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Model Reduction of Multidimensional 
and Uncertain Systems 

Carolyn L. Beck, John Doyle, and Keith Glover, Fellow, ZEEE 

Absiruct- Model reduction methods are presented for sys- 
tems represented by a linear fractional transformation (LFT) 
on a repeated scalar uncertainty structure. These methods in- 
volve a complete generalization of balanced realizations, balanced 
Gramians, and balanced truncation model reduction with guar- 
anteed error bounds, based on solutions to a pair of linear matrix 
inequalities (LMI's) which generalize Lyapunov equations. The 
resulting reduction methods immediately apply to uncertainty 
simplification and state order reduction in the case of uncertain 
systems but also may be interpreted as state order reduction for 
multidimensional systems. 

I. INTRODUCTION 

HE process of modeling systems and designing con- T trollers using modern robust control methods often results 
in models that have high state order and complicated un- 
certainty descriptions. These models may be expensive to 
implement and difficult to analyze. in particular when further 
interconnected in more complex systems. However, there 
have been no systematic methods proposed for reducing the 
uncertainty descriptions. In contrast, for models without uncer- 
tainty, there exist numerous well-known state order reduction 
methods and associated error bounds, examples of which 
include the balanced model reduction method and its additive 
H ,  norm error bound [15], [IS], [21], 1261; the optimal 
Hankel norm model reduction method and its Hankel norm 
error bound [ 181; and the balanced stochastic truncation model 
reduction method and its relative H ,  norm error bound 
[ 131. The balanced truncation model reduction method was 
first extended to uncertain systems in [32]. We review this 
reduction method and the related error bounds, providing 
simplified proofs. We then give a new model reduction method 
for uncertain systems that relies on the solution of two 
linear matrix inequalities (LMT's) and results in tighter error 
bounds than the balanced truncation method. These new 
results, which were first noted in [7], are based on technical 
machinery presented in 1271. Similar results for standard one- 
dimensional (I-D) continuous systems are given in [23] using 
quite different methods. A related necessary and sufficient 
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condition for exact reducibility, the converse of minimality, 
of uncertain systems may also be stated [31, [5] ,  [61. 

In this paper, we are mainly concerned with uncertain 
systems that are modeled by a linear fractional transformation 
(LFT) on a repeated scalar uncertainty structure. In the most 
abstract formulation these uncertainties are simply noncom- 
muting indeterminates, as in formal power series. However, to 
study model reduction with error bounds, we need additional 
structure in the form of a norm, and it is convenient to assume 
that the uncertainty is made up of arbitrary time-varying 
scalar operators on 12 and that the model reduction errors are 
measured as 12-induced norms. Under these assumptions, the 
bounds in this paper are tight, in a sense that will be made 
precise. We may also apply the bounds to system models 
where the uncertainty has further structure, such as time- 
invariance or real parametric variance, or when the repeated 
scalar uncertainty is viewed as multiple transform variables in 
a multidimensional system. In these latter examples the bounds 
are, in general, conservative. 

Basic background material is presented in Section 11, in- 
cluding our notation and a review of LFT representations 
of uncertain systems. In Section 111, we review balanced 
realizations, minimality, and the error bounds associated with 
balanced truncation model reduction for the 1-D case. In 
Section IV, uncertain systems are considered: balanced real- 
izations, stability, and norms are discussed, and error bounds 
for balanced truncation of uncertain systems are given. In 
Section V, the new LMI reduction method for uncertain sys- 
tem realizations is presented. 

11. PRELIMINARIES 

The notation we use is as follows: 12 denotes the space of 
sequences which are square summable, and C( l2 )  represents 
the space of all linear time-varying (LTV) operators on 1 2 .  We 
represent matrices in the real and complex fields by CrLXT" 
and lRnXrL and the integers by Z. The shift operator on 12 is 
denoted by A, and the identity matrix is denoted by 1. The 
maximum singular value of A E C n x m  i s  denoted by a(A), 
and the minimum eigenvalue by Amirl(A); A* denotes the 
complex conjugate transpose. The dimensions of a matrix A 
are denoted dim( A).  For notational convenience, dimensions 
will not be given unless pertinent to the discussion. 

The main focus of robust control has been to evaluate the 
effects of uncertainty when analyzing and designing controllers 
for linear systems. The motivation for this approach is that 
system performance is often dominated by the uncertainty 
in a model; designs based on an ideal mathematical model 
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Fig. I .  Uncertain system. 

frequently perform poorly on the real system. The source of 
such uncertainty might be unknown nonlinearities, unmodeled 
dynamics, disturbances, parameter variations, or any combina- 
tion of the aforementioned. As a mathematical representation 
for uncertainty in system models, we use the LFT paradigm 
which is represented pictorially in Fig. 1 and described below. 

Typically, M represents the nominal system model which 
is often assumed to consist of the transfer function for the 
plant plus system weighting functions, and A represents the 
uncertainty. Because each perturbation source is likely to enter 
the real system at a different location, collecting these into 
one uncertainty block results in A having a diagonal block 
structure. Furthermore, the perturbations are often assumed 
to be norm-bounded operators and frequently have additional 
structure such as time-invariance or real parametric variance. 

