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System Analysis via Integral Quadratic Constraints
Alexandre Megretski,Member, IEEE, and Anders Rantzer,Member, IEEE

Abstract—This paper introduces a unified approach to robust-
ness analysis with respect to nonlinearities, time variations, and
uncertain parameters. From an original idea by Yakubovich, the
approach has been developed under a combination of influences
from the Western and Russian traditions of control theory.

It is shown how a complex system can be described, using
integral quadratic constraints (IQC’s) for its elementary com-
ponents. A stability theorem for systems described by IQC’s is
presented that covers classical passivity/dissipativity arguments
but simplifies the use of multipliers and the treatment of causality.
A systematic computational approach is described, and relations
to other methods of stability analysis are discussed. Last, but
not least, the paper contains a summarizing list of IQC’s for
important types of system components.

Index Terms—Nonlinearity, robustness, stability analysis.

I. INTRODUCTION

I T IS common engineering practice to work with the sim-
plest possible models in design of control systems. In

particular, one often uses linear time-invariant plant models,
for which there exist a well-established theory and com-
mercially available computer tools that help in the design.
Experiments, often preceded by simulations with more accu-
rate models, are used to verify that the design also works
well in practice. There is also a strong need for more formal
ways to analyze the systems. Such analysis can help to identify
critical experimental circumstances or parameter combinations
and estimate the power of the models.

In the 1960–70’s, a large body of results was developed in
this direction, often referred to as “absolute stability theory.”
The basic idea was to partition the system into a feedback
interconnection of two positive operators; see [1]–[7] and the
references therein. To improve the flexibility of the approach,
so-calledmultipliers were used to select proper variables for
the partitioning. The absolute stability theory is now consid-
ered a fundamental component of the theory for nonlinear
systems. However, the applicability of many of the results
has been limited by computational problems and by restrictive
causality conditions used in the multiplier theory.

For computation of multipliers, substantial progress has
been made in the last decade, the most evident example being
algorithms for computation of structured singular values (
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analysis) [8]. As a result, robustness analysis with respect
to uncertain parameters and unmodeled dynamics can be
performed with great accuracy. An even more fundamental
breakthrough in this direction is the development of polyno-
mial time algorithms for convex optimization with constraints
defined by linear matrix inequalities [9], [10]. Such problems
appear not only in -analysis but also in almost any analysis
setup based on concepts of passivity-type.

The purpose of this paper is to address the second obstacle to
efficient analysis by proving that multipliers can be introduced
in a less restrictive manner, without causality constraints.
Not only does this make the theory more accessible by
simplification of proofs, but it also enhances the development
of computer tools that support the transformation of model
structure assumptions into numerically tractable optimization
problems.

The concept integral quadratic constraint (IQC) is used for
several purposes:

• to exploit structural information about perturbations;
• to characterize properties of external signals;
• to analyze combinations of several perturbations and

external signals.

Implicitly, IQC’s have always been used in stability theory.
For example, positivity of an operator can be expressed by
the IQC

In the 1960’s, most of the stability theory was devoted to
scalar feedback systems. This led to conveniently visualizable
stability criteria based on the Nyquist diagram, which was
particularly important in times when computers were less
accessible.

In the 1970’s, IQC’s were explicitly used by Yakubovich
to treat the stability problem for systems with advanced
nonlinearities, including amplitude and frequency modulation
systems. Some new IQC’s were introduced, and the so-called

-procedure was applied to the case of multiple constraints
[54]. Willems also gave an energy-related interpretation of the
stability results, in terms of dissipativity, storage functions,
and supply rates [4]. Later on, Safonov interpreted the stability
results geometrically, in terms of separation of the graphs of
the two operators in the feedback loop.

An important step in further development was the introduc-
tion of analysis methods which essentially rely on the use of
computers. One example is the theory for quadratic stabiliza-
tion [11], [12], and another is the multiloop generalization of
the circle criterion based on D-scaling [13], [8]. Both search
for a Lyapunov function, and the search for D-scales can be
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interpreted as optimization of parameters in an IQC. Another
direction was the introduction of optimization for the
synthesis of robust controllers [14], [15]. Again, the results
can be viewed in terms of IQC’s, since optimal design with
respect to an IQC leads to optimization.

