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Access Control to Two Multiserver Loss Queues in Series Work in progress and minimal delay in producing a customized
product are the goals.
Cheng-Yuan Ku and Scott Jordan In telecommunication systems, these three trends are also evident.
The first trend, toward integrated service networks, is made possible
by the increase in intelligence of switches and the separation of
Abstract—We consider admission policies to two multiserver loss queues control from transmission. The merging of telephone and computer

in series with two types of wraffic. Both are generated according 10 penworks will continue to push the demand for telecommunication
independent Poisson processes with constant arrival rates. The first type

requires service at the first queue and with a positive probability enters syStemS that C"’_m_ _multlplex heterogeneous services and guarantee
the second queue; the second type requires service at only the second® variety of definitions of performance. The second trend, toward
queue. The service time distribution is exponential at either station. We more tightly constrained use of buffers in the network, is caused
ShOV_VthatU”hdef approP&'ate CI(:j’?d't'O”S tge Opt'”(‘ja" adm|ss_|ofr_1 PO“EV that py the requirements of synchronous services, such as real-time
maximizes the expected total discounted reward over an infinite horizon - iqeq o gqudio, for bounded loss within a guaranteed delay. When
is given by a switching curve. We characterize the form and shape of this . . .

curve and its variation with system parameters. the burstiness of even a few services in the network becomes
significant, buffering must be tightly controlled or these delay and loss
requirements will not be met. Increasingly, guaranteed performance
for a wide variety of services is the critical issue. The third trend
is again a function of the first two. The increase in speed results
. INTRODUCTION in a corresponding increase in the number of packets in transit,

Queueing networks are often used to model manufacturing syste?rigi traditional flow control _techniques no Io_nger W.Ork well. Control
and telecommunication systems and have been successful in ana iQrof‘db"’_‘T]d thelecomlmufnllgat_lc_)n systelins IS tend_lng trc])ward acckess
of resource allocation in these systems. Three trends, however, tro_, with- the goal © _|m|t|ng pac_ets entering t € netwpr
challenging the effectiveness of traditional network models. Firsqf:cc)_rdlng to characterizations of burstiness and desired quality of
both manufacturing and telecommunication systems are evolviig /'C&- ) . o
toward flexible systems in which many heterogeneous products hese three trends in both manufacturing and telecommunication

or services are produced. Second, the trend is toward minimﬁfStemS pose severe challenges to traditional modeling and analy-

ing work in progress and ensuring low delay. Third, control or's techniqugs. Existing qu_eueing theory does _not cope well .With
such networks is increasingly accomplished by limiting the Worﬂonstorable integrated service networks. Queueing models typically
entering the network, rather than using flow control within thd>¢ dellay as IFEeI meazure Of. perfo;mance. In contlrast,dtt:ese nedw
network. Current mathematical models and their corresponding GEWWOrks are 'fey t? e englnﬁereb to guare;]ntee how eayl,)I ank
gorithms are inadequate in addressing resource allocation, pricifid; measure of performance has become throughput (or block-

and control of these systems. In this paper, we study a ball probability) of each service type. The optimization criteria

building block for a multiple service, multiple resource networ IS maximization of revenue, perhaps with constraints on minimal

Such networks encompass a wide class of nonstorable producl%lrﬁ"ty of service. Traditional queueing theory has provided us
systems and broadband integrated service telecommunication gx’é useful information about resource allocation in homogeneous
tems. ervice networks, but fails us when multiple services compete for

In manufacturing, the first trend is toward flexible productioft!fiPle resources and when blocking is the principal concern. In
systems. Mass customization demands that systems be able to ngyIOUS work, we have studied multiple service, multiple resource
duce a variety of products instead of a single product. Efficienc)>S networks with simultaneous resource usage in Jordan [6]. In

encourages that the production capacity be shared in an integr .a paper, we study the simplest multiple service, multiple resource

fashion, rather than partitioned between separate production in@SS net\(vork wnh.se.quer?tlal resource usage. we hopg this S.”T‘p'e
del will give us insight into sequential resource allocation policies