In the LFT models we consider, the shift operator X cor- 
responding to the system transform variable is also included 
in A, the uncertainty block; that is, the transfer relations for 
the plant and weighting are explicitly written as LFT's on 
the shift operator. Thus, we assume M is a constant matrix 
and A represents the system uncertainty and shift operators. 
In particular, we refer to M as the system realization matrix 
which we partition as 

A B  
[C D ]  

and we assume A lies in some prescribed set. In particular, 
the uncertainty set A we consider in this paper is 

A = {diag [Sllnl, . . . , 6pI,L,]: b, E C( l2 ) ) .  ( I )  

The input/output (I/O) mapping for this system is determined 
by the LFT 

y = (A*M)u ,  A E A 

where we assume the system input and output signals, U and y, 
are in 1 2 .  The Redheffer star product of the system components 
is 

(2) 

whenever the inverse is well defined. We will refer to such 
system models by the pair (A, M ) .  For analysis purposes, 
we will often consider A which lie in a norm-bounded subset 
of A, that is 

( 3 )  

A * M = D + CA(1-  AA)- lB  

BA = {A E A: /lA/1i2+i2 I 1) 

where / I  . 1112+12 denotes the induced norm. 
As mentioned previously, the most general way to interpret 

these system models is to view the 6, as noncommuting 
indeterminants; in this case the LFT of ( 2 )  is a rational 

function in several noncommuting variables and thus can also 
be viewed as a formal power series over the set (61, . . . S,} 
by considering the expansion of 

00 

A *  M = D + 1 CA(AA)'"B. 

Since formal power series have been studied in a wide variety 
of disciplines, this interpretation allows us to formulate con- 
nections to established realization theory (see [3] for details), 
for example to the series minimality conditions and Hankel 
matrices developed by Fliess [19]. (See [8] for further details 
and references relating to formal power series.) However, to 
quantitatively evaluate model reduction methods, we need a 
less abstract setting. In particular, we consider one of the 
6; as the shift operator in an uncertain discrete-time system. 
The remaining 6; are then viewed as LTV operators on / 2 .  In 
this case, we present a condition which is both necessary and 
sufficient for satisfaction of the tighter model reduction error 
bounds which are measured in an l2 induced norm. A related 
necessary and sufficient condition under which reduced-order 
models can be found such that the error between the full and 
reduced-order models is zero can also be shown. If, instead, 
the remaining 6i are time-invariant or real parametric norm 
bounded perturbations, these conditions are sufficient, but not 
necessary, and may be somewhat conservative. 

Alternatively, we may view the 6; as different transform 
variables in a multidimensional system, and thus the 6; con- 
sidered are commuting variables, as in the time-invariant 
case. (See [9] and the references therein for information on 
multidimensional systems.) In the multidimensional system 
case, when we reduce the model we reduce the state orders 
of the model, and thus a system model that may be reduced 
with no error is said to be reducible, or nonminimal, as in the 
1-D state-space case. Generally, we would like to find reduced- 
order models which match the original model well at all values 
of the Si on the polydisc Ih;l = 1, for all i .  The results in 
this paper are directly relevant to this interpretation, as they 
provide computable sufficient conditions under which reduced- 
order multidimensional models may be found for which there 
is little or no error. Again, these methods may be conservative 
for multidimensional models in that lower order models may 
exist which are equivalent, or close, to the original model but 
which cannot be found via the methods presented herein. 

Remark 1: Note that throughout this paper we refer to 
models with A = X I  as 1-D systems and henceforth to models 
with A defined as in (1) simply as uncertain systems. 

k=O 

111. 1-D SYSTEMS 
To facilitate the discussion of model reduction methods 

for uncertain systems, we begin with a review of Lyapunov 
equations, balanced realizations, minimality, and balanced 
truncation model reduction for 1 -D system realizations. We 
state the well-known upper bound for balanced truncation 
model reduction error originally proven by Enns [15] (see also 
Glover [ 181) for continuous-time systems. We provide a proof 
of this bound for discrete-time systems which generalizes 
immediately to uncertain system representations. The proof 
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was first presented in [32] and is given in the Appendix in 
a corrected and more concise form. A more general proof 
which also encompasses model reduction of continuous-time 
uncertain systems has recently been developed using integral 
quadratic constraints (IQC) methods [ I ]  and [30]. 

We consider finite dimensional, linear time-invariant (LTI) 
systems of the form 

x ( k  + 1) = Az(k )  + Bu(k)  
y(k)  = C Z ( k )  + D u ( k )  

thus M = [g E] is the system realization and A = X I .  
For the 1-D case, we denote the system transfer operator by 
G := X I  * M = D + CX(I - AX)-lB. 

A. Balanced Realizations and Reducibility 

Suppose M is a 1-D stable system realization and Y 
and X are the controllability and observability Gramians, 
respectively. That is, Y = Y* 2 0 and X = X *  2 0 satisfy 
the Lyapunov equations 

AYA* - Y + BB* = 0 (4) 
A * X A - X + C * C = O .  ( 5 )  

From standard Lyapunov theory, we know that the pair (A,  13) 
is controllable if and only if Y > 0, and (G, A )  is observable 
if and only if X > 0, in which case we say the realization is 
minimal or irreducible. 

