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Robustness Analysis of Nonlinear Feedback
Systems: An Input—OQutput Approach

Tryphon T. GeorgiouMember, IEEE and Malcolm C. SmithMember, IEEE

Abstract—This paper presents an approach to robustness anal- complex structure, e.g., infinite dimensional, time-varying,
ysis for nonlinear feedback systems. We pursue a notion of model hysteresis, etc., or may even defy a concrete realization in

uncertainty based on the closeness of input—output trajectories the sense of a dynamical system. Our aim in this paper is to
which is not tied to a particular uncertainty representation, such ;

as additive, parametric, structured, etc. The basic viewpoint is present an i.an't_OUtDUt approgch to_ uncertainty for nor_]"near
to regard systems as operators on signal spaces. We present twsSystems which has the potential to include such a variety of
versions of a global theory where stability is captured by induced perturbations to the nominal model.

norms or by gain functions. We also develop local approaches |n the context of linear theory, it is well established that the

(over bounded signal sets) and give a treatment for systems . Sl . .
with potential for finite-time escape. We compute the relevant appropriate topology for considering questions of robustness is

stability margin for several examples and demonstrate robustness that induced by the gap metric (the graph topology). Namely,
of stability for some specific perturbations, e.g., small-time delays. perturbations which are small in the gap are precisely those
We also present examples of nonlinear control systems which which give small closed-loop errors in a feedback loop.
have zero robustness margin and are destabilized by arbitrarily | contrast, other models of uncertainty have restrictions;
small gap perturbations. The paper considers the case where . .
uncertainty is present in the controller as well as the plant and e.g., additive uncertainty does not allow a St‘_"‘ble and _an
the generalization of the approach to the case where uncertainty Unstable model to be compared, and parametric uncertainty
occurs in several subsystems in an arbitrary interconnection. does not allow changes in model order, small time delays, etc.
Index Terms—Gap metric, nonlinear systems, robust control. Accordingly, !n this paper we seek a suitable ge_nerallzatlon of
the gap metric approach to robustness for nonlinear systems.

We consider a system to be defined by its graph, namely

NOTATION the collection of its input—output trajectories. We consider two
L7]0,00) Lebesguep-space ofr-vector valued func- Systems to be close if their graphs are close according to
tions on[0, o0), with norm || - ||,.- some measure. We will see by theory and example that such

C"[0, o0) Continuous and bounded-vector valued a way of comparing systems allows the variety of uncertainty
functions on[0, oo), with sup norm|| - ||.,. ~ mentioned above. One of the main results of the paper says

T, Truncation operator: forf(¢),0 < t<oo, that robustness to small perturbations of the graph requires
T, f(t) = f(t) on [0, 7], and zero otherwise. that a certain disturbance-to-error mapping has bounded signal
The same notation will be used for vectoamplification. Disturbances need to be injected at both the

valued functions. input and output of the plant and the responses found after
Ly [0,00) = {f(t): 0 < t<oo st. T,f(t) € and before the respective summing junctions. This mapping
L0, 0c) for all 7> 0}. is a (nonlinear) parallel projection operator, and the inverse
Cr10, 00) ={f(t):0<t<oost. T-f(t) € C"[0,00) of its gain is the stability margin for plant uncertainty. This
for all 7> 0}. result was first presented in the context of nonlinear systems
IF @&+ = ||T-f()||, where f(¢) is in either in [14] and generalizes a corresponding result from the linear
Ly [0,00) or CI[0,00), and || - || denotes case [12], [8], [9]. The initial insight for the work of this

the norm of the relevant normed space. paper came from the geometrical techniques of [8] and [9].
However, the ideas have connections with a number of works
|. INTRODUCTION in the literature of nonlinear control. We mention particularly
NE OF the basic properties of stable feedback loo fhie use of sectc_)r cpndltlons for stability in [38], [39.]’ and
is that they tolerate uncertainties which are suﬁicient@hﬂ' Other contrlbgtlons related to graph rgpresentatlong and
small in an appropriate sense. Moreover, stable loops h Ve compleme_qtar_|ty of graphs as a condition for nonlinear
the potential to reduce the effects of uncertainty, if d eedback stability mclgde [15], [3.3]' (301, anq [23].
signed appropriately. Uncertainties may be small and yet havfeTh_ere are two bas_lc tools which fea‘“_re n the approgch
of this paper for nonlinear systems. The first is a summation

