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Global and Semi-Global Stabilizability 
in Certain Cascade Nonlinear Systems 

J. H. Braslavsky and R. H. Middleton 

Abstrucf- This paper addresses the issue of global and semi-global 
stabilizability of an important class of nonlinear systems, namely, a 
cascade of a linear, controllable system followed by an asymptotically 
(even exponentially) stable nonlinear system. Such structure may arise 
from the normal form of “minimum phase” nonlinear systems that can 
be rendered input-output linear by feedback. These systems are known 
to be stabilizable in a local sense, and, in some cases, global stabilizability 
results have also been obtained. It is also known, however, that when 
the linear “connection” to the nonlinear system is nonminimum phase, 
i.e., it has zeros with positive real part, then global or semi-global 
stabilizability may be impossible. Indeed, it has been shown that for any 
given nonminimum phase linear subsystem, there exists an asymptotically 
stable nonlinear subsystem for which the cascade cannot be globally 
stabilized. We expand on the understanding of this area by establishing, 
for a broader class of systems, conditions under which global or semi- 
global stabilization is impossible for linear and nonlinear feedbacks. 

I. INTRODUCTION 

The stabilizability of interconnected nonlinear systems has attracted 
increasing interest since the appearance in the control scene of the 
normal form and zero dynamics [ 11. A number of recent papers have 
considered the problem of global stabilization of linear-nonlinear 
cascade systems of the form 

.i = f o ( ~ )  + f(z: <. y), 

( = A < + B u ,  [ E R ” ,  u E R ”  

y =C<, y E RP (1) 

x E R‘ 

where fo and f are smooth (i.e., Cm) functions, .+ = fo(x) is 
globally asymptotically stable (GAS) at s = 0, fir. 0. 0) = 0, 
and the linear subsystem (A. B, C) is assumed to be stabilizable 
by state feedback. 

Although these systems are asymptotically stabilizable by linear 
<-feedback in a local sense (e.g., [2]), the extension of such results 
to being global is not immediate, and further conditions may need 
to be applied. For example, it is known that the cascade (1) is not 
necessarily globally stabilizable by linear <-feedback only, i.e., with 
I I  = IC<, due to the existence of phenomena like pealung [3], [4]. 
Another obstacle to global stabilizability has been recently identified 
as unboundedness unobservability [5], where some unmeasured states 
may escape in finite time while the output remains bounded. 

In [6] and [7], sufficient conditions have been given to globally 
asymptotically stabilize these “partially linear composite systems” by 
a smooth feedback U = I<< + u(.r. E ) .  A key restriction on the 
cascades for which GAS can be achieved is that either the linear 
subsystem must be weakly minimum phase [6]-[lo], or the growth 
o f  the connection terms is constrained [7, Proposition 51. 

The conditions for GAS mentioned above are only sufficient but, 
as it has been pointed out [3] ,  they are somehow close to being 
necessary. Furthermore, in [7] it has been proven that given a 
nonminimum phase linear system, one can always find a nonlinear 
system such that the cascade verifying all the other conditions is not 
globally stabilizable. The results in this paper further expand on this 
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idea by establishing, for a broader class of systems, conditions under 
which GAS is impossible. 

In addition to GAS, we consider the problem of semi-global stabi- 
lizability.’ The property of semi-global stabilizability has been studied 
in many recent papers on nonlinear systems [2], [3] ,  [11]-[13]. A 
system is semi-globally stabilizable to an equilibrium point ze by 
means of a class F of feedback control laws if, for any a priori 
determined compact set s2 of initial conditions, there exists a control 
law in F that makes ze asymptotically stable with a domain of 
attraction that contains R. 

In this paper, we show that a given class of GAS nonlinear systems 
cascaded with any single-inpudsingle-output (SISO) nonminimum 
phase linear system is not (even semi-) globally stabilizable by linear, 
time-invariant, static <-feedback. In addition, we give a class of 
SISO linear-nonlinear cascades systems for which no control can 
give global or semi-global stability. These results are illustrated 
by an example, where a system of the first class is semi-globally 
stabilized by linear time-varying [-feedback, and globally stabilized 
by nonlinear ( E .  .c-feedback. 

