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System Analysis via Integral Quadratic Constraints

Alexandre MegretskiMember, IEEE and Anders RantzeMember, IEEE

Abstract—This paper introduces a unified approach to robust- analysis) [8]. As a result, robustness analysis with respect
ness analysis with respect to nonlinearities, time variations, and to uncertain parameters and unmodeled dynamics can be
uncertain parameters. From an original idea by Yakubovich, the e formed with great accuracy. An even more fundamental
approach has been developed under a combination of |nf|uencesb kth h in this direction is the d | t of pol i
from the Western and Russian traditions of control theory. r_ea 3 roug m IS direction I1s ? _evg opmen or po Y”O

It is shown how a Comp|ex System can be described’ using mial time algorltth for convex 0pt|m|zat|0n with constraints
integral quadratic constraints (IQC’s) for its elementary com- defined by linear matrix inequalities [9], [10]. Such problems
ponents. A stability theorem for systems described by 1QC’s is appear not only in:-analysis but also in almost any analysis
presented that covers classical passivity/dissipativity arguments setup based on concepts of passivity-type.

but simplifies the use of multipliers and the treatment of causality. . .
A systematic computational approach is described, and relations The purpose of this paper is to address the second obstacle to

to other methods of stability analysis are discussed. Last, but €fficient analysis by proving that multipliers can be introduced
not least, the paper contains a summarizing list of IQC’s for in a less restrictive manner, without causality constraints.

important types of system components. Not only does this make the theory more accessible by
Index Terms—Nonlinearity, robustness, stability analysis. simplification of proofs, but it also enhances the development

of computer tools that support the transformation of model

structure assumptions into numerically tractable optimization

problems.

T IS common engineering practice to work with the sim- The concept integral quadratic constraint (IQC) is used for

plest possible models in design of control systems. Beveral purposes:

particular, one often uses linear time-invariant plant models,« to exploit structural information about perturbations;
for which there exist a well-established theory and com- . to characterize properties of external signals;

mercially available computer tools that help in the design.« to analyze combinations of several perturbations and
Experiments, often preceded by simulations with more accu- external signals.

rate models, are used to verify that the design also works)mpjicitly, 1QC's have always been used in stability theory.

well in practice. There is also a strong need for more formg},, example, positivity of an operatdf can be expressed by
ways to analyze the systems. Such analysis can help to idenfifx |oc

critical experimental circumstances or parameter combinations

and estimate the power of the models. T ey
In the 1960-70’s, a large body of results was developed in /_Oo (Fo)(jw) (jw)dw 2 0, Vo

this direction, often referred to as “absolute stability theory.” -

The basic idea was to partition the system into a feedback!" the 1960’s, most of the stability theory was devoted to

interconnection of two positive operators; see [1]-[7] and th??al'?‘_r feeo_lbaf:k systems. This led to _con\(emently V|s_uaI|zabIe

references therein. To improve the flexibility of the approacftapility criteria based on the Nyquist diagram, which was

so-calledmultipliers were used to select proper variables foparticularly important in times when computers were less

the partitioning. The absolute stability theory is now consi@ccessible. o ,

ered a fundamental component of the theory for nonlinear'n the 1970's, 1QC’s were explicitly used by Yakubovich

systems. However, the applicability of many of the resulf® treat the stability problem for systems with advanced

has been limited by computational problems and by restricti@nlinearities, including amplitude and frequency modulation

causality conditions used in the multiplier theory. systems. Some new IQC’s were introduced, apd the so—ce}lled
For computation of multipliers, substantial progress haisProcedure was applied to the case of multiple constraints

been made in the last decade, the most evident example bdrff- Willems also gave an energy-related interpretation of the

algorithms for computation of structured singular valugs (sta ility results, in terms of d|55|pat|V|_ty, storage funct|0r_1§,

and supply rates [4]. Later on, Safonov interpreted the stability
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interpreted as optimization of parameters in an IQC. Another

€ w
direction was the introduction o> optimization for the G(s)
synthesis of robust controllers [14], [15]. Again, the results
can be viewed in terms of IQC’s, since optimal design with v f
respect to an 1QC leads tH°° optimization. A

During the last decade, a variety of methods has been
developed within the area of robust control. As was pointézég'
out in [16], many of them can be reformulated to fall within
the framework of 1QC’s. This will be further demonstratedabsolute integrability is assumed). Here the Fourier transforms
in the current paper, which presents a minimal framework f@(jw) and 7(jw) represent the harmonic spectrum of the
the stability analysis of feedback interconnections describeddignals« and v at the frequencyw, and (1) describes the
terms of 1QC’s. In Section Il, definitions and a main theorerenergy distribution in the spectrum @f,w). In principle,
are given in detail. They are illustrated in Section lll by aml : jR — C(+™x(+m) can be any measurable Hermitian-
extensive example, analyzing a system with saturation analued function. In most situations, however, it is sufficient to
an uncertain delay. Then, follow sections with discussionse rational functions that are bounded on the imaginary axis.
and comparisons to well-known results. Finally, we give a A time-domain form of (1) is
summarizing list of IQC’s for important types of system .00
components. / o(xx(t), w(t),v(t))dt > 0 (2)

0

1. Basic feedback configuration.

A. Notation whereg is a quadratic form, and, is defined by

Let RL., be the set of proper (bounded at infinity) rationaljjw(t) = Arz(t) + Byw(t) + Byo(t), 2:(0)=0 (3)
functions with real coefficients. The subset consisting of func-
tions without poles in the closed right-half plane is denoteshereA. is a Hurwitz matrix. Intuitively, this state-space form
RH_,. The set ofm x n matrices with elements ilRL., IQC is a combination of a linear filter (3) and a “correlator”

