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A Multishift Hessenberg Method for Pole Assignment
of Single-Input Systems

Andras Varga

Abstract—A new algorithm is proposed for the pole assignment

of single-input linear time-invariant systems. The proposed algo-

rithm belongs to the family of Hessenberg methods and is based

on an implicit multishift QR-like technique. The new method

compares favorably in many respects (speed, memory usage) with

existing numerically stable methods. Its improved vectorizabil-

ity guarantees good opportunities for parallel implementation on

high performance computers.

I. Introduction

We consider the following eigenvalue assignment problem
(EAP): given the controllable matrix pair (A, b), where A ∈
IRn,n and b ∈ IRn,1, determine the feedback matrix f ∈ IR1,n

such that the closed-loop state matrix A + bf has all its eigen-
values at desired locations Γ = {λ1, . . . , λn} in the complex
plane. We assume that Γ is symmetric with respect to the
real axis. This assumption guarantees that the resulting f is
real. There exist several numerically reliable algorithms which
can be used to solve the EAP. It is commonly accepted that
the most reliable methods are the so-called Hessenberg meth-
ods based on explicit or implicit QR-like techniques. Explicit
shift methods have been proposed by Miminis and Paige [1] and
Petkov, Christov and Konstantinov [2]. Implicit versions of the
algorithm of [1] has been proposed by Miminis [3] and by Patel
and Misra [4]. All these methods are numerically backward sta-
ble [5], [6] and generalizations of them for the multi-input case
have been also proposed [4], [7], [6]. Hessenberg methods are
discussed in [8], where a stable variant of the algorithm of [9]
is also developed. An alternative to the above methods is the
so-called Schur method proposed by Varga [10]. Although com-
putationally more involved than the Hessenberg methods, the
Schur method has the attractive feature to allow a partial pole
assignment, i.e. it is possible to alter only those eigenvalues of
A which are unsatisfactory for the closed-loop system dynamics
and to keep unmodified the rest of eigenvalues.

The Hessenberg methods fit in the following algorithmic tem-
plate: the pair (A, b) is first transformed to the controller-
Hessenberg form (CHF), the feedback is then computed for the
reduced problem, and then finally the solution is recovered in
the original coordinate system. Recall that a pair (A, b) is in
CHF if b has all but its first component zero and A is in an
unreduced Hessenberg form, i.e. all its elements on the first
sub-diagonal are nonzero. The existence of the CHF is guaran-
teed by the assumption of the controllability of the pair (A, b).
This template is common to all Hessenberg methods and has
the following main steps:

1) Reduce the pair (A, b) by using an orthogonal matrix Q
to the CHF: (H, βe1) = (QT AQ, QT b).

2) Compute h ∈ IR1,n such that Λ(H + βe1h) = Γ.

3) Compute f = hQT .

The computation of the CHF can be done by using a sequence
of n− 1 orthogonal Householder reflectors. The reduction tech-
nique is standard (see for example [11], [12]) and is not dis-
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cussed further here. The transformation matrix Q used at Step
1) need not be explicitly computed. It can be stored in a fac-
tored form, by retaining only the elements of the Householder
reflectors. The minimal necessary storage is only n2/2 + 0(n)
storage locations. The application of these reflectors at Step
3) to h requires only 0(n2) floating-point operations (flops) and
thus Steps 1) and 3) require together roughly (2/3)n3 flops, rep-
resenting the cost to reduce A to the Hessenberg form without
accumulating the orthogonal transformations.

The Hessenberg methods differ in the ways of computing h
at Step 2). In this paper we propose a multi-step multishift im-
plicit QR-like Hessenberg method to solve the EAP. The pro-
posed algorithm can be viewed as a generalization of the ex-
plicit and implicit double shift methods proposed in [1] and [4],
respectively. A particular one-step multishift variant of the pro-
posed method is very well suited for computer implementation.
Besides its simplicity, this variant is computationally very effi-
cient, easy to implement and requires minimal additional stor-
age. From all these points of view it compares favourably with
the existent Hessenberg methods.