Notation: The symbols R, C, denote real and complex numbers, 
respectively, and Re(;c) denotes the real part of the number X .  C- 
and Cf are the open left- and right-half planes, respectively. ( 1  . 1 1  
is the Euclidean norm for matrices. The rest of the notation is fairly 
standard, or introduced where required. 

11. AN EXPLOSIVE CASCADE 
We study the following class of linear-nonlinear cascades 

(2) . i = -a .E+pz  m y 2~ 

<=A<+Bu 
y = C [ + D u  

(3 )  

(4) 

where m ,  11 are positive integers, m, > 1; a? 8 are positive real 
numbers; s. t i .  y E R, and < E R”. We assume that the pair (-4, B) 
is controllable and the linear subsystem (3), (4) is nonminimum phase, 
i.e., its transfer function, G ( s )  = C ( s 1 -  A)-’B + D ,  has a zero at 
the complex frequency s = v ,  where Re(v) > 0. We also assume 

These cascades present two fundamental characteristics that make 
difficult their stabilizability in a global sense: 1) the linear “connec- 
tion” (3) ,  (4) is nonminimum phase, and 2) the nonlinear subsystem 
(2) has a strong coupling with its input. The nonminimum phase 
feature implies the existence of peaking in y when high gain [- 
feedback is used. On the other hand, the strong coupling of the 
nonlinear subsystem implies that if y is not sufficiently small, finite 
time escape of I may occur. Therefore, even when the nonlinear 
subsystem is globally exponentially stable without input, the cascade 
may fail to be GAS. 

Let us now characterize a necessary condition for the semi-global 
stabilizability of system (2)-(4) that will be used later. Define the 
change o f  coordinates 

c # 0. 

e-Bt  

q(t) = 5 2 0  
(7n - l ) z m - I ( t )  ’ 

with iu = a(m - 1). Then, we can write (2) as 

i] = - p y 2 p e - “ t  ( 5 )  

’ Some authors use the terms potentially global or on compacta stabilizabil- 
ity. 
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to which, corresponds the solution 

Suppose that zo is a given positive initial condition for (2). Then 
~ ( 0 )  = ~ : ~ - “ ’ / ( m  - 1) is also positive and so, from (6) ,  we see that 
7 l ( t )  may get arbitrarily close to zero at any t for which the integral on 
the right-hand side (RHS) of (6) is large enough, eventually resulting 
in the escape to infinity of the nonlinear state ~ ( t ) .  Thus, a necessary 
condition for the stability of (2) with any positive initial condition 
is that the inequality 

be satisfied for any t 2 0, or equivalently, since q ( t )  is monotonic 

111. DOES A NONMINIMUM PHASE LINEAR 
SUBSYSTEM NECESSARILY IMPLY PEAKING? 

Condition (7) is our starting point to explore a key connection be- 
tween the “degree of nonminimum phaseness” of the linear subsystem 
and the dynamics of the nonlinear subsystem. In this section, we shall 
see that this connection determines the stabilizability properties of the 
cascade (2)-(4). More specifically, we shall demonstrate 1) conditions 
under which the cascade cannot be semi-globally stabilizable and 2) 
conditions under which the cascade cannot be semi-globally stabilized 
by using Linear, time-invariant, static feedback of the linear subsystem 
states. We shall also extend these issues to a more general class of 
cascades, where the nonlinear subsystem presents a particular type 
of Lyapunov function. 

We require some preliminary results on linear systems and matri- 
ces. The following lemma recalls an input-output relation satisfied 
by linear systems with nonminimum phase zeros [14]. 

Lemma I :  Consider a linear system 

E = -4E + Bu 
y =C( + Du 

with t in R” and U: y in R. If v is a nonminimum phase zero of the 
transfer fnnction G(s)  = C(.sI-A)-’ B+D, and y(t)  is the bounded 
response to a bounded input u ( t )  with initial condition to, then 

~ ( v )  = 1 e-ur v ( 7 )  dr 
00 

= C ( v 1 -  -4)-1<0. 

Proojl The proof follows trivially on noting that since y ( t )  and 
u ( t )  are bounded, s = v is in the region of convergence of their 

The next theorem states conditions under which the cascade (2), 
(3) cannot be stabilized in a global sense. 