(RH.,) will be denotedRL72*™ (RHZL*™). (2). For any bounded rational weighting functifin (1) can be
L5[0,00) can be thought of as the space Bf-valued expressed in the form (2), (3) by first factorizibigasIl(jw) =
functions f : [0,00) — R! of finite energy U(jw)* MU (jw) with U(jw) = Cy(jwl — Ar) 7By By +
oo Dy, then definings from Cy,, Dy, and M.
1112 :/ |f(#)|dt. In system analysis, 1QC’s are useful to describe relations
0

between signals in a system component. For example, to

This is a subset of the spa&s. [0, o), whose members only describe the saturation = sat(v), one can use the 1QC
need to be square integrable on finite intervals. The Fourigfined by (1) withIl = diag{1, -1}, which holds for any

transform of f € L4[0, 00) is denoted by square summable signais, v related byw = sat(v). In
o general, a bounded operatex : L) [0,00) — L3[0,00)
f(jw) :/ C—Jwtf(t)dt_ is said tosatisfy the IQC defined bl if (1) holds for all
0 w = A(v), wherev € L$[0,00).
By an operator we mean a functionf’ : Lg[0,00) — Thgre is, hoyvever., an evident problem in using 1QC’s in
L_[0, o0) from oneLq.[0, c0) space to another. Thgain of ~Stability analysis. This is because both (1) and (2), (3) make
an operatotf” : L4 [0, 00) — L [0, 00) is given by sense only if the signalg, v are square summable. If it is not
knowna priori that the system is stable, then the signals might
| F|l = sup{[|FHII/IIfIl = f € L3[0,00), f# 0} not be square summableThis will be resolved as follows.

An important example of an operator is given by tast First, the system is considered as depending on a parameter

projection(truncation)Pr, which leaves a function unchangedT.E [0, 1], such that stability IS obvious far = 0, Wr,]'IeT =1
on the interval[0, 7] and gives the value zero off’, ). gives the system to be studied. Then, the IQC’s are used to

Causality of an operatorF’ means thatPr /' = PpF Pr for ShOW. fchat asr Increases fr_om ZEro to one, there can be no
any T > 0. transition from stability to instability.

B. What Is an 1QC? Il. A BASIC STABILITY THEOREM

IQC’s provide a way of representing relationships between The follqwing feedback co_nfigL_Jration, illustrated in Fig. 1,
processes evolving in a complex dynamical system, in a forli the basic object of study in this paper:

that is convenient for analysis. - @
_ _ o _ _ v w4 f 4)
Depending on t_he particular .apphcatlon, various versions w = Alv)+e.
of 1QC’s are available. Two signalw € L3'[0,00) and
v € L4[0,00) are said tosatisfy the 1QC defined ki, if 10ne could suggest using integrals “from 019 in (2) instead of the
integrals “from 0 toco,” as is often done in the literature. It can be shown,
©0 (jw) o (jw) however, that for many important components (such as a saturation), some
. H(j ) . dw >0 (1) useful IQC’s hold in the form (2), but their counterparts “from 0Z%0 are
—o0 w(Jw) w(Jw) not valid (see Section 1V).
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Here f € L, [0,00),c € L3[0,00) represent the “intercon- We are now ready to state our main theorem.
nection noise,” ands and A are the two causal operators on Theorem 1:Let G(s) € RHYX™, and letA be a bounded
L7 [0, 00) and LY [0, oc), respectively. It is assumed that causal operator. Assume that:
is a linear time-invariant operator with the transfer function i) for every r ¢ [0,1], the interconnection of and 7A
G(s) in RHY™, and A has bounded gain. is well-posed;
In applications,A will be used to describe the “trouble- ii) for every 7 € [0, 1], the IQC defined byl is satisfied
making” (nonlinear, time-varying, or uncertain) components of by 7A;
a system. The notatio@ will either denote a linear operator iii) there existse > 0 such that
or a rational transfer matrix, depending on the context. The ok )
following definitions will be convenient. {G(Jw)} I1(jw) {G(Jw)} < —el, Yw € R. (9)
Definition: We say that the feedback interconnection(bf I I -
and A is well-posedif the map (v, w) — (e, f) defined by
(4) has a causal inverse di; [0, 00). The interconnection
is stableif, in addition, the inverse is bounded, i.e., if there

Then, the feedback interconnection@fand A is stable.
Remark 1: The values

exists a constan€ > 0 such that [—7 0 }
0 -1
T T
[l s ufyde< o [+ a5 and
0 0 |:0 I:|
for anyT” > 0 and for any solution of (4). I 0

Whend is linear, as will be the case below, WeII—posednes% I . f th Il qain th d th
means thaf — GA is causally invertible. From boundednes€ (iw) recover versions of the small gain theorem and the

of G and A, it also follows that the interconnection is stabld3SSVIY thejorem. C
if and only if (1 — GA)~! is a bounded causal operator on Remark 2: In many applications (see for example the pre-

LL[0, 50). vious remark), the upper left corner @l(jw) is positive

L , . semi-definite, and the lower right corner is negative semi-
In most applications, well-posedness is equivalent to th

existence, unigueness, and continuability of solutions of tfqgefm'te S(.)TA satisfies the_ IQ.C de_f_lned iy for TE [9’ 1] if
and only if A does so. This simplifies Assumption ii).

und_erlymg d|ff_erent|al _e_quat_lor_ls and is re_lauvely easy 0 Remark 3: The theorem remains true if the right-hand side
verify. Regarding stability, it is often desirable to verlfyOf (9) is replaced by—cG(jw)*G(jw). This is obtained b
some kind of exponential stability However, for general P Y J&)- y

. : : : . . replacing LI(iw) with
classes of ordinary differential equations, exponential stablhtyp 9I1(iw)

is equivalent to the input/output stability introduced above ) e/llA]] 0

(compare [39, sec. 6.3]). IIiw) + { 0 }
Proposition 1: Consider ¢ with sup, , |¢(z, t)|/|=(t)| <

co. Assume that for any € LS[O,oo): zo € R", ¢, > 0 The corresponding IQC foa is valid by definition of||Al|.