Problems of allocation of capacity to accomplish desired throughpLﬁ'&o ) . . .
of various products are common. The second trend, toward systefi@ May be of use in larger multiple service, multiple resource loss
minimizing work in progress, has also become an area of inten@%tworks'

interest. The benefits are seen as both minimizing inventory and

decreasing the time to produce a product, especially in systems that Il. RELATED RESEARCH

must produce customized goods. Increasingly, we view productlon-l-hroughout the years, many papers have addressed optimal control

as nonstorable, and netvyorks are desig.ned with just-in-time &a single queue. Apparently, it began with Naor [12] who studied
other push-or-pull mechanisms to accomplish these goals. The t Fﬂical-number policies in steady state in a M/M/1 queue. This
trend in manufacturing is a direct result of the first two. Contrg roach has been extended to a M/ID/1 queue Adler [1], a M/M/c

pf these nonstorgblg f!exible manufacturing. systems is increasingI eue with state-dependent benefit Knudsen [8], two heterogeneous
implemented by limitations on product entering the network. Acce Srvers with a common queue Lin [11], a general birth—death con-
control is viewed as more effective than flow control when minim '

estion model Knudsen [9], GI/M/c queue Simonovits [13], and
a general input-output system Johansen [5]. A few papers have

addressed optimal control to multiple queues. Davis [3] studied

Manuscript received May 19, 1995; revised February 15, 1996. admission control for two exponential servers in parallel with separate
bt K ifﬂ;’:::&;“%‘?ﬁgﬁ”ggg(Oefr':]‘;‘i’l_rngggogrﬁj‘gﬂgggggk rgg;‘st\i;l‘)”%ueues and renewal arrivals. The optimal policy was shown to be
S)Tt\]ordan is with Ythe Dep‘artment of Eléctricgl & Compute; Eﬁginéeriﬁ&‘onommc a”‘?' always a§S|gns an a?‘:?pted arrival to the shortest
Northwestern University, Evanston, IL 60208-3118 USA. queue. Ghoneim [4] considered admission control on each of two
Publisher Item Identifier S 0018-9286(97)04283-9. exponential servers in series. Under a metric consisting of random

Index Terms—bDynamic programming, loss network, optimal control.
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Fig. 1. Tandem multiserver queues.

rewards for entering customers and holding costs for customers at
each node, the optimal policy was shown to be given by a pair
of two-dimensional monotonic switching curves. A good survey of
research on this topic until 1993 can be found in Stidham [14]. These
multiple queue studies, however, have generally assumed infinite
gueues, with holding costs as the performance metric. There has been
relatively little work done on admission control in loss networks,
where the performance metric is a loss rate. Recently, Blanc [2]
analyzed optimal control of admission to a multiserver queue with
two arrival streams.

In this paper, we focus on multiserver loss queues in series. By
concentrating on loss rather than delay or holding costs, on multiple -
customer types, and on access control, we hope to better understand 0 1 2 3 4 m-1 m
control of evolving telecommunication and manufacturing systems. i : Number of customers at station A
Our primary technique, stochastic dynamic programming, is similafy > The state space.
to many of those used in previous characterizations of access control
in delay networks. Additional complexity is presented by boundary

states due to finite buffers, by the shape of the switching curve, aglen a customer enters for service. This system can be modeled
by the variability of total service rate due to the use of multiplgs 5 two-dimensional continuous-time Markov chain, with statg)
servers. The key to the analysis lies in the combination of propertiggfined as the number of customers at stati¢rad B3, respectively.
used in the value iteration. It is of note that the structural properti§$,e admission control policy becomes a decision to accept or deny
of the optimal access control shown here can be extended to parajigl arrivals, as a function of the state, the customer type, and the
first stage queues [10]. station at which the customer is arriving. Uniformization (see, e.g.,
Kumar [7]) results in an equivalent discrete-time Markov chain by

