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. . . . II. NOTATION AND (D, G) SCALING
Abstract—This paper studies the mixed structured singular value u, i

and the well-known (D, G)-scaling upper bound,v. A dual characteriza- The norm||T'|| of a matrixT € C™*" is in this paper the spectral
tion of 1 and v is derived, which intimately links the two values. Using norm. The Euclidean norm df is denoted ag|T|l.. 7" is the

the duals it is shown thaty is guaranteed to be lossless (i.e., equal 18  complex conjugate transpose 6f and HeT is the Hermitian part
if and only if 2(m, + m.) + m¢ < 3, where m,., m., and m¢: are the of T defined as

numbers of repeated real scalar blocks, repeated complex scalar blocks,
and full complex blocks, respectively. The losslessness result further leads HeT — E(T + TH)
to a variation of the well-known Kalman-Yakubovich-Popov lemma and 2 ’

Lyapunov inequalities. . . .
yapney inequaiit Given a subseX of C"*™, the (mixed) structured singular valuef

Index Terms—buality, Kalman—Yakubovich-Popov lemma, linear ma- A7 ¢ C"*" is denoted byux (M) and is defined as
trix inequalities, mixed structured singular values. 1
px (M) = ;

inf{||A|] : T— AM is singular andA € X }°

ux (M) is set to zero iff — AM is nonsingular for everA € X.
In two adjoining papers, Doyle [1] and Safonov [2] coined th@bviously: x (/) depends on the “structureX. Whenever: x (M)

structured singular value as a tool to test for robust stability of closed- ysed it is implicitly assumed that some structuteis given.

loop systems. Thé&-scaling upper bound introduced in the very firsinvariably, X is assumed block-diagonal of the form

paper on structured singular values [1] is to date still the most widely } .

used upper bound of the structured singular value. As claimed in [3], X =diagRliy,- -+ Rl s Cliyse--, Ol s

D-scaling for complex structures with full blocks is in practice close ol oo olme X me) )

to the actual structured singular value fofor short), and for several

nontrivial complex structures th®-scaling upper bound is proved

to be lossless [1], [3].

Progress in the theory of mixeg has been slower. Mixed
real/complex: is an extension of that allows the structure to consist ]
of real and complex parts. Such mixed structures arise, for examplePif(D: ) Scaling

Let H? denote the set of x ¢ Hermitian matrices, and denote its
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Given M € C"*" anda € R, the matrix function®, (D, G) is The inner product here is4, B) = tr A" B. For anyP € P we have
defined as that (H, P) = Retr HP = tr P/?(HeH)P'/?, and this shows that
[T R H P a < (H,P) implies HeH > 0 anda < 0. DefinelV = HeH. Then,
®a(D,G) = MEDM + j(GM = M7G) = o”D. —Retr WF(E) = tr — WHeF(£) = Re(H, —HeF(€)) < a < 0.0
This notation is a bit different from that of [4], where Fan al. Lemma III.2 (Dual Characterization afx): Let X be any struc-
showed thatux (M) < a if « > 0 and®.(D,G) < 0 for some ture (1). Thenyx (M) > « iff there is a nonzerdV = wi >0
D € Dx andG € Gx. The infimala for which suchD andG can such that
be found is thus an upper bound ef (M), and this upper bound
is denoted throughout asy (M), i.e., Retr(M — a)W(M" 4+ aD)E > 0, VE € Dx +j0x. (3)
vx(M)=iuf{a:3D € Dx,G € Gx s.1.2,(D,GF) < 0}. ) ) )
a>0 Proof: vx(M) > « iff no E € Dx + jGx exists for which
Computation ofvx (M) can be done efficiently (in polynomial time).
It may be verified that He(M™ + aI)E(M — o) < 0.