Theorem2: The cascade system (2), (3) is not semi-globally 
stabilizable if the linear subsystem (3) has a nonminimum phase zero 
at s = v such that R e ( v )  > 4 7 7 ~  - 1)/2p. 

corresponding Laplace transforms, y (  s )  and U( s ) .  

Proqf? From Lemma 1 we can write 

By applying Holder’s inequality to the RHS of (8) and solving an 
integral, we obtain 

-Re( u ) ~  lu(.)l di- I 

where, as in Section 11, we denoted 
and (9) give 

= ( ~ ( 7 7 ~  - 1). Inequalities (8) 

Z M  

JO 

where 

Note that is a number independent of any feedback. Moreover, 
:If can always be made positive and arbitrarily large by appropriate 
choice of the initial condition ( 0 .  As we have seen in Section 11, the 
stability of the cascade in a global sense requires that (7) be true 
for all initial conditions. Yet, ( I O )  and the previous remark on M 
indicate that given S O ,  there always exist values of <O for which (7) 
is violated. The result then follows. 

The above theorem tells us that if the linear subsystem has a 
nonminimum phase zero relatively “fast” with respect to the dynamics 
of the nonlinear subsystem, namely, 

then the cascade cannot be globally or semi-globally stabilized by 
any control. At this point, a natural question arises: is it possible to 
achieve GAS or semi-GAS if (1 1) is not satisfied? As we see next, the 
answer to this question is again negative if we can only use linear, 
time invariant, static <-feedback. 

Theorem 3: If the linear subsystem (3) is nonminimum phase, then 
the cascade system (2), (3) is not semi-globally stabilizable by linear, 
time-invariant, static (-feedback, that is, U = I<(, with Ii in RI Xn.  

Before proving Theorem 3, we require: a preliminary result on 
linear systems. Let (A. B )  be a controllable pair, 4 in Rnxn .  B in 
Rrt Denote by K the set of all row vectors li in R1 ”‘ such that 
.41( = A + BK has all its eigenvalues in  C-. Then, we have the 
following lemma. 

Lemma 4: If v is a complex number with positive real part, then 

Proof: Although perhaps intuitively reasonable, this proof is a 
little long and involved, and has been omitted due to space limitations. 
See [15] for further details. 

Remark 1: Note that the above result relies on the fact that the 
linear system associated with (A.  B )  is single-input. Indeed, Lemma 
4 is not true for multi-input systems, as can be seen in the following 
simple counterexample. Consider A = 0’ ”’, B = I’ ’, and choose 

with p 2 ,  positive numbers. Then write 

(VI - AI<)-’ =(VI - I<)-’ 
- ( U  + Pl) - l  0 
- !pn[(v + Pl)(V + P 3  I]-’ ( U  + P 3 ) - ’ ] ‘  

Notice that the stability of .41i is independent of p2. l l ( v I - A ~ ~ ) - ~ / l ,  
however, grows without bound with p2. 



878 

Proof of Theorem 3: Suppose we stabilized the linear subsystem 
( 3 ) ,  (4) with a state feedback U = I<[, so that all the eigenvalues of 
the closed-loop evolution matrix, A, {ill<}, with i = 1, 2. . . . . T I ,  are 
in C-, Let 11 be a nonminimum phase zero of the linear subsystem, 
let y(s) be the Laplace transform of the closed-loop output, and iC 
as defined just before (5) .  Then, we can write 

Y(&) = (C + D I < ) ( & l -  Arc ) - '<o  
= (C + D I i ) [ V I -  A + (& - V)l - BI<]-l<o. 

By applying the matrix inversion lemma to the last equation, we get 

y ( 6 )  = (C + D l i ) ( v I -  A)-' 
' { I -  H [ I +  ( V I -  A)- 'H]- ' (vI -  9 ) - ' } < 0  

whereH = (G-v) I -LIIC.Usingthefac t tha tG(~)  = D + C ( v I -  
A - ' B  = 0, and after some manipulation, we obtain 

y ( 6 )  = C ( v I -  A ) - ' [ I  - (& - v)(&I - - 4 ~ ) - ~ ] [ o .  (14) 