During the last decade, a variety of methods has been
developed within the area of robust control. As was pointed
out in [16], many of them can be reformulated to fall within
the framework of IQC’s. This will be further demonstrated
in the current paper, which presents a minimal framework for
the stability analysis of feedback interconnections described in
terms of IQC’s. In Section II, definitions and a main theorem
are given in detail. They are illustrated in Section III by an
extensive example, analyzing a system with saturation and
an uncertain delay. Then, follow sections with discussions
and comparisons to well-known results. Finally, we give a
summarizing list of IQC’s for important types of system
components.

A. Notation

Let be the set of proper (bounded at infinity) rational
functions with real coefficients. The subset consisting of func-
tions without poles in the closed right-half plane is denoted

. The set of matrices with elements in
( ) will be denoted ( ).

can be thought of as the space of -valued
functions of finite energy

This is a subset of the space , whose members only
need to be square integrable on finite intervals. The Fourier
transform of is denoted by

By an operator we mean a function
from one space to another. Thegain of

an operator is given by

An important example of an operator is given by thepast
projection(truncation) , which leaves a function unchanged
on the interval and gives the value zero on .
Causalityof an operator means that for
any .

B. What Is an IQC?

IQC’s provide a way of representing relationships between
processes evolving in a complex dynamical system, in a form
that is convenient for analysis.

Depending on the particular application, various versions
of IQC’s are available. Two signals and

are said tosatisfy the IQC defined by, if

(1)

Fig. 1. Basic feedback configuration.

(absolute integrability is assumed). Here the Fourier transforms
and represent the harmonic spectrum of the

signals and at the frequency , and (1) describes the
energy distribution in the spectrum of . In principle,

can be any measurable Hermitian-
valued function. In most situations, however, it is sufficient to
use rational functions that are bounded on the imaginary axis.

A time-domain form of (1) is

(2)

where is a quadratic form, and is defined by

(3)

where is a Hurwitz matrix. Intuitively, this state-space form
IQC is a combination of a linear filter (3) and a “correlator”
(2). For any bounded rational weighting function, (1) can be
expressed in the form (2), (3) by first factorizingas

with
, then defining from and .

In system analysis, IQC’s are useful to describe relations
between signals in a system component. For example, to
describe the saturation , one can use the IQC
defined by (1) with , which holds for any
square summable signals related by . In
general, a bounded operator
is said to satisfy the IQC defined by if (1) holds for all

, where .
There is, however, an evident problem in using IQC’s in

stability analysis. This is because both (1) and (2), (3) make
sense only if the signals are square summable. If it is not
knowna priori that the system is stable, then the signals might
not be square summable.1 This will be resolved as follows.
First, the system is considered as depending on a parameter

, such that stability is obvious for , while
gives the system to be studied. Then, the IQC’s are used to
show that as increases from zero to one, there can be no
transition from stability to instability.

II. A B ASIC STABILITY THEOREM

The following feedback configuration, illustrated in Fig. 1,
is the basic object of study in this paper:

(4)

1One could suggest using integrals “from 0 toT ” in (2) instead of the
integrals “from 0 to1,” as is often done in the literature. It can be shown,
however, that for many important components (such as a saturation), some
useful IQC’s hold in the form (2), but their counterparts “from 0 toT ” are
not valid (see Section IV).
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Here represent the “intercon-
nection noise,” and and are the two causal operators on

and , respectively. It is assumed that
is a linear time-invariant operator with the transfer function

in , and has bounded gain.
In applications, will be used to describe the “trouble-

making” (nonlinear, time-varying, or uncertain) components of
a system. The notation will either denote a linear operator
or a rational transfer matrix, depending on the context. The
following definitions will be convenient.