the system Remark 4: It is important to note that if A satisfies several

IQC’s, defined byily,---,1I,, then a sufficient condition for
stability is the existence afy, - - -, x,, > 0 such that (9) holds
for II = z¢II; + --- + z,11,,. Hence, the more IQC’s that
. . » can be verified forA, the better. Furthermore, the condition
has_a solutionz(-). Then the following two conditions are is necessary in the following sense. If it fails for ajj > 0,
equivalent. then (5) fails for some signalg, v, w with v = Gw + f and
1) There exists a constant> 0 such that v, w satisfying all the 1QC’s [17], [18].
Proof of Theorem 1 (Step 1)Show that there exists

T T
| lePar<e [ gwpd vrso @ e > 0 such that
0 0
o]l < collv = TGA@)|l, Vv € L[0,00), 7 € [0,1].
for any solution of (6) withz(0) = 0. (10)
2) There existe,d > 0 such that

_6 ’

a(t) = ¢(a(t), 1) +9(t),  t=to (6)

Introduce the notation

o(t)f < delat +a [ oo @) [ (29 ||

on(v,w) := ) o

£
o~
(S
~

. any SO|Ut|.0n.’IZ of (6) . . and |etm11,m12,m22 be the normsm,;; = sup,, ||H“(Jw)||
Proof: Parts, if not all, of this result can be found N, the matrix blocks of

standard references on nonlinear systems. A complete proof . .
is also included in the technical report [40] that contains an T(jw) = {Hll(yw)* Hm(]@)}
early version of this paper. O i2(jw)™ Hp(jw)
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Fore > 0, let c(e) = my; +mi, /e + miy/e. Then u
_k t P —fs
jon (o +8.w) = an(v,u)| i G
= ‘/ [E*Hng—i- QRQ(Q*HHE—F W*ngg)} dw
< m11||5||2 + 2||6||(m11||v|| + m12||w||) Fig. 2. System with saturation and delay.

2 2 2
< dl8I™ + e(llvll” + llwll”) such 1QC’s has been appended to this paper in Section VI.
for all v,6 € L]0, ), w € L3*[0, o0). Note that (9) implies When A consists of a combination of several simple blocks,
that IQC’s can be generated by convex combinations of constraints
for the simpler components.
on(Gw,w) < —ew|?, Vw € L3'[0,00). Next, we search for a matrix functidi € II, that satisfies
Let 7 € [0,1], w = TA®W), v € TL[0,00), &1 = /(2 + Theorem 1. The search for a suitalilecan be carried out

. - ' by numerical optimization, restricted to a finite-dimensional
4||G)|?). Sin isfies the | fin we hav ' .
IG]I%)- SincerA satisfies the IQC defined by, we have subset oflI 5. Then,II can be written on the form

0 < on(v,w) = on(Gw,w) + on(v,w) — on(Gw, w) 7=q0
< —ellul® + ee)llv — Guoll? + ex(flwl? + [[o]]?) M) = 2, wally(ie)
< —ef|w]® + (c(er) + 261)[lv — Gu|)? -~

wherez, are positive real parameters. Usually and G are

2 2
+er((lw]l” + 2l Gwll%) proper rational functions with no poles on the imaginary axis,

< _f||w||2 + (e(e1) + 2¢1)||v — Gw||*. so there exists: > 0, a Hurwitz matrix A of sizen x n, a
2 matrix B of sizen x m, and a set of symmetric real matrices
Hence||w| < constjv — Gw|| and My, , My, of size(n +m) x (n+ m), such that
Joll < Gl + |[v = Gu| < consffy — ~GA(W)]| A | *4]
I J I

Step 2: Show that if (I — 7GA)~! is bounded for some . _ * . _
7 € [0,1], then(I—vGA)~! is bounded for any € [0, 1] with = {(‘wl - 4) IB} M, {(‘wl - 4) IB}
|7—v| < (col|G|-||A]|) 7. By the well-posedness assumption, 1 4
the inverseg( — TGA)~t is well defined orlL4. [0, o). Given for all ¢. By application of the Kalman—Yakubovich—Popov
v € Lb.[0,00), define lemma [19]-[21], it follows that (9) is equivalent to the
B existence of a symmetrie x n matrix P = P such that
vr = (I = 7GA) ' Pr(v — TGA€W)).

PA+ATP PB] ‘R
{ BT p 0 } + ) w M, <. (11)
q=1

|1Pro|l = [[Pror|| < [jvr]] H o ,
ence the search far, that produces &l satisfying (9) (i.e.,
< collor = TGA(ur)]| = col|Pr(v — TGA(w))]] proving the stability) takes the form of a convex optimization
< co||Pr(v — vGA(v)) + (v — 7)PrGA(v)|| problem defined by a linear matrix inequality (LMI) in the
< ¢o||Pr(v — vGA@))|| + col|GA|| - |7 = v| - || Pro]|. variablesz,, P. Such problems can be solved very efficiently
using the recently developed numerical algorithms based on
Boundedness aff —»GA)~! follows, asco||GA||-|7—v| < 1. interior point methods [9], [10].
Step 3: Now, since(I — 7GA)~! is bounded forr = 0,
Step 2 shows thatl —7GA)~! is bounded forr smaller than A Example with Saturation and Delay
(collGIl - 1A=, then form < 2(col|GI| - |A])~, etc. By
induction, it is bounded for alt € [0, 1]. O

Then

Consider the following feedback system with control satu-
ration and an uncertain delay:

I1l. APPLICATION TO ROBUSTNESSANALYSIS #(t) = Awx(t)+ Bsat(u(t))

w(t) = —kCzx(t—09)

In robustness analysis based on the feedback configuration .
illustrated in Fig. 1, it is natural to assume thé¥s) is wherek > 0 andf € [0, 6] is an unknown constant
known, and A describes the “trouble-making” (nonlinear, 52
time-varying, or uncertain) components of the system. $3 4252425+ 1

First, we describeA as accurately as possible by 1QC'sjs the transfer function of the controlled plant (see the Nyquist
The clasdI of all rational Hermitian matrix functions that ot on Fig. 3), and
define a valid IQC for a givem\ is convex, and it is usually
infinite-dimensional. For a large number of simple system sat(u) :{ s Jul <1
components, a corresponding cldgs, is readily available in u/ul, Jul = 1
the literature. In fact, IQC’s are implicitly present in manys the function that represents the saturation. The setup is
results on robust/nonlinear/time-varying stability. A list ofllustrated in Fig. 2.