II. Multishift Hessenberg Method

In this section we describe an implicit variable-multishift
Hessenberg method for pole assignment for a pair (H, βe1) in
the CHF. For the computation of the feedback h such that
Λ(H + βe1h) = Γ, a recursive deflation technique based exclu-
sively on orthogonal transformations is used. At each deflation
step a number of k eigenvalues are allocated, where k can vary
from step to step. In order to keep the computations in real
domain, we impose that the set of k eigenvalues to be assigned
at each step is symmetric with respect to the real axis.

The derivation of the multishift pole assignment algorithm
relies on the following result of Miminis and Page [13] on implicit
multishift QR algorithm for eigenvalues determination.

Lemma 1: Let H be an unreduced Hessenberg matrix, let
λ1, . . . , λk ∈ Λ(H) and

N = (H − λ1I)(H − λ2I) · · · (H − λkI).

Define the implicit k-shift procedure by the following two steps:

1) Choose a Householder reflector P1 such that eT
nNP1 = eT

nρ

2) Compute H2 = P1HP1 and the Householder reflectors Pi

such that

Hi+1 = PiHiPi, i = 2, . . . , n− k

with trailing i rows and columns in Hessenberg form.

Then, with P = P1P2 · · ·Pn−k

Hn−k+1 = P T HP =

[
H11 H12

0 H22

]

Λ(H11) = {λ1, . . . , λk}.
To apply this result to the EAP, we will assume that we

already determined h such that Λ(H +βe1h) = Γ, and we apply
the above procedure to H ′ = H+βe1h. Because H and H ′ differ
only in their first rows, the matrices N and N ′, where

N ′ = (H ′ − λ1I)(H ′ − λ2I) · · · (H ′ − λkI),

will have the same last n−k rows. Thus the Householder trans-
formation P1 computed for H ′ can be computed by only using
H. We also observe that the rest of Householder matrices Pi,
i = 2, . . . , n− k computed for H ′ can be also computed by only
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using H, and thus also P is the same. We obtain by using
Lemma 1 that

P T H ′P =

[
H ′

11 H ′
12

0 H ′
22

]
, Λ(H ′

11) = {λ1, . . . , λk}.

By applying the same transformations to H and βe1 we obtain

P T HP =

[
H11 H12

σ
0

H22

]
, P T βe1 =

[
b1

β′

0

]
.

By comparing P T H ′P and P T HP it follows that

h = [−σ/β′ h′ ]P T (1)

where h′ is chosen such that Λ(H22 +β′e1h
′) = {λk+1, . . . , λn},

that is h′ solves a pole assignment problem for the rest of eigen-
values. If we separate h as h = h1 + h2, where

h1 = [−σ/β′ 0 ]P T , h2 = [ 0 h′ ]P T

it is clear that h1 can be used as a partial feedback to deflate
the pole assignment problem. Then an n − k order problem,
of the same form as the original problem, can be solved for the
pair (H22, β

′e1) to determine h′ which assigns the rest of the
eigenvalues.

We illustrate the deflation process for n = 7 and k = 3 by
considering the allocation of a symmetric subset of eigenvalues
{λ1, λ2, λ3} for the pair (A1, b1) := (H, βe1) by a feedback h1.
The last row of the matrix

N = (A1 − λ1I)(A1 − λ2I)(A1 − λ3I)

has only the last k + 1 = 4 elements nonzero, that is we have

eT
nN =

[
0 0 0 × × × ×

]

According to the theory of implicit shifting we choose a House-
holder transformation P1 to annihilate all but the last nonzero
element of eT

nN and we compute P1A1P1. The matrix P1A1P1

has the form

P1A1P1 =




× × × × × × ×
× × × × × × ×
0 × × × × × ×
0 0 × × × × ×
0 0 + × × × ×
0 0 + + × × ×
0 0 + + + × ×




where + stands for nonzero elements created by applying P1.
The nonzero elements introduced by P1 can be now chased up-
wards, by a series of n − k − 1 Householder transformations
Pi, i = 2, . . . , n − k such that the trailing principal submatrix
of order (n − k) of P T A1P , where P = P1P2 · · ·Pn−k, is in an
upper Hessenberg form. For the example considered above, the
matrices Ā1 = P T A1P and b̄1 = P T b1 have the forms

Ā1 =




× × × × × × ×
× × × × × × ×
× × × × × × ×
∗ ∗ ∗ × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×




, b̄1 =




×
×
×
×
0
0
0




The (k + 1)th element of b̄1 is nonzero and thus the first k
elements in row k + 1 of Ā1 can be annihilated by choosing a
suitable feedback h̄1 of the form

h̄1 =
[
× × × 0 0 0 0

]
.