Now suppose that we choose the initial condition EO proportional to 
the complex conjugate transpose of the row vector C[VI--A)- ' ,  i.e., 

t o  = T ( F I -  -4T)-1CT (15) 

with y a real number. Notice that the vector (TI - A T ) - l C r  is 
nonzero, since (VI - il)-' is full-rank and C # 0. Let r denote the 
matrix 1 - (& - v ) ( & I -  AI<)-'. Then, substituting (15) in (14) and 
taking absolute values on both sides gives 

2 I*/l I IC(VI - A ) - ' l l * ~  

l y ( & ) ~  = j T 1  I C ( ~ I  - A ) - l r ( x  - 1 
(16) 

where 0 denotes the smallest singular value of the matrix r. Then 
we have 

= lir-'ll-l 
= l l (VI-  -4l<)-I(&I- -4K)Il-l  
= 111 + (& - V ) ( V ~ -  -41;)-'11-~ 

1 

Lemma 4 assures that l I (vI-  Aii)-'jl is uniformly bounded on IC; 
denote this bound by h i .  Hence (1 6) and (17) yield 

On the other hand, we can bound (Y(G)( and use Holder's 
Inequality to get 

IY(&)I I e-67 I ~ ( T ) I ~ T  

I/LP 

' (19) 

Combining (18) and (19) renders 
n w  

y Z p ( ~ )  d r  2 AI 

where 

Here, as in the proof of Theorem 2, hf is a number independent of 
the feedback gain I<. Moreover, 119 can be set positive and arbitrarily 
large by selection of the number y. Hence, the necessary condition 
for stability (7) can always be violated, and the result follows. 

The issues addressed by Theorems 2 and 3 can be extended 
to cascaded linear-nonlinear systems with the nonlinear subsystem 
having a particular type of Lyapunov function. 
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Theorem 5: Consider the system 

where the linear subsystem is nonminimum phase, i.e., has a zero 
v E C+, and the nonlinear subsystem 5 = f ( 2 ,  0) has a Lyapunov 
function I'(s) 2 0, V(2) = 0 e 2 = 0, and V(z)  + 00 + llzll,+ 
x, such that 

(21) 

with a ,  ;3 positive real numbers, and n ,  p positive integers, n > 1. 
Then: 

1) The cascade (20) is not semi-globally stabilizable by linear, 
time-invariant, static <-feedback. 

2) If Re(v)  > o ( n -  1)/2p, the cascade (20) is not semi-globally 
stabilizable at all. 

v 2 -aV + pvny2p 

Prooj? Note that if V and W satisfy 

v 2 - aV + pvny2p 
li,, = - aW + pw"y2" 

and b7( t  = 0) = W ( t  = O), then IT _> W for all t > 0; see for 
example [16]. The proof then follows by the same arguments used in 
the proofs of Theorems 2 and 3 applied to the cascade 

= - + pJq- "y *p  

i = -4E + B u  
y = C< + D'u. 

To illustrate these results, the next section presents an example of 
a system for which Re(v) 5 a(m - 1)/2p, i.e., which we could 
expect to globally stabilize, although-recalling Theorem 3-not 
using a feedback u = I<(. As we shall see, we can achieve semi- 
global stability using linear static time-varying <-feedback and global 
stability using nonlinear ( E ,  2)-feedback. 

IV. EXAMPLE: A DYNAMIC "GAMBIT" 
As seen in the previous section, the question of the linear subsystem 

being nonminimum phase is critical to the stabilizability of these 
cascades, particularly if we are restricted to a control law U = I<<. 
Nevertheless, the situation is different if we use a linear time- 
varying feedback U = K ( t ) [ ,  or a nonlinear ([, 2)-feedback. 
More specifically, in this section we present an example where the 
nonminimum phase zeros of the linear subsystem are "not too fast" 
(see Theorem 2), and so we obtain global and semi-global stability 
using a switching control strategy. 

The proposed switching strategy consists of two stages. Firstly, 
annihilate the output of the linear subsystem to let the nonlinear state 
go to zero, while allowing the linear states to grow exponentially. 
Then, after a suitable period of time, switch to a control strategy that 
stabilizes the linear states. Since the linear states grow at a slower 
rate than the decay of the nonlinear state, it is always possible to find 
a switching time avoiding finite time escape of 2. This stratagem is 
somehow reminiscent of a chess gambit, where a piece (stability of 
the linear states) has to be initially sacrificed to ultimately win the 
match (global stability of the cascade). 