2.(D,G) = He(M" + o) <D + i*,G)(M —al). By Lemma Ill.1, that is the case iff there is a nonz&o= W" > 0

such thaRetr W(M*™ +al)E(M—al) > 0 for all suchE. The traces

This allows us to characterizex somewhat more compactly. Givenos 7 ( A/ + a1V E(M — o) and(M — oI )W (M" +aI)E are the
a, any elementt of Dx + jGx can be uniquely decomposed aggme. O
E = D+ (j/a)G with D € Dx andG € Gx (namely, take  \we next reformulate this characterization:zof without usingE.
D =HeE andlet(j/a)G be the skew-Hermitian matrik —HeE). 1o this end we partitiorE and (M — oT)W (M + aT) compatible

Therefore with X as
vx(M) < a < 3E € Dx + jGx such that e 0 0
He(M"™ + al)E(M — o) < 0. . b

=10 . 0

This we use frequently. [0 0 Eumgmetme
[z, 7 ?

I1l. DuAL CHARACTERIZATION OF /i AND v (M I)W(M“ +al) . @
M —od )W (W al)=| = .. ? .

In this section we give a dual characterizationugf andvx . In the o 7 '

. ‘MMM

next section we use these results to prove ghat= v x for structures L
S P xp o
of the formX = diag RL., C***). The dual characterizations pk A “?” denotes an irrelevant entry. Varying over all elements of

andyy that we present are easy, and they are remarkably simiI%;\, + jGx can be done by varying each blo& independently of
They may have wider use .thar_1 just the ’next sections, and they m € other blocks, and as each block may be arbitrarily close to zero,
for example, be used to simplify Young's proof [6] of the fact thaWe have that (3) holds iff for every € {1,---,m, + me + mc}
px (M) = vx(M) for rank-one matrices\/, irrespective of the =\~ - o ‘ ’
structure. This is done at the end of this section.

The characterizations presented are dual in that they are an ap-
plication of a duality argument for convex sets. The following
preparatory result is in essence standard (see Bowdl [8, p. 29]).
For completeness we give a proof.

Lemma lIl.1 (Separating Hyper-PlanesBuppose F(E) €
C™*™ depends affinely onF € C"*". Let £ be some convex
subset ofC™*". Then, noE € & exists for which

Retr Z;E; >0 (5)

for all E; in the appropriate sets.

Lemma II.3 (Another Dual Characterization ok ): Let X be
any structure (1). Thenyx(M) > « iff there is a nonzero
W = W" > 0 such that

HeF(E) <0 Z; is Hermitian and> 0, Vi € {1,---,m,},
. . Vo= wH > HeZ; > 0, Vie{m,+1,---,m, +m.},
iff there is a nonzerd? W+ > 0 such that RetrZ: > 0, Wi € {m et 1ee).
Retr WF(E) >0, VE€E. ) ©)
Proof: Supposé? = W' > 0, # 0 satisfies (2). Then, for _ _ .
anyE € € Here Z; is theith block on the diagonal afAM — o)W (M™ + o)
/2 12 ) as shown in (4).
tr W5 (He F(E)W™'" = Retr WE(E) > 0. Proof: vx(M) > a iff (5) holds for all i and E; in the
This excludes the possibility that H& E) is negative definite as that @PPropriate sets. We distinguish three cases.
would have implied thatr W'/2(He F(E)W'/? < 0. Case 1) Ifi € {l,---,m,}, then E; is any matrix whose
Conversely, suppose that HEE) contains no negative definite Hermitian part He&E; is positive definite. For all such
element. Stated differently; He F(€) does not intersect the cone of E; we have thaRetr Z;E; > 0 iff Z; is Hermitian and
positive definite matrices > 0. This may be seen as follows. & = Z > 0, then
Pi={P:P=P">0} Retr ZE: = tr 22 (HeE:)Z /> > 0

Since both—He F'(£) and P are convex, there is a separating hyper-
plane ([9, Th. 3, p. 133)), that is, a nonzebc C™*™ exists and
a numbera € R such that

since HeE; > 0. If Z; is Hermitian but not> 0, then
many E; = E' > 0 exist for which Retr ZiE; =
trE!/*Z;E!/? < 0. Finally, supposeZ; is not Hermitian.
Re(H, —HeF(€)) < a < Re(H, P). DecomposeZ; in a Hermitian and skew-Hermitian part,



1034

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 7, JULY 1997

Z; = HeZ; + S;, and note that the skew-Hermitian part The three cases combined show that there is a nonzehat

S; is nonzero. LetE; := I — S, depending on > 0.
The Hermitian part of; is<I > 0, and for small enough
¢ > 0 we have

Retr Z;E; = Retr(HeZ; + Si) (1 — Si)
= tr(s(HeZ:) — S:Si")
=ctrHeZ — ||Si||; < 0.