allowing fictitious transitions from a state to itself. Choos@ & R
lll. TANDEM MULTISERVER LOSS QUEUES St Q > A+ Ay + mua + nup and letp; = % ps = %2’
Suppose there are two customer types in the system. Customer= %‘, andgs = %B. The equivalent discrete-time system has
type 1 requires use of a resourge When he is finished witd, corresponding parameters, p-, ¢4, ¢ and the appropriate discount
with a positive probability he requires use of a resousceCustomer factor o« < 1.
type 2 only requires use of a resourée If there are finite many  For our system, if there is a customer at statibrwe know there
A’s and B’s, how should these resources be managed to maximizey be one respective request at statibin the near future. So, the
revenue? We model this system as a tandem multiserver loss netwauknber of customers at statioh can be regarded as an amount
as pictured in Fig. 1. of reservation for typeB resources. How should this knowledge
We adopt the following notationA; as Poisson arrival rate of be incorporated into the admission decision for type-2 customers
type-1 customers going to station A4 as exponential service rateat stationB? We address this problem using a stochastic dynamic
of servers at statiod, ;' as revenue for service to a type-1 customgsrogramming framework. The two-dimensional state space can be
at stationA, P as probability that customers leave the system aftelivided into four regions according to boundaries as in Fig. 2.
receiving service at statiod, A, as Poisson arrival rate of type-2 We consider the objective of maximizing discounted revenue over
customers going into statioB, up as exponential service rate ofan infinite horizon. We defin¥ (z, j) as expected discounted revenue
servers at statiol?, R as revenue for service to a type-1 customestarting in state(i,j), and0 < « < 1 is the discount factor.
at stationB, and RY as revenue for service to a type-2 customeAn admission policy is given by a mapping: {0,1,---,m} x
at station B. {0,1,---,n} — {0,1}®, wherea = (a1, az, a3) represents whether
A principal factor in the admission control system is the relativeach type of customer at each station should be admitted when the
value of customers at statidi. We wish to investigate the situation system is in staté&, j). a1 = 1 iff we admit customer type 1 at station
where type-1 customers are more valuable, in order to analyze thea, = 1 iff we admit customer type 2 at statiaB, anda; = 1 iff
effect of knowledge of the existing number of type-1 customers ate admit customer type 1 at statidh The optimal admission policy
station A on the admission control decision at statidnTherefore, is chosen in each state to maximize the future expected discounted
we assumd?? > RZ 1 > P > 0, and positive revenue is collectedrevenue, as given by the following set of equations, stated by region.

n-1

[SC IR VST

j : Number of customers at station B
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1) Foro<i<m-1,0<j<n-1 Then, we can rewrite the optimality equations 1)—4) using the notation
above. For example, if we rewrite 1), we obtain

V(i,j) = max a{alpl [V(i +1,5)+ RIA]
aj,ag,ag

V(i,j) = max a{alpl [R{1 - V(i,j)] + azpo [Rf - A(i,j)]
+aspa [V(i,j +1) + R e
+as(1 = P)iga[V(i - 1.j + 1) + RY]
+ (1 —as)(1 = P)igaV(i—1,j)

+PigaV(i—1,j)+jesV(i,j—1)

+as(1 = P)iga[RTY = A(i = 1,5)] +iqaV(i — 1,5)
+5aBV (i,j = 1) 4+ (1 —iga — jap)V (i, j) }-

The optimal admission policy admits a customer if the immediate
revenue generated by that customer exceeds the expected loss in

+ (1 —aip1 — asps —iqa — jqu)V(i.j) }. future discounted revenue caused by future blocking due to this
customer. However, from the rewriting of optimality equations, the
2) Foro<i<m-1,j=mn optimal policy, in state?, j), is obvious: accepts a customer of type
1 at stationd iff V(i,j) < R4, accepts a customer of type 2 at
V(i) = maxa{aip [V +1,5) + Bi'] station B  iff A({.,j) < R}, atgld accepts a customer of type 1 at
“ station B iff A(i —1,j) < Rr.
+igaV{i—1,7)+ 798V (i, 5 — 1) Definition 3.4: An admission control policy for type-2 customers

is called a threshold policy if there exists a switching cujv&) so
that customers are admitted jif< j°(z). For such policies, define:
A) j°(i) = min(j | A®i,j) > RF) and jj(i) = min(j |
An(i,7) > RP). Letj°(i) = n andj; (i) = n, if A(i,j) <
RBforo < j < m

+ (1 —aip1 —iqa — qu)V(i,j)}.

3) Fori=m, 0<j<n-1

s o i B .
V(i j) = max afaope [V(i.j + 1) + 7] B) i*(j) = max(i | A(j) < R¥) andi}(j) = max(i |
/ .. ~Fi (7 — _ i% (4 - _ H
+as(1=Piga[V(i—1,j +1) + R?] i’(‘;’]’.‘)’)fRf;O)r' oLit; g)m 1 and i, (j) Lo
) . ) Az, 2 S sSm.
+ (1= as)(1 = P)igaV(i = 1.j) Likewise, the optimal threshold is defined by*(i) =
+PigaV(i = 1.j) + jasV(ij — 1) litg— oo 37.(1)-