Definition: We say that the feedback interconnection of
and is well-posedif the map defined by
(4) has a causal inverse on . The interconnection
is stable if, in addition, the inverse is bounded, i.e., if there
exists a constant such that

(5)

for any and for any solution of (4).
When is linear, as will be the case below, well-posedness

means that is causally invertible. From boundedness
of and , it also follows that the interconnection is stable
if and only if is a bounded causal operator on

.
In most applications, well-posedness is equivalent to the

existence, uniqueness, and continuability of solutions of the
underlying differential equations and is relatively easy to
verify. Regarding stability, it is often desirable to verify
some kind of exponential stability. However, for general
classes of ordinary differential equations, exponential stability
is equivalent to the input/output stability introduced above
(compare [39, sec. 6.3]).

Proposition 1: Consider with
. Assume that for any

the system

(6)

has a solution . Then the following two conditions are
equivalent.

1) There exists a constant such that

(7)

for any solution of (6) with .
2) There exist such that

(8)

for any solution of (6).

Proof: Parts, if not all, of this result can be found in
standard references on nonlinear systems. A complete proof
is also included in the technical report [40] that contains an
early version of this paper.

We are now ready to state our main theorem.
Theorem 1: Let , and let be a bounded

causal operator. Assume that:

i) for every , the interconnection of and
is well-posed;

ii) for every , the IQC defined by is satisfied
by ;

iii) there exists such that

(9)

Then, the feedback interconnection ofand is stable.
Remark 1: The values

and

of recover versions of the small gain theorem and the
passivity theorem.

Remark 2: In many applications (see for example the pre-
vious remark), the upper left corner of is positive
semi-definite, and the lower right corner is negative semi-
definite so satisfies the IQC defined by for if
and only if does so. This simplifies Assumption ii).

Remark 3: The theorem remains true if the right-hand side
of (9) is replaced by . This is obtained by
replacing with

The corresponding IQC for is valid by definition of .
Remark 4: It is important to note that if satisfies several

IQC’s, defined by then a sufficient condition for
stability is the existence of such that (9) holds
for . Hence, the more IQC’s that
can be verified for , the better. Furthermore, the condition
is necessary in the following sense. If it fails for all
then (5) fails for some signals with and

satisfying all the IQC’s [17], [18].
Proof of Theorem 1 (Step 1):Show that there exists

such that

(10)

Introduce the notation

and let be the norms
for the matrix blocks of
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For , let . Then

for all . Note that (9) implies
that

Let ,
. Since satisfies the IQC defined by, we have

Hence const and

const

Step 2: Show that if is bounded for some
, then is bounded for any with

. By the well-posedness assumption,
the inverse is well defined on . Given

, define

Then

Boundedness of follows, as .
Step 3: Now, since is bounded for ,

Step 2 shows that is bounded for smaller than
, then for , etc. By

induction, it is bounded for all

III. A PPLICATION TO ROBUSTNESSANALYSIS

In robustness analysis based on the feedback configuration
illustrated in Fig. 1, it is natural to assume that is
known, and describes the “trouble-making” (nonlinear,
time-varying, or uncertain) components of the system.

First, we describe as accurately as possible by IQC’s.
The class of all rational Hermitian matrix functions that
define a valid IQC for a given is convex, and it is usually
infinite-dimensional. For a large number of simple system
components, a corresponding class is readily available in
the literature. In fact, IQC’s are implicitly present in many
results on robust/nonlinear/time-varying stability. A list of

Fig. 2. System with saturation and delay.

such IQC’s has been appended to this paper in Section VI.
When consists of a combination of several simple blocks,
IQC’s can be generated by convex combinations of constraints
for the simpler components.