Suppose the system realization, M ,  is transformed by the 
nonsingular matrix T which gives the eigenvector decompo- 
sition 

Since I.' 2 0 and X 2 0, it can be shown that Y X  has a 
real diagonal Jordan form and that A 2 0. If M is a minimal 
realization, T can always be chosen such that 

Y =TYT* 
= c  

and 
2 = (7'-1)*XT-I 

where C = diag (01, 0 2 .  . . . , oT1) > 0 and C2 = A. The 
transformed realization 

$I= rgyl '"1 n 
with controllability and observability Gramians Y = X = C, 
is referred to as a balanced realization. Recall that G = 

More generally, if the realization of a 1-D system is not 
minimal, then there exists a transformation such that the 
controllability and observability Gramians are diagonal, and 
the controllable and observable subsystem is balanced. The 
following theorem is standard, so the proof is omitted. 

X I * M  = XI**. 

Theorem 2: For any stable system realization M = [$ g] 
there exists 7' such that 

has controllability and observability Gramians given by 

1 

and 

respectively, with C1: C2; C3 diagonal and positive definite. 
Since the uncontrollable and unobservable modes of any 

system realization are not present in the corresponding sys- 
tem transfer function, we can truncate the associated states, 
corresponding to the zeros in Y or X above, and obtain an 
equivalent minimal realization which has both Gramians equal 
to Cl.  The original realization M is reducible in that there 
exists a lower order realization M, with associated operator 
G,, such that IIG - GTlloo = 0, which gives us the following 
corollary to Theorem 2. 

Corollary 3: Every stable 1-D system has a minimal real- 
ization which is balanced. 

B. Balanced I -D  Model Reduction 

Consider a stable discrete-time system with the following 
realization: 

Ai1 Ai2 Bi 
M =  A21 A22 

[e: c2 21. 
Suppose Y and X are two positive semidefinite symmetric 
matrices satisfying the following Lyapunov inequalities: 

( 6 )  
(7) 

AYA* - Y + BB* 5 0  
A * X A  - X +C*C 5 0 .  

We have replaced the equalities in (4) and ( 5 )  with inequalities 
in (6) and (7) to generalize the 1-D system results to uncertain 
systems. The significance of these inequalities in the 1-D case 
is that while the zero-valued eigenvalues of Y or X still have 
corresponding uncontrollable andlor unobservable states, the 
converse need not be true. This is most easily seen via a simple 
example: consider the system with realization 

A=[n" 0 0.2 

j3 = rbl 
L A  

c = [0 11. 
It is clear that 

and 
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satisfy the inequalities of (6) and (7), as the first state is 
unobservable and the second state is uncontrollable. However 

I'=X 

= [; '11 
for example, also satisfy the inequalities of (6) and (7). Thus, 
we can truncate states as suggested by Corollary 3 and balance 
X and Y exactly as before, but the rewlting system may not 
be minimal. Subsequently, when we refer to balanced system 
realizations it will be in this looser sense, that is, with Y > 0 
and X > 0 satisfying the Lyapunov inequalities above and 

Y =x 

with 

CI = diag (cTII~, , ~ Z I . ~ ~ ,  . . . . oJs,  ) > 0 

= diag ( ~ , + I L , + ~  o 7 . + 2 L f 2 ,  s . .  onL,,> > 0 (8) 
where s i  denotes the multiplicity of C T ~ .  Note that the C T ~  are not 
necessarily ordered and are assumed to be distinct, although 
distinctness is not required (see the remark at end of the 
section). 

The balanced truncation model reduction results, first given 
for I-D discrete-time systems in [21] and for multidimensional 
or uncertain systems in [32], are now stated. The results 
are separated into a lemma stating that the truncation of a 
stable, balanced realization is also stable and balanced and a 
theorem stating the upper error bound results, measured in 
the H ,  norm. The proof for the lemma can be found in 
[21]. A proof for the theorem is given in the Appendix; this 
proof generalizes immediately to system representations which 
include uncertainty. 

Lemma 4: Suppose 

A l l  A12 4 
M =  '421 A22 U2 

[Cl c2 D l  

is a balanced, stable realization. Then the truncated system 
realization given by 

is also balanced and stable. 
Theorem 5: Suppose 

A l l  A12 Bl 

is a balanced, stable realization for G with 

X = Y  

as defined in (8). Let 

A l l  B1 
lwT= [c1 D ]  

denote the balanced, stable, truncated system realization for 
G,. Then 

n 

'l=T+l 

Pro08 See the Appendix. w 
Remark 6: Distinctness of the oi in C1 and Cz is not 

required for stability of the truncated subsystem in the discrete- 
time case, although it is in the continuous-time case. However, 
there is no reason to truncate the system in the middle of a 
oils, block as this will not improve the error bound. 

For 1-D system realizations with no uncertainty the role of 
the system Lyapunov equations, and of the associated con- 
trollability and observability Gramians, in balanced truncation 
model reduction and in terms of quantifying system minimality 
are well defined. In the next section, we consider these 
concepts for system realizations which incorporate uncertainty 
descriptions into the model definitions. 

