N
N

N

HAL

open science

High-level primitives for recursive maximum likelihood
estimation
Bernard C. Levy, Albert Benveniste, Ramine Nikoukhah

» To cite this version:

Bernard C. Levy, Albert Benveniste, Ramine Nikoukhah. High-level primitives for recursive maximum
likelihood estimation. [Research Report] RR-2088, INRIA. 1993. inria-00074584

HAL 1d: inria-00074584
https://inria.hal.science/inria-00074584
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00074584
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

High-level Primitives for Recursive Maximum
Likelihood Estimation

Bernard C. Levy
Albert Benveniste

Ramine Nikoukhah

N° 2088
October, 1993

PROGRAMME 5
Traitement du signal,

automatique

apport
derecherche







ZIINRIA

RENNES

High-level Primitives for Recursive Maximum
Likelihood Estimation*

Bernard C. Levy*™*
Albert Benveniste ***

Ramine Nikoukhah ****

Programme 5 — Traitement du signal, automatique et productique
Projet AS, META2

Rapport de recherche n ° 2088 — October, 1993 — 42 pages

Abstract: This paper proposes a high level language constituted of only a few primitives
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taking values in a finite set. The use of high level primitive allows the development of highly
modular ML estimation algorithms based on only few numerical blocks. The primitives,
which correspond to the combination of different measurements, the extraction of sufficient
statistics, and the conversion of the status of a variable from unknown to observed, or vice-
versa, are first defined for linear Gaussian relations specifying mixed deterministic/stochastic
information about the system variables. These primitives are used to define other macros,
and are illustrated by considering the filtering and smoothing problems for linear descriptor
systems. In a second stage, the primitives are extended to finite state processes, and are
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Primitives de haut niveau pour I’estimation récursive

Résumé : On présente un langage de haut niveau constitué d’un petit nombre de pri-
mitives et de macros pour décrire des algorithmes récursifs d’estimation au maximum de
vraisemblance. Ce langage est applicable au cas linéaire Gaussien, mais aussi au cas de
variables a valeurs dans un alphabet fini.

Mots-clé : Estimation au maximum de vraisemblance, systémes descripteurs, détection de
pannes, modéles de Markov cachés, Viterbi.
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1 Introduction

In spite of the fact that Kalman filtering relies on a simple Gram-Schmidt orthogonalization
principle, over the years, the literature devoted to Kalman filtering and smoothing [1], [2]
and its square-root or fast algorithms implementations [3], [4] has become relatively com-
plex. To deal with numerical conditioning problems, such the possible singularity of the
measurement noise, or large uncertainties in the initial state variance, a number of variants
of the basic filtering and smoothing algorithms have been developed. Although most of these
algorithms are superficially similar, they usually require distinct implementations, which re-
sults in duplication of programming effort and a general state of confusion for the end user.
There is therefore a need to develop a modular environment, where all algorithms can be
constructed from a few basic modules, and where the underlying simplicity of all filtering
and smoothing procedures becomes again transparent.

One could of course argue that numerical signal processing software packages, such as
MATLAB, provide the desired environment for developing estimation algorithmsin a modular
manner. However, the functions performed by MATLAB are of a low level nature, and do not
capture the statistical aspects of operations arising in recursive maximum likelihood (ML)
estimation algorithms. By comparison, certain real-time signal processing languages, such
as SIGNAL [5] or its extension to random processes called SiaNalea [6], employ only a small
number of high-level primitives, which admit simple interpretations in terms of operations
on asynchronous data streams. While our goal here is more circumscribed than for SIGNAL,
since we focus exclusively on estimation problems, and do not have to contend with timing
issues, we shall retain the idea of employing just a few primitives to describe recursive
estimation algorithms in a modular format. The objects on which the primitives operate are
called observations, where an “observation” describes the hard constraints and probabilistic
relationship existing between a set of measurements and unknown variables. The primitives
and macros that we construct correspond in fact to simple statistical operations, such as the
combination of observations, the extraction of sufficient statistics of minimal dimension, or
the computation of marginal or conditional densities.

The first step towards the development of estimation primitives was taken in [7], where
two operations, called reduction and extraction, were introduced to formulate linear esti-
mation problems over graphs. The reduction operation compresses redundant observations,
whereas an extraction has the effect of removing from an observation some variables which
are no longer of interest. Unfortunately, the construction of the reduction and extraction
operations given in [7] is nonprobabilistic and focuses only on the generation of ML estimates
and error variances. As a consequence, these two operations alone cannot accomplish certain
tasks, such as the generation of innovations or the computation of the likelihood function
of an observation sequence. In this paper, we adopt a probabilistic point of view towards
the construction of primitives. Since the statistical concepts employed to define the primi-
tives are quite general, we do not restrict our attention to Gaussian processes. We consider
all ML estimation problems that are amenable to finite computer programs, i.e. those for
which conditional densities can be finitely parametrized. In addition to Gaussian models,
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4 B.C. Levy, A. Benveniste, R. Nikoukhah

these include processes taking values in a finite set, such as finite-state Markov chains [8] or
Markov random fields [9].

As in [7], an important feature of the approach we employ to formulate recursive ML
estimation problems is that we make no distinction between equations describing the model
dynamics and measurements. In the case of dynamics, observations may involve several suc-
cessive states of the process. This viewpoint is motivated by the observation that among all
the equations describing a certain stochastic process, the division between a subset employed
to construct the process, and another measurement subset is totally artificial. What really
matters is whether, given all the available dynamics and measurements, we can estimate
the variables which are of interest. This raises two issues. The first concerns the fact that
any dynamic or measurement equation contains in general a mixture of deterministic and
probabilistic information about the system variables. More precisely, depending on whether
noise enters in an equation or not, this equation specifies either a deterministic algebraic
constraint or a probability density or distribution for the system variables. This suggests that
the proper probabilistic framework for modeling systems is to consider probability densities
or distributions defined over submanifolds (linear subspaces in the Gaussian case) of the
underlying domain. This feature appears already in SiGNalea[6], where stochastic processes
are constructed by combining deterministic relations with a random variable generator. The
fact that we process all dynamics and measurements progressively, instead of constructing
the process a priori, engenders a second problem. Specifically, it is possible that certain va-
riables which are estimable from the complete observation set, may remain unknown on the
basis of the current partial observation set. Thus, we are confronted with a situation where
at any given time we have mixed information about the system variables: some are known
exactly, others are unknown, and the remainder admits a probability distribution.

The paper is organized as follows. We consider first the case of linear Gaussian models. In
Section 2 we show that we can associate to a linear Gaussian observation a pair formed by a
constraint space for the system parameters and measurements, and a Gaussian probability
density defined over this space. A criterion is presented to determine whether a variable
is estimable from the specification of such a pair, and the maximum likelihood and least-
squares estimates are obtained by solving constrained optimization problems. The high-
level ML estimation primitives are introduced in Section 3. The first primitive performs
the combination of two observations. This involves imposing to the combined observation
the deterministic constraints associated to each of its components. Another difficulty arises
when the observations we combine contain common parameters or measurement vectors.
The equality of these parameters and measurements must be taken into account in the
combination step. The second and third primitive are formed by the reduction operation
and its complement, the coreduction. From a statistical point of view, the reduction of an
observation generates a minimal sufficient statistic while preserving the constraint space
of the parameter vector. The coreduction extracts from an observation the information
concerning only its measurement vector. It yields the likelihood function of the measurement
vector, as well as the deterministic constraints, often called parity checks, that must be
applied to the measurement to determine whether it is compatible with the observation
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model. The last primitive, called mutation, is needed to define conditional observations, and
consists of switching the status of a parameter or measurement from unknown to known,
or vice-versa. In our framework, the extraction operation of [7] is only a macro, which can
be implemented easily in terms of the four primitives. Efficient numerical implementations
of the primitives are also provided, so that to each primitive corresponds both a statistical
concept and a numerical module.

The primitives and macros are used to obtain a general recursion principle for the com-
putation of ML estimates, and the evaluation of the likelihood function and parity checks of
a stream of observations. This principle is illustrated in Section 4 by considering the filtering
and smoothing of linear Gaussian descriptor systems, as well as a simple failure detection
problem. High level programs are provided for the Kalman filter, and the two-filter and
Rauch-Tung-Striebel smoothers. These programs are so compact it is hard to believe they
implement a complete Kalman filter or smoother. However, by keeping track of the step by
step implementation of each primitive, it is easy to relate them to standard Kalman filter
or smoother implementations.

The case of a parameter process taking values in a finite set is considered in Section
5. Depending on whether the measurements are continuous or discrete, an observation is
modeled as a probabilility density or distribution defined over a constraint manifold, cor-
responding to the deterministic constraints imposed on the parameters and measurement.
Because of the discrete nature of the parameter process, only ML estimates are of interest.
Also, since the primitives correspond to general statistical operations, it is not difficult to
adapt them to the given model. The only difference is that depending on whether the primi-
tives act on Gaussian or finite-valued variables, they rely on different numerical algorithms.
The applicability of the primitives is illustrated by considering the maximum likelihood state
sequence estimation problem for a hidden Markov model. By realizing that this problem has
the same graph dependency structure between observations and parameters as the linear
descriptor estimation problem of Section 4 (see [7] and Section 5 for a discussion of the
XO-graph representation of an estimation problem), we demonstrate, somewhat surprisin-
gly, that the Viterbi algorithm admits the same high-level program as the double-sweep
Rauch-Tung-Striebel smoother. Thus, although the two algorithms look very different, the
use of primitives sensitive to data type allows us to show they are identical, which makes
precise an analogy observed in [10].