+ (1 —azps —iqa — jgB)V(i.j)}-
IV. OpPTIMAL AcCCESSCONTROL

4) Fori =m, j =mn The form of the optimal admission control policy is stated in this
section in a series of theorems. Theorems 4.2 and 4.3 state that,
V(i,j) = aligaV(i —1,j) +jgsV(i,j - 1) under appropriate conditions, only type-2 traffic need be controlled.
+(1—iga— qu)V(,',’j)}. Theorems 4.4 and 4.5 state that optimal admission policy of type-2

customers follows a monotonically decreasing switching curve. The
We present notation that will be useful in analyzing the optimdbllowing lemma details the structure of the value function under
policy. We use the value iteration approach. Choose an arbitrasptimal policy, using value iteration. It will be used repeatedly to
initial value function, Vo, then define the step value function, prove that the optimal policy, given by the corresponding limit, has
Vi, by choosing actions that maximize future expected discountsiinilar desirable properties to those described here.
revenue, assuming that transitions more than one time step in théemma 4.1: If:
future generate a total discounted revenue according to thé: stdp a) A,(i,j) is monotonically increasing or for fixed i (i.e.,

value_fl_Jr_lction. - _ ) Vi (i, j) is concave ory);
Definition 3.1: Let V4 (4, j) be an arbitrary bounded function, and b) A.(i,7) is monotonically increasing on for fixed j (i.e.,
for h € N and h # 0, define Vi(i,j) is submodular);
c) Ap(i,j) < RPfor0<i<mand0<j<n-—1I;
- .. A . . .
Vi(i, j) = max {“ZZP@J-W,I)(@ d) Vali,j) < By for0<i<m-—1and0<j<n
“ © 1 then:
o ) A) Ay41(i,7) is monotonically increasing op for fixed i (i.e.,
x [R((i,4), (k1)) + Vh—l(’\'»l)]} (1) Vie1(i,j) is concave onj);
B) An+1(¢,j) is monotonically increasing onfor fixed j (i.e.,
where P jy_c..n(a) is the one-step transition probability and Vit1(i,j) is submodular);

y Lo B . . .
R((i,4), (k. 1)) is the revenue associated with a change of state©) 2n+1(i.j) < Ry for0<i<mand0<j<n-—L
from (i,j) to (k,I), if any. It is known that the optimal value D) Viti(i,j) <Ry for0<i<m —1and0<j <.

function is defined by (i,j) = limj—co Vi (4, 5). Proof: The proof proceeds by expanding Definition 3.1 in each
Definition 3.2: Let A(i,j) = V(i,j) - V(i,j + 1) region of the state space. First, similar terms are grouped. Second,
remaining terms, often due to boundaries, are bounded by others.
Ap(t,j)=Vi(i,j) = Vi(i,j+1) forh,i,j €N, Finally, the hypotheses are invoked on each group to prove the
. . conclusions.
Osismandd<j<n—1 A): By hypotheses c) and d\. (7, 5) < R andV,(4,5) < R{
Definition 3.3: Let V(i,j) = V(i,j) — V(i + 1, ) for all (i,j), we knowa, = 1 andas = 1 achieve the maximization

o o i o in (1). The control parameter, is set according to the subregion of
Vi(i.j) = Vil j) = Vili+1.j) forh.i.j €N, the state space. In order to prove th®{.(i, ) is monotonically
0<i<m-1land0<j<n. increasing ory for fixed ¢, we consider two states, j1) and (i, j2)
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with ji < j2. We show thatA;, 14 (7,72) — Apyi(d,j1) > 0. We Using Definition 3.2,Ap11(m,n — 1) = Viga(m,n — 1) —
initially consider the cas® < i < m, 0 < j1 < j2 < ji(i) =1 < Vipi(m,n). Using (1) and grouping terms, we get
n — 1.
Using Definition 3.2 A 41 (7, j2) — Ap41(2,J1) = [Vat1(i, j2) — Apti(m,n—1)
Vi1 (4, j2 + D] =[Vit1 (4, j1) = Vigr (4, 51 + 1)) — s v, B
N . ’ = max x4 azp: by + R:
Using (1) and grouping terms, we get n}z;mﬂ{azpz[ w(m.n) ? ]

4+ (1 —=P)mqa [Vh(m - 1,n)+ Rf’]

Apti1(iyj2) — Apga (i, J1) +PmgaVi(m—1,n—=1)+ (n—1)geVr(m,n — 2)
=a{pi[[Vali + 1,j2) = Vali + 1, j2 + 1)] 4+ (1 —aspo —mqga — (n— 1)g)Vi(m,n — 1)}
— Ve +1,41) = Va(i + 1,51 + 1)]] —a{mqaVa(m = 1,n) + nggVa(m,n — 1)

+ pal[Va (i jo + 1) = Vi(i, ja + 2)]
— Va(ioj1+ 1) = Vi, j1 4+ 2)]]
+ (1 —=Piga[[Va(i —1,j2+1) By grouping terms, we have
—Vili =L+ 2] = [Vili = L1 +1)

= Vil(i = 1,1 + 2)]] + Piga[[Va(i — 1, j2)
—Vi(i =1, a4+ 1)] = [Va(i — 1,41)

+ (1 —mga — ngp)Vi(m,n)}.