(12)

P(s)=C(sI —A)™'B =
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— Im Re P(jw) + jwIm P(jw)
: . 0.5
:1 P(Jw) 'Ii /_j
0.5 !
: 0 ;
) _% ::“
0 \/ —] —05 ‘
—98 : -1 J
5 0 05 1 Re 05 0 0.5 1 Re

Fig. 3. Nyquist plot forP(jw) (solid fine). Fig. 4. Popov plot forP(jw) with stabilizing gaink.

Let us first consider stability analysis for the case of no

delay. Then letA be the saturation, whil€/(s) = —kP(s). Considering also the delay uncertainty, the problem is to find
Application of the circle criterion a bound on the maximal stabilizing feedback gain for a given
— k! < minReP(jw) (13) delay bOI_Jnd. A crude bOL_md can be received directly from the
_ g w small gain theorem, stating that, because of the gain bound
gives stability for le=?*sat(-)|| < 1, the feedback interconnection of *sat(-)
k< koo ~ 8.12 and kP(s) is stable, provided that
(see dashed line in Fig. 3). This corresponds id.acontain- k< ||P|leo™t & 1.37.

ing only the matrix - . e .
Not surprisingly, this condition is conservative. For example,

{0 1 } . it does not utilize any bound on the delay. In order to do that,
o 1 =2 . . ~ itis useful to generate more 1QC’s for the delay component.
In the Popov criterion]IA consists of all linear combina- First, we rewrite (12) as a feedback interconnection on Fig. 1,

tions with
0 1 0 jw _|=kP(s) -k
IRS 0= o]
and the resulting inequality (9) gives the minor improvemerand
_ _1 . . . 5
E < max IrgnRe[(l + jwn)P(w)] (14) Aw)(t) = [UQ(:%—‘G(QV)ISG)U)Q@)} '

k < kpopoy & 8.90.

A Popov plot is shown in Fig. 4. With external signalg, f as in (4), the equations are

Furthermore, because the saturation is monotone and odd, it #(t) = Ax(t)+ Bwi(t)
is possible to apply a much stronger result, obtained by Zames wi(t) = sat[vi(t)] +ei(t)
and Falb [22]. By their statement, a sufficient condition for wa(t) = walt —0) —va(t) + ea(t) (16)
stability is the existence of a functiai € RL., such that vi(t) = —kCux(t) — kwa(t) + fi(t)
0 < min Re[(1 + H(jw)")(P(jw) + k)] vlt) = Ol + £200)
oo ' wherexz(0) = 0 andw(t — ) = 0 for ¢ < #. One can see that
H(jw) = / e ICth(t)dt (16) is equivalent to the equations from (12), disturbed by the
o “interconnection noise’e, f.
1 Z/ |h(t)|dt. For the uncertain time delay, several types of IQC’s are
—c0 given in the list. Here we shall use a simple (and not complete)

This extends the class of valid 1QC’s further, by allowing aket of IQC’s for the uncertain delay
matrix functions of the form . bW .
Wa(jw) = (799 — DT (jw), 6 € [0, 6]

N 0 1+ H(jw)

lI(w) = {1 + H(—jw) —2(1+ ReH(jw)) (15) based on the bounds
where H has an impulse response bf norm no greater than [2(jw)|? = |02 (jw) — Wa(jw)]* > 0 (17)
one. For our problemH (jw) = —(1+jw)™! gives forw € R Po(Bow)|O2(jw)|? — |D2(jw)* > 0
that where
Re[(1 + H(=jw))P(jw)] bolw) w? + 0.08w*

: Polw) =
.y +H(_jw)|2Re< v ) >0, 1+ 0.130% + 0.02*
—w?+jw+1

) v is chosen as a rational upper bound (see Fig. 5) of
This shows that the feedback system is indeed stable for all

22
k > 0 and concludes the stability analysis in the undelayegd, (j.) = max |¢=/«%/% — 12 = 4sin”(w/2), w<m
case. 9€[0,80] 4 w > .



824 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUNE 1997

5 v w

Yo(w) A I 2dt B
A T >0

Yo (w C(s) =
. (@) v J1-Pdel_1+
2 Fig. 7. Testing a blockA for an 1QC.
1
particular property that the energy difference until tiffievill

o)

5 10 15 20 W be nonnegative at any momeéfit not justl” = co. Such IQC'’s

are calledhard 1QC'’s, in contrast to the more genersbft

IQC’s, which need not hold for finite-time intervals. Some of

the most simple 1QC's are hard, but the “generic” ones are not.
Example: A simple example of a soft IQC is the one used

1_ in the Popov criterion. If, o € L[0, o0) andv(0) = 0, then

Fig. 5. Comparison of/g(w) and @« (jw).

k
25,

20

e . _ . 2 _ 2
o bl | vide = Jim (D) - [0 =o.

Clearly, the integral o0, T is nonnegative for ever§’ > 0,
but not necessarily zero. Hence the IGE vidt > 0 is hard,

5 7 o but the 1QC [~ vodt < 0 is soft.
0 /////////////////////////////////////% In the theory of absolute stability, the use of soft 1IQC’s
0 0.5 1 0 was often referred to as allowing “noncausal multipliers.”