I v .  SYSTEM REPRESENTATIONS WITH UNCERTAINTY 

We now define and discuss stable realizations and balanced 
model reduction methods for uncertain systems. Guaranteed 
error bounds are stated and proven for these reduction meth- 
ods. We assume throughout this section that the uncertainty 
structure is defined as in ( 1 )  with one of the 6, representing 
the shift operator and the remaining 6% representing arbitrary 
LTV operators on 1 2 ,  unless otherwise noted. 

A. Balanced System Realizations 

Consider the system in Fig. 1, where A E A i s  defined as 
in ( 1  j and M is the representation matrix. Such a system is 
stable when the I/O map (A x M )  is well posed for every 
A E BA, that is, when ( I  - AA) is invertible as an operator 
on l2 for every A E BA. Using this jnvertibility condition 
as the basic conceptual definition for stability of uncertain 
systems, an easily computed LMI-based stability condition can 
be constructed; this has been proven in 1291 and is also stated 
below in Theorem 8. This stability result is an extension of 
the results on robust stability of systems with time-varying 
uncertainty given in [24] and concurrently in [31] and is 
proven via methods similar to those in [24]. Details can be 
found in [29]. The uncertainty structure A referred to in 
Theorem 8 is more general than that defined in (1)  in that 
full blocks are also allowed, that is 

A ={diag[A; A I ,  " ' :  AF]:A t A: A j  t C(l;').  

j = 1: ' " )  F }  (9) 

where m3 denotes the dimension of the domain of Aj,  and 
we assume all A j  are time-varying operators. 

Dejinition 7: Let n, = E:='=, n,, + xjzl mJ. The c o m m -  
tative matrix set for a given uncertainty set A is denoted by 
I and defined by 

F 

7 = (2' E Cnx":TA = AT, for all A E A}. 

For A as defined in (9), T E 7 if T = diag [TI. 
. . . , T,, t l Im,  ~ . . . . t F I T n F ] ,  where each T, E C"%'"' and 
t j  E c. 
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Theorem 8: Given an uncertainty set A C L( /2 ) ,  and a 
constant matrix A, then there exists a matrix Y > 0, Y E 7 
such that 

A Y A * - Y  < O  

For stable uncertain systems, the existence of balanced 
realizations is guaranteed by Lemma 9 and by (12). Neither 
the balanced realization nor the balanced C is unique. 

Remark 11: Note that permutations do not affect stability 
or sign-definiteness of the Lyapunov inequalities. That is, let 
II be any matrix such that n IIT = I, and suppose we have 
a solution P t 'T to (10). Denote A = IITAII, B = nTBII, 
and P = nTPII. Then 

if and only if 

( I  - AA)  is invertible inC(l,), for all A t BA. 

The existence of a matrix X > 0, X E I satisfying 
A*XA - X < 0 is clearly also equivalent to the invertibility 

JzpJz* - p + 88" == I I ~ ( A ~ A *  - p + ~ ~ * ) f l  < 0. 

of the operator ( I  - AA),  for all A *A. Note that the 
feasibility of these LMI's in Y and X is also equivalent to the 
maximum singular value condition 

B. Error Bounds: Balanced Truncation Model Reduction 

To quantify the error resulting from reducing uncertain 
systems, we use the structured induced 2-norin, (SI2-norm) 

there exists T t 7 : a ( T A T p 1 )  < 1. 

By scaling Y and X one can immediately deduce the following 
lemma. 

and X > 0, both in I, which satisfy 

which we define as follows. 

given by 
Dejinition 12: The SI2-norm of a stable system (A,  M )  is 

Lemma 9: (A, M )  is stable if and only if there exist Y > 0 IlA * M I I S 1 2  = SUP IlA * M11/242. (14) 
A E B 4  

Note that the S12-norm is a generalization of the H ,  norm, 
and for I-D system realizations with no uncertainty these 
norms are identical. 

The difference between two realizations, (Al ,  M I )  and 

AYA* - Y + BB* <0 

A * X A  - X + C*C < 0. 
and 

(10) 
(A2, M2) ,  is evaluated in the SI2-norm by forming the 
difference realization of (a * E )  = (A, * M1) (a, * M2), 

that is, by setting 

As in the 1-D case, we can use nonstrict inequalities in (10). 
Stability of (A,  M) then implies that there exist Y 2 0 and 
X 2 0 both in I such that 

B1 1 0 
AYA* - Y + BB* 50 E =  I v1 0 A2 Ba 

and Lc1 -c, D , - D , ]  
A*XA - X + C*C 5 0. (11)  and 

We refer to the nonunique matrices Y and X which satisfy 
(1 1 )  as generalized Gramians. We can show that if there 
exist singular generalized Gramians, then the uncertain system 
realization may be reduced with no error (see [3] and [6]). As 
a result, in deriving the model reduction error bounds, we need 
only consider the case of strict inequalities. 

To define a notion of balanced realizations for uncertain 
systems, we proceed as in the I-D case by defining a similarity 
transformation as an invertible matrix, T ,  which transforms the 
system states such that the realization M is transformed to &I 
as in Section 111-A. We consider similarity transformations in 
7 for which it can readily be shown that 

( A * M )  = ( A * f i ) .  V i a  E A. (12) 

and computing IlA * E ( ( s I ~ .  
An equivalent formulation for the SI2-norm of a system 

with A representing LTV uncertainty is given in the following 
lemma. This formulation more readily allows for computation 
via recent software packages developed for solving LMI's 
([16] and 1171). 