Apyi(m,n —1)

= max (l{(tng [Vh(m, n) + Bﬁ‘]
ag

—Vili = 1,1 + D] + j2as[Va (i, ja — 1) —p2Vi(m,n) 4+ (1 —P)mga [Vh(m —1,n)+ B?]

— Wu(i,j2)] — jras[Va(i, j1 — 1) = (1 =P)mgaVa(m —1,n) + PmgaVa(m —1,n - 1)
Va4 (L= pr — pa —iga — (2 + Das) — PigaVi(m = Ln) + (n = DgaVi(m,n — 2)

X [Vi(iyj2) = Vi (i, jo + 1)] — (n—1)geVi(m,n — 1)+ (1 — azp2 — mga — nqg)
— (I =p1 = p2—iga = (i + D) X Vi(m,n —1) = (1 —ps —mga — nqg)‘/'h(m,n)}.

X [‘/Yh(lﬂ.}l) - ‘fh(t‘.jl + 1)]}'
Using hypotheses a) and b) and< 1

Now expand one term Apri1(m,n — 1) < max {a2p2 [Vh(m, n)+ R?]
ag

—paVi(m,n) + (1 - P)quRf’
+ Pmga[Vii(m,n — 1) — Vi(m, n)]

—(I=p1 —p2—iga — (j1 + Dgn)[Vi (i, j1) = Va(i, j1 + 1)]
=—(1=p1 —p2 —igqa = (j2 + Dgn)[Va(i, j1)
—Valt, g1 + D] — (og — j1as)[Va(i, j1) — Va(i, 1 + 1)]. +ng[Vi(m,n —1) = V,(m,n)]
+ (1 — asp2 — mqa —ng)Va(m,n — 1)
Using hypothesis a) angh > ji, we can bound part of this term: — (1 —p2— mqa — ngs)Vi(m, n,)}.

V(i jr) = Valisji +1) < Vilisjz — 1) = Va(i, jz2).

By grouping terms, and using Definition 3.2, we get L
y grouping using i we g Case 1: fora; = 1 this gives

Apti1(ty g2) — Apga (4, 41) Apti(m,n—1) < {pgRQB +(1- P)quRiB
> a{pi[An(i+ 1,52) = An(i + 1, j1)] + p2[An(i, j2 + 1) +(1—p2— (1 =P)mga)Ap(m,n—1)}
— A1+ D]+ (1 =Pliga[An(i— 1,52+ 1) < {szF +(1- P)mgaRP
— An(i = 1,1 + )] + Piga[An(i — 1.j) (1= pa— (1— Pymga)R}

= Ap(i = L)l +jigslAn(, j2 — 1)
—Ap(i.i = )]+ (1 —p1 —p2 —iga — (j2 + 1)gB)
X [AR(i, j2) — An(i, )]} Case 2: fora; = 0 this gives

= Apti(m,n—1) < RP.

) ) ) ) Appi(m,n—1) < {(1 - P)quRF
Finally, hypothesis a) guarantees that each term in brackets is greater

than zero, and hencd 41 (i, j2) — Apy1(4,51) > 0. + (1= (1 =P)mga)An(m.n—1)}
Consideration of other sections of the state space results in similar <{1- P)mgaRy

proofs. In some sections, knowledge of the location of the threshold is B

required to bound some terms, e, (i,5) > RE if j > ji(i)—1, + (1= (1= P)mga) R’}

An(i.j) < RP it j=ji(i)—1,andA, (i, j) < RYif j < ji(i)—1. = Appa(m,n—1) < RY.

Near boundaries, hypothesis c) is used to bound other terms. Details

are omitted. For B), this proof also requires hypothesis b), but lsom the cases above, we can conclude that, (1, n—1) < RP,

otherwise substantially similar to A) and is hence omitted. For Cand the result follows.

by hypotheses c) and dj\.(i,j) < R? andV,(i,j) < R for all For D), this proof is substantially similar to C) and is hence omitted.

(i,), we knowa; = 1 andas = 1 achieve the maximization in (1). Theorem 4.2:V(i,j) < R for0 < i <m — 1 and0 < j < n.