The || - ||r is the Frobenius norm.
Case 2) Fo¥ € {m,+1,---,m,+m.} the E; is any Hermitian
positive definite matrixRetr Z;E; > 0 for all such E;
iff He Z, > 0. This follows from the fact thaRetr Z; E;
equalstr £}/ (HeZ,)E}*.
Case 3) Fori € {m, +mc.+1,---,m, + mc + mc} the E;
is any matrix of the formE; = d4;I with 0 < d; € R.
Retr Z;E; > 0 for all suchE; iff RetrZ; > 0. O
Next we derive a characterization pfc in similar terms. For that
we need the following lemma, which is readily proved.
Lemma Ill.4 (Three Little Lemmas)Let f, g be two column vec-
tors of the same dimension.
1) (f — 9)(f + ¢)" is Hermitian and> 0 iff g = 6 for some
6 € [-1,1].
2) The Hermitian part of f — g)(f + ¢)" is > 0 iff g = 6f for
someé € C with |§] < L.
3) Retr (f —g)(f+2)"" = [If]I2 — [|gll3. HenceRetr (f — g)(f +
g)? > 0iff g = Af for some matrixA with ||A]] < 1.
Lemma IIl.5 (Dual Characterization ¢f x): Let X be any struc-
ture (1). Thenpux (M) > « iff there is a nonzero vectar € C"
such that

Retr (M — aDtt" (M" + oI)E >0, VE € Dx +i9x. (7)

Equivalently, px (M) > « iff there is a nonzero vectat € C"
such that

Z; is Hermitian and> 0,
HeZ; > 0,
RetrZ; > 0,

Vie{l,---,m,},
Vi€ {mr+1,---,my +m.},
Vie{m,+m.+1,--}.

(8)

Here Z; is theith block on the diagonal dfM — o) tt™ (M™ +aI)
as partitioned compatibly with .

satisfies (8) if and only ifal — AM)t = 0 for somet and some
A= diaqﬁl,"',ﬁ,nT,(san+1,"',(S'mT+mC,A1,"',AmC) e X
with [|A|| < 1, i.e., iff ux (M) > «. |

In summary, the results in this section say that(M) > « iff
a nonzeroW = WY > 0 exists with certain properties (6) and
that ux (M) > « iff W can be chosen to have rank one. Another
interpretation, which is more in line with that of Packard and Doyle
[3] and Rantzer [7], is as follows. The set

(M —al)W(M" +al) : W=wW" >0}
is the convex hull of the set
O :={(M —aDtt"(M" +al) : te C"}.

Therefore,vx (M) > « iff the convex hull of ® has certain
properties, whereagx (M) > « iff © itself has those properties.

We end this section with an application which shows the potential
of the dual characterizations. Young [6] was the first to prove the
following lemma, but whereas his proof is rather cumbersome, the
proof based on dual characterizations is only a few lines.

Lemma II.6 (Rank-One Matrices, cf. [6])ux (M) = vx (M) if
M has rank one.

Proof: It suffices to show thatx (M) > « implies ux (M) >

.

Supposevx (M) > a. Therefore, there is a nonzero nonnegative
definite = W* for which (M — o)W (M" +al) satisfies (6). Let
x,y € C™ be such that\l = 24", and decompos&’” compatibly
with that as

W =t + W, inwhichWy =0, W =W" >0andteC".

If W'/2y = 0 the above is satisfied for = 0,7 W, and
if W'/2y £ 0, we can taket = (1//y"Wy)Wy and W
W — (1/y"Wy)Wyy"W. Then we have

(M — aD)tt" (M" 4+ aI) = (zy" = aI)(W = W)(y2" + o)
= (M — a)W(M" + oI) + o*W.

