently transformed to 
that for ( A ,  B ,  C )  by finding these satisfying (38). However, 
we need yet one more step to transform the original H" 
control problem into a discrete-time one, because we want the 
controller (Ad, Bd, c d ,  Dd) to remain invariant under this 
procedure. To this end, let 

_ _ _  

admits a nontrivial solution E .  This is precisely (29). (The 
detailed computation of dual operators and (31) can be found 
in [31].) 0 

Note that we can set the direct feedthrough term from w to z 
to be zero by the form of (29) and (37). Combining this (with 
state 2 )  with the controller (Ad, Bd, c d ,  Dd) as in Fig. 1, we 
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have V. STATE-SPACE FORMULAS AND EXAMPLES 

To solve the eigenvalue problem (29) we need to evaluate 
the integrals appearing in (31). When the hold functions are 
zero-order hold, however, they can be evaluated by taking 
suitable exponentials of constant matrices (e.g., [3]). 

[zlil] = [" BUDdey Ad [ xd,k " ] k ] w k  Bd cy 
(39) zk = (e, + fiuDdcy)zk + DuCdxd,k. 

Assume D, = 0, D, = 0 for brevity, and also assume 
y is not a singular value of D throughout. Assume also that 

(constant matrix). Define 

We then have the following theorem. 

Fig. 1 with continuous-time plant (21, choose (A, I?,, &,ez, 
eV, 13,) to satisfy 

Theorem 3' Given the feedback system G ( z )  in the hold function H ( 0 )  is tPle Zero-order hold: H ( 0 )  E H 

A :=eAch + BRq1D*(CzeAC8) 
B,B; =B(I - D*D/yZ)-lB* 

h 
B, := 1 eAc(h-')BuH(T) d7  + BR,lD*C, Then the hypothesis that y is not a singular value of D holds 

if and only if rll(h) is invertible, and then R, becomes 
invertible [35]. As in [3], the operator R;' can be expressed as 

R-'w = Y - ~ W  + y-3[B,z 01 Y 

(1" eAc('-')B,H(T) d~ + DuH(0) 

x 

(40) + Lrct - T> [B:/y] w(T)  d T ) *  
cy :=cy 

where (al(@) := CZeAc8 and @.,(e) := C,S~eAc(8-T)B,  
H ( ~ ) d r .  Then the closed-loop system Gd(z )  formed with 
this discrete-time plant with the digital controller (Ad, Bd, Cd, 
Dd) as in Fig. 1 satisfies llGlloo < y if and only if llGdlloo < 
7. 

Proof: Comparing (39) with (29) and (31), we see that 

Substituting this into (31) will yield the desired state-space 
formulas. Recall 

h 
A,, =eAch + 1 eAc(h-')B,HDdCyd~ 

A,d =l eAc(h-').&HCd dT 
(38) can be satisfied if we first take B, and Cy as above. It 
follows that 2 and & should satisfy 

h 

A + BUD&, =A,, + B R p * C l ( . )  
BuCd =Acd + B R p * C z ( . ) .  

K(0)  =eAC8Bw 
W(0) =CzeACtBw 

8 
Cl(0) =c, (eAc8 + 1 eAc(8-')B;HDdCy d~ 

c2(6) =I CzeAc(8-')BuHCd dT. 

According to the forms of A,d and C2(.) in (5), the forms 
for A and B, readily follow. Finally, the condition on 
(38) is satisfied if 

in 8 

R ] M [ C l  c21 As similarly in [3], we obtain the following: 

E33 = [I 4- ( Bu HDd cy ) * @I 1 ( h) ]  1 1 ( h) - 
E43 = ( B , ~ C d ) * ~ ~ ~ ( h ) r ] ~ ( h ) - l  

1 (e, +-BuDdcy)* 
= [ (Ducd)* + D U D ~ C Y  Bucd] €13 = - ~ - l r z l ( h ) r l l ( h ) l - l  

where M = I+DRY1D* = ( I -DD*/y2) - l .  This is easily 
seen to be equivalent to the requirement given in (40) above. 