We now introduce the example. Consider the cascade 

s = - 32 + c 2 y 2  

< = U  

y = < - u  
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where 2 ,  y, U are in R. The linear subsystem has a nonminimum 
phase zero U = 1. Hence, by Theorem 3, we know that linear static 
<-feedback cannot-in a global sense-stabilize the cascade. Also, 

where the last step uses the choice of T in (24). Returning to the 
original variables, we have obtained 

.%O 
e-3t  

U < & / 2 p  = 312. We show next how the cascade (22) is semi- 4 t )  I -7 t > T  (27) 
I _  

globally stabilized using linear time-varying (-feedback, and later 
on, how global stability is achieved by nonlinear ( E ,  2)-feedback. 
The following remark is first in order. 

Remark 2: Note that z = 0 is an invariant manifold of system 
(22) independently of the control law. Hence, if at any time, T say, 

allow us to analyze separately the cases z ( T )  > 0 and z (T )  < 0. 

which shows the boundedness of the nonlinear state for every time 
t > T .  Since T is finite for finite initial conditions, ( and U are also 

1 
This strategy can be applied to every given set of initial conditions, 

thus resulting in semi-global stability. Note that the semi-global 

time, though. 

exponentially bounded and the result follows. 

z ( T )  > [z(T) < '1, then for > T, z( t )  2 [ 2 ( t )  5 '1. This 
property provided by this time-varying controller is not uniform in 

A. Semi- Global Stability 

control strategy: 
Let the initial conditions be xo ,  ( 0 .  We propose the following 

(23) 
i fzo  5 0, or if xo  > 0 and t 2 T 

U = ( - ;  if z o  > 0 and t < T 

where 

Here log+(.) denotes max {log (.), 0}, and t is a small positive 
number. This control law is fixed if zo 5 0, and has at most one 
switching at t = T if xo > 0. 

CuseA.1: (20 5 0) If z o  5 0, then the control law U = - E  
gives U ,  <, z bounded f o r t  2 0 and, moreover, ~ ( t ) ,  <(t) ,  z ( t )  -+ 

0 as t -+ 00. 

Proof: The differential equations become 
2 2  k =  - 3 z + z  y 

E =  - <  
y = 2 < .  

Recall that, by Remark 2, xo 5 0 implies that z ( t )  5 0 for t > 0. 
Let V = - x  + E2/2 be a Lyapunov function candidate for (25) with 
2 5 0. Then, V = 32 - z2y2 - E ' ,  and so V 5 0 for z 5 0 and 
any (, and V = 0 if and only if z = 0 and < = 0. Hence, the origin 
is an asymptotically stable equilibrium for system (25) with initial 
conditions z o  < 0, ( 0 .  1 

CaseA.2: (20 > 0)  If t o  > 0, then the switching control law 
given in (23) gives U ,  E ,  z bounded for t > 0 and, moreover, 
u ( t ) ,  E(t), x ( t )  + 0 as t -+ W. 

Proof: First, for t < T ,  the control is set to U = E ,  so the 
system has the form 

i = -32  

E = E  
so z ( t )  := e - 3 t z ~  and ( ( t )  = etCo. This obviously makes the linear 
subsystem unstable, but note that the condition v < &/2p  assures that 
z ( t )  goes to zero at a faster rate than that at which I<(t)l increases. 

Then, at t = T-and for all t > T-set the control to U = - E  
to render the linear subsystem stable. The linear state will evolve as 
[ ( t )  = e- - ( t - -2T)E~,  and the output, y = 2C, will display a big peak 
before starting to decrease. Let us see that, by the choice of T ,  this 
peak does not provoke finite-time escape of z and, furthermore, gives 
exponential decay of all variables. 

Recalling the change of coordinates introduced in Section 11, we 
have the associated variable ~ ( t )  = e - 3 t / z ( t ) ,  and for t 2 T we 
can write 

Fig. 1 displays simulation responses for EO = - 1, 20 = 2, and 
different switching times. For these initial conditions, (24) gives 
T = 0.47 + E. It can be seen from the plots that the critical case 
with E = 0 still stabilizes the system, although with a big peak in z. 