By assumption,(M — ol)W(M" + oI) satisfies (6), but then
so does(M — al)tt"(M" + aI) becausea®W is Hermitian
and > 0. Moreover, the vector is nonzero, because otherwise
(M — al)W(M™ 4 o) = —a®W = —a®W < 0 which would
have contradicted (6). Hengex (M) > a. O

Proof: The equivalence of (7) and (8) was shown earlier. We

prove thatux (M) > « iff (8) holds. Note that eacl; can be written
as the product of a column vector and a row vector as

Z; :[J\/[,q s A/L'(L'_l)ﬂf,j,' —al A’L(H—l) cen ]i’

X ([Mi -+ Mii_yy M +al My - 10"

©)

We will formulate necessary and sufficient conditions for (8) to hold.

We distinguish the three cases.

Case 1) Let € {1,---,m,}. By Lemma lll.4-1) we have that

(9) is Hermitian and> 0 iff [0---0 oI 0---0]t =
bi[Miy -+ Mt 4m,+me)] t fOr somes; € [—1,1].

Case 2) Leti € {m, + 1,---,m, + m.}. By Lemma lll.4-
2) we have that the Hermitian part of (9) is 0 iff
[0---0 al 0---01t = 6:[Miy -+ Mi(ontomotme]t fOr
someéd; € C with |§;] < 1.

Case 3) Leti € {m, +mc+ 1,---,my + m. + m¢}. By
Lemma 111.4-3) the real part of the trace of (9)3s0 iff
[0--0 al 0---0]t = AJ[M;iy ---
for someA; with ||A;]| < 1.

Min,+metme)lt

IV. THE Case X = diag RI,.,C?*?)

In this section we prove thaty = v if the structure has the form
X = diag(RI,,C?*P). A straightforward application of Lemma
1.3 and Lemma 1I1.5 is as follows.

Corollary IV.1: Let X = diag RI,..,C**?). Thenvx (M) > «
iff a nonzero Hermitianl?” > 0 exists such that
MP 4+ ol

M

M

M + oI,

is Hermitian and > 0,

} = (10)

Moreover,ux (M) > « iff a W = W* > 0 of rank one exists with
these properties (10).
Lemma IV.2 (Technical Resultlet FF and G be complex matri-
ces of the same dimensions.
1) If F andd@ have full column rank, thed G
and only if F = GQ for someQ = Q" > 0.
2) IfaW = W™ > 0 of rankn is such that

[j\/{u — oJm AILQ ]‘/V |:

Retr [‘7\{[21 A’[QQ - (IIP ]VV |:

=GF® >0if

FWG" is Hermitian and> 0
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then there existr nonzero column vectors, such thatlV’ = TABLE |
:zr tktl,j and WHEN ptx = vx |s GUARANTEED
Ftt2 G is Hermitian and > 0, forall k € {1,---.n}. =0 me =0 mge; L mgve; 2 m{’;e; 3
m. =10 See [3] See [3] See [3]
Proof: m, =0 Yes. Yes. No.
1) If F = GQ for some@ = QY > 0, then obviously me =1 See [3] See [3] See [3]
FG" > 0. Conversely, suppos& and G have full column my =1 Yes. Yes. No.
rank andFG" = GF" > 0. ThenFG"'G = GF'G so that  —Me =10 Thn&- IV.3 | Thm.IV.3 | BEx. V.1
F =GQ with Q = (FEG)(GEG) . @ = QY > 0 because z 1| B ‘{/ )
G"G is invertible and(G"'G)Q(G"G) = (G"GF"G = o= No-
GUY(GF™)G > 0. @ is in fact nonsingular because = GQ Me =2 See [3]
has full column rank. m; =2 No.
2) By induction inn (which is the rank of¥), if n = 1, orn = 0, me =0 See [10]

then obviously the result is correct. Now consider 1. Write
W asW = VVY with V havingn columns.