2 Estimation over Constrained Spaces

A Observation Model

Consider a linear observation
o : Ey=Az+ Bu, (2.1)

where u ~ N(0, I,;,) is a zero-mean Gaussian vector of R™, and the measurement y € RP
and parameter vector 2 € R” are respectively known (we shall say observed) and unknown.
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6 B.C. Levy, A. Benveniste, R. Nikoukhah

The observation o has dimension ¢, where ¢ denotes the dimension of the vector Ey, so
that the matrices £, A and B have sizes ¢ X p, ¢ X n and ¢ X m, respectively. In (2.1), the
covariance BBT of the noise Bu need not be invertible, but without loss of generality, it can
be assumed that B is one to one, i.e., B has full column rank.

The observation model (2.1) is nonstandard, since it is customary to set E = I, with
q = p. However, the greater generality afforded by the model (2.1) will enable us to combine
observations o; and os whose measurement vectors y; and ys contain common components.
This model allows also the existence of algebraic constraints between the entries of y. In
this context, because no constraint is imposed on the rows of E| it is worth noting that the
distribution u ~ N(0, I,;,) is an a-priori distribution for the noise, before the specification
of equation (2.1). After the observation (2.1) becomes known, some components of u may
be known exactly. The following lemma describes more precisely the information provided
by equation (2.1).

Lemma 2.1 (canonical decomposition)

1) Given a linear observation o of the form (2.1), there ezists a transformation (S,V)
with S invertible and V' orthonormal such that

M, 10
_ | M r_ |00 o ¢
SA = 0 SBV*® = 0 I (2.2)
0 0 0
. | M 4
with M = [ M, ] onto, so that if
131
| Fe ol wm .
SE=F = 7y Vu= [ us ] , (2.3)
ry
the observation o takes the form
Fy M, ui
Fy | | My | 0 .
s y= o |® + w | (2.4)
Fy 0 0

where uy ~ N(0,I) and ug ~ N (0, ) are independent.

2) The canonical decomposition (2.2)-(2.4) provides the following information about x
and y. First, [y7 77 belongs to the subspace C of RPT™ defined by the two constraints

Fyy = Mszx (2.5a)
Fuy = 0. (2.5b)
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Over C, the observation o specifies the Gaussian density

1
p(y,z) = kexp — 5 ([[(F1y — Myx)||* + || Fsyll) (2.6)

where k ts a constant which can be selected equal to 1, since we do not require that
p should be normalized *. Thus, the specification of an observation of the form (2.1)
is equivalent to the selection of a Gaussian density and constraint space pair (p(y, ),

C).

Proof: We only need to prove 1), since 2) is a direct consequence of 1). By performing a
QR factorization of A, we can find an orthonormal matrix

T = [ K ] (2.7a)

L
such that
A, .
TA = [ 0 :| , (2.7b)
where A, has full row rank. Denoting
E,
=[] o
and B = LB, we see that
Ey=DBu. (2.9)
Let
= 0 X .
B_U[0 O]V’ (2.10)

with U and V' orthonormal, and X diagonal positive definite, be a singular value decom-
position of B. Note that the block ¥ has been placed in position (1,2) in order to ensure
consistency with the choice (2.3) of input transformation. Then, the transformation

[2]=1%" s]e [n]-w .

yields the last two block rows of (2.4), where, because V is orthonormal, the covariance of
Vu is identity. This implies u; and us are independent with unit variance. Writing

KBVt =[ B, C, ], (2.12)

1In other words, all densities which differ only by a multiplicative constant will be viewed as equivalent.
This enables us to perform arbitrary linear transformations on the vectors z and y without keeping track of
the Jacobians of the transformations.
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8 B.C. Levy, A. Benveniste, R. Nikoukhah

and taking into account the third block row of (2.4), we also obtain
F.y=A,z+ B,uy , (2.13a)

with N

F.=F.—C,F;3. (2.13b)
The assumption that B has full column rank implies B, has full column rank. Consequently,
by performing a QR decomposition of B,, we can find an invertible matrix Z such that

Z&:[é]. (2.14)
Multiplying (2.13a) on the left by Z, and denoting
I3 | My | .
[F2]_ZFr M_[M;g]_ZAr’ (2.15)
then gives the first two block rows of (2.4), where the matrix M has full row rank since A,
has full row rank and Z is invertible. a
Remarks:

1) An interesting feature of the above decomposition is that it relies exclusively on nume-
rically stable operations, such as QR or singular value decompositions. In some sense,
it can be viewed as just a formalization of procedures which occur repeatedly, but
under different disguises, in the implementation of square-root Kalman filters [3].

2) Given an observation o of the form (2.1), the generation of the last two equations
of (2.4) requires only the first step of the procedure employed to construct (2.4).
Specifically, as indicated by (2.7a)—(2.7b), if L is a matrix whose rows form a basis of
the left null space of A, so that LA = 0, the last two equations of (2.4) are given by

LEy = LBu. (2.16)

Thus, the full decomposition procedure of Lemma 2.1 needs to be applied only if we
seek to compute the whole canonical form (2.4).

An interesting feature of the constraints (2.5a) and (2.5b) defining C is that the second
involves y only. The space

S={y: Fuy=0} (2.17)
identifies the observations which are compatible with the model (2.1), so that the test Fyy =
0 is actually the parity check that must be applied to an observation y to determine whether
it can arise from the model (2.1). In this context, it is usually desirable to compress the row
space of Fy, i.e to find an orthonormal matrix W such that

Wn:[%ﬂ, (2.18)

INRIA
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where Fy, has full row rank. Then, the parity check test required to determine whether y
belongs to & reduces to
Fay =0, (2.19)

which involves only independent tests. Furthermore, if
X(y)={z: Max=FoyforyeS}, (2.20)
the constraint space C can be expressed as
) o ¢
C= : 2.21
U [ X (y) ] (221)
yeS

i.e. given a valid observation y € §, the vector z is constrained to belong to the affine space
X (y). This space describes the deterministic constraints to which « is subjected once y has
been obtained and its validity established.

The affine space X (y) can be parametrized as follows. Let Ny be a matrix whose columns
form a basis of the right null space of M5y. Then, observing that

zp(y) = M3 (MaM3)™' Foy (2.22a)
is a particular solution of the equation
Moz = Foy (2.22b)
the vectors of X'(y) admit the linear parametrization
2(&,y) = Nal + 2, (y) (2.23)

where ¢ is an arbitrary vector.
Thus, once the validity of the observation y has been established, the information avai-
lable about z presents the following features:

(i) The density p(y, ¢) is concentrated on the affine space X'(y), so that some components
of x are known perfectly.

(ii) Some other components are completely unknown, which is reflected by the fact that
the density p is uniformly distributed with respect to these variables.

(iii) The remaining components of # admit a Gaussian distribution.

We are therefore confronted with a situation where we have mixed information about the
various components of z. Obviously, given a complete set of observations, we would like
to find ourselves in a situation where x does not include any unknown component. This
property can be described as follows.

RR n 2088



10 B.C. Levy, A. Benveniste, R. Nikoukhah

Definition 2.1 A vector x is said to be estimable if, given a linear parametrization z(¢,y)
of X(y), the log-density —Inp(y,z(£,y)) is a nonsingular quadratic form of the vector §.
Then, p(y, z) admits a unique mazimum over X(y), and the integral

/g(r(ﬁ, v)p(y, 2(€, y))d¢ (2.24)

exists for all functions g(x) which grow at most polynomially as ||z|| — oo, so that all
moments of the density p(y,x) exist over X (y).

Setting ¢ = 1 in (2.24), we see that when z is estimable, the marginal density

p(y) = / p(y, 2(€,y))dé (2.25)

can be defined over the space S of valid observations.

Lemma 2.2 The vector x is estimable if and only if in the observation equation (2.1), A
is one-to-one, or equivalently, iff in the canonical decomposition (2.2)-(2.4), the matriz

(2.26)

u= ]

s invertible.

Proof: Substituting the parametrization (2.23) of X'(y) inside the density p(y,z) in (2.6)
yields

— Inp(y, 26, 9) = (1P — Miay(y) = MiNagl P+ [ FaglP) . (22)

which shows that —Inp(y, (&, y)) is a nonsingular quadratic form of ¢ if and only if M; N,
is one to one, i.e. iff no vector of the null space of M5 belongs also to the null space of M;.
This means that M must be invertible (note that by construction, M is onto). Since M is
related to A through the transformation (2.2), this is equivalent to requiring that A should
be one to one. ad

The expression (2.25) defines the marginal density p(y) only when z is estimable. Howe-
ver, given an observation of the form (2.1), we can always obtain an estimable parametriza-
tion by factoring A as

A=NM (2.28)

with N one-to-one and M onto. Then, with z = Mz, the observation can be rewritten as

Ey=Nz+ Bu, (2.29)

INRIA
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where z is estimable. Thus, we can always find a parametrization which allows the evaluation
of the marginal density p(y) through (2.25). In particular, in the coordinate system (2.2)-
(2.4), we can select as estimable parameter vector

z:[i;]:[%;]x (2.30)

Integrating the density

1
p(y,2) IGXP—§(||F1y—21||2+||F3y||2) (2.31)

over the affine space Z(y) = { z : z2 = Fay } then gives

1
p(y) = exp — || Fay]|” (2.32)

which is defined over S.
A pair (p(y, ), C) can therefore be decomposed into two pairs:

(i) (p(y), S) which specifies the marginal density and constraint space for the measure-
ment y. The density p(.) will be called the likelihood function of the observation o,
and will be denoted as L(0). Also, unless the context is clear, we shall use S(o) to
denote the constraint space associated to o, so that S1 (o) will be the space of parity
checks that must be applied to y to determine its validity.