Next, we search for a matrix function that satisfies
Theorem 1. The search for a suitablecan be carried out
by numerical optimization, restricted to a finite-dimensional
subset of . Then, can be written on the form

where are positive real parameters. Usually and are
proper rational functions with no poles on the imaginary axis,
so there exists , a Hurwitz matrix of size , a
matrix of size , and a set of symmetric real matrices

of size , such that

for all . By application of the Kalman–Yakubovich–Popov
lemma [19]–[21], it follows that (9) is equivalent to the
existence of a symmetric matrix such that

(11)

Hence the search for that produces a satisfying (9) (i.e.,
proving the stability) takes the form of a convex optimization
problem defined by a linear matrix inequality (LMI) in the
variables . Such problems can be solved very efficiently
using the recently developed numerical algorithms based on
interior point methods [9], [10].

A. Example with Saturation and Delay

Consider the following feedback system with control satu-
ration and an uncertain delay:

(12)

where and is an unknown constant

is the transfer function of the controlled plant (see the Nyquist
plot on Fig. 3), and

is the function that represents the saturation. The setup is
illustrated in Fig. 2.
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Fig. 3. Nyquist plot forP (j!) (solid line).

Let us first consider stability analysis for the case of no
delay. Then let be the saturation, while .
Application of the circle criterion

(13)

gives stability for

(see dashed line in Fig. 3). This corresponds to acontain-
ing only the matrix

In the Popov criterion, consists of all linear combina-
tions

and the resulting inequality (9) gives the minor improvement

(14)

A Popov plot is shown in Fig. 4.
Furthermore, because the saturation is monotone and odd, it

is possible to apply a much stronger result, obtained by Zames
and Falb [22]. By their statement, a sufficient condition for
stability is the existence of a function such that

This extends the class of valid IQC’s further, by allowing all
matrix functions of the form

(15)

where has an impulse response of norm no greater than
one. For our problem, gives for
that

This shows that the feedback system is indeed stable for all
and concludes the stability analysis in the undelayed

case.

Fig. 4. Popov plot forP (j!) with stabilizing gaink.

Considering also the delay uncertainty, the problem is to find
a bound on the maximal stabilizing feedback gain for a given
delay bound. A crude bound can be received directly from the
small gain theorem, stating that, because of the gain bound

, the feedback interconnection of
and is stable, provided that

Not surprisingly, this condition is conservative. For example,
it does not utilize any bound on the delay. In order to do that,
it is useful to generate more IQC’s for the delay component.
First, we rewrite (12) as a feedback interconnection on Fig. 1,
with

and

With external signals as in (4), the equations are

(16)

where and for . One can see that
(16) is equivalent to the equations from (12), disturbed by the
“interconnection noise” .

For the uncertain time delay, several types of IQC’s are
given in the list. Here we shall use a simple (and not complete)
set of IQC’s for the uncertain delay

based on the bounds

(17)

where

is chosen as a rational upper bound (see Fig. 5) of
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Fig. 5. Comparison of 0(!) and �(j!).

Fig. 6. Bounds on stabilizing gaink versus delay uncertainty�0.

By integrating the point-wise inequalities (17) with some
nonnegative rational functions, one can obtain a huge set of
IQC’s valid for the uncertain delay. Using these in combination
with some set of IQC’s for the saturation nonlinearity, one can
estimate the region of stability for the system given in (12).
In Fig. 6, the “x”-marks denote parameter values for which
stability has been proved using (17) for the delay and (15)
with for the saturation.
The parameter was optimized by convex optimization.
The guaranteed instability region was obtained analytically
by considering the behavior of the system in the linear
“unsaturated” region around the origin.

IV. HARD AND SOFT IQC’S

As a rule, an IQC is an inequality describing correlation
between the input and output signals of a causal block.
Verifying an IQC can be viewed as a virtual experiment with
the setup shown on Fig. 7, where is the block tested for
an IQC, is the test signal of finite energy, and is a
stable linear transfer matrix with two vector inputs, two vector
outputs, and zero initial data. The blocks with indicate
calculation of the energy integral of the signal. We say that

satisfies the IQC described by the test setup if the energy
of the second output of is always at least as large as the
energy of the first output. Then the IQC can be represented
in the form (1), where

(18)

The most commonly used IQC is the one that expresses a
gain bound on the operator. For example corre-
sponds to the bound . The energy bounds have the

Fig. 7. Testing a block� for an IQC.

particular property that the energy difference until timewill
be nonnegative at any moment, not just . Such IQC’s
are calledhard IQC’s, in contrast to the more generalsoft
IQC’s, which need not hold for finite-time intervals. Some of
the most simple IQC’s are hard, but the “generic” ones are not.