Lemma 13: The SI2-norm of a stable system (A, M )  is 
given by 

IlA * M/~cJ:!  = inf 7: there existsT such that 

Note that when T E I, Y = TYT" and X = (T-l)*XT-' 
are solutions to the Lyapunov inequalities for ik. Thus we 

Dejinition I O :  An uncertain system realization, (A,  M ) ,  is 
balanced if there exist Y > 0 and X > 0, both in 7,  that 

1 

a[[ Y;;-l q) 1 < define balanced realizations for uncertain systems as follows. -CT-' - D  
Y 

(16) 

where T E 7 and y > 0. satisfy the inequalities in (10) and 

Y = X  Proq? Let A* E C(1;) and 

= C  

=diag[C1, . . . .  E,] 

where C ,  > 0 are diagonal, and dim (E,)  = dim ( I r L T )  

1 7  
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Then for a stable system (A, M )  

y: there exists T such that 

To derive the model reduction error bounds for balanced 
uncertain systems, we partition the system matrices A, B ,  C, 
and C so as to separate the subblocks which will be truncated. 
That is, A, B, and C are partitioned compatibly with the block 

I structure A as 

= inf y: there exists Y > 0 such that c 
I 

for Y and T both in I and y > 0. Applying Theorem 8 
and the stability assumption on (A: M ) ,  we see that (17) is 
equivalent to 

I is invertible inL(12) for all AF E BAF 

i is invertible inL(22) for all AF E Bap 

(18) 

is invertible inL(l2) for all AF E BaF 

= SUP / ( A  * Ml//2-’12. 
A E B A  

Using Lemma 13, we can immediately prove the following 
result which generalizes Lemma 22 (see the Appendix) to 
uncertain systems. 

Lemma 14: Suppose (A, M )  represents a stable uncertain 
system, then llA * M/(sr2 5 1 if and only if there is a 
realization k, where (A ~r M )  = (A * k) for all A E A 
such that cT(&f)  5 1. 

A constant matrix X is said to be contractive if \ [XI [  = 
a ( X )  5 1 and strictly contractive if llXll < 1. If we consider 
uncertainty structures which contain linear time-invariant (LTI) 
or commuting operators, for example, real parametric uncer- 
tainty, LTI dynamic uncertainty, or when the A set represents 
multiple shift operators corresponding to different transform 
variables in a multidimensional system, then the expression 
on the right in (16) is an upper bound for the system ,512- 
norm. Therefore, the existence of a contractive realization is a 
sufficient condition for I~A*MIIsI~ 5 1 when the 6; of the A 
block are LTI operators. This sufficiency is all that is needed 
for the balanced truncation model reduction bounds to hold 
for both multidimensional and uncertain systems. 

Ai1 . . .  AiP 
A = [ -  .., i 

AP1 . . .  A,, 

c = [Cl C,]. 

We further partition each block of C by C, = diag [kl,, E,,], 
for z = 1, . . , p ,  where the realization submatrices con’e- 
sponding to Ezz will be truncated. Denote 

= diag [ ~ z l ~ 3 , 1 .  . . , U % k z I s t k j  
and 

czz = diag [ q k , + l ) L , ( , t + , ) ,  ’ . . 3 Gt,Is,tt] k ,  I t,. 
We then truncate both Cz, and the corresponding parameter 
matrices, for example, we truncate 

and 

c1 = [Cl Cl,] 

to Al l ,  81, and C1. Partitioning and truncating each A,,, B,, 
and C,, z, j = 1, . . . , p similarly results in the following 
truncated system: 

A B  
M , = [ c  D ]  

with uncertainty set A, = {diag [SlI,., , + ’ , SPIr,]: 6, E 

L(l2)) where T ,  = E,”:, szJ .  Note that A, is constructed with 
the same uncertainty variables 6, as is A, thus the A E A 
and A, E A,. are not independent. 

As in the 1-D case, truncating a balanced stable uncertain 
system realization results in a lower dimension realization that 
is balanced and stable which is easily seen by considering 
the system Lyapunov inequalities. We now state the balanced 
truncation model reduction error bound theorem for uncertain 
and multidimensional systems. 

Theorem 15: Suppose (A?, M T )  is the reduced model ob- 
tained from the balanced stable system (A, M ) .  Then 
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PYOOJ? See the Appendix 

V. IMPROVED ERROR BOUNDS: 
LMI-BASED MODEL REDUCTION 

A tighter model reduction bound than that given in Theorem 
15 can be achieved using the solutions to the system Lyapunov 
inequalities by utilizing machinery presented by Packard et al. 
[27], [28]; similar machinery is also given in [2] and [22]. 
The tighter error bound is derived from Lemma 13 and from 
the results of 1271 and [28] which are stated below. We first 
define some notation. 