(ii) The conditional density and constraint space pair (p(z|y) = p(y, z)/p(y), X (y)), where
in the coordinate system (2.2)-(2.4), we have

1
p(ely) = exp— ||y — Mz||”. (2.33)

Thus, the major difference with observation models with nonsingular noise is that we must
keep track of constraint spaces along with the usual densities or conditional densities.

B ML and LS Estimation

The probabilistic set-up that we employ has the effect of blurring the usual distinction
between Bayesian and ML estimation. On one hand, we model all prior information as
observations. For example, to describe the measurement equation

y=Hzx+Jw (2.34)

with  ~ A(0, P) independent of w ~ N(0, I,,,), we replace it by the equivalent model

[3]y=[é]r+[§3”;] (2.35)

RR n 2088



12 B.C. Levy, A. Benveniste, R. Nikoukhah

with GGT = P and the noise v ~ N(0,1,) independent of w, where r denotes the rank
of P. The only difference betwen (2.34) and (2.35) is that the prior information about z is
modeled as an extra measurement. This gives the impression that we have adopted a pure
ML point of view. Yet, unlike the usual ML philosophy, where p(y, z) is considered as a
probability density for y with  unknown and fixed, p(y, ) is viewed here as a joint density
for both y and # over the constraint space C.

Then, the problem of estimating an estimable vector « from an observation o of the form
(2.1) can be formulated as follows.

Definition 2.2 Assume that x is estimable. Then the ML estimate Eprr(y) of @ giveny € S
is the argument of the mazimum of p(z|y) (or equivalently, p(y,z)) over X(y). The least-
squares (LS) estimate £rs(y) is the function #(y) € X (y) which minimizes

Ellle - #()lI*y) £ / l2(€, y) = 2(w)lI*P(2(&, Y)ly)dE (2.36)

where x(&,y) is a linear parametrization of X (y).

It is well known, at least in the case of observations with nonsingular noise, that for linear
Gaussian models, the ML and LS estimates are the same. This result remains true in the
presence of deterministic information.

Theorem 2.1 If x is estimable, its ML and LS estimates are identical, i.e.,
Eyr(y) = 2rs(y) (2.37a)

and
p(y) = p(y, 2mr(y)) (2.37b)

fory € S, where the equality in (2.37b) holds modulo multiplication by a constant indepen-
dent of y. Thus the likelihood function of o can be obtained either by computing the marginal
density p(y) or by substituting the ML estimate Zpr(y) inside the joint density p(y, x).

Proof: We need only to modify slightly the usual derivation for Gaussian densities over
unconstrained spaces. Without loss of generality, it can be assumed o has been brought to
the canonical form (2.2)—-(2.4), where since z is estimable, M is invertible. Denoting

M7t=Q=[Q1 @], (2.38)
the space X (y) can be parametrized as
2(&,y) = Qi€ + QaFay, (2.39)
which yields
p(e(E, ply) = exp —5 | Fiy — €] (2.40)

INRIA
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Its maximum is reached for éML = Iy, so that
N Fy .
emr(y) = Q [ Py ] v (2.41)

Also, since p(Zmr(y)|y) = 1, (2.37b) holds.
Similarly, by employing the parametrization (2.39), we find

/ 12(6, ) — #(0)| (€, v)de

= [ie]| g, | -sieew-iny-aer,) (2.42)
2Y
which is minimized by
. r
irs(y) = Q [ " ] v, (2.43)
2
so that the ML and LS estimates coincide. a

3 Primitives and Macros

We have now all the tools necessary to develop a probabilistic interpretation for the ML
estimation primitives introduced in [7]. However, unlike [7], where the attention was focused
exclusively on ML estimates and their associated error variances, we shall examine the effect
of the primitives on all the subcomponents of an observation.

A Combinator

The first primitive we consider is the combination 01 A 0y of two independent observations
01 and o3, where the symbol “A” should be interpreted as the logical “and” connector.

Definition 3.1 Consider two observations

z
01 - [ E11 Elc ] [ zl :| = [ A11 Alc ] [ Il :| +Blu1 (31&)
Ye T .
02 : [ Eoe Eon || = [ A As || + Baus (3.1b)
Y2 L2
where the noises u1 and us are independent with u; ~ N(0,1) for i = 1, 2, and such that

Yo and x. denote respectively the measurement and parameter vector components which are
common to both observations. The combined observation is given by
) [ Enw B O ] o1
o1 Nosg

0 FEs Ea :yc
Y2

RR n 2088



14 B.C. Levy, A. Benveniste, R. Nikoukhah

Ty
_ A11 Alc 0 ) Bl 0 Uy ‘
o 0 Azc A22 Te + 0 B2 Usg ’ (32)
T2
The combinator A is clearly commutative and associative. If
Y1 1 L1
vy=| v r=| = (3.3a)
Y2 L2
Y1 ] Ye o
= = 3.3b
n [ Ye | 2 [ Y2 :| ( )
_ [ ] | e
M—[xc_ )\2—[332] : (3.3¢)

the constraint space C for [y? & ]7 is obtained by taking the conjunction of the constraints
defining C; and C,, which concern respectively the vectors 57 x7 |7 and [n x% 7. Over C,
the density of 01 A 0y is given by

P(y; ) = p1(m, x1)P2(n2, X2) , (3.4)

where p;(n;, xi) is the density over C; associated to the observation o;, with i= 1, 2.

B Reduction and Coreduction

Next, consider an observation o of the form (2.1). It may contain information which is either
redundant or irrelevant for the purpose of estimating 2. This manifests itself by the existence
of a sufficient statistic of smaller dimension than FEy. However, for our purposes we need
a concept stronger than that of a sufficient statistic, which concerns only the compression
of an observation vector. In addition, we need to ensure that the constraint space X'(y) is
not affected by the replacement of Ey by a sufficient statistic. This leads us to introduce
the concept of sufficient observation, which is directly derived from the Neyman-Fisher
factorization criterion [11], p. 39 for the sufficiency of a statistic.

Definition 3.2 Given an observation o given by (2.1), we say that
os : KFEy= KAz + KBu (3.5)
1s a sufficient observation for o if it has the same affine constraint space:
Xo(y) = X(y) , (3.6)
and if, over this space,

ps(zly) = p(zly) , (3.7)

where ps(z|y) and p(z|y) denote respectively the conditional densities (cf. (2.33)) corres-
ponding to os and o.
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High-level Primitives for Estimation 15

If p(y,z) and ps(y, z) are the densities of 0 and oy, it is easy to verify that the condition
(3.7) is equivalent to requiring

p(y, ) = ps(y, x)a(y) (3.8)

where q(y) is independent of z, which except for the fact it must hold over the affine space
(3.6), takes the usual form of the Neyman-Fisher factorization criterion. A simple situation
where a sufficient observation can be identified by inspection is as follows.

Lemma 3.1 Consider two observations

0 : Eqy Agz + Boug (3.92)
01 ¢ Ely = Blul, (39]:))

where ug and uy are two independent zero-mean Gaussian vectors with unit variance. Then,
0o s a sufficient observation for o = o9 A oy.

Proof: If po(y, z) and pi1(y) denote respectively the the densities of oy and o1, the density
of the joint observation o is given by

Py, z) = po(y, z)P1(y) , (3.10)

which is in the form (3.8). Also, since 2 does not appear in o1, and the observation noises
are independent,

X(y) = Xo(y) . (3.11)
O

Since all sufficient observations corresponding to a given observation need not have the
same dimension, it is of interest to characterize those with the smallest size. The concept
of minimal sufficient statistic [11], p. 41 can be extended to observations in the following
manner.

Definition 3.3 Consider an observation o of dimension q, i.e. such Ey has dimension q.
It is minimal if it does not admit a sufficient observation os of lower dimension.

Lemma 3.2 An observation o is minimal if and only if the matriz A in (2.1) has full row
rank, or equivalently, its likelihood function and parity space satisfy

p(y) =1 §+(0) = {0}, (3.12)
i.e. the observation vector is unconstrained and uniformly distributed.

Proof: Without loss of generality it can be assumed that o is in the form (2.2)-(2.4), in
which case

M,y
My
0
0

A= (3.13)
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16 B.C. Levy, A. Benveniste, R. Nikoukhah

From this representation, we can conclude A has full row rank iff its canonical decomposition
does not include F3y and Fuy components. According to the representations (2.32) and (2.17)
for p(y) and 8(o), this is equivalent to (3.12).