Example: A simple example of a soft IQC is the one used
in the Popov criterion. If and , then

Clearly, the integral on is nonnegative for every ,
but not necessarily zero. Hence the IQC is hard,
but the IQC is soft.

In the theory of absolute stability, the use of soft IQC’s
was often referred to as allowing “noncausal multipliers.”
While for scalar systems this was usually not a serious
problem, the known conditions for applicability of noncausal
multipliers were far too restrictive for multivariable systems.
The formulation of Theorem 1 makes it possible (and easy)
to use soft IQC’s in a very general situation. For example,
consider the following corollary.

Corollary 1 (Noncausal Multipliers):Assume that Condi-
tion i) of Theorem 1 is satisfied. If there exist some

and such that

for
on

then the feedback interconnection ofand is input/output
stable.

Proof: This is Theorem 1 with

and . The IQC for follows as

For multivariable systems, the above conditions on
are much weaker than factorizability as ,
with , all being stable, which is
required, for example, in [22] and [6]. The price paid for this
in Theorem 1 is the very mild assumption that the feedback
loop is well posed not only for , but for all .

Another example is provided by the classical Popov crite-
rion.
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Fig. 8. Testing a signalf for an IQC.

Corollary 2 (Popov Criterion): Assume that
is such that const for . Let

, where is Hurwitz. Assume that
the system

(19)

has unique solution on for any and for any
square summable. If for some

(20)

then (19) with is exponentially stable.
Proof: For and a differentiable , we

have the soft IQC

Application of Corollary 1 with

shows that the conditions of Proposition 8 hold, which ensures
the exponential stability.

IQC’s can be used to describe an external signal (noise or a
reference) entering the system. The “virtual experiment” setup
for a signal is shown on Fig. 8. The setup clearly shows
the “spectral analysis” nature of IQC’s describing the signals.
Mathematically, the resulting IQC has the form

where is given by (18).
Performance analysis of systems can be made with both

interior blocks and external signals described in terms of
IQC’s.

V. IQC’S AND QUADRATIC STABILITY

There is a close relationship between quadratic stability and
stability analysis based on IQC’s. As a rule, if a system is
quadratically stable, then its stability can also be proved by
using a simple IQC. Conversely, a system that can be proved to
be stable via IQC’s always has a quadratic Lyapunov function
in some generalized sense. However, to actually present this
Lyapunov function, one has to extend the state space of the
system (by adding the states of from Fig. 7). Even then,
in the case of soft IQC’s, the Lyapunov function does not need

to be sign-definite and may not decrease monotonically along
the system trajectories. In any case, use of IQC’s replaces
the “blind” search for a quadratic Lyapunov function, which
is typical for the quadratic stability, by a more sophisticated
search. In general, for example in the case of so-called
“parameter-dependent” Lyapunov functions, the relationship
with the IQC type analysis has yet to be clarified.

Below we formulate and prove a result on the relationship
between a simple version of quadratic stability and IQC’s. Let

be a polytope of matrices , containing the zero
matrix . Let be the extremal points of .
Consider the system of differential equations

(21)

where are given matrices of appropriate size, and
is a Hurwitz matrix. (The most often considered

case of (21) is obtained when and is the set of
all diagonal matrices with the norm not exceeding. Then

, and are the diagonal matrices with on the
diagonal.) The system is called stable if for any
solution of (21), where is a measurable function and

for all . There are no efficient general conditions
that are bothnecessary and sufficientfor the stability of (21).
Instead, we will be concerned with stability conditions that
are only sufficient.