From A) and B), we knowA, 1 (m,n — 1) is the largest difference. Consequently, it is optimal to always admit type-1 customers at

So, it suffices to prove thah,,((m,n — 1) < RP. station 4, i.e.,a; = 1 in all states.
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Proof: Proof is by induction. It is always possible to choosé # 0, andA; (7,7, \1) > Ao (4, 1, X1 ). Consequently, it will follow
an initial value function,Vo, such that it satisfies the hypotheseshat j%(i, A1) < j*(i, A1) for all 0 < i < m.
of Lemma 4.1. Suppose these hypotheses hold for the/stegdue By Lemma 4.1 and Theorems 4.2, 4.3, 4.4, and 4.5, we know
function, V4. Then, the lemma states that they hold for the $tapl @, = 1 andas = 1 achieve the maximization in (1). The control
value functionV,.4.. The optimal value function is defined by theparameter:. is set according to the subregion of the state space. Let
limit in Definition 3.1, and therefore statement D) in Lemma 4.1) > Xy + Ao +mpua+nus andp, = % thenX; > A1 = 1 > p1.
implies thatV (i, j) < Ri'. The base step is to show that fof m, Ay (i,7.X1) > Ao(i,j, A1),
Theorem 4.3:A(i,j) < RY for0 <i <mand0 < j <n—1. andfori = m, A1(i,5, M) = Ao(i, 7. M ). We consider here the
Consequently, it is optimal to always admit type-1 customers gése) < i < m — 1 and0 < j < jg(j,_/;\l) —1=j°G,\) -1
station B, i.e.,as = 1 in all states. Other cases withi # m are similar.
Proof: The proof is by induction as in Theorem 4.2, except that Using Definition 3.2, (1), and\o (4,7, \1) = A7, j, A1)
it follows from statement C) in Lemma 4.1. -
From Theorems 4.2 and 4.3, we understand that the optimal policyAl (.5, M)
always admits type-1 customers when space permits. As we will see, = a{pi A+ 1,5, A1) + p2A, 7+ 1,\)
the optimal policy on type-2 customers is a threshold type: type- P . NI
2 customers are only accepted while the system state is below some (1= Pligadi =17+ 1, M) + Pigad(i— 1,5, A1)
threshold. The next two theorems characterize the form of the optimal ~ +JasA(i.j — 1, A1) + (1 — 1 — p2 —iga
control upon type-2 customers. — G+ Da)AG,j, A1)}
Theorem 4.4: A(i, j) is monotonically increasing op for fixed
¢. Consequently, the optimal policy is threshold-type.
Proof: The proof is by induction as in Theorem 4.2, except it Ar(ij A1) = Al j. A1) + a(fy — p1)
follows from statement A) in Lemma 4.1. . } .
Recall that the optimal policy accepts a type-2 customer if and only X [AG+ 1.5 A0) = A, M)l
if A(i,j) < RE. For a fixed number of customets,at staged, the From Theorem 4.5, we know (i + 1,7, A1) — A(i, 5, 1) > 0.
threshold lies at the smallegisuch thatA(i, j) > R¥. SinceA(:, ) Sincea(p1 —p1 ) is positive, then we geh, (7, 7, A1) > A(i,j, A1) =

Grouping terms, using Definition 3.2 and (1)

is monotonically increasing op for fixed i, if the policy blocks a Ay(i,7,X;). For i = m, it is straightforward to show that
type-2 customer whep = j°(i), it also blocks whery > j7(i). Ai(i, 7, M) = Aol j, ) = A, 5, M),
Theorem 4.5: A(7, j) is monotonically increasing on for fixed The induction step supposes that for£ m, An(i,j,A1) >
j. Consequentlyj°(¢) is a nonincreasing function ohn An_1(i, 4, x1), and fori = m, Ap(i,4,21) > An_1(i.j, A1) and
Proof: The proof is by induction as in Theorem 4.2, except ishows thatAy 11 (7,7, \1) > Ax(i, 4, A1) for all (i, 7). We consider
follows from statement B) in Lemma 4.1. here the cas® < i < m —1 and0 < j = ji(i, A1) — 1 <

These previous propositions characterize optimal admission contypl | (i, X;) — 1. Other cases are similar.
to the pair of queues, when type-1 customers are more valuable thawsing Definition 3.2 and (1):
type 2. Type-1 customers are always admitted. Type-2 customers are

admitted only if the number of free servers at statidexceeds some A (i J. A1) .
threshold. We view: — (i), the minimum number of free servers at = a{pl Ap(i+1,5,M) + szQB
station B, giveni customers at statiod, as the reservation & for F(1=P)igaln(i—1,j+1,\)

upstream traffic. This reservation is monotonically increasing in _ _
+PigalAn(i — 1,5, A1) +J(jBAh(1,J -1, A)