While for scalar systems this was usually not a serious
problem, the known conditions for applicability of noncausal

By integrating the point-wise inequalities (17) with somdnultipliers were far too restrictive for multivariable systems.
nonnegative rational functions, one can obtain a huge setdi¢ formulation of Theorem 1 makes it possible (and easy)
IQC'’s valid for the uncertain delay. Using these in combinatiof® use soft IQC’s in a very general situation. For example,
with some set of IQC’s for the saturation nonlinearity, one ceiPnsider the following corollary. _
estimate the region of stability for the system given in (12). Corollary 1 (Noncausal Multipliers):Assume that Condi-

In Fig. 6, the “x"-marks denote parameter values for whicﬂonl ) of Theorem 1 is satisfied. If there exist somé ¢
stability has been proved using (17) for the delay and (1RLS™ ande > 0 such that

. > = N ) - o
with H(s) = 7(s + 1) T € [-1,1] for the saturation. [ Re(@*MAV)w > 0, for v € LL[0, 00)

The parameterr was optimized by convex optimization. ”’—=° " f " )

. o . . ) M*G+G*M < —¢G*G, onjR
The guaranteed instability region was obtained analytically
by considering the behavior of the system in the lineahen the feedback interconnection@fand A is input/output
“unsaturated” region around the origin. stable.
Proof: This is Theorem 1 with
IV. HARD AND SOFT IQC’s )
M(jw) }

As a rule, an 1QC is an inequality describing correlation H{jw) = [M(pr)* —eo/||A12
between the input and output signals of a causal black
Verifying an IQC can be viewed as a virtual experiment withnd ¢ = co/||A||?. The IQC for A follows as
the setup shown on Fig. 7, wher® is the block tested for
an 1QC, v is the test signal of finite energy, ar@(s) is a /°° FZ(J’W) r (,w){ﬁ\(jw) }dw
stable linear transfer matrix with two vector inputs, two vector J___ Av(jw)

Fig. 6. Bounds on stabilizing gaih versus delay uncertainty .

Av(jw)

outputs, and zero initial data. The blocks with- |?dt indicate OO ) ) )
calculation of the energy integral of the signal. We say that = Re(VMAV + ¢o[v|” — eoAv]/[|Al]")dw = 0.
A satisfies the 1QC described by the test setup if the energy =~~~
of the second output of” is always at least as large as the O
energy of the first output. Then the IQC can be representedror multivariable systems, the above conditions bh
in the form (1), where are much weaker than factorizability a®¥ = M_M,,
I 0 with My, My~ M_*, (M_*)~! all being stable, which is
{jw) = C(jw)* {0 —I} C(jw). (18) required, for example, in [22] and [6]. The price paid for this

in Theorem 1 is the very mild assumption that the feedback
The most commonly used IQC is the one that expressesoap is well posed not only for = 1, but for all 7 € [0, 1].
gain bound on the operatax. For exampleC(s) = I corre- Another example is provided by the classical Popov crite-
sponds to the bounfA|| < 1. The energy bounds have therion.
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to be sign-definite and may not decrease monotonically along

[]-|dt the system trajectories. In any case, use of IQC’s replaces
f(®) - the “blind” search for a quadratic Lyapunov function, which
C(s) — 20 s typical for the quadratic stability, by a more sophisticated
S2dt search. In general, for example in the case of so-calle

TP + h. | I, f le in th f lled

“parameter-dependent” Lyapunov functions, the relationship

with the IQC type analysis has yet to be clarified.

Below we formulate and prove a result on the relationship
between a simple version of quadratic stability and IQC'’s. Let
Corollary 2 (Popov Criterion): Assume thaty : R — R D be a polytope ofm x [ matricesA, containing the zero
is such thatd0 < o¢(s) < const- g2 for ¢ € R. Let matrix A = 0. Let Ay,---, Ay be the extremal points db.

H(s) = C(sI — A)~'B, where A is Hurwitz. Assume that Consider the system of differential equations

the system i(t) = (A+ BA®)C)x(t), At)eD  (21)
#(t) = Ax(t) + Br¢(Cx(t)) + (1) (19) where A, B, C are given matrices of appropriate size, and
has unique solution of0, o) for any 7 € [0,1] and for any A is a Hurwitz n x n matrix. (The most often considered

Fig. 8. Testing a signaf for an 1QC.

square summablg. If for someq € R case of (21) is obtained whem = [ and D is the set of
. _ _ all diagonal matrices with the norm not exceedihgThen
igfo Re[(1 + jwq)H(jw)] > 0 (20) N = 2™, and A; are the diagonal matrices witt1 on the

diagonal.) The system is called stablezift) — 0 for any
solution of (21), whereA(-) is a measurable function and
A(t) € D for all t. There are no efficient general conditions
that are botmecessary and sufficiefr the stability of (21).

then (19) with7 = 1 is exponentially stable.
Proof: Forgq € R and a differentiable; € L0, oc), we
have the soft IQC

00 u(t) e Instead, we will be concerned with stability conditions that
/ (u+ qi)p(u)dt > q ¢(o)do| =0 are only sufficient
0 0 0 System (21) is calledjuadratically stableif there exists a
Application of Corollary 1 with matrix P = P such that
G(s) = (s + 1) H(s) P(A+BA,O)+ (A+BA,O)YTP <0, Vi (22
Av)($) — L J Note that sinced0 € D and A is a Hurwitz matrix, this
(Av)(t) = ¢ e "v(r)dr condition implies that” > 0. It follows that V(z) = 2% Pz
M(s) = (1+gs)/(s+1) is a Lyapunov function for (21) in the sense thHt is

positive definite and{V (z(¢))/dt is negative definite on the
shows that the conditions of Proposition 8 hold, which ensurggjectories. Quadratic stability is sufficient condition for
the exponential stability. 0 stability of the system, and (22) can be solved efficiently with
IQC’s can be used to describe an external signal (noise ofegpect toP = P as a system of linear matrix inequalities.
reference) entering the system. The “virtual experiment” setupan 1QC-based approach to stability analysis of (21) can be
for a signal f is shown on Fig. 8. The setup clearly showformulated as follows. Note that stability of (21) is equivalent
the “spectral analysis” nature of IQC’s describing the signalgy stability of the feedback interconnection (4), whefe

Mathematically, the resulting IQC has the form is the linear time-invariant operator with transfer function
e G(s) = C(sI—A)~' B, andA is the operator of multiplication
/ flw) l(jw) f(jw)dw > 0 by A(t) € D. One can apply Theorem 1, using the fact that

A satisfies the 1QC’s given by the constant multiplier matrix
wherell is given by (18).