System (21) is calledquadratically stableif there exists a
matrix such that

(22)

Note that since and is a Hurwitz matrix, this
condition implies that . It follows that
is a Lyapunov function for (21) in the sense that is
positive definite and is negative definite on the
trajectories. Quadratic stability is asufficient condition for
stability of the system, and (22) can be solved efficiently with
respect to as a system of linear matrix inequalities.

An IQC-based approach to stability analysis of (21) can be
formulated as follows. Note that stability of (21) is equivalent
to stability of the feedback interconnection (4), where
is the linear time-invariant operator with transfer function

, and is the operator of multiplication
by . One can apply Theorem 1, using the fact that

satisfies the IQC’s given by the constant multiplier matrix

where are real matrices such that

(23)

For a fixed matrix satisfying (23), a sufficient condition of
stability given by Theorem 1 is

which is equivalent (by the Kalman–Yakubovich–Popov
lemma) to the existence of a matrix such that

(24)
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For an indefinite matrix , (23) may be difficult to verify.
However, (24) yields . In that case, it is sufficient to
check (23) at the vertices of only, i.e., (23) can
be replaced by

(25)

It is easy to see that the existence of the matrices
, such that (24), (25) hold, is a

sufficient condition of stability of (21).
Now we have the two seemingly different conditions for

stability of (21), both expressed in terms of systems of LMI’s:
quadratic stability (22) and IQC-stability (24), (25). The first
condition has -free variables (the components
of the matrix ), while the second condition has

-free variables. However,
the advantage of using the IQC condition is that the overall
“size” of the corresponding LMI is , while the
total “size” of the condition for quadratic stability is . If

is a large number and is significantly larger than and
, a modest (about two times) increase of the number of free

variables in (24), (25) results in a significant (about times)
decrease in the size of the corresponding LMI. The following
result shows that the two sufficient conditions of stability (24),
(25) and (22) are equivalent from the theoretical point of view.

Theorem 2: Assume that is a Hurwitz matrix and that
zero belongs to the convex hull of matrices .
Then, a given symmetric matrix solves the system of
LMI’s (22), if and only if together with some matrices

solve (24) and (25).
Proof: The sufficiency is straightforward: multiplying

(24) by from the left, and by from
the right yields

which implies (22) because of the inequality in (25).
To prove thenecessity, let satisfy (22). Let

be the quadratic form

where is a small parameter. Define by

(26)

where the infimum is taken over all such that .
Since the zero matrix belongs to the convex hull of, (22)
implies that . Hence, for a sufficiently small

, is strictly convex in the first argument, and a finite
minimum in (26) exists. Moreover, since is a quadratic
form, the same is true for and the matrices can be
introduced by

Let us show that the inequalities (24), (25) are satisfied. First,
by (22), for any we have

(provided that and are sufficiently small). Hence (25)
holds. Similarly, for any we have

and hence (24) holds, since the matrix in (24) is the matrix of
the quadratic form .

VI. A L IST OF IQC’S

The collection of IQC’s presented in this section is far
from being complete. However, the authors hope it will
support the idea that many important properties of basic system
interconnections used in stability analysis can be characterized
by IQC’s.

A. Uncertain Linear Time-Invariant Dynamics

Let be any linear time-invariant operator with gain (
norm) less than one. Then satisfies all IQC’s of the form

where is a bounded measurable function.

B. Constant Real Scalar

If is defined by multiplication with a real number of
absolute value 1, then it satisfies all IQC’s defined by matrix
functions of the form

(27)

where and are
bounded and measurable matrix functions.

This IQC and the previous one are the basis for standard
upper bounds for structured singular values [23], [24].

C. Time-Varying Real Scalar

Let be defined by multiplication in the time-domain with
a scalar function with . Then satisfies
IQC’s defined by a matrix of the form

where and are real matrices.
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D. Coefficients from a Polytope

Let be defined by multiplication in the time-domain with
a measurable matrix such that for any ,
where is a polytope of matrices with the extremal points
(vertices) . satisfies the IQC’s given by the
constant weight matrices

where are real matrices such that ,
and

This IQC corresponds to quadratic stability and was studied
in Section V.