Throughout this section we refer to the following uncer- 
tainty structures: 

A = {diag [&IrLI , &I,, , . . . , SpI,,lp]: 6, E C ( l 2 ) )  

= {diag [SII,, &IT2 ,  . f iPITp]: Si t C(12)} 

A,. =T,(A) 

where the notation Z,.(A) is used to emphasize that A, 
represents a reduced- or lower-dimension copy of A, and is 
not an independent uncertainty structure; also 

We again assume one of the 6, represents the shift operator 
on 1 2 ,  and the remaining Si are LTV operators on 1 2 .  The 
commutative matrix sets corresponding to these uncertainty 
structures are denoted by 7, ?;., and F .  Note that as a result of 
the dependence between A and AT, the set 7 for A includes 
matrices with the following block structure: 

diag (T:) diag (7';') 
diag (T,"") diag (T:) (20) 1 T =  [ 

where dim (T,") = 7 i i  x ri i ,  dim (T?') = ni x T,, dim (TT") = 
ri x ni and dim(T:) = T ,  x T L  for all i = 1, . . .  , p .  For the 
uncertain system representations (A, M )  and (AT,  M T ) ,  the 
difference system (a * E )  = (A * M )  - (AT * MT) is formed 
as in (15). 

Given a system representation (A,  M ) ,  we show that for 
any t > 0, a lower-order realization (A,, M,] exists such 
that the SI2-norm of the difference system (A, E )  is bounded 
above by t if and only if there exist solutions, X ,  and Y,, to the 
Lyapunov inequalities (IO) that also satisfy a rank constraint. 

Theorem 16: Given a system realization M = [$;I with 
uncertainty structure A, then there exist &I,. = [$; and A, 
such that IlA x &IISIZ 5 t if and only if there exists X ,  > 0 
and Y, > 0, both in T ,  satisfying: 
i) AX,A* - X ,  + BB* < 0; 

ii) A*Y,A - Y, + C*C < 0; 
iii) X,n;n(XFYF) = c2,  with multiplicity Cy='=, (n; - ri)  

where t > 0. 
The existence of solutions, X ,  > 0 and YE > 0, to the 

Lyapunov inequalities is both necessary and sufficient for 
obtaining the bound of F. Furthermore, a related necessary and 
sufficient condition also holds for t = 0; see [31 and [6] for 
details, as well as Remark 20. Thus, this error bound is tight in 
the sense that if we can find optimal solutions to the Lyapunov 

inequalities, that is to a pair of LMI's, we will be able to find a 
lower-order approximation to the full order model that results 
in the least possible error. Applying Theorem 16 recursively 
to a balanced realization results in error bounds for model 
reduction which are lower than those of Theorem 15 by a 
factor of two; however, the resulting additive error bounds are 
not tight. 

To prove Theorem 16, we use the following linear algebra 
results, Lemmas 17 and 18, taken directly from [27] and [28]; 
proofs may be found in [27]. These results are applied to 
the error system (A, &), in conjunction with Lemma 13, to 
construct the LMI conditions i) and ii) and the rank constraint 
iii) of Theorem 16. Let R t RzXz, U t IRzx", and V E ELqx2, 
where m, q 5 I .  

Lemma 17 [27]: Suppose U 1  E R1x(zp") and Vl  E 
R(l-q)xz satisfy U*U1 = 0, VV; = 0, with [U U i ]  and 
[FL] invertible. Let Z E C L x z  be a given set of positive definite 
Hermitian matrices. Then 

inf F[Z'' '(R + UQV)Z-'/'] < I 
& E R m X q  

Z t Z  

if and only if there exists 2 E Z such that 

VlJR*ZR - Z)V* - < 0 
and 

The LMI conditions given in (21) are, respectively, convex 
in 2 and Z-', but the two conditions together cannot be 
formulated as a convex constraint on either variable for a 
general set of matrices Z .  However, for the model reduction 
problem addressed in this paper (as for the synthesis problem 
discussed in [28])  these two conditions can be reformulated 
into one jointly convex condition, coupled by a nonconvex 
rank constraint (see Section VI for a brief discussion of 
computational issues). 

Using the notation of [28] for our model reduction problem, 
we define 

and 

Note that M, = [i -,"I Q and E = R + U Q V ;  furthermore, 
U 1  = [I  0 OIT and V, = [ I  0 01. We then accordingly define 
U = [U,', '=, U:, = [I  0IT and V = [VL. 1 by, 31 = [I  01 
and note that the dimensions m, q ,  and 1 correspond to the 
row and column dimensions of M, and the dimensions of R, 
respectively. 
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In applying Lemma 17, if we set 

then instead of casting (21) as a pair of convex constraints 
on Y = T and X = Y-', we need only consider constraints 
on the submatrices of X and Y ,  X:. and Y,", due to the 
structure of the matrices R, U ,  V ,  and T E 7. In particular, 
the following lemma may be used to form one LMI constraint 
on Xp and y,". 

and Y E CYXr' with 
X = X* > 0 and Y = Y* > 0 given. Then there exist 
matrices X2 E e"'' and X ,  E CT r ,  with X 3  = X',s > 0, 
such that 

Lemma 18 (271: Suppose X E CC" 

and 

y y s z  

if and only if 

and 

In the model reduction framework we consider, the dimen- 
sions n and T in Lemma 18 correspond to the dimensions of 
the uncertainty structures A and A,; that is, n = nz 
and r = Cfzs rZ. The following lemma is a direct result of 
the preceding lemmas and is also a corollary to 128, Th. 6.31. 