Conversely, suppose that A has full row rank, and that

os : KFEy= KAz + KBu (3.14)

is a sufficient statistic for o. Without loss of generality, we can assume that both os; and o
are in canonical form (this requires employing different representations of the noise vector
u in o and o;), in which case

Fsl Msl
o Fyo 2 Mo
KE = Fa KA= 0 (3.15a)
Fu | 0
Py | M
E=|p | A=l ] , (3.15b)

where since A has full row rank, the canonical decomposition of 0o does not include Fsy or
F4y components. Because o; is a sufficient observation for o, it satisfies the conditions (3.6)
and (3.7). Observing that since A has full row rank, the observations y are unconstrained,
the condition (3.6) implies that the right null spaces of

[ Fsz _M52 ] and [ F2 —M2 ] (316)
are identical, so that there exists an invertible matrix Us such that
Uy | Fso =My | =] Fo =M, | . (3.17)

Taking into account the expression (2.33) for conditional densities, the condition (3.7) implies
Y Y
I [ e TR | N [ B

for all vectors [y? =7 |7 belonging to the right null space of the matrices in (3.16), where
C(y) denotes an additive factor depending only on y. Consequently, there exist two matrices
Uy, and Ujs, with U; invertible, such that

Ui Uis Fgao —Mg | | I =M
[ 0 U ] [ Fsy —M;s ] B [ Fy =M, ] ’ (3.19)
Since A is invertible, this implies that the observation o, has dimension greater than or equal

to o, so that o is minimal. The identity (3.19) indicates also that two minimal sufficient
observations are necessarily related by a left multiplication with an invertible matrix K.
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High-level Primitives for Estimation 17

This is due to the fact that if o; is minimal, its canonical decomposition (3.15a) does not
include Fi3 and F4 blocks. O

To gain some intuition about the concept of minimal observation, consider a minimal
observation of the form (2.1), where x is assumed estimable. Then A has both full row and
column rank, so that it is invertible, and according to (2.41), 2y = A~'Ey is the ML
estimate of . Without loss of information, we can premultiply (2.1) by A~!, which yields

rymrn =%+ Gu (3.20)

with G = A~'B, so that P = GGT is the error covariance of the ML estimate. Thus, in
this case, a minimal observation represents just a way of coding the ML estimate and error
covariance of z without including any extraneous information. More generally, when z is
not estimable, a minimal observation represents just a code for the ML estimate and error
variance of its estimable part z = Ax.

The identities (3.12) show that once a minimal sufficient observation has been construc-
ted, it contains no useful information about the constraint space S(0) and likelihood function
L(o0) of the original observation o. The reduction primitive described below provides a me-
chanism for constructing minimal sufficient observations, while at the same time keeping
track of the constraint space and likelihood function of o.

Definition 3.4 (reduction and coreduction) Given an observation o in the canonical
form (2.2)-(2.4), the reduced observation R{o} and its complement, the coreduction R{o},
are given by

R{o} : [ ﬁg ] y = [ ﬁﬁé ] o+ [ u ] (3.21)
T{o} : [ ﬁi ] y = [ us ] . (3.22)

Combining Lemmas 2.1 and 3.2, we obtain the following result, which justifies our choice of
reduction primitive.

Theorem 3.1
1) R{o} is a minimal sufficient observation for o, and

2) the constraint space 8(0) and likelihood function L(o) satisfy

S(0) = S(R{o}) L(o) = L(R{o}) . (3.23)

Thus, the reduction operation completely decouples the ML estimation of x from the
problem of computing the constraint space and likelihood function of o: the minimal obser-
vation R{o} contains all the information necessary for the ML estimation of #, whereas the
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18 B.C. Levy, A. Benveniste, R. Nikoukhah

coreduction R{o} contains all the information concerning the constraint space and likelihood
function of o.

Finally, note that although the primitives R{.} and R{.} are represented by different
symbols, because they can both be implemented with the decomposition algorithm of Lemma
2.1, it can be argued they form only one primitive. However, from a computational point of
view, it is preferable to implement {.} and R{.} as distinct entities. Indeed, as indicated
by the Remark 2) following the proof of Lemma 2.1, given an observation o of the form
(2.1), the generation of R{o} requires only the first step of the procedure employed to find
R{o}. Specifically, if L is a matrix whose rows form a basis of the left null space of A, the
coreduction R{o} takes the form (2.16). Thus, the full decomposition procedure of Lemma
2.1 needs to be applied only if we seek to compute both {0} and R{o}.

C Mutation and Other Macros

In addition to the three primitives: A, R{.}, R{.} previously introduced, we need to introduce
a fourth primitive whose effect is to change the status of a vector inside an observation from
known to unknown, or vice-versa. This primitive will be useful to formulate the concept
of conditional observation, where certain vectors need to be treated temporarily as known,
even though they are actually unknown.

Definition 3.5 Given an observation o of the form

o: EBy=][ A Al][if]+3u, (3.24)
the observation
M, {o} : [ E —A] [ ai ] = Agzo + Bu (3.25)

obtained by changing the status of the vector @1 from unknown to known, is said to be a
mutation of x1 inside o. Similarly, given

o [ Ey, E; ] [ ZO ] = Az + Bu, (3.26)
1

the observation
z

Myl{gl} : Eoyo = [ A _El ] [ n :| +BU, (327)
generated by changing the status of yy from known to unknown constitutes a mutation of y;
inside o'.

Clearly, two consecutive mutations of the same vector yield the original observation.
Consider now an observation of the form (3.24), and suppose we are no longer interested
in the vector zg and just seek to “extract” the information about y and x; contained in
(3.24). This amounts to computing the marginal density p(y,z1) and constraint space C;
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for [yT 2T 17 from the pair (p(y, zo, z1), C) associated to o. Referring to the property (3.23)
of the coreduction R{.}, we see it provides a mechanism for extracting the marginal density
and constraint space associated to the measurement vector y. If we want to include the
vector z; in the marginal computation, we need only to change its status and view it as a
known vector before applying the R{.} primitive. After R{.} has been applied, we can of
course convert back z; to its original “unknown” status. This motivates the construction
of the following two macros, which are expressed entirely in terms of the four primitives
already introduced.

Definition 3.6 (conditional observation, extraction) Given an observation of the form
(3.24), the conditional observation of o given x1, and the extraction of 1 from o, are defined
respectively as

olzy = RsM,; {o} (3.28a)
Xz, {0} My, oRoM, {0}, (3.28b)

“” denotes the composition of maps.

where

Taking into account the comment preceding (2.16), we see that if L is a matrix whose
rows form a basis of the left null space of Ay, X, {0} can be expressed as

Xz, {o} : LEy=LAyz1 + LBu. (3.29)

Thus, in the context of statistical models containing mixed deterministic/stochastic infor-
mation, the macros X, {o} and o|z; perform respectively the computation of marginal and
conditional densities and constraint spaces.

D Properties of the primitives and macros

This subsection describes several useful properties of the primitives and macros we have
introduced. We begin with simple formulas involving a single observation. Their proof is
immediate.

Lemma 3.3 The following formulas hold:

o = R{o}AR{0} (3.30a)
o = Xy {o}A Mg {o|z1}, (3.30b)

where in (3.30b), we assume o has the form (3.24).
The extracted observation X, {o} has the following properties.
Theorem 3.2

1) Given an observation o of the form (3.24), the ML estimates of the estimable part of
z1 based on o and X, {o} are the same.
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20 B.C. Levy, A. Benveniste, R. Nikoukhah

2) The extraction operation preserves the information contained in o concerning the mea-
surement vector y, in the sense that

RoX,, {0} = R{o}. (3.31)
In particular, we have

S(0) = S(Xz,{0o}) L(o) = L(Xg, {0}) . (3.32)

Proof: Consider the decomposition (3.30b) of o. Since o|x; is by definition a minimal
observation, according to the Lemma 3.2, its marginal density with respect to the pair (y, z1)
is a constant, and o | 1 does not impose any constraint on (y, z1). But applying the mutation
operation M, does not affect either the joint density of y and z; or their constraint space.
Thus, in the decomposition X, {0} A M, {o|x1} of observation o, the second component
does not provide any information about . This proves the first statement of of the theorem.

Also, since R{o} just encodes the constraint space and likelihood function of y, when
applying R to the decomposition X, {o}AM,,{o]| z;1}, we can ignore the second observation.
This proves formula (3.31). Then, (3.32) is just a consequence of (3.31) and (3.23). |

We now move to properties involving two observations. Note first that for an arbitrary
vector z, we have the obvious identity

MZ{Ol/\Og}IMZ{Ol}/\MZ{OQ}. (333)

Next, observe that the presence of the coupling parameter vector z. in expression (3.2) has
the effect of complicating the properties of the combinator A. Thus, it is of interest introduce
the absence of coupling vector z. as a special property. On the other hand, the presence of
a coupling measurement y. causes no particular trouble, as will be seen below.

Definition 3.7 (independent observations) Two observations o1 and oy with the struc-
ture (3.1a)-(3.1b) are said to be independent, which is denoted as

01 J_Og,

if they do not include any unknown coupling vector z., or, more generally, if, fori =1 or
2, the exiracted observation X, {o;} does not depend on z., i.e.

Xz {o;} = R{o;} . (3.34)

The property (3.34) is apparently weaker than the absence of coupling, since it only
requires that o; for ¢ = 1 or 2 should convey no information about the coupling vector z..
However, as the following lemma indicates, when (3.34) is satisfied, the observations o; and
09 can be reparametrized so as to make them decoupled.
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Lemma 3.4 If an observation o1 of the form (3.1a) satisfies (3.34), there exists a matriz
T such that oy can be rewritten in terms of the new vector

)=z + Tz, , (3.35a)

as
01 [ E11 Elc ] [ % :| = Allxll —}—Blul, (335]:))

c

which is now decoupled from the observation os of (3.1b).

Proof: If X, {o1} is independent of z., the expression (3.29) for the extraction operation
indicates that if L is a basis of the left null space of A1, we must have

LAy, =0 (3.36)

i.e. L must be in the left null space of A1.. Consequently, the column space of A;. is contained
in the column space of 411, so that we can find a matrix 7" such that

Ao = AnT . (3.37)
Substituting this relation inside (3.1a), and defining #} as in (3.35a), gives (3.35b). O

In general, because of the presence of the coupling vector z., the reduction R{o1 A 05},
likelihood function L(01 A 02) and constraint space (01 A 02) cannot be expressed purely in
terms of (R{o;}, L(0;), S(0;)) with i= 1, 2. However, when o0; and oy are independent, we
have the following expressions.