From the partitioning of the pair (Ā1 + b̄1h̄1, b̄1) in the form

Ā1 + b̄1h̄1 :=

[
Ā11 Ā12

0 A2

]
, b̄1 :=

[
∗
b2

]
(2)

we have that Λ(Ā11) = {λ1, λ2, λ3} and A2 is in unreduced
upper Hessenberg form. The feedback matrix h1 which assigns
k eigenvalues of A1 +b1h1 is given by h1 = h̄1P

T . The deflation
process continues by applying the same procedure to the pair
(A2, b2) defined in (2), in HCF, with a new set of eigenvalues to
be assigned. To assign the last two eigenvalues, explicit formulas
must be used. The following algorithm summarizes the above
steps. We assume that H is an unreduced Hessenberg matrix
and β 6= 0.

Algorithm 1. Multi-step variable-multishift single-input
pole assignment.

1) Set A1 = H, b1 = βe1, P = I, h = 0, r = n, i = 1.

2) If r = 1 or 2, compute hi such that Λ(Ai + bihi) = Γ,
h ← h + [ 0 · · · 0︸ ︷︷ ︸

n−r

hi ]P T and Stop.

3) Choose a symmetric set of ki ≤ r − 2 eigenvalues Γi =
{λ1, λ2, . . . , λki} ⊂ Γ and compute

y = eT
r (Ai − λ1I)(Ai − λ2I) · · · (Ai − λkiI)

4) Choose a Householder reflector P1 to annihilate the first
r − 1 components of y and compute Ai ← P1AiP1 and
P ← Pdiag(In−r, P1).

5) Choose r−ki−1 Householder reflectors Pj , j = 2, . . . , r−
ki such that the trailing principal block of order (r − ki)
of UT

i AiUi, where Ui = P2 · · ·Pr−ki , is in an upper Hes-
senberg form. Compute Ai ← UT

i AiUi, bi ← UT
i bi and

P ← Pdiag(In−r, Ui).

6) Choose hi such that the first ki elements in row ki + 1 of
Ai + bihi are zero. Define

Ai + bihi :=

[
∗ ∗
0 Ai+1

]
, bi :=

[
∗

bi+1

]

7) Set h ← h + [ 0 · · · 0︸ ︷︷ ︸
n−r

hi ]P T , Γ ← Γ \ Γi, r ← r − ki,

i ← i + 1 and go to Step 2).

The main advantage of the multishift QR-like algorithms in
comparison with single or double shift methods is that by taking
larger values for the shift parameter k the vectorizability of the
implemented code is improved. The main operations can be ex-
pressed as matrix-vector products, and level 2 BLAS [14] can be
used. It is also possible to organize the algorithm so that several
columns are chased at a time, using the WY representation of
reflectors [15]. This allows to express the basic computations as
matrix-matrix products, and the algorithm can be coded using
level 3 BLAS [16]. This increases the parallelism of computa-
tions and the efficiency of hierarchical memory usage. Such a
version was implemented by Bai and Demmel [17] for the QR
algorithm.

The matrix P T (H + βe1h)P , which can be optionally com-
puted in place of H, results in an upper block-triangular form,
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with successive diagonal blocks of orders ki. If ki is always two,
then the above matrix is in a quasi-triangular form with diag-
onal blocks of order at most two corresponding to the assigned
eigenvalues. In this case the above algorithm is identical to the
implicit double-shift variant of the Miminis and Paige algorithm
[1] described in [4]. Because the multishift algorithm is an ex-
tension of the implicit double-shift method, it is to be expected
that for moderate values of ki (say ki ≤ 10) the proposed multi-
shift algorithm has similar numerical stability properties as the
numerically stable double-shift methods of [1], [4]. The proof of
numerical stability is still under investigation.