A11 =F22(h)  - r2l(h)rll(h)-lrl2(h) 
The same equivalent system has been obtained by [3]. The + [ w h )  - r ~ l ~ ~ h ) r ~ l ( h ) - l ~ ~ ~ ( h ) ~  

advantage here is that once (29) is obtained, the problem . BuHDdCy 
=(rl1(h)-l)* + [ G ~ ~ I : ~ )  - rzl(h)rll(h)-1@12(h)1 is quite simply reduced to that of factorization of matrices. 

Moreover, from Theorem 2 and Lemma 4 it is clear that 
the H" norms of G ( z )  and Gd(z) are assumed at the same 
frequency. This is not so obvious in the other approaches. 

B,HDdCy 
Aiz =[@22(h) - r2i(h)rii(h)-1~12(h)]B~HCd 
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where 

@(t) :=lt r(r) d r  

can also be evaluated by taking suitable exponentials (cf. 131). 
For example 

where F = [ Biii,7 -c2/7]. To obtain f2(t), we use this 
formula again. Actually, more compact formulas are given in 
~ 5 1 .  

We now give two examples. 
Example 2: Let us compute the frequency response of the 

continuous-time plant 

1 
G ( s )  z r  - 

s+l 

in the sense defined here. Observe that since the Hm-nonn is 
equal to the L2-induced norm in the time domain, it should 
give precisely the same value as in the continuous-time case, 
which is one, irrespective of the sampling period h. 

Let 

A, = -1, B, = C, = 1, /3 = y-', 

a = d m .  
Then r ( h )  can be computed as shown at the bottom of the 
page, depending on y < 1 or y > 1. When y = 1, they agree 
and are equal to 

['lh l-_hh] 

Fig. 3. Lifted frequency response for l/(s + 1). 

According to (41), the characteristic equation det (XI-A) = 0 
becomes 

In view of the identity 

r22 - r21r;11r12 = r;: 

we see that the coefficient of X is 

- 2 ~ 0 s a h  y < l  
y = l  

-2coshct.h y > 1. 

Since 12 cos ah1 5 1 and 12 cosh ah1 > 1, it is easy to see that 
det(XE -A) = 0 admits a solution of modulus one if and only 
if y 5 1. The largest y that can be assumed among them is 
one, equal to the Hm-norm of l /(s+l)  in the continuous-time 
sense. The frequency where this norm is attained is w = 0. 

To compute the frequency response, we must solve 

for 7 at each w.  For y not being a singular value of D, this 
is easily solved as 

Observe that this is precisely equal to the continuous-time 
counterpart for w 5 n / h .  This can also be seen from the Bode 
plot in Fig. 3 far the case h = 0.1. 

cosah+ $s inah  -:sinah 

cosh ah + sin ah  -5 s i zah  
5 sin ah  

: sinh ah  

cos ah - 1 sin crh 

cosh ah - 5 sinh ah 

r ( h )  = 
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Fig. 4. A closed-loop case. 

See also [34] for a second-order example where aliasing 
effect clearly appears as a very high peak at a low frequency. 

Example3: We now give a hybrid closed-loop case of 
Fig. 1 in which the continuous-time plant and the discrete-time 
controller are specified by 

1 
s + l  

z =- ( w + u ) ,  y = z  

h 
z - 1  .(e) = - -sy, h = 0.1 (s). 

The hold function is the zero-order hold. The controller is the 
discretization of l/s. The closed-loop stability is guaranteed 
for small enough h. In Fig. 4, we show the frequency response 
of the closed-loop system from w to z.  It is interesting to 
observe that in this case the highest gain is actually larger 
than 0 dB which is the gain of the corresponding continuous- 
time gain. This computation is done by implementing (41) to 
Xmath. 
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