Lemma 3.5 If o1 L 09, the combined observation o = o1 A 09 satisfies

R{oy Ao} = R{o1} A R{02} (3.38a)
R{o1 Aoy} = R{o1} AR{os}. (3.38b)
In particular, we have
St(o) = S*(o1)+ St (02) (3.39a)
L(o) = L(o1)L(09), (3.39b)

where + denotes the (not necessarily direct) sum of vector spaces. Furthermore, if there is
no coupling measurement y., the sum in (3.39a) becomes direct.

Proof: Select a coordinate system such that o; and 02 have no coupling vector z.. Next,
observe that the canonical decomposition of an observation given in Lemma 2.1 depends
only on the matrix pair (A, B). Since the noises u; and us are independent and o; and og
have no coupling vector, the canonical decomposition (2.2)—(2.4) for 01 A 02 can be obtained
by reducing and coreducing separately o and o2, and then forming R{o;} A R{02} and
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R{o1} A R{o2}, which justifies (3.38a)—(3.38b). Then, using the representations (2.17) and
(2.32) of 8(0) and L(0), gives (3.39a)-(3.39b).

The property (3.39a), which is expressed in terms of the parity spaces of 0; and o2, can
be written equivalently in terms of their constraint spaces as

S(0) = S(01) N S(02) . (3.40)

Furthermore, when the observations o; and o0, do not contain a common measurement
component y., the parity check tests for 01 and 05 concern different measurement vectors y;
and ys, so that the sum in (3.39a) can be replaced by a direct sum. a

As a corollary of the above lemma, we have the following result.
Corollary 3.1 Ifo; L og, then for any unknown vector z,

XZ{Ol/\OQ}IXZ{Ol}/\Xz{OQ}. (341)

E Recursion Principle

We have now at our disposal all the tools necessary to develop recursive algorithms for com-
puting ML estimates, and to evaluate the constraint set and likelihood function associated
to a stream of observations. The algorithms that we shall derive rely on the recursion scheme
described below, which is a consequence of Theorems 3.1 and 3.2.

Theorem 3.3 Consider the observations

o1+ Euyi+FEiye = Anzi+ Az + Biug (3.42a)
02 1 Eoyc+ Eosys = Agcxe+ Azsxo + Bouo, (3.42b)

where uy and us are two zero-mean independent Gausstan vectors with unit covartance. Then

RoXxg{Ol A 02} = RoXxQ{RoXxC{Ol} A 02} (343)
and . . .
R{Ol A 02} = Rosz{Roch{Ol} A 02} A Roch{Ol} s (344)
which in turn implies
St(o1A03) = STH(RoXp,{ReXz {01} A02}) + SH(ReX, {01}) (3.45a)
Lo Aoy) = L(ReXy,{ReXz {01} A02})L(RoXy {01}), (3.45b)

where the sum in (3.45a) can be replaced by a direct sum whenever oy and oy do not contain
a common measurement y..
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Proof: We first derive (3.43). Decomposing o; as in (3.30a), and observing that R{o1} A 0y
and R{o;} are independent, the property (3.41) gives

Xx2{01 /\02} = Xx2{R{01}/\02}/\Xx2oF{01} . (346)
Since z3 does not appear in oy, X;,0R{0o1} = R{o;}. We can thus apply (3.38a), which
yields
R{Xg,{R{o1} Ao} AR{o1}} = RoXy,{R{o1}Aos} A RoR{o1}
= RoX;,{R{o1}Aos}. (3.47)

Now, according to (3.30b), 01 can be decomposed as
01 = Xz {o1} A M, {o1 |z}, (3.48)

where X, {01} and M,_{o1|z.} are independent since M,_{o1|z.} does not convey any
information about z.. Applying the reduction operation R to both sides, and noting that
RoMj_ {01 |z} is independent from observation Ro X, {01} A 02, we can apply again (3.41).
This gives
X {(Re Xy {01} A02) A RoMy {012} = Xpa{(ReXgp {01} A02)} AN Xp,oRoMy {o01]2.}
= Xp,{(RoXy {01} Ao2)}. (3.49)
Then, combining (3.47) and (3.49), we get (3.43).
Next, we prove (3.44). Using (3.46) and then (3.49) yields
X;,;2{01/\02} = Xx2{R{01}/\02} A XxQoE{Ol}
= XxQ{R{Ol} /\02} A E{Ol}
= Xp,{ReXy. {01} ANos A ReM, {01 |2.}} A R{o1}
= Xy, {ReX,. {01} Aos} A R{oi}. (3.50)
But o o
RoXx2{01 A 02} = R{Ol A 02} 5 (351)

and since observations X,,{R.X;_ {01} Aoz} and {0} are independent, by using (3.38b),
we find

F{XxQ{RoXxC{Ol}/\OQ} A F{Ol}} = EoXxQ{RoXxC{Ol}/\Oz} A E{Ol}
= RoXy,{RoX; {01} Ao2} A RoX; {01}, (3.52)
where (3.52) uses the identity RoX,, = R. Combining (3.50)—(3.52) gives (3.44). O

Thus our approach consists of estimating vectors in the order in which they arise in
observations, and then discard these vectors for the purpose of processing subsequent obser-
vations where they do not appear. The constraint space S(0) is obtained by juxtaposition
of the old constraints with new constraints for the latest observations. L(0) is obtained by
multiplying the old likelihood function with a term reflecting the new information, i.e. the
“innovation”, contained in the most recent measurement.
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4 Filtering and Smoothing of Descriptor Systems and
Application to Failure Detection

To illustrate the primitives and other macros introduced in the previous section, we solve the
filtering and smoothing problems for linear descriptor systems, and then apply our results
to a failure detection problem. Linear descriptor systems admit dynamics of the form

dk+1 : 0= —Ek+1l‘k+1 + Az + Brug (4.1)

with observations
Mpy1 0 Yr+1 = Crp12Zp41 + Dypug (4.2)

for 0 < k < N — 1, where uy, is a white Gaussian noise such that u; ~ A(0, ). The case
Er41 = I corresponds to the usual state-space models, but Ejy1 need not be invertible in
general. In fact, the matrices Er41 and Ay are not even required to be square, and the size
of the state x can change with k. The presence of deterministic information is reflected here
by the fact that the dynamics (4.1) may contain fixed algebraic constraints between entries
of zx41 and z, and the covariance DkD,{ of the observation noise may not be invertible,
thus resulting in a singular estimation problem.

The filtering problem for descriptor systems has been examined by several researchers
[12], [13], [14], [7]. For the case when zj is estimable from past observations, explicit re-
cursions for the optimum filter and its associated Riccati equation are given in [13], which
contains also an analysis of the stady-state convergence of the optimum filter. Square-root
implementations of the descriptor Kalman filter were proposed in [15] and [14]. The case
where zj is not estimable from past observations (but may be estimable from past and future
observations combined) is considered in [7], where the filtering and smoothing formulas were
expressed for the first time in terms of the reduction and extraction primitives employed
here. However, because a probabilistic interpretation of the primitives was not yet available,
the solution of the filtering problem presented in [7] does not include the generation of an
innovations process, or parity checks for evaluating the model validity in function of the re-
ceived observations. Both of these items have important practical applications, since as will
be shown below the computation of the likelihood function associated to model (4.1)-(4.2)
relies on the innovations process. Furthermore, a wide class of failure detection algorithms
[16], [17] relies on parity check tests of the type discussed here.

When considering the system (4.1)-(4.2), we make no distinction between dynamics and
measurements, and view all linear relations relating different random variables as observa-
tions for these variables. From this point of view, it is convenient to combine the dynamics
and measurement equations (4.1)-(4.2) into a single observation og41 = di41 A mp41 of the
form

0 —Ek+1 Ak Bk
: = = ; 4.3
o e [ Yk+1 ] [ Cr1 ]mkH * [ 0 ] et [ Dy ] o (43)
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for 0 < k < N — 1. The information available about the initial and final states is assumed
to have the separable form

Og - zZ0 = —Eol‘o + B_1U_1 (44&)
ON41 - INF1 = Anven + Byupn . (4.4]:))
A Filtering
Let
k
Pk = /\ ] (4.5)
j=0

be the observation obtained by combining all past observations up to time k. Then, the
filtered observation describing the information about zj contained in Py, the constraint
space of P, and its likelihood function, are denoted respectively by

oy = ReXu{Pr) (4.6a)
Sy = S{P;} Ly = L(P) . (4.6b)

Applying the recursion principle of Theorem 3.3, we obtain the Kalman filtering recursions

6£+1|k+1 = R°Xxk+1{6£|k Aoy} (4.7a)
Sty = SHReXp, {6l Aorpa}) @ SE (4.7b)
Lit1 = L(RoXepy {00, Aoks1})Ln (4.7¢)
with initial conditions
oo = R{oo}  So=8(R{oo})  Lo=L(R{oo}), (4.8)

where @ denotes the direct sum of vector spaces. These recursions, which obviously constitute
a rather unusual form of the Kalman filter, are totally expressed in terms of the primitives
and macros introduced in Section 3. To interpret the expressions obtained for S,ﬂ‘ and Ly,

note from the definition (3.22) of R{.} that the observation FoXle{éilk A og41} can be

decomposed as
Vi41 Wk 41
= , 4.9
[ Th+1 ] [ 0 ] (9)

where wg41 ~ N(0, I). The vectors v441 and 741 correspond respectively to the innovations
and parity checks of the given model, and with respect to these vectors, the recursions (4.7b)-
(4.7¢) take the form

Sip1 = {4, 0<ji<k+1:mp=0}taost (4.10a)

1
Liy1 exp —§||yk+1||2Lk (4.10b)
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so that, as for nonsingular filtering problems, the log-likelihood function I = —1In Ly is
obtained by summing the squared innovations.