E. Periodic Real Scalar

Let be defined by multiplication in the time-domain with
a periodic scalar function with and period

. Then satisfies IQC’s defined by (27), where and
are bounded, measurable matrix functions satisfying

This set of IQC’s gives the result by Willems on stability of
systems with uncertain periodic gains [19].

F. Multiplication by a Harmonic Oscillation

If , then satisfies the IQC’s
defined by

where is any bounded matrix-
valued rational function. Multiplication by a more complicated
(almost periodic) function can be represented as a sum of
several multiplications by a harmonic oscillation with the
IQC’s derived for each of them separately. For example

where

G. Slowly Time-Varying Real Scalar

Here is the operator of multiplication by a slowly time-
varying scalar, , where .
Since the 1960’s, various IQC’s have been discovered that
hold for such time variations; see, for example, [25]–[27].

Here we describe a simple but representative family of
IQC’s describing the redistribution of energy among frequen-
cies, caused by the multiplication by a slowly time-varying
coefficient. For any transfer matrix

where and is a constant, let
be an upper bound of the norm of the commutator

, for example

The following weighting matrices then define valid IQC’s:

(28)

where is a parameter, and is a causal transfer function
( for ). Another set of IQC’s is given by

(29)

where is skew-Hermitian along the imaginary axis (i.e.,
) but not necessarily causal. Since

as

whenever , the constraints used in the “”
case (multiplication by a constant gain ) can be
recovered from (28) and (29) as . Similarly, the “time-
varying real scalar” IQC’s will be recovered as by
using constant transfer matrices .

In [28] and [29], IQC’s are instead derived for uncertain
time-varying parameters with bounds on the support of the
Fourier transform . Slow variation then means that is
zero except for in some small interval .

H. Delay

The uncertain bounded delay operator
, where , satisfies the “point-wise” quadratic

constraints in the frequency domain

(30)

(31)

where , and are the functions defined by

Note that (31) is just a sector inequality for the relation
between and

Multiplying (30) by any rational function and integrating
over the imaginary axis yields a set of IQC’s for the delay.
Unfortunately, these IQC’s do not utilize the bound on the
delay. To improve the IQC-description, one can multiply
(31) by any nonnegative weight function and integrate over
the imaginary axis. The resulting IQC’s, however, will have
nonrational weight matrices . Instead, one should use a



828 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUNE 1997

rational upper bound of and rational lower bounds
and of and , respectively. For example, a reasonably
good approximation is given by

Then the point-wise inequality (31) holds with replaced by
, and with replaced by (the upper bound for the

multiplier, the lower bound for the multiplier),
respectively, and can be integrated with a nonnegative rational
weight function to get rational IQC’s utilizing the upper bound
on the delay.

A simpler, but less informative, set of IQC’s is defined for
, , by

where is any nonnegative rational weighting function, and
is any rational upper bound of

for example

I. Memoryless Nonlinearity in a Sector

If , where is a function
such that

then obviously the IQC with

holds.

J. The “Popov” IQC

If , where is a
continuous function, , and both and are
square summable, then

In the frequency domain, this looks like an IQC with

However, this is not a “proper” IQC, because is not
bounded on the imaginary axis. To fix the problem, consider

instead of , i.e., ,

where . Now, satisfies the
IQC with

Together with the IQC for a memoryless nonlinearity in a
sector, this IQC yields the well-known Popov criterion.

K. Monotonic Odd Nonlinearity

Suppose operates on scalar signals according to the
nonlinear map , where is an odd function
on such that for some constant . Then
satisfies the IQC’s defined by

where is arbitrary except that the -norm of its
impulse response is no larger than one [22].