The number of performed operation depends on the values of
ki. If ki = k is constant at each iteration, then in one iteration
Algorithm 1 performs about k3/6+(2k+1)r(r−k) flops, where
the first term accounts for the evaluation of the shift vector y at
Step 3) and the second term accounts for the application of the
modified Householder transformations to Ai at Steps 4) and 5).
We assumed that the intermediary Householder transformations
are stored in factored form and thus are not accumulated. The
following table shows the total number of operations N1

op and
the required additional memory M1

loc for some particular values
of k, considering that in average n/k iterations are performed
by the algorithm.

k k ¿ n 2 10 n/2 n-2

N1
op

2k+1
3k

n3 5
6
n3 2

3
n3 1

2
n3 1

6
n3

M1
loc

k+1
2k

n2 3
4
n2 1

2
n2 1

4
n2 2n

Notice that both the number of operations and the necessary
memory decrease with increasing values of k. For instance, for
k = 10 Algorithm 1 needs approximately n3/6 less operations
than for k = 2.

Remark. A distinct non-recursive one-step variant of Al-
gorithm 1 can be derived by performing an implicit multishift
for n − 2 eigenvalues [18]. The resulting algorithmic variant
is particularly advantageous for computer implementation pri-
marily because its simplicity and efficiency. Only two orthogo-
nal reflectors must be determined: P1, which provides the shift
information, and P2 which annihilates the first n − 2 elements
in the last row of P1A1P1. Then h is computed in the form
(1), where P = P1P2. This algorithm can be implemented with
0(n) additional storage and requires only n3/6 flops (to evaluate
the shift vector y). Thus this algorithmic variant is one of the
most efficient algorithms available to solve the single-input pole
assignment problem. 2

III. Computation of Shift Information

The accuracy and the roundoff properties of the proposed
implicit multishift method depend crucially on the accuracy of
shift information contained in the Householder reflector P1 com-
puted at Step 4) of Algorithm 1. Provided the shift information
are sufficiently accurate, it is to be expected that the multishift
algorithm has the same accuracy as the single or double-shift
methods. It is worth mentioning in this context that roundoff
errors can create difficulties (forward instability) even when one
is working with a single shift as observed by Parlett in the case
of the QR-algorithm [19].

In this section we discuss two approaches to compute the
implicit shift information. In the first approach we evaluate
explicitly the shift vector y and then we compute the orthogo-
nal reflector P1 which annihilate the first r − 1 components of
y. In order to avoid potential problems with overflow or un-
derflow during computing the shift vector y, it is recommended
to compute instead of y the quantity z = y/‖y‖ using an ap-

propriate norm. This can be done efficiently by the recursion
z ← z(Ai−λjI), z ← z/‖z‖, j = 1, · · · , ki, starting with z = eT

r .
It has been however observed that the accuracy of the shift vec-
tor y computed in this way is sensitive to the order in which
the shifts enter in the computations. In order to avoid the in-
corporation of some sorting procedure in the implementation
of the above recurrence, we can use an alternative scheme re-
cently proposed in [20] to compute first the coefficients of the
polynomial

p(λ) = (λ− λ1)(λ− λ2) · · · (λ− λki) = ckiλ
ki + · · ·+ c1λ + c0

and then to evaluate the vector y as y = eT
r p(Ai). This com-

putation can be done efficiently by using a Horner-like polyno-
mial evaluation scheme as for instance by evaluating recursively
y ← cki−i+1e

T
r + yAi for i = 1, . . . , ki + 1 started with y = 0.

These operations are column oriented and can exploit efficiently
the Hessenberg structure of Ai. Both techniques to evaluate y
are used in practical implicit multishift QR-like techniques for
eigenvalue computations.

For ki = n− 2 both of above techniques lead to an algorithm
with certain resemblance to the unstable method of Datta [9].
To enhance, especially for large values of ki, the numerical ac-
curacy in the computation of the shift information, we propose

a second approach by which an orthogonal matrix P̃1, holding
the same information as the orthogonal reflector P1, is implic-
itly determined without performing any explicit matrix-vector
multiplication. Assume that all eigenvalues λ1, . . . , λki to be

simultaneously assigned are real and denote A
(0)
i = Ai. Let H1

be the Householder reflector which annihilates the first r − 1
elements of the last row of A

(0)
i − λ1I and let

R(1) = (A
(0)
i − λ1I)H1 :=

[
R1 r1

0 ρ1

]
.