Performance analysis of systems can be made with both (jw) = LQT ;}
interior blocks and external signals described in terms of
1QC’s. where = QT, R = R, S are real matrices such that

Q+SA+ATST L ATRA >0, VAeD. (23)

ﬁar a fixed matrixII satisfying (23), a sufficient condition of
%tability given by Theorem 1 is

V. IQC’s AND QUADRATIC STABILITY

There is a close relationship between quadratic stability a
stability analysis based on IQC'’s. As a rule, if a system
guadratically stable, then its stability can also be proved by GUw) ] [Glw)
using a simple IQC. Conversely, a system that can be proved to 1 1 1 <0, Yw € R U {oo}

be stable via IQC’s always has a quadratic Lyapunov functi thich is equivalent (by the Kalman—-Yakubovich—-Popov
in some generalized sense. However, to actually present th

: r?lma) to the existence of a matrik = P such that
Lyapunov function, one has to extend the state space of the
[PA +ATP+CTQC PB4+ CTS

system (by adding the states ©fs) from Fig. 7). Even then, bt r
in the case of soft IQC'’s, the Lyapunov function does not need B*P+5°C R

<0. (24
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For an indefinite matrix®, (23) may be difficult to verify. Let us show that the inequalities (24), (25) are satisfied. First,
However, (24) yieldsk < 0. In that case, it is sufficient to by (22), for anyy we have

check (23) at the verticeA = A; of D only, i.e., (23) can
be repl(ace)zd by d (23) Yy (Q+SA; + AT ST + ATRA )y

= o(y, Ay)
Q-+ SA; + ATST + ATRA; > 0, Vi.  (25) = inf{oo(z,AiCx) : Cx =y}
= inf{-zT(P(A+ BA;,C) + (A+ BA,C)T P)x
It is easy to see that the existence of the matriges= —e(|z|* +|A:Cx|?) : Cx =y}
PT Q = QF, S, R = RY, such that (24), (25) hold, is a >

sufficient condition of stability of (21).
Now we have the two seemingly different conditions fo(provided thate and ¢; are sufficiently small). Hence (25)

stability of (21), both expressed in terms of systems of LMI'sholds. Similarly, for anyz, £ we have

guadratic stability (22) and 1QC-stability (24), (25). The first

condition hasn(n + 1)/2-free variables (the components z" P(Az + BE) +0(Cx,¢)

of the matrix P = PT), while the second condition has =z’ P(Az + BE) +inf{oo(z1,£) : Czy = Cx}

n(n+1)/24 (n+m)(n+m+ 1)/2-free variables. However, < #' P(Az + BE) — (|z|* + €)?) — 27 P(Ax + B¢)

the advantage of using the 1QC condition is that the overall < —e(|z + 1€]%)

“size” of the corresponding LMI is: + m + NI, while the -

total “size” of the condition for quadratic stability &n. If and hence (24) holds, since the matrix in (24) is the matrix of

N is a large number and is significantly larger thard and the quadratic forme” P(Ax + B¢) + o(Cx, €). O
m, a modest (about two times) increase of the number of free
variables in (24), (25) results in a significant (abauyt times) VI. A LIST OF IQC’s

decrease in the size of the corresponding LMI. The following
result shows that the two sufficient conditions of stability (24}
(25) and (22) are equivalent from the theoretical point of vie

Theorem 2: Assume thatd is a Hurwitz matrix and that
zero belongs to the convex hull of matrices;, -, An.
Then, a given symmetric matri¥’ solves the system of
LMI's (22), if and only if P together with some matrices
Q= QY R=RT, S solve (24) and (25).

Proof: The sufficiencyis straightforward: multiplying ~ Let A be any linear time-invariant operator with gaii (,
(24) by [I CTAT] from the left, and byl CTAT]T from norm) less than one. Theh satisfies all IQC’s of the form
the right yields 2(jw)] 0

0 —x(jw)I

The collection of IQC’s presented in this section is far
tom being complete. However, the authors hope it will
Vg'upport the idea that many important properties of basic system
interconnections used in stability analysis can be characterized
by 1QC'’s.

A. Uncertain Linear Time-Invariant Dynamics

P(A+ BAC) 4 (A+ BA,C)TP

Y S 0 ion.
+CT(Q + SA; + ATST 4 ATRANC < 0 wherez(jw) > 0 is a bounded measurable function

o . o B. Constant Real Scalar
which implies (22) because of the inequality in (25).

To prove thenecessity let P = PT satisfy (22). Let
oo : R™ x R™ — R be the quadratic form

If A is defined by multiplication with a real number of
absolute valuecl, then it satisfies all IQC’s defined by matrix
functions of the form

o0(2,€) = —el|al? +[¢[2) - 27 P(Az + BE) Klw) Y (w) 27

Y(jw) ~X(jw) @0

wheree > 0 is a small parameter. Define: R'xR™ — Rby where X(jw) = X(jw)* > 0 and Y (jw) = =Y (jw)* are
bounded and measurable matrix functions.

o(y,&) = inf{oo(z,&) : Cx =1y} (26) This IQC and the previous one are the basis for standard
upper bounds for structured singular values [23], [24].

where the infimum is taken over alle R™ such thatCz = . ) _

Since the zero matrix belongs to the convex hullaf (22) C- Time-Varying Real Scalar

implies thatPA + AT P < 0. Hence, for a sufficiently small  Let A be defined by multiplication in the time-domain with
e > 0, o is strictly convex in the first argument, and a finitea scalar functiors € L., with ||6]|.. < 1. Then A satisfies
minimum in (26) exists. Moreover, sincg, is a quadratic 1QC’s defined by a matrix of the form

form, the same is true far, and the matrice§), R, S can be

. X Y

introduced by vT _x

o(y, &) = yTQu + 2y S¢ + ¢TRe. whereX = X7 > 0 andY = —Y7 are real matrices.
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D. Coefficients from a Polytope where h(-) € L7*™(—o0,+00) and Hy is a constant, let
Let A be defined by multiplication in the time-domain with?(£1; @) bé an upper bound of the norm of the commutator
a measurable matrix\(-) such thatA(t) € D for anyt, &4 —H oA, for example

whereD is a polytope of matrices with the extremal points +o0 _
(vertices) A1, ---,Ay. A satisfies the 1QC’s given by the ¢(H,d) I/ |A(8)|| min{2, d|¢|}dt.
constant weight matrices o