Interpretation: The algorithm (4.7a)—(4.7¢) is quite compact and constitutes by itself a
complete implementation of the Kalman filter. However, for interpretation purposes, it can
be transcribed into a form closer to the usual Kalman filter if we assume that z; 1s estimable
from Py, so that [ —ET CT 17 has full rank for all k. In this case, 6£|k can be written as

g F1/2
£|k : I£|k_rk+2k|k/ g, (4.11)

where ‘%£|k and E£|k denote respectively the ML estimate and error covariance matrix of

given Py, and vy ~ N(0,7) is independent of the model noise uy. Also, given an arbitary
symmetric nonnegative definite matrix ¥, ©/2 denotes one of its square-roots. Then the
Kalman filtering algorithm (4.7a)—(4.7c) can be broken into two steps.

(i) Time update: We consider 6£|k A di41, which takes the form

e (2] 0 Ja o[ 1 Tas
0 | | —Er4r | Ap |7F

The predicted observation 6£+1|k = Xy {6£|k Adp41} is obtained by premultiplying (4.12)
by [ —Ag I'], which yields

f1/2
Eklk 0

0 By

[ vk ] . (4.12)

U

6£+1|k : Akl’kuc = —Ept12p41 + Brug — AkEiﬁc/zv (4.13)

Since extractions do not change observation constraint spaces or likelihood functions, we
have

A ~

Sk+1|k = S(O£+1|k):‘gk (4.14&)
A ~

Lipir = L(0]41) = Lk - (4.14b)

(i1) Measurement update: Consider now the observation 6£+1|k AMpyr:

o f sz
—Aklklk _ [ —Er ]$k+1+ By, _Akzkﬂc [ Uk ] . (4.15)
Yk+1 Cra1 Dy 0 vk

The transformation matrix Sp4+1 needed to bring this observation to the canonical form
(2.2)—(2.4) can be partitioned as

Sk4+11

Sk412
S = . 4.16
k+1 Sk+13 ( )

Sk414
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With this notation, the reduced observation 6£+1|k+1 = R{6£+1|k A myy1} takes the form

Sk411

Sk22
with vgy1 ~ N(0, I). Because of the estimability of zx41, Mg4+1 is invertible, and upon left
multiplication of (4.17) by

_Ak££|k

Yk+1 0

] = Mrs1Zp41 + [ Ukt :| , (4.17)

ML =] Qre1r Qryrz ], (4.18)
we obtain
££+1|k+1 : ££+1|k+1 = ZTp41+ Eii/1|2k+1vk+1 (4.19)
with
o oyt [ Sk+11 ] —Ak;ﬁilk ] (4.20a)
B+1[k+1 B+ Spirs Vest
E‘]{;i/llzk_i_l = Qrs11- (4.20b)

Similarly, E{6£+1|k Aogy1} is given by

Sk+13 —Aki‘£|k [ Vk41 ] [ W41 ]
= = 4.21
[ Skt14 ] 0 ’ (4.21)

Ye+1 Trk+1
so that the innovations vg41 and parity check vector w41 are linear combinations of ££|k
and yg41-

Note that the above discussion merely provides a step by step account of the operations
appearing in the Kalman filtering algorithm (4.7a)-(4.7¢c). However our goal is ultimately
to hide all implementation details of this type by focusing on the larger picture provided by
the primitives and macros we have introduced.

B Two-filter Smoother

To discuss two-filter implementations of the smoother associated to the model (4.1)—(4.2),
it is convenient to construct the backward Kalman filter for this model. Thus, let

N+1
Fe= o (4.22)

i=k

be the combination of all observations in the future of k. Then the backward predicted
observation 6Z|k+1 describing the information about z; contained in Fj41 is given by

6k|k+1 = R"Xl‘k{Fk-}-l} . (423)
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According to Theorem 3.2, it satisfies the backward Kalman recursion (in predicted form)

5ﬁ_1|k = R°Xxk_1{02|k+1 A og} (4.24a)
6?\7+1|N+2 = R{ont1}. (4.24Db)
Then, if
N+1
0=/ o (4.25)
j=0

represents the combination of all observations, the smoothed observation
0y = RoX,;, {0} (4.26)

describes the information about z contained in all observations. Instead of having to process
all observations simultaneously, as indicated by the formula (4.26), by observing that O =
Py A Fry1, we obtain the two-filter smoothing formula

0f = R{6L, A ppn} - (4.27)

Interpretation: The above expression, through its use of estimation primitives and macros,
provides a totally self-contained implementation of the two-filter smoother. However, for
the sake of consistency with past work, it can be converted to the standard form of this
smoother [18], [19] which expresses the smoothed estimate as a weighted combination of
the forward and and backward Kalman filtering estimates. To do so, assume that zj is
estimable separately from Py and Fj41, and that the corresponding forward and backward
error covariance matrices E£|k and EZIkH are positive definite. The estimability assumption
for x, based on Fjy1 is quite stringent since it requires that the dynamic matrix A should
be invertible, which is often not true. Under these assumptions, the combined observation
6£|k A 6Z|k+1 can be expressed as

~f f1/2

z I b 0 f

[ ibklk ] = [ / ] ap+ | I G172 ] [ z;g ] : (4.28)
klk+1 0 E|k+1 k

The transformations which bring it to canonical form (where for convenience the nonzero
blocks of SBV in (2.2) are not normalized to the identity) can be selected as

7Foy-1 b —1
S, = (Ekljk) (Ek|k+11) ] (4.29a)
noo [(z;)m 0 ] (347107 <Ez|k§1>/-m] (4.29b)
= sy—1/2 1/2 1/2 ' ‘
0 (@}) / Ek|k _Ek|k+1
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with
( Z)_l = (E£|k)_1 + (22|k+1)_1 (4.30a)
Qi = Bt Tl (4.30D)
Note that V% is orthonormal. This gives
of (BT = (B0 ek + (37 g (4.31)

with
(EZ)_%Z = (E£|k)_1££|k + (22|k+1)_1532|k+1 ) (4.32)

which constitute the usual two-filter smoothing formula.

C Double-sweep Smoother

To derive the double sweep or Rauch-Tung-Striebel (RTS) smoother [20], it is convenient to
introduce the conditional observation

wk(xlﬂ-l) = ka,fk+1{0} | Tk+1 (433)

representing the information about zj contained in all observations, conditioned on the
knowledge of z41. Taking into account the decomposition

O=F, A Op41 A Fk+2 , (4.34)

and noting that, given zp41, Fr42 does not contribute any information about zp (23 does
not appear in this observation), we get

wi(@r41) = (0 A okt1) | 41 - (4.35)

This expression represents the forward sweep of the RTS smoother. It can be implemented
together with the forward Kalman recursion (4.7a).
To get the smoothed observation o, we take into account the decomposition

R°Xxk,$k+1{0} = M£k+1 {wk(xlﬂ-l)} A 6Z+1 (4'36)

with wg(2r41) L 0441, which in view of the definition (4.26) of a smoothed observation,
implies
62 = R°Xxk{Mxk+1 {wk(rk+1)} A 62-{-1} : (437)

This recursion constitutes the backward sweep of the RTS smoother.

Interpretation: To gain a better understanding of the RTS recursions (4.35), (4.37), we
derive below a semi-explicit form of the smoother which relies on finding closed-form imple-
mentations of the primitives appearing in the recursions. However closed-form realizations
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of the primitives have the tendency to be less reliable numerically than the implicit imple-
mentations presented earlier. Thus, the explicit form of the RTS smoother presented below
is for illustrative purposes only.

(i) Forward sweep: Assume again that z, is estimable from Pj. In addition, we assume
that the noises Bruy and Dyuy appearing in the dynamics dp41 and measurements mpy4q
are uncorrelated, i.e. BkDZ = 0. In this case, given zp41, mr41 does not contribute any
information about zj, so that

wi(@r41) = (0, Adryr) | @rr (4.38)

where 6£|k A dpy1 is given by (4.12). Premultiplying (4.12) by

Ty = [ _ik ? ] : (4.39)

and applying an orthonormal transformation Vj, to the vector [vi ul ¥, where Vj is selected
such that

Ef 1/2 0 G H
[k v = [ ko Ak ] 4.40
_Ak2£|2/2 By k 0 Jr ) ( )

the conditional observation wg(zx41) can be expressed as
wk(rk+1) : @ki‘ilk + kak+1 =x, + Gpnyg (4.41)

with
Op = I+ HyJ ' Ay Ry = —HpJ ' Epqa, (4.42)

where ny ~ N(0,I). To interpret the matrices ©y, Ry, and G}, appearing in (4.41), note
that by multiplying (4.40) by its transpose, we find

I = sl AT+ BB 2L (4.43a)
HJY = —%f,A7 (4.43b)
Gi6T = xf, %], Al A, 25 (4.43c)
In the above expressions, we have assumed that the matrix J is invertible. But, according to
(4.43a), Jy, is a square-root of the covariance matrix E£+1|k of the noise Brup — Akziﬁj%k

in the predicted observation 6£+1|k. Thus, J; will be invertible whenever E£+1|

definite. Substituting (4.43a) inside the expressions (4.42) for ©; and Ry, gives

18 positive

Or = - AL (S0 A (4.44a)
Re = 3], AT(S] ) By (4.44b)
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Finally, from (4.41), we see that G;G¥ = YF is the filtered error variance for z; based on the
observation wy(zr+1), i.e based on the past observations, and the “pinned” value of zp41.