Remark 3: This control strategy for semi-global stabilizability can 
be generalized to a cascade where the linear subsystem has relative 
degree greater than zero. In this case, though, we cannot force the 
linear subsystem output to zero immediately. Instead, we make it 
approach to zero exponentially rapidly, which is sufficient to avoid 
finite-time escape of z ( t )  in a first stage. The determination of a 
suitable switching time T for ultimate exponential boundedness of 
all variables follows the same lines given above, but the computation 
is much more involved. An example with a nonminimum phase linear 
subsystem of relative degree one can be found in [15]. 

B. Global Stability 
Alternatively, a nonlinear switching strategy can be devised if we 

also feed back the nonlinear state z. In this case, we can use the 
control law 

5e-" 
( whenever x(' 2 ?, 

U =  5e-" 
4 

- E  whenever x(' < 
with E a small positive number. Hence, at most one switching occurs 
and the system is globally stabilized (and in this case the stability is 
uniform in time). This is easily seen from the following arguments. 

Case B.1: [z (T)  5 01 if, at any time t = T ,  we have z ( T )  5 0, 
then the control law ~ ( t )  = - E ( t )  gives U ,  E .  z bounded for t > T ,  
and moreover, u ( t ) ,  ( ( t ) ,  z ( t )  + 0 as t + 00. 

Proof: The proof follows the same steps in the proof of Case 
A.l ,  with z ( T )  instead of zo.  

Case B.2: [ z (T)  > 0 and z (T )  E2(T) 5 5e-"/4] if, at any time 
t = T ,  we have z ( T )  > 0 and z(T)<*(T) 5 5eP"/4, then the 
control law U = - E  causes U ,  E ,  z to be bounded for t > T ,  and 
moreover, U@), [ ( t ) ,  z ( t )  + 0 as t + 00 without further switching. 

Proof For this case, the system's equations are given by (25)  
again. Let V = xE2. Then it is easy to check that V = -5V(1 - 
4V/5) I: -5V(l - e-.), and so V goes to zero exponentially 

V ( t )  5 V(T)e-&(t--T)  
with 

6 = 5(1- e-') (28) 
i.e., there is no further switching for t > T .  

The exponential decrease of V determines that also z goes expo- 
nentially to zero, since the differential equation for z in (25) can be 
written as j. = - 3 2  + 42V. The solution z ( t )  is nonnegative for 
t > T ,  by Remark 2, and more specificallly 

z ( t )  = e - 3 ( t - T )  x ( r ) V ( r )  d r  
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\ 1 - -  T=0.5s 
, \ i 

1 ' T=0.75; " , I . -.. 
- r - - - L  

- -  . - -  
1.5 2 2.5 3 3.5 4 4.5 5 

Time [SI 

-2.5' I 
I 1 I I I I I I I 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Time [SI 

Fig. 1. Time responses for semi-global stability 

Multiplying both sides of the last inequality by e 3 t ,  and denoting 
z ( t )  = e 3 t z ( t ) ,  we get 

Z ( t )  5 z ( T )  + e S T V ( T )  z(T)e? d r .  (29) l 
Applying the Bellman-Gronwall lemma to (29), it follows that 

z ( t )  5 z(T)  exp [ e " ' i ' ( l )  e - 6 ~  nr] 

< z ( T )  exp [ __ 7. (30) 

Finally, (30) gives 

x(T)E2 (T) 
2 ( t )  5 e-3(t -T)  z ( T )  exp [ q 1 ~  ..)I. 

On the other hand, note that E and U are already exponentially 
decreasing to zero. In effect, with this control law we have that 

Case B.3: [ z ( T )  > 0 and z ( T )  ('(37) > 5e-'/ 41 If, at any time 
t = T ,  we have z ( T )  ( ' (T)  > S e p E /  4, then the control law U = < 
causes .E2 to decrease exponentially to zero. 

( ( t )  = [ ( T )  = - u ( t ) .  

Proofi For this case, the system's equations become 
Fig. 2. Phase portrait of the system globally stabilized with nonlinear 

j: = -32 ( E .  z)-feedback. 
E = E .  