Lemma 19: Suppose the realization (A, M )  is given, with 
R, U ,  V ,  U ,  and V defined as in (22). Then there exists a 
realization (A,, M,) and a matrix Z E 7, Z > 0 satisfying 

if and only if there exist XF > 0, Yi" > 0 for 1; = 1, . . . , p 
satisfying: 

< O  

< O  

c) ["' I y," I ] ) 0 .  

If these conditions are feasible, then 
and M, are determined by defining r, 
for each i = 1, . . .  , p .  

diag(Y,'") 01) vT 
0 I 

the dimensions of A, 
= rank [Xg" - (Y;")-l] 

We can now prove Theorem 16. For convenience, we denote 
the t-scaled difference system realization by 

1 1 "  0 2 E B  1 

Pmo$ By Lemma 13, lla + Ells12 5 f if and only if 
there exists T E such that 

Now we need only apply Lemma 19 to E,  and multiply out 
the matrices in statements a) and b) of Lemma 19. Then 
\IA*filis~z 5 E if and only if there exist X = diag (X:) > 0, 
and Y = diag (y," ) > 0 for i = 1, . . . . p satisfying 

1 

1 

AXA* + - BB* - X < O  
E 

A * Y A + - C * C - Y  < 0  
E 

and 

Multiplying the matrix inequalities in (24) by F, and denoting 
X ,  = E X  and Ye = FY gives i) and ii). Additionally we have 

with 

rank - X:) - (Y:)-' = T ~ .  (25) 

( l / e )  I 
Condition iii) is obtained by premultiplying and postrnulti- 

plying the matrix in (25)  by [ (1 /~ )  I -  (Y:)-'] and [ ~ c v : l , ~ l ] ,  
respectively, giving 

[ E: I 
1 

f 2  
- xp - (Y:)-1 > 0 

thus X:tYz 3 c21.  Applying the rank condition implies 
rank(XZE2 - 6'1) = 'ri, thus A m i r , ( X ~ ~ E ~ )  = c2 with 
multiplicity ni - r.i, for all i = I, . . . , p .  Since X ,  and Y, are 
block diagonal compositions of X$ and Yz  the result follows. 

When the uncertainty structure, A, contains LTI operators 
Si, as in the case of multidimensional system -models, the 
existence of X ,  and Ye are sufficient to ensure \lA * EIls~z 5 
t. For 1-D continuous-time systems with no uncertainty, 
similar results have been obtained by Kavranoglu and Bettayeb 
1231 via an alternate method that requires simultaneously 
computing a pair of matrices Bo and CO augmenting the 
system realization matrices B and C and solutions X and Y to 
the augmented Lyapunov equations such that X,i,,(XY) = E' 

with multiplicity n--7'. Related results have also been presented 
recently by Helmersson [20]. 

Remark 20: For the proof of the model reduction error 
bounds to hold for both 1-D and uncertain systems, it is 
assumed there exist positive definite solutions Y and X ,  both 
in I, to the Lyapunov inequalities, in which case a nonzero 
error bound results. Clearly, we would prefer to reduce the 
system realization with no error if possibie. To obtain an 
exact reducibility condition for uncertain systems which is 
analogous to the notion of reducibility in the 1-D case, we 
have also proven the E = 0 case of Theorem 16. Quite different 
methods are required to prove this exact reducibility ]result; 
furthermore, the E = 0 case leads not only to a notion of 
minimal realizations for uncertain systems, but also to the 
consideration of related realization theory concepts. For this 
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reason, a complete exposition of these results is given in a 
separate paper [5]; details may alfo be found in [3] and [6]. 

VI. CONCLUSIONS 

We have presented LMI-based techniques, with guaranteed 
upper error bounds, for reducing uncertain and multidimen- 
sional systems. The systems we consider are described by 
an LFT of a constant realization matrix M on a structured 
uncertainty set A and are assumed to be stable for all LTV 
operators A E BA. As in the 1-D case, when the realization 
under consideration is not stable, feasible LMI solutions to 
(1 I )  cannot be found. However, coprime factor methods gen- 
eralizing the algorithm discussed in [2S] have been constructed 
which may be used for unstable LFT realizations; these results 
will be reported elsewhere. 

The development of computational methods for finding 
feasible solutions to LMI’s such as the Lyapunov inequalities 
we consider has recently been a rather popular research area 
in the control community and many efficient convex opti- 
mization algorithms already exist, in particular, 1161 and [ 171. 
Although we can easily find feasible solutions to these LMI’s, 
searching for singular solutions, or the rank-constrained op- 
timal solutions desired in Theorem 16, presents a nonconvex 
optimization problem. We can, however, optimize each of the 

a realization for G, denoted by M = [$E] such that M is 
contractive (strictly contractive). 

A generalized version of this lemma for uncertain systems 
is given in Section IV. Lemma 22 and the following lemma, 
which relates the contractiveness of a matrix to that of related 
submatrices, provide the main steps in the proof of the error 
bounds for balanced truncation model reduction. 