+ (1= p1 —p2 —iga — (G + Dan)An(i,j, M)}
V. VARIATION OF SYSTEM PARAMETERS Imposing the hypothesis that fof # m, Ah(i,j.,;n) >

In the previous section, we characterized the optimal admissié\‘ij—‘(igvkl) and fori = m, An(i,j, A1) 2 An-i(i,j, A1) and
policy on type-2 customers in tandem multiserver loss queues. WRING B2 > An—1(i,j 4 1, A1), we obtain
found that for fixed parameters\i, A2, o, P, na, pn, R, RP, Angi(isj. Ar)

RE. m, n) the optimal policy is given by a threshojd (). In this - , - o -
section, we investigate the variation of this threshold with variations > o{prAna(i+ 1., M) + peAna(inj+ 1, M)
in system parameters. +(1=Pigaldn_(i—1,7+1,X)

Theorem 5.1: The admission control threshold on type-2 cus- L R . s 13
tomers,j*(i), is, for0 < i < m and R¥ > R%: +Pigadnali 1”]’)\1,) +iandn-1(ij 1: A

A) monotonically decreasing if:, «, X2, RZ, andm; + (=g —p2—iga— (G + Das)An-1(i.j, M)}

B) monotonically increasing img. P, and RY; = An(i,j, \).

C) insensitive toR;':

D) n — j°(¢) is monotonically decreasing im, oni < ¢°(0).

Proof for Decreasing im\;: Choosecc > A1 > A1 > 0.
With Ay and all other system parameters given, use value iteratig
upon appropriate initial rewards to obtdif(s, j, A1) for all possible
i's and j's. Now, replace\; by X; and keep all other system
parameters unchanged. Choosiigi,j, A1) for 0 < i < m
and 0 < j < n as initial rewards, use value iteration again t
calculateV (. j, A1). Sincelimy oo An(i,j, A1) = A, j, A1) and oy b
Ao(irj, M) = A(,j, A1), to obtainA(i, 5, M) > A(i, 7. A1), it is Aolisj. By, BY)
sufficient to show that\, 41 (i, 7, A1) > Ax(i,j, Ar) forall h € N, Ao(i,j, RY, RP)

ConsequentlyA(7, 5, A1) > A(4, 4, A1) and j*(4) is monotonically
decreasing in\;.
Proof for Decreasing inv, A2, and R5; Increasing inug andP;
Ad Insensitive t@®@;': These proofs are substantially similar to those
above and are hence omitted.

Proof for Increasing inR¥: Consider a system with identical pro-
é)ortional rewardsR? = kR, R¥ = kRJ. Choose initial values
such that
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and satisfy the hypotheses of Lemma 4.1. It is easy to show thatgiyen g fixed number of customers 4t decreases steadily as the
An(i, j, R¥, RF) service rate at statioB increases. Faster service Bt decreases
m =k, vh € N. the likelihood that a type-2 customer, if admitted, will block a
type—1 customer. Consequently, it is more favorable to admit type-2

Therefore o customers. Example 2 (Fig. 4) demonstrates the variatidhsafWe
A(i,j. R, R _ AL, Ry, RY) can observe that the reservationfafor type-1 customers decreases
RP RP steadily as the revenue generated by type 2 approaches that of type-1

customers at statiof?. As we expected, if these two revenues are

.s/. BB BB\ _ ss/: pB pB ;
and thus;”(i, Ry, By') = j°(i, Bz, Ry'). Then consider another equal, then type-2 customers are always admitted.

system with
RP=RP>RP >R >0 VI. CONCLUSION
Choose We have analyzed access control policies in the tandem multiserver
_ loss queues. The optimal policy was found to be a monotonically
E=22 51 decreasing threshold. Furthermore, monotonic variation of the thresh-
Ry old was proven for most system parameters. We hope this simple

=4 _ 4 b 5 5 = model will give us insight into sequential resource allocation in
SO that,sR? = ,]]E? a”i & 5 Bkm > B = Rr. By larger multiple service, multiple resource loss networks, which are
above,j*(i, Ry , RY’) = j°(i, Ry , RY). However, bl A),:optlmal increasingly common in telecommunication systems. It is of note that
policy is monotonically decreasing iy’, so j*(i,Ry,R’') > the structural properties proven here can be extended to an arbitrary
J°(i, RS, RY). Therefore, j*(i,RY,RY) = j°(i,R5,RY) > number of parallel first stage queues [10]. It would be of value to
373, RY. RP). extend these results to more general multiserver loss networks or to
Proof for Decreasing inn: Choosecc > m > m > 0. The study methods to use these results to model the congested segments
proof is similar to the proof for\; in A), except for the initial of such networks.
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1993. Although simple, the DSTMV idea is notorious for resisting
attempts at theoretical justifications. It is relatively straightforward to
demonstrate that the-step predicted plant output converges toward
the minimum variance (MV) prediction error given by a moving
average (MA) time-series of ordgr — 1, provided the plant is
controlled by a controller converging to the target MV controller.