Then B.3, the linear subsystem will be unstable, E growing exponentially, 
but only for a finite interval of time, namely, until z(T)E2((T) 5 
5e-'/ 4 for some finite T .  Fig. 2 shows the phase portrait of the 
globally stable closed-loop system. 

Remark 4: We would conjecture that a nonlinear control law can 
also be generated using these ideas to achieve GAS when the linear 
subsystem has relative degree greater than zero. Yet, as for the case 
of semi-global stability, much more involved computations should 
be expected. 

do = - 3& + 2& 
d t  

= - .E2. 

From Cases B.1, B.2, and B.3, we can see that any pair of initial 
conditions will produce at most one switching of the controller, 
rendering the system asymptotically stable to zero. Note that in Case 
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V. CONCLUSIONS 

We have considered the problem of globalhemi-global stabilization 
of a class of nonlinear systems in the form of a cascade of a linear, 
controllable system, and a nonlinear, exponentially stable system. 
Key features of these systems are: 1) the linear “connection” to the 
nonlinear system is nonminimum phase, which implies that with high- 
gain (-feedback, peaking occurs; and 2) the nonlinear system has a 
strong coupling with its input, which means that if there is sufficient 
“energy” in the input then a finite time escape may occur. 

We have demonstrated families of these cascades for which 
globalhemi-global stabilization by linear time-invariant feedback 
of is impossible. In addition, we have shown that for systems with 
“slow” zero dynamics (2: stability) relative to the linear nonminimum 
phase zero location, even semi-global stabilization is impossible. 

By example, we have illustrated linear time-varying and nonlin- 
ear feedbacks that can give semi-global/global stabilization for the 
remaining case, i.e., “fast” zero dynamics. In this case, the approach 
is somewhat counterintuitive, namely: 

I )  First, force the input to the nonlinear system to zero using 
unstable feedback on the linear system. In this case, the 
nonlinear state ;I‘ converges to zero rapidly, while the linear 
state diverges. 

2) After a suitable period of time, switch to a linear stabilizing 
feedback to cause the linear state to return to zero. 

This procedure has an interpretation in terms of invertibility of 
the linear subsystem. Referring to the internal model paradigm [17], 
an ideal controller would be constructed using the inverse of the 
plant. When the plant (our linear subsystem) is nonminimum phase, 
we cannot invert it, as it would render an unstable controller. As our 
control strategy suggests, however, depending on the relative speed of 
the nonminimum zero we could invert it “for a while.” This period of 
“disconnec1.ion” allows the stabilization of the nonlinear subsystem 
in a way that, ultimately, the whole cascade remains stable when 
switching to a stabilizing controller for the linear part. 
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Optimal Control of Manufacturing 
Flow and Preventive Maintenance 

E. K. Boukas and H. Yang 

Abstract-In this paper, we address the optimal control issues corre- 
sponding to the planning of the production rate and maintenance rate 
of a failure prone manufacturing system. The discounted cost of our 
optimization problem is assumed to be a functioin of the inventory and the 
maintenance rate, where certain cost rates are specified for positive and 
negative inventories and maintenance, and there is a constant demand 
rate for the commodity produced. The objective of this paper is to choose 
the rates of production and maintenance to minimize a discounted cost 
over infinite horizon and to partially characterize the optimal solution. In 
the case where the maximum maintenance rate C is equal to a constant 
coefficient times the maximum production rate 12, we obtain a solution 
and show that the optimal solution is characterized by a critical surface, 
namely “hedging surface.” Its description is al!,o given. 

I. INTRODUCTION 

Manufacturing systems have received much attention recently. One 
way of dealing with manufacturing system problems is stochastic 
control method. One uses a special class of systems called piecewise 
deterministic systems to model this class of production system. See, 
for example, the work of Boukas [3] ,  Boukas et al. [SI, Davis [8], 
Rishel [9], Sworder [IO], Vermes [ I l l ,  andl Wonham [I21 for the 
description of this class of systems and their applications. In most of 
the manufacturing flow control models considered, the authors do not 
consider the machine age. Boukas and Haurie [4] give a model which 
permits the simultaneous planning of producl.ion and maintenance in 
a flexible manufacturing system where the probability of failure of 
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