L. IQC’s for Signals

Performance of a linear control system is often measured in
terms of disturbance attenuation. An important issue is then the
definition of the set of expected external signals. Here again,
IQC’s can be used as a flexible tool, for example to specify
bounds on auto correlation, frequency distribution, or even to
characterize a given finite set of signals. Then, the information
given by the IQC’s can be used in the performance analysis,
along the lines discussed in [49] and [30].

M. IQC’s from Robust Performance

One of the most appealing features of IQC’s is their ability
to widen the field of application of already existing results.
This means that almost any robustness result derived by some
method (possibly unrelated to the IQC techniques) for a special
class of systems can be translated into an IQC.

As an example of such a “translation,” consider the feedback
interconnection of a particular linear time-invariant system

with an “uncertain” block

(32)

where is the external disturbance. Assume that stability
of this interconnection (i.e., the invertibility of the operator

) is already proved, and, moreover, an upper bound
on the induced gain “from to ” (“robust performance”)
is known; for any square summable
satisfying (32). Then, since for any square summablethere
exists a square summable satisfying (32),
the block satisfies the IQC given by

(33)

This IQC implies stability of system (32) via Theorem 1 but
can also be used in the analysis of systems with additional
feedback blocks, as well as with different nominal transfer
functions.

For example, consider the uncertain blockwhich repre-
sents multiplication of a scalar input by a scalar time-varying
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coefficient , such that . There is one
obvious IQC for this block, stating that the -induced norm
of is not greater than one. Let us show how additional
nontrivial IQC’s can be derived, based on a particular robust
performance result. Consider the feedback interconnection of

with a given linear time-invariant block with a stable
transfer function . This is the case
of a system withone uncertain fast time-varying parameter

,

(34)

where are given constant matrices, is a Hurwitz
matrix, is the external disturbance. It is known that,
for this system, the norm bound , yields
the circle stability criterion , which gives only
sufficientconditions of stability. Nevertheless, for a large class
of transfer functions , not satisfying the circle criterion,
(34) is robustly stable. A proof of such stability usually
involves using a nonquadratic Lyapunov function ,
and provides an upper boundof the worst-case -induced
gain “from to ”. This upper bound, in turn, yields
the IQC given by (33), describing the uncertain block. The
fact that stability of (34) can be proved from this new IQC, but
not from the simple norm bound , shows that
the new IQC indeed carries additional information about.

VII. CONCLUSIONS

The objective of the paper was to give an overview of the
IQC-based stability analysis, featuring a basic stability theorem
and a list of the most important IQC’s. Depending on the
application, several modifications of the basic framework can
be used, providing more flexibility in the analysis as well as
open problems for future research.

Unconditional and Conditional IQC’s:In this paper, an
operator was said to satisfy an IQC if (1) was satisfied for
any such that . Such an IQC can
be called “unconditional,” because it does not depend on the
environment in which the block is being used. Using such
IQC’s is easy and convenient, in particular because they can
be derived independently of the system setup (or be found
in the literature). Sometimes, however, unconditional IQC’s
lead to unjustified conservatism in the analysis. Consider, for
simplicity, the system

(35)

where is a given nonlinear function. Here the set of possible
functions is relatively small [it is parameterized by the
initial data parameter ]. Therefore, it may be an “overkill”
to consider the relation betweenand for all square
summable . It should be sufficient to look only at thosethat
may be produced by (35). For example, if , then
the “unconditional” IQC (2) with

does not hold for any . However, it holds (with
sufficiently small ) as a conditional IQC whenever
is a nonsingular matrix.

Average IQC’s: The “average” IQC’s are especially useful
in their conditional form when one is working with stochastic
system models. These IQC’s are defined by replacing (2) with

Incremental IQC’s: For nonlinear systems, as a rule, the
standard IQC’s (1) are good only for showing that the signals
within the system are “small” (are square summable, tend to
zero, etc.) However, many interesting questions, for exam-
ple the study of the existence and properties of a globally
attractive periodic response to any periodic input, require
deeper information about the system. This can be supplied
by incremental IQC’s. An unconditional incremental IQC
describing the operator has the form (1), where
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