Convergence Rate for RLS-Based Direct However, to demonstrate that the CE DSTMV controller is in fact
Self-Tuning Minimum-Variance Regulation converging to the target MV controller seems to be a problem
of ARMAX Minimum Phase Plants considered by many as not yet solved, even for AutoRegressive with
eXogenous input (ARX) plants; see, e.g., [6] and [14].
A. Niederlinski The oldest approach to self-tuning convergence analysis is the

ODE-approachproposed by Ljung; see [7]. Its essence is to analyze
local convergence points of an averaged nonstocha3tdinary
least squares (RLS)-based direct self-tuning minimum-variance (DSTMV) Dlﬁerentlal Eq_uatlor,l which apdpr(?XImatesl the r;stoc.haslt.lc. dlscrs.tl.e-
regulation of minimum phase multiple time-delay AutoRegressive Moving time sys.tem n {i compresse tlme scale. The (imp 'C't). stability
Average with eXogenous input (ARMAX) plant is derived. The RLS algo- assumption of this approach forfeits a complete explanation of the
rithm used is k-interlaced, with k being the plant time-delay. The bound is  self-tuning mechanism.
derived for known fixed by by extending a recently proposed methodology.  Another approach is based on martingale theory. Its first broad

The bound provides a joint explanation of DSTMV regulation stability i - -
and parameter estimate convergence. The paper demonstrates that self- exposition was presented by Goodwin and Sin (see [3]) and later

tuning is based on convergence properties of RLS as well as on the developed by Chen and Guo (see, e.g., [2]). The main advantages of
excitation quality of plant white noise, which generates \(ia controller  this approach are its fundamental nature, the power of already existing

Abstract—An upper bound for the error convergence rate of recursive

feedback) the plant input. martingale theory, and the fact that both stability and convergence
Index Terms—Minimum-variance regulation, recursive least squares, are analyzed simultaneously.
self-tuning. The lack of satisfactory theoretical results was perhaps partially re-

sponsible for the decline of interest in RLS-based DSTMV regulation
for ARMAX plants, in favor of the more obvious (but numerically
more demanding) approach relying upon modified extended RLS (see,
The oldest self-tuning controller is undoubtedly the direct (ime.g., [3]) or extended RLS (see, e.g., [2]). This is to be regretted
plicit) self-tuning minimum-variance (DSTMV) controller, based orbecause DSTMV regulation with RLS parameter estimation is a
recursive least squares (RLS) estimation. Its main feature is thebust technique (see, e.g., [8]), easily accommodating all types of
RLS determinedirectly the controller parameters, whigmplicity MV and pole-zero placement control laws for minimum phase as well
establish a plant model. This is in contrast with indirect (expliciths for nonminimum phase plants.
self-tuning, whereexplicitly estimated plant parameters are used to The aim of the paper is to present a result guaranteeing stability
indirectly determine the controller parameters. and parameter convergence for RLS-based DSTMV regulation of
The idea of DSOTMV regulation was formulated by Peterka [12hinimum phase ARMAX plants with multiple time-delay. The main
and developed byAstrom and Wittenmark [1], who also presentedesult is an almost sure (a.s.) upper bound on the convergence rate
the first results of its asymptotic properties. DSTMV as applied tof the estimation error. It is shown that the mechanism of getting
a k-delayed AutoRegressive Moving Average with eXogenous inpstability and parameter convergence is based on RLS convergence
(ARMAX) minimum phase plant is based on the idea of restructuringroperties as well as on excitation properties of plant white noise,
the plant model so that thie-step predicted plant output is a linearwhich generatesvia a generally nonstationary pole-zero filter feed-
function of all controller parameters; they may therefore be estimatbdck) the plant excitation in the process of self-tuning. The result
using RLS. It follows that: 1) self-tuning may be dovia simple and supports an old conjecture attributing self-tuning mainly to some

properties of RLS; see, e.g., [3].
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