First consider the case th&WG! = (FV)(GV)! has rank
strictly less tham. Then eithe'V or GV does not have full column
rank. So there is a unitary vectorsuch that eithe#' V't or GVt is
zero. DefinelV as

W=w -vi'"v" = v - v

and note thaf’ > 0, that it has rank: — 1, and thatFIW G =
FWGH — FvutVHEGH = FWWGH is nonnegative definite. By
induction, therefore, there exist nonzef, } such that

Building on work by [1], Packard and Doyle [3] showed that

V. LOSSLESSNESS OR D, (&) SCALING

ix = vx whenever

m, =0,

2m. +meg < 3.

(11)

Together with the results of Section 1V, we thus have fhat= vx
for any of the structuresX for which

2(m, + m.)+me < 3.

(12)

Packard and Doyle [3] further show by examples that(M) <
vx (M) can occur within any complex structure withn. +meo > 3

(and m, = 0). For m, = 2 it is possible to find 2x 2 matrices
M € C**? such thaux (M) is less than/x (M) (see [10]). Table |
details (12) and gives references for the different cases.

In this section we give two more examples that complete the
picture in that they—combined with the other examples—show that
for any structureX that violates (12) there exist matricd¢ such
that px (M) < vx(M).

Example V.1: Let X = diag(R,C,C) and take

01 j
and thatF't, t{ G* is Hermitian and> 0 for everyk € {1,---,n}. M=1j 01

Now suppose that"WG" = (FV)(GV)! has rankn. Then 110
by 1) we have thatFV = GVQ for someQ = Q" > 0. Let
Q = UDUY be an eigenvalue decomposition 6f. Therefore,
FVU = GVUD. Define t; as thekth column of VU. Then
W =Vvv" = (vr)(vi)" = 3, tkt), and sinceFt, = Gtydy,

n—1
W=> tty
k=1

and such thaF't;tf G is Hermitian and> 0 forall k € {1,-++,n—
1}. Finally, with ¢, defined as, := V¢ we have that

W=W+t,t = >ty
k=1

The claim is thayux (M) = 1 and thatvx (M) = /3.
The spectral norm a¥f is || M|| = v/3, so we haverx (M) < /3.
Furthermore, for the Hermitian nonnegative defiriite defined as

(where0 < dj is the kth diagonal entry ofD), we also have that 2 1 —j
Ft,t2GY is Hermitian and> 0. O W=11 2 j
Theorem IV.3: j —J 2

jix = vy if X = diag RI, CP*7). we have that .
Proof: Since ux(M) < wvx(M) it suffices to prove that 0 0
vx(M) > o implies ux (M) > a. 0 0

Supposevx (M) > «. Then by Corollary IV.1 there is a nonzero(the *2” denotes an irrelevant entry.) Since all diagonal entries of
W =W?" > 0 that satisfies (10). By Lemma IV.2-2) we can write(13) are zero, it follows from Lemma 1113 that (M) > /3. Hence
this W asW = 3, t,t}' such that for allk vx (M) = /3.
Calculation shows thafs — diag(61, 62, 63)M is singular iff

5285 + 761(82 4+ 83) — 1 = 0. (14)

Suppose: € [—1,1] and that|és| < 1. Then thes; for which (14)
holds equals: = (1 — jé163)/(jé61 + 63), and it satisfies

(M —V3DW(M™ +/3I) = (13)

e O

Dy — o i {Mﬁ +al

Mo ity o } is Hermitian and > 0.
Mo

SinceW = 3", it satisfies (10), there is at least one inde»say
k = 1, that also satisfies

N 627 1—j6i8s |0 1462|6307 — 26:Tm(63) o1
Retr [N[Ql 3122 - (II]UE]H H 21 - 0 2 - Jél + 63 - bf + |(53|2 - 2(511111((53) =
Nﬁ[zz + al