Backward sweep: Since the mutation of 241 inside wg(#41) is accomplished by moving
the Rpxpy1 term to the right hand side, the observation My, , {wr(zr41)} A 07, takes the

form
~f
e T I I S [ I R
z; 0 1 Tp41 0 Xy Uy g

To extract zp from this observation, we need only to premultiply it by [ I Ry, ], which gives
(4.31) with

B, = Opdl, + Ritip (4.46a)
i o= Ry RT+3F. (4.46b)

D Application to Failure Detection

The descriptor Kalman filtering recursions of Section 4.A are directly applicable to a recently
proposed [21] failure detection procedure for dynamical systems containing nuisance para-
meters, i.e., quantities taking arbitary unknown values. Given a standard state-space model
where a nuisance term appears additively in the dynamics, the nuisance can be removed by
premultiplying the dynamics with a matrix which nulls out the nuisance space. This yields
a system with descriptor dynamics, where the presence or absence of failures can be deter-
mined by applying either innovations—based statistical failure detection tests, or algebraic
tests relying on parity checks. Since the Kalman filtering recursions (4.7a)-(4.7c) generate
both innovations and parity checks, they provide all the data necessary to implement failure
detection schemes.

Our objective at this stage is not to discuss failure detection issues in detail, but just
to illustrate the applicability of descriptor Kalman filtering algorithms. Accordingly, we
follow the formulation of reference [21], to which the reader is referred for more extensive
discussions and a comprehensive bibliography.

As starting point, we formulate the standard binary hypothesis testing problem for linear
observation models in terms of the primitives introduced earlier. Given the measurement
vector y, and two models

Ho : FEy= Bu (4.47b)
Hy : FEy= Az + Bu, (4.47b)

we seek to decide which one best fits y. Such a decision requires

(i) checking whether the constraints S{Hy} and/or S{H;} are satisfied, and, if both are
satisfied, then
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(ii) computing the log-likelihood ratio log L{H1} —log L{H} for comparison to a selected
threshold.

Performing this decision reduces therefore to computing
R{Ho} and R{H;}. (4.48)

A careful inspection of the canonical decomposition algorithm following Lemma 2.1 reveals
that the numerical procedure required to compute R{H;} yields R{Ho} at the same time.

Next, suppose we consider the same problem as before, but with an unknown nuisance
vector n, so that we need to decide between Hy and Hi, where

Ho : FEy=Gn+ Bu (4.49a)
Hi : Ey=Ax+ Gn+ Bu. (4.49b)

In this case, all we need to do is first to extract  from the observations H; with i= 0, 1, which
has the effect of removing the nuisance term Gn, and then apply the previous hypothesis
testing procedure to the extracted observations X, {H;}. Again, because X, requires only
the computation of the left null space of G, a single algorithm can be used to generate
Xz{H;} fori= 0, 1.

Finally, let us examine the failure detection problem with isolation studied in [21]. We
are given the system

Tpy1 = Awxp+ Bup + Geng + Tug + fmy (4.50a)
yr = Cxi+ Dvg + Gynk , (4.50]3)

where xp is the state of the system, u; the known input, y; the observed output, and v; a
white Gaussian noise sequence such that v, ~ A(0, I). The vector

Gy
G ]
represents a nuisance modelling unobserved input and output disturbances or possible al-
ternative failures not considered here. The term fm; represents the actuator failure that
we seek to detect and isolate. For simplicity, it is assumed that the matrices apearing in
the above dynamics are constant, and have appropriate dimensions. In the above model,
the absence of failure corresponds to the case where f = 0, whereas in the presence of a

failure, the known vector f # 0. To cast the above model within our framework, we rewrite
(4.50a)—(4.50b) as the observation

Tr41

i, —I‘uk _ —I A Gx f Tk B

o e I e B P PR
my
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The indices k& and 7 appearing in Hf,'c correspond respectively to the time index and hypo-
thesis. Thus, i = 0 in the absence of failure, and ¢ = 1 when a failure is present. The onset
of a failure corresponds to ¢ jumping from 0 to 1 at a certain time s. We seek to detect such
a jump, and estimate the failure time s. This can be accomplished by applying the following
algorithm.

1) For i = 0,1 and k > 0, compute

X(@'k+1yxk7mk){H§c} .

Because the matrices G and Gy do not depend on either the choice of hypothesis or
the time index k, the above extraction needs to be performed only once for : = 0, 1,
and all & > 0; see the previous comment concerning the binary hypothesis problem
with nuisance rejection.

2) Apply the Kalman filtering recursions (4.7a)-(4.7c), (4.8) to the observation stream

s k
O(S,]{?) = (/\ Xfl+1,xz,ml{H?}) A ( /\ Xﬂ?l+1,$l,m1 {Hll}) (4'52)

=0 I=s+1

which models a situation where a failure has occured at time s < k (the case s = k
corresponds to the absence of failure). Then, verify whether the measurement vectors
belong to the constraint space S{O(s, k)}, and compute

maxy_r<s<t L(O(s, k)) s —
L(O(k, k) and 8= arg max  L(O(s,k) (459

for a properly chosen window length L. When the likelihood ratio exceeds a properly
selected threshold, a failure occuring at time $§ has been detected.

Note that if the system under consideration is an interconnection of local subsystems, and
the nuisance affects only a subsystem, the nuisance rejection of step 1) can be performed
locally. However, the Kalman filtering phase of the algorithm remains global.

5 Finite State Processes

The previous results can be extended to the nonlinear nonGaussian case, when the parameter
vector X to be estimated belongs to a finite set X'.

A Observation Model

An observation o consists as before of a pair (C, P) formed by a set C defining the allo-
wable pairs of measurements Y and parameter vector X, and, depending on whether the
measurement vector Y takes discrete or continuous values, a probability distribution

PY =y X=2)=p(y2), (5.1)
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or a density

P(Y €dS, X =) =p(y,z)dV (5.2)

with (y,z) € C, where dV = |dS| represents an element of volume of the set S of measure-
ments Y compatible with the constraint set C. If J and Iy denote respectively the domain
of y, and the projection operator which associates to a pair (y, z) its coordinate y, i.e.

Ly (y,2) =y, (5.3)
the set § of valid outputs is given by
S=TIycC. (5.4)

The reference measure dV which is defined on § is left unspecified, since it depends on the
set S. Finally, given y € S, the set X' (y) represents the set of parameter vectors « such that
the pair (y,z) € C.

Since X belongs to a finite set, we shall focus our interest exclusively on ML estimates.
As before, we say that X is estimable if p(y, ) admits a unique maximum over X' (y), in
which case the ML estimate is defined as

Zyr(y) = arg max p(y,z). (5.5)
T€X(y)

The corresponding likelihood and conditional likelihood functions are then given by

aly) = p(y,iML(y))zxgl;é)p(y,r) (5.6)
- Py, z)
q(zly) aw) (5.7)

which are defined respectively over § and AX(y). Thus, as in the Gaussian case, we have
decomposed the pair (C, p(y, z)) into two subpairs (S, q(y)) and (X (y), q(z|y)) describing
the marginal and conditional constraint sets and likelihood functions. Again, q(y) will be
denoted as L(0) to indicate its association with o.

However, unlike the Gaussian case, the likelihood and conditional likelihood functions
q(y) and q(z|y) do not coincide with the marginal and conditional densities

p(y) = > pye) (5.8)

T€X(y)

p(aly) = p}ﬁ?’yf) (5.9)

which differ from (5.6) and (5.7) by the fact that we are summing instead of maximizing
over z.
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B Primitives

The primitives introduced in Section 3 for linear Gaussian observations can be generalized
as follows. First, consider two observations o; = (C;, P;) with i= 1, 2, where the parameter
vectors of 0; and o3 can be decomposed into attributes #; and z9 which are specific to
these observations, as well as a component ., common to both. Similarly the measurements
vectors of 07 and os contain parts y; and ys which are specific to these observations, as
well as a common part y.. Then, adopting the notation (3.3a)-(3.3¢) for the measurement
and parameter vectors of each observation and their combination, the combined observation
01 A 0y is formed by the pair (C, P) such that

C = CIAGC
= {(2) : (m,x1) €C1 and (n2,x2) €C2 } (5.10)
p(y,z) = pi(m,x1)p2(m2,x2) - (5.11)

Because the probability distributions/densities we are considering are nonGaussian with
finite valued parameter vectors, both p(y, z) and q(z|y) are minimal sufficient statistics for
estimating X, i.e. we cannot base the reduction operation R{.} on the need to extract a
minimal sufficient observation from o. However, as indicated by (3.14), an important property
of the reduction operation R{.} in the Gaussian case is that it retains no information about
the output y, in the sense that its likelihood function

L(R{o}) =1 (5.12)

is uniformly distributed. The conditional likelihood function q(z|y) has precisely this cha-
racteristic, 1.e.

maxq(z|y) =1. (5.13)

This implies that the primitives £{.} and R{.} need to be defined as:
R{o} = (Cr q(z|y)) (5.14)
Rio} = (S,a(y)), (5.15)
where the set Cg is obtained by removing from C the constraints affecting y alone, so that
C=CrAS. (5.16)

Note that because the conditional likelihood function q(z|y) given by (5.7) is defined only
on C, the definition of R{o} in (5.14) requires extending q(z|y) from C to the larger set Cg,
where the choice of extension does not matter, since only measurement vectors y in § (and
thus pairs (z,y) in C) will ultimately be allowed.