It is easy to observe that

y = eT
r (A

(0)
i − λ1I)(A

(0)
i − λ2I) · · · (A(0)

i − λkiI)

= eT
r R(1)(A

(1)
i − λ2I) · · · (A(1)

i − λkiI)H1

= ρ1e
T
r (A

(1)
i − λ2I) · · · (A(1)

i − λkiI)H1

where
A

(1)
i = H1AiH1.

Notice that because A
(0)
i − λ1I is an unreduced upper Hessen-

berg matrix of order r, the first r − 3 columns of the resulting

A
(1)
i are also in upper Hessenberg form.
Next we computeH2 which annihilates the first r−1 elements

of the last row of A
(1)
i − λ2I and let

R(2) = (A
(1)
i − λ2I)H2 :=

[
R2 r2

0 ρ2

]
.

We evaluate further y as

y = ρ1e
T
r (A

(1)
i − λ2I) · · · (A(1)

i − λkiI)

= ρ1e
T
r R(2)(A

(2)
i − λ3I) · · · (A(2)

i − λkiI)H2H1

= ρ1ρ2e
T
r (A

(2)
i − λ3I) · · · (A(2)

i − λkiI)H2H1

where
A

(2)
i = H2H1AiH1H2.

Notice that the first r − 4 columns of the resulting A
(2)
i are in

upper Hessenberg form.
After performing ki similar steps we have

y = ρ1ρ2 · · · ρkie
T
r Hki · · ·H2H1
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TABLE I

Comparison of Different Methods

Methods Nop Mloc Numerical Stability

Miminis & Paige [1] 2
3
n3 + 5

6
n3 3

2
n2 yes

Petkov et al. [2] 2
3
n3 + 5

3
n3 n2 yes

Patel & Misra [4] 2
3
n3 + 5

6
n3 3

2
n2 yes

Datta [9] 2
3
n3 + 1

6
n3 1

2
n2 no

Modified Datta [8] 2
3
n3 + 5

6
n3 3

2
n2 yes

Schur method [10] 14n3 n2 likely

Algorithm 1 (k ¿ n) 2
3
n3 + 2k+1

3k
n3 1

2
n2 + k+1

2k
n2 likely

Algorithm 1’(k ¿ n) 2
3
n3 + 2k+1

3k
n3 1

2
(n2 + k2) + k+1

2k
n2 very likely

TABLE II

Values of maxi |fi|.

Methods n = 5 n = 10 n = 20 n = 50 n = 100

Miminis–Paige Method 4.1·10−15 1.3·10−14 1.2·10−14 1.5·10−13 7.0·10−13

Schur Method 8.6·10−16 4.3·10−15 2.0·10−15 4.4·10−14 1.7·10−13

Algorithm 1 (k = 5) 2.9 ·10−15 1.1·10−14 1.3·10−14 9.1·10−14 8.9·10−13

TABLE III

Values of maxi |λ̄i − λi|.

Methods n = 5 n = 10 n = 20 n = 50 n = 100

Miminis–Paige Method 2.8·10−15 7.5·10−15 6.2·10−15 3.1·10−13 3.1·10−11

Schur Method 1.3·10−15 6.1·10−15 1.0·10−14 1.1·10−11 1.2·10−9

Algorithm 1 (k = 5) 2.6·10−15 6.5·10−15 8.2·10−15 3.6·10−13 3.7·10−11

and thus

P̃1 = H1H2 · · ·Hki

annihilates the first r − 1 components of y. The final matrix

A
(ki)
i = Hki · · ·H2H1AiH1H2 · · ·Hki = P̃ T

1 AiP̃1

has exactly the same structure as the matrix Ai resulted at Step
4) of Algorithm 1.

The above technique can be also used in the case when not
all eigenvalues to be assigned are real, by working with unitary
Householder reflectors. We can avoid operations with complex
numbers by combining (similarly as in the case of QR method)
two complex steps in a single double-step. If {λj , λj+1} is a
pair of complex conjugated eigenvalues to be assigned, then we
determine the Householder reflector Hj which annihilates the

first r − 1 elements of the last row of the real matrix (A
(j−1)
i −

λjI)(A
(j−1)
i −λj+1I) and apply it as in the case of a single real

eigenvalue.