The following weighting matrices then define valid 1QC’s:
; Q F
H(jw) = FT R

" ,d)?
o— {(1 + p){H*H + ﬂfi}—LIm} 0 } (28)
0 —-H*H
where = Q7. F, R = R" are real matrices such th&t< 0,
and wherep > 0 is a parameter, anH is a causal transfer function
h(t) = 0 for £ < 0). Another set of IQC’s is given b
Q+FA; +ATFY + ATRA; >0, Vi () ) Q g Y
. o . o [¢H DI H 29)
Th|s IQ.C corresponds to quadratic stability and was studied H* 0
in Section V.
where H is skew-Hermitian along the imaginary axis (i.e.,
E. Periodic Real Scalar H(jw) = —H(jw)*) but not necessarily causal. Since
Let A be defined by multiplication in the time-domain with $(H,d)=0(d) asd—0

a periodic scalar functioh € L., with ||6]|cc < 1 and period . _ .
T. Then A satisfies IQC’s defined by (27), wheté andy  Whenever|a(t)|| = O(t7=7°), the constraints used in the:

are bounded, measurable matrix functions satisfying case (multiplication by a constant gaine [-1,1]) can be
. . . recovered from (28) and (29) as— 0. Similarly, the “time-
X(jw) = X(j(w+2r/T)) = X(jw)* 20 varying real scalar” IQC’s will be recovered as— oo by

Y(jw) =Y (jw+2r/T)) = =Y (jw)*. using constant transfer matricés(s) = Hy.

In [28] and [29], IQC’s are instead derived for uncertain
me-varying parameters with bounds on the support of the
Fourier transformb. Slow variation then means that;jw) is
zero except fow in some small interval—a, a.

This set of IQC’s gives the result by Willems on stability of[i
systems with uncertain periodic gains [19].

F. Multiplication by a Harmonic Oscillation

If (Av)(t) = v(t)cos(wot), then A satisfies the IQC's . pelay

defined by The uncertain bounded delay operatayw)(t) = v(t—6) =

T(jw) = X(jw = jwo) + X(jw + jwo) 0 w(t), wheref € [0,6,], satisfies the “point-wise” quadratic
0 —2X(jw) constraints in the frequency domain

where X(jw) = X(jw)* > 0 is any bounded matrix- |B(jw)|? = [0(w)? (30)
valued rational function. Multiplication by a more complicated
(almost periodic) function can be represented as a sum of

. o~ e ~ 2 PANToYE 2
- ) ) e ] O jw (5 ] —(1 : ]
several multiplications by a harmonic oscillation with th PLwe) (g @(iw) + 8(Gw)” = (1 + @) [E(jw)l)

K o~ AL 2

IQC'’s derived for each of them separately. For example 2 Pa(jw)lv(jw) — w(Gw)l”  (31)
v(t){ay cos(wit) + ag cos(wet)} = a1 (A10)(t) + az(Aov)(t) wherew, = wby/2, andy » are the functions defined by
where Pi(w) = {%7 lw| <7

(A1v)(t) = v(t) cos(wyt) 0, ||w||> T

_ _ Jeosw, w £

(Bav)(t) = vlt) cos(wt). ) = {5 =T

G. Slowly Time-Varying Real Scalar Note that (31) is just a sector inequality for the relation
Here A is the operator of multiplication by a slowly time-Petweenu(jw) — w(jw) andj(v(jw) + wW(jw))

varying scalarAv = §(¢)v(t), where|6(¢)| < 1, |6(¢)] < d. cos(wh/2)

Since the 1960's, various IQC’s have been discovered that J(@(jw) + W(jw)) = W@(jw) — W(jw)).
hold for such time variations; see, for example, [25]-[27].

Here we describe a simple but representative family dfultiplying (30) by any rational function and integrating
IQC’s describing the redistribution of energy among frequever the imaginary axis yields a set of IQC’s for the delay.
cies, caused by the multiplication by a slowly time-varying/nfortunately, these 1QC’s do not utilize the bound on the

coefficient. For any transfer matrix delay. To improve the IQC-description, one can multiply
too (31) by any nonnegative weight function and integrate over

H(s) = Hy +/ e h(t)dt the imaginary axis. The resulting IQC’s, however, will have

—oo nonrational weight matriceSl(-). Instead, one should use a
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rational upper boundg 4 of ¢/; and rational lower boundg;_  where¢(t) = —uv(t) + f(¢), v(0) = 0. Now, A, satisfies the
andi,_ of 41 andi),, respectively. For example, a reasonabllQC with
good approximation is given by 0 jo
iw) = + o Ijw |
(1 — 0.0646w?)2 () L v }

Y1y = - e
14 0.038w? + 0.0001w* + 0.000 85w° Together with the IQC for a memoryless nonlinearity in a

2/.2 . . . .
1 = 1—w’/7 sector, this IQC yields the well-known Popov criterion.
14+(1/6 —1/n)w? + (2/7% — 1 /672 )w*
e = 1 —0.4073w? K. Monotonic Odd Nonlinearity
2- = = ' . .
1+ 0.0927w? + 0.0085w* SupposeA operates on scalar signals according to the