Lemma 23: Suppose 

U = ;;;I 
and 

I=[;: L] 
are contractive (strictly contractive). Then 

1 r o 

I ’  1 

is also contractive (strictly contractive). 
Proof: The result is easily proved by dilating M to the 

following matrix: 

generalized Gramians separately; for example, one approach 
we have used is to find generalized Gramians X and Y 
with the objective being to minimize the trace of each. This 
leads to solutions for which the value of Cy X,i(YX) is 
lowered, and hence the values of the separate X i ( Y X ) s  are 
also lowered, effectively reducing the amount of error in 
both the balanced truncation and LMI-based model reduction 
methods. Preliminary tests of this suboptimal algorithm have 
been completed using LMI-LAB [ 171 and have yielded quite 

M(l := 

reasonable results. An application of this method has also 
been completed; see [ 31 and [4] for further details. Alternative 
heuristic algorithms for solving minimum rank LMI problems 
may be found in [ I  I 1  and [ 121. 

Lower error bounds for model reduction of uncertain sys- 
tems are currently being investigated. 

APP~NDIX 
To prove that the balanced truncation error bounds of 

Theorem 5 and Theorem 15 hold, we require a number 
of preliminary lemmas. We begin by discussing contractive 
matrices and associated results which are of general use for 
both I-D and uncertain systems. 

A. Contractive Realizations 

Definition 21: A matrix X is contractive if 1(X(/ = r ( X )  5 
1 and strictly contractive if IIXl/ < 1. 

If the matrix X is a realization matrix, the following lemma 
gives a well-known result ([IO],  [14]) on the relationship 
between the XFt,  norm of a transfer matrix and realizations 
of the transfer matrix. 

Lemma 22: Suppose G t RE, represents a discr-ete-time 
transfer matrix, then l(GllE 5 1(<1) if and only if there is 

. . .  . . .  . . .  . . .  

1 
~ v22 Jz . . .  

and noting that MJMd 5 I .  

prove the following lemma. 
Given a balanced system realization with C2 = I ,  we can 

Lemma 24: Given a balanced realization of (A, M )  with 

Y =x 

L J 

satisfying the Lyapunov inequalities, then 

and 

are contractive. 
Proofi Rewriting (6) and (7) gives 

and 
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- _ _ _  c;/2 I C ; / '  0 0 -  

0 I 0  
I C , l i 2  L x ; 1 / 2  0 0 

fi Jz 

fi 

0 T =  

O 0 I -  0 
4 

1475 

2 IIG - G,rllm 5 1 by Lemma 22. 
The proof for Theorem 15, for which we provide an outline, 

follows from a strict generalization of the proof given for the 
1-D case. 

Premultiplying and postmultiplying (26) by Y-l/' and (27) hence M is contractive. Note that 
by X- ' j2  shows that the matrices 

yo 0 I 01  

Lo 0 0 II are contractive. Substituting [tL :] for Y and X in (28), and 
permuting the resulting matrices, gives the desired result. 

where k is shown at the bottom of the page in (30). Let 

B. Balanced Truncation Model Reduction Error Bounds 

We now prove Theorem 5. 
Prooj,f: The proof of Theorem 5 relies heavily on the 

preceding lemmas. We assume that Cz = 1. In this case, we 
must show that 

IIG - G, 1/00 4 2. 

The final result follows from scaling and applying this result 
recursively. 

By Lemma 22, it suffices to show that there exists a 
realization for (G-G, ) which is contractive. One realization and 
for $ (G - G?,) is given by 

A l l  

0 

0 

1 
~ c1 4- 

0 

A12 

A22 

~ c2 4- 
1 

Note that 

and 

0 0 

0 

0 
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That is, we assume the system realization is reduced from 

to Mr = [::I, with C = diag[2 ,  I]. The 
corresponding uncertainty structure is reduced from 
A = diag[511,, , . . . ,  SJ,,,] to A, = diag[SII,,,: 
. . .  j fi71-117Ln-, C ~ ~ T ~ , ~ ] ,  where 7ip 1 C(‘p-l) 1 = 1  sp j  < nP, 
that is, only the representation submatrices corresponding 
to the last uncertainty variable 6,, in A and the last 
singular value opt ,  in E,, are reduced. As in the I-D 
case, we assume ulIt, = 1 and subsequently show that 
5 Il(A * iv) - (4 * M~)IIsI~ I 1. 

Let 

&f= 

and = diag [A,. A], with corresponding commutative 
matrix set 4. Using a similarity transformation T like that 
in the proof of Theorem 5 gives 

r0 0 1 01  

lo 0 0 11 

where MI is shown at the top of the page in (31). Now 
defining U and V as in Theorem 5 and using Lemma 24 
and the fact that the Lyapunov inequalities are satisfied by 
assumption gives us that U and V are contractive. Applying 
Lemma 23 then implies that is contractive, and hence 
M is contractive. Finally, from Lemma 14 we have that 

Renzurk 25: Note that although the similarity transforma- 
tion T used in the preceding proof is not strictly an element 

$ Il(A * k ) l l S 1 2  5 1. 

of 7, i t  can be written as the composition of an element of 7 
and a permutation and thus is allowable. 
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