It can be seen that if we successively apply the computed
transformations H1, H2, . . . , Hki to Ai, then the explicit com-

putation of P̃1 is no more necessary. Thus a numerically en-
hanced version of Algorithm 1 can be devised which determines
the shift information without any explicit matrix-vector multi-
plications. This algorithmic variant is numerically more robust

than Algorithm 1 and should be preferred for the implemen-
tation of the multishift technique. We give bellow only those
steps of the enhanced algorithm which differ from the original
version.

Algorithm 1’. Enhanced multi-step variable-multishift
single-input pole assignment.

· · ·
3) Choose a symmetric set of ki < r − 2 eigenvalues Γi =
{λ1, λ2, . . . , λki} ⊂ Γ, where complex conjugated pairs ap-
pear in consecutive positions.

4) For j = 1, . . . , ki

a) Compute y = eT
r (Ai−λjI) for λj real or y = eT

r (Ai−
λjI)(Ai− λ̄jI) for λj complex. Choose a Householder
reflector Hj to annihilate the first r − 1 components
of y.

b) Compute Ai ← HjAiHj , P ← Pdiag(In−r,Hj). If λj

is complex then j ← j + 1.

· · ·
To compute the shift information the enhanced algorithm

performs slightly more operations then Algorithm 1 (about
(2/3)k2n + (1/2)kn2 flops instead (1/6)k2n) and needs some
additional storage (about (1/2)k2 locations) to store the House-
holder transformations Hj , j = 1, . . . , k. For k ¿ n the in-
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creases in the operation number as well in the storage require-
ments are negligible.

IV. Comparisons with Other Methods

It is interesting to compare the performances of the proposed
methods with those of existing ones. Table 1 contains the total
number of operations Nop and the necessary storage Mloc for
different methods, including for Hessenberg methods also the
reduction of the given system to the CHF. It is apparent from
this table that for k > 2 Algorithm 1 is more efficient than all
previously proposed numerically stable methods with respect to
both performance criteria.

We performed several tests to assess the accuracy of pro-
posed methods. As expected, for moderate values of the shift
parameter k (k ≤ 10) the accuracy of Algorithm 1 is similar
to the accuracy of equivalent Hessenberg methods [6], [2], [4].
Two other methods were included in the test runs, namely the
method of Miminis and Paige [1] and the Schur method [12].
All tests have been performed on an IBM RS 6000 computer,
in double precision, by using MATLAB implementations of the
mentioned algorithms.

In a first run, we generated randomly the matrices A and b
for different values of n and we chosed as desired eigenvalues the
eigenvalues of A. The resulting feedback f must be zero, and
thus the resulting deviation from zero can be viewed as a mea-
sure of the accuracy of the particular methods. In Table 2 we
included the resulting values for maxi |fi| for different values of
n. It can be observed that all methods manifest approximately
the same accuracy. Notice however that for this kind of test,
the Schur method performed systematically slightly better than
the Hessenberg methods.

In a second test run we compared for randomly generated
eigenvalues, the accuracy of the eigenvalues resulting after pole
assignment. For each value of n we computed the quantities
maxi |λ̄i − λi|, where λ̄i is the i-th eigenvalue of A + bf . The
obtained results are contained in Table 3. This test also confirms
that the accuracy of all three methods is very similar. The best
accuracy for the assigned eigenvalues has been achieved this
time systematically with the two Hessenberg methods. A word
of caution is however necessary here. The results of such a test
are meaningful only if the eigenvalue problem for A+bf is well-
conditioned. This is the case for our randomly generated data.
It is however not difficult to generate even low order examples
leading to very ill-conditioned eigenvalue problems for A + bf .

V. Conclusion

A numerically reliable multishift QR-like algorithm for single-
input pole assignment has been proposed. The basic method is
a multi-step variable-multishift algorithm whose numerical per-
formances (operation count, memory usage, accuracy) are simi-
lar with or better than the performances of existing numerically
stable methods. The proposed multishift method is a viable al-
ternative to existing explicit or implicit double-shift methods.
Especially on high performance computers, we expect similar
performances for this algorithm to that of multishift methods
for eigenvalue computations [17]. The multishift technique can
be readily extended to assign poles of multi-input systems as
well as of generalized state space systems.
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