The mutation corresponds again to the change of status of a parameter or measurement
from unknown to known, or vice versa, and the conditional observation and extraction
macros are defined by (3.28a)-(3.28b), so that for an observation o with density p(y, 2o, z1),
the density of the extracted observation X, {o} is given by

q(y,z1) = Halcaxp(y, Zo, x1) . (5.17)
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C Estimation of Hidden Markov Models

To illustrate the application of the above macros, we consider the problem of finding the
most likely state sequence of a hidden Markov model (HMM). In such models, the states
of a Markov chain are not observed directly, but need to be estimated from a sequence
of measurements depending indirectly on the states. Models of this type are often used in
speech processing [8], or in digital communications for decoding convolutional codes or the
deconvolution of intersymbol interference [22], [23], [24].

Let z3 be a Markov chain defined for 0 < k < N, taking values in a finite set X'. The
joint probability distribution of the chain can be expressed as

N-
P(X) = qi(zo)ge(zn) H (Tk, Te41) - (5.18)

This form is a slight variant of the standard expression for Markov processes, which is
sometimes employed [25] to model Markov processes for which some information about
both the initial and final state is available. This situation occurs for example when we use a
convolutional encoder to transmit data blocks separated by zero bits whose role is to ensure
that the encoder starts and terminates in a known state (the zero state). For such a case,

qi(2) = qe(x) = 6(), (5.19)
where §(z) denotes the distribution equal to one for z = 0, and zero otherwise.

The observations y; with 0 < & < N — 1 may take either continuous or discrete values.
Given a complete state trajectory, they are modeled by the conditional density/distribution

we have

N-1
p(Y[X) = H O(Yr, T, Thy1) (5.20)

whose form indicates that y; may be either a measurement of the state zj or of the transi-
tion from zj to xj41. For simplicity, we assume that there are no constraints on the states
zj and observations y, so that an observation o will consist only of a probability distribu-
tion/density.

Then the joint distribution/density for the measurements and states can be expressed as

N+1
p(Y, X) = p(Y|X)p(X) = A o5, (5.21)
j=0
where
Ok41 T(xk;mk+1)¢(yk1$k;mk+l) (522)
for0< k<N —1, and
o0+ qi(zo) ONt+1 1 Qe(zN). (5.23)
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AV Ve

Figure 1: Linear XO-graph.

The maximum likelihood sequence estimation problem for HMMs consists in jointly
maximizing p(Y, X) with respect to the variables z; with 0 < k < N. The best known
solution of this problem is the celebrated Viterbi algorithm [26], [22]. To relate this algorithm
to those discussed in Section 4 for descriptor systems, it is useful to construct the XO-graph
associated to the observations (5.22)-(5.23). The concept of XO-graph was introduced in
[7] for linear Gaussian observations, but it applies also to the nonGaussian case. Its role is
to display the dependency structure of the observations with respect to the variables to be
estimated. Conceptually, it is similar to the graph representing the neighborhood structure
of a Markov random field [9]. In such a graph, the observations o; and variables zj are
represented respectively by o- and z- nodes. An edge connects the nodes o; and zj, if the
variable z; appears in the probability distribution/density corresponding to o;. For the
HMM considered here, op41 is connected only to the nodes z; and z41, so that the HMM
(5.22)—(5.23) admits the linear graph structure shown in Fig. 1.

But the descriptor estimation problem of Section 4 admits exactly the same XO-graph!
Since the structure of this graph determines completely the order in which observations
are processed and the variables z; are estimated, we can immediately conclude that the
filtering and smoothing algorithms described in Section 4 are directly applicable to the HMM
considered here. However, since the primitives are not implemented in the same manner, it is
of interest to examine more precisely the internal mechanics and outcome of each algorithm.

Forward pass: Let Pj, be the combination (4.5) of all observations in the past of time
k. Then, the filtered observation 6£|k
q£ (z1) measuring the likelihood of the best path terminating in state 2 given the measu-

given by (4.6a) corresponds actually to the function

rements yq, ..., yx_1. Because the definition of 6£|k includes a reduction, the distribution

qi (1) is normalized, i.e. its maximum value over all zj’s is one. A similar normalization is

often performed in convolutional decoders by subtracting periodically a constant from the
value function J,{ (zx) = —1In qi (z1) to prevent it from growing excessively. This is possible

because we are only interested in the relative value of J,{ or q£ for different x;’s. Then, if
we consider the recursion (4.7a), the extracted observation Xxk+1{6£|k A ogy1} is specified
by the distribution

££+1($k+1) = rgaxqi(rk)r(rk, Try1)O(Yr, Tk, Tryr) (5.24a)
k
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where the argument of the maximum is given by

o = Yegr(Trt1) (5.24b)

and the dependence of z}, on the known observation y; has been suppressed. Given that the
state of the Markov chain at time k 4+ 1 is 2541 and the observations up to time k are yq,
o Yk, 5 = Yp41(@p41) represents the most likely state at time k. The function 41(.) is
usually called the back-pointer function, since given the current state at time k41, it points
to the most likely state at the previous instant.

Then, if
)‘k+1 = R,Xxkﬂ{éilk/\ok“}
= maxglyy(een), (5.25)
we have
a1 (@r41) = €4y (@) Aes - (5.26)

Furthermore, according to (4.7c), if Ly denotes the likelihood function of the observation

Py, 1t satisfies the recursion
Lk+1 = )\k+1Lk s (527)

which can be used to evaluate the likelihood function of the measurement sequence.
According to (4.8), the forward filter can be initialized with

Ly = A =maxq;(zg) (5.28a)
af(z0) = ai(zo)/ Ao (5.28b)
Viterbi/double sweep decoder: If O represents the combined observation (5.21), the

smoothed observation 6, given by (4.26) is the distribution g (zy) obtained after maximizing
p(Y, X) with respect to all 2; with { # k. Its maximum

& = arg max qj(zx) (5.29)
Tr

represents the most likely state at time k, i.e. the most likely trajectory corresponding to
the measurements y; with 0 < k < N — 1 goes through z; at time k.

From the definition of the conditional observation macro, we find that the observation
wr(Tp41) = 6£|k A og41 | 241 admits the distribution

al (w)T(vr, 2e41) Uk, Tk, Thgr) /Ay (Trg1) (5.30)
so that according to (4.36), the observationRe Xy, z,,,{0} has for distribution

af (20) (2, Trr1)O(Ye, Ty Trt1) Ay (Fe41)/ah 1 (Zr41) - (5.31)
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Its joint maximum over zy and zr41 gives the most likely states Z; and 241 at times k and
k + 1. Maximizing over zy, first, and noting that the z; dependent part of (5.31) is identical
to the one minimized in (5.24a) yields

.i'k = ’lpk+1(i’k+1) . (532)

Thus, the most likely trajectory is obtained through a double sweep algorithm, where the
forward sweep computes the trace back function 9541(.), and the backward sweep generates
the optimum state trajectory, starting from the most likely final state . This state can be
computed by observing that the observation 6%, = 6{V|N A on41 has for distribution

ay(zn) = af(zn)a.(en) , (5.33)

whose maximum yields .

By employing primitives which are sensitive to data type, i.e. which act differently on
Gaussian and finite state processes, we have therefore been able to show that the Viterbi
and Rauch-Tung-Striebel double-sweep algorithms are almost identical, as was first noted
informally in [10]. Of course, one could push forward the analogy existing between the ML
estimation problems for descriptor systems and HMMs by attempting to develop a “two-
filter” decoder for the most-likely state sequence of a HMM. However, such a decoder would
be less attractive than the Viterbi decoder, since it would require the solution of two dynamic
programming problems, one for each time direction.

6 Conclusions

In this paper we have developed a set of high level primitives for ML estimation which,
because they rely on general statistical concepts, are applicable to estimation problems
where sufficient statistics admit finite parametrizations, such as linear Gaussian models
or finite-state processes. The power of these high level primitives has been illustrated by
considering the ML estimation problems for linear descriptor systems and hidden Markov
models.

The work presented here can be extended in at least two directions. First, for the finite-
state case, we have assumed that observations can be modeled by a distribution/density and
constraint set pair (p(y, ), C). However for certain applications, such as queing networks,
the sigma field of events that can be probabilized is more restricted, so that an observation
needs to be modeled as a triple (22, A, P) formed by a sample space, sigma field, and proba-
bility measure. In this case, because of the possibility that different observations might have
common components, certain technical difficulties arise in the definition of the combinator
A, which are examined in [6].

Another area where the primitives developed in this paper are expected to be useful
is for the formulation of stochastic dynamic programming problems involving either linear
Gaussian systems or controlled Markov chains.
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A third direction of research concerns the large amount of flexibility existing in the
choice of recursive strategies for solving ML estimation problems specified by coupled obser-
vations. For the smoothing problem of descriptor systems, the two-filter and double-sweep
smoothers are smoothers are only two of several possible processing strategies. A third pro-
cedure consists for example of processing the observations outward from the center of the
interval, until the edges are reached, and then performing a second inward pass. The choice
of possible algorithms becomes even larger when a network of interconnected descriptor sys-
tems is considered, since in this case locality can be exploited both in time and in space.
This raises therefore the question of finding a way to describe all processing strategies within
a single framework, in order to be able to select optimum algorithms in terms of memory
requirements and computational cost.
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