Then the point-wise inequality (31) holds with replaced by nonlinear magAv)(t) = 6(v(t)), whereé is an odd function
o—, and withe, replaced by, 4+ (the upper bound for the on _R_such thaté(z) € _[O,k] for some constank. Then A
|jw.-+0]? multiplier, the lower bound for thi|2 multiplier), ~satisfies the 1QC’s defined by
respectively, and can be integrated with a nonnegative rational ;
; ; . R 0 1+ H(jw)
weight function to get rational IQC’s utilizing the upper bound 14 H(—jw) —(2+ 2ReH(jw))/k
on the delay. ) . .
A simpler, but less informative, set of IQC’s is defined fowhere H € RL. is arbitrary except that thé;-norm of its

(A0)(E) = v(t — 8) — u(t), § < 6, by impulse response is no larger than one [22].
T(jw)tpo(wby) 0 L. IQC’s for Signals
0 —7(jw)

Performance of a linear control system is often measured in
wherer(-) is any nonnegative rational weighting function, antkerms of disturbance attenuation. An important issue is then the
1o(w) is any rational upper bound of definition of the set of expected external signals. Here again,
IQC’s can be used as a flexible tool, for example to specify
bounds on auto correlation, frequency distribution, or even to
characterize a given finite set of signals. Then, the information
for example given by the 1QC’s can be used in the performance analysis,
along the lines discussed in [49] and [30].

4sin*(w/2), w<T

— a —jwe/eo _ 2 —
P(w) = max |e 1] { 4 WS

6€[0,60]

w? 4 0.08w*
po(w) = 2 1
1+0.13w* + 0.02w M. IQC’s from Robust Performance
I. Memoryless Nonlinearity in a Sector One of the most appealing features of IQC's is their ability

to widen the field of application of already existing results.
This means that almost any robustness result derived by some
method (possibly unrelated to the IQC techniques) for a special
av? < (v, thw < o, Vv e R,t >0 class of systems can be translated into an 1QC.
_ _ As an example of such a “translation,” consider the feedback
then obviously the 1QC with interconnection of a particular linear time-invariant system
—2a8 a —l—ﬁ} Gy = Go(s) with an “uncertain” blockA

Hie) = Lx +8 -2 v=Gowtf,  w=Av) (32)

holds. where f is the external disturbance. Assume that stability
of this interconnection (i.e., the invertibility of the operator
J. The “Popov” IQC I — GoA) is already proved, and, moreover, an upper bound
If w(t) = (Av)() = p(u(t)), whereg : R — R is a on the induced., gain “from f to +” (“robust performance”)
continuous functionz(0) = 0, and bothw(-) and () are 1S known; ||v]|> < d||f||* for any square summablg, v

If (Av)(t) = ¢(v(t),t), whereg : Rx R — R is a function
such that

square summable, then satisfying (32). Then, since for any square summabtbere
' - exists a square summabje= v — GoA(v) satisfying (32),
/ H(t)w(t)dt = 0. the block A satisfies the 1QC given by
0 . d—1 —dGo(jw)
In the frequency domain, this looks like an 1QC with Hijw) = —dGo(—jw) d|Go(jw)|? |’ (33)
N(jw) = + 0 jw This 1QC implies stability of system (32) via Theorem 1 but
J —jw 0| can also be used in the analysis of systems with additional

o ) feedback blocks, as well as with different nominal transfer
However, this is not a “proper” 1QC, becausd(-) is not  nctions

bounded on the imaginary axis. To fix the problem, considerFOr example, consider the uncertain blaskwhich repre-
o 1 . . o o L
Ay = Ao gy instead ofA, i.e., w(t) = (ALf)(#) = ¢(v(1),  sents multiplication of a scalar input by a scalar time-varying
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coefficientk = k(¢), such thatk(¢) € [-1,1]. There is one does not hold for anye > 0. However, it holds (with
obvious IQC for this block, stating that thie,-induced norm sufficiently smalle) as a conditional IQC whenever+0.58C
of A is not greater than one. Let us show how addition# a nonsingular matrix.
nontrivial IQC’s can be derived, based on a particular robustAverage IQC’s: The “average” IQC’s are especially useful
performance result. Consider the feedback interconnectioninftheir conditional form when one is working with stochastic
A with a given linear time-invariant block with a stablesystem models. These IQC’s are defined by replacing (2) with
transfer functionGo(s) = C(sI — A)~'B. This is the case | T
of a system withone uncertain fast time-varying parameter lim sup — / a(ze(t), y(t),&(t))dt > 0.
k= k@), k(t) € [-1,1] T—oo 0
. Incremental IQC’s: For nonlinear systems, as a rule, the
(t) = Ax(t) + Bh(t)(Cx(t) + f(1) (34)  standard IQC'’s (1) are good only for showing that the signals
within the system are “small” (are square summable, tend to

where A, B, C are given constant matrices} is a Hurwitz . ) .
matrix, f(-) is the external disturbance. It is known that?&'o: etc.) However, many interesting questions, for exam-

for this system, the norm bounfiu|2 < ||A(v)|2, yields ple the study of the existence and properties of a globally

the circle stability criterion|Go(jw)| < 1, which gives only attractivg perioo!ic response to any periqdic input, requi_re
sufficientconditions of stability. Nevertheless, for a large Clas(;ee_per mformatlon'about the sysFe_m. Th's can be supplied
of transfer functiongio(s), not satisfying the circle criterion, 0¥ _incremental1QC’s. An unconditional ‘incremental 1QC
(34) is robustly stable. A proof of such stability usuaIIydescrlblng the operatah has the form (1), where

involves using a nonquadratic Lyapunov functibh= V(z), v =11 — v2 € L2[0,0)

and provides an upper bourbof the worst-casd.,-induced w = A(v1) = Alwn) € L0, 00).

gain “fromv to y = Cz+w". This upper bound, in turn, yields ’
the 1QC given by (33), describing the uncertain blask The
fact that stability of (34) can be proved from this new IQC, but ] )
not from the simple norm bounA(v)[|2 < ||v||2, shows that Ihe authors are grateful to many people, in particular to K.

the new IQC indeed carries additional information abaut ~J-AStom, J. C. Doyle, U.@nsson, and V. A. Yakubovich for
comments and suggestions about this work.
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