Therefore, max; |6;] > 1 for every solution of (14). Since
HenceW := #;#]' is a rank-one matrix that satisfies (10) so thaté, &2, 63) = (1,7, —j) is a solution of (14) for whichnax; |6;| = 1,
px (M) > a. O we have thatux (M) = 1.
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Corollary VI.2: A matrix A € C"*” has no eigenvalues on the

the previous example. From (13) we infer also that for this structupmsitive real ling[0, o) iff there is P € C™*" such that

vx (M) > +/3. Sincevx (M) < ||M| = /3, we have, again, that
vx (M) = /3. It further follows from the previous example that
I; — diagé1,6:1:)M is singular iff

83 + j2616, — 1 = 0.
The solutionsé, = —jé; + /1 — 62 have absolute value one for
everyé; € [—1,1]. Henceux (M) =1 < vx(M).

P4+ A"PY <, HeP > 0.
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VI.

An application of the KYP lemma [11]-[13], called the strictly
positive real lemma, is known to be equivalent to the fact that
px = vx for the complex structure¥ = diag C'I,., C?*?) [3]. [1]
In this section we rephrase Theorem IV.3 as a KYP-type result.

Lemma VI.1: Supposes is a square rational matrix with realiza- [2]
tion G(s) = C(sI — A)"'B + D, and consider the following linear
matrix inequality in P:

PA+ ARPE pB_CH
—-c+B"PYT _p_pt

A V ARIATION OF THE KYP LEMMA

(3]

< 0. (15) 4]

Then:

1) there is a Hermitia® = P > 0 that satisfies (15) iffd is
stable andG(s) + [G(s)]" > 0 for all s in the closed right
half-plane, includingsc;
there is aP (Hermitian or not) with H&” > 0 that satisfies
(15) iff A has no eigenvalues on the positive real ljiex)
andG(s) + [G(s)]" > 0 for all s € [0, c0), including oo;
there is aP (Hermitian or not) that satisfies (15) ifft is
nonsingular and(s) + [G(s)]" > 0 ats = 0 and s = oo. E)

Proof: Item 1) is the strictly positive real lemma in an inequalityj; g

version (see, e.g., [14]). Iltem 3) can be shown using [15, Lemma 3.1].

Items 1) and 3) are included for comparison only. We prove Item 28.

Define E and N as 11]

B } [12]
-D

P 0 . A
E= {0 I}’ V= {—C

and note that (15) is nothing blEN + NTTE" = 2HeEN < 0.
If He P > 0 and P satisfies (15), thed — NN is invertible because [13]
HeFE(I-N) = HeE—HeEN > 0. DefineM = (I-N)"}(I+N).
ThenM+1 = 2(I-N)~"isinvertible andV = (M —-I)(M+I)~".
Let X = diag (RI, C?*?). We have thaH P such that (15) holds
and HeP > 0:

& JdF € Dx + jgx s.t. HeEN < 0;
JE € Dx +jGx st. HeE(M — I)(I+ M)~ < 0;
3E € Dx + jOx st. He(T + M™)E(M - I) < 0;
vx(M) <1 pux(M) < 1;
I — M diag(é: 1., A2) is nonsingular for alb, € [—1,1] and
Agl < 1
(I — N)—(I+ N) diagé11l.,Az) is nonsingular for all
6 € [-1,1] and [|Az|] < 1;

(1=6)I—(1+6)A

(I+6)C I—As+ D(I+Ay)

gular for all 6, € [—1,1] and||Ax|| < 1;
A has no eigenvalues g, oc), and(7 — A2) 4+ G( L’r:i
Ay) is nonsingular for alb, € [—1,1] and||]Az|] < 1;
A has no eigenvalues df, o), and] — (I + G(s)) (1 —
G(s))A2 is nonsingular for alk € [0, co)Uoco and||Az|| < 1;
A has no eigenvalues df, o0) andG(s) + [G(s)]™ > 0 for
all s € [0,00) U oo. |

Lemma VI.1 remains valid if the matricd$, C, andD are void. In
that case, Lemma VI.1-2) reads as a variation of a Lyapunov stability
condition.

(5]
(6]
(7]
(8]

2)

3)

[14]

[15]

A4
o4
=
A4

=

—B(I+As) is nonsin-

)L+

-~

=
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