MzmésgfiptA rece_ivtedE/;Ptf” 132’slh996; fevﬁ‘?d MaLCh 10, 1997-t Fée_coanerator for the characterization of stability. Any solution of
mended by Associate Editor, J. Shamma. This work was supported in par . .
by the NSF, AFOSR, EPSRC, and NATO. e feedback equations requires that an element of the graph of
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tool is the use of a mapping from the system graph onto a
perturbed graph and the use of the distance from the identity =~ %0 + o ! P n
of this mapping as a measure of distance between systems.
Although the assumption of the existence of such a mapping

appears to be strong at first, it will be shown that if two systems

are stabilizable then there exists such a mapping, and if the - " _ ”
closed-loop responses are close for some common controller C i
then the mapping is close to the identity. Moreover, we will be
able to construct such mappings explicitly in examples, such
as when time delays are introduced. Fig. 1. Standard feedback configuration.

We now outline the contents of the paper. In Section II,

we introduce the summation and parallel projection operatogsanach space of time functions with support [onsc), e.g.

In Sectipn [, we presen§ a generalization of the gap metrie: 10,50),C1[0, 50), Of £1[0, 50). A departure from this takes
for nonlinear systems defined on extended spaces. Theorem’%e in Section V, where we address systems with potential

provides the main paradigm of the theory: if the gap betweggy finite-time escape. There we allow for the possibility that
the plant and perturbation is less than the inverse of the NOYBKals are defined only over a finite window in time.

of a certain parallel projection, then the loop remains stable.~qnsider the feedback configuration of Fig. 1 where the
The theorem is applied in Example 1 to assess tolerance to tigﬂé’nalsm (i € {0,1,2}) belong tot/ andy; (i € {0,1,2})

delays_ when an integrator with input _saturation is _stabilizsdiebng to). Under mild, physically motivated conditions on
by unity feedback. Theorem 2 studies the nonlinear 9g9 anq¢r (e.g., the product of the instantaneous gains is less
topology, and in particular, the relat|onsh|p. between closegfan one [37], [4]; see also [2]), the feedback configuration can
loop norm convergence and convergence in the gap metgie, guaranteed to be well-posed. Namely, for &ay, o) €
Metric properties of the gap are investigated. An alternatiye Y =: W, there exist unique signals;,u, € U and

dist_ance measure is presented for which the gorresp_onqmgy2 €  such that the following feedback equations hold:
main robustness result (Theorem 3) has the circle criterion

as a corollary (Example 3). In Section IV, we give a version Uy =u1 + U
of the theory for the case where there is a known bound Yo =1 + Yo
on the norm of potential disturbances. In this case, the main

. . . yl :Pul
theorem requires the gap and parallel projection norm to be
evaluated on a bounded domain (Theorem 4). This result uz =Cy
is pertinent in the case where stability, for the nominal Und moreover
perturbed systems, cannot be guaranteed globally. The theorem
is applied toan unstat_)le system With saturatiqn (Exa_m_ple _4). In Hpc: W — W x W: <U/0> . <<ul )7 <U/2 ))
Section V, we deal with systems with potential for finite-time ’ Yo Y1 Y2
escape. A mod|f|ca_1t|on of the gap and_ the norm of the para!%gl causal. Throughout the paper, well-posedness of the feed-
projection are again evaluated, on suitably bounded domalgs , . ; .

- ack configuration will always be assumed for the nominal as

and then compared to assess robustness of stability (Theore

5). The theorem is applied to an unstable system with quadrai;t:fgﬁ as for all perturbed systems (though a weaker version wil

nonlinearity (Example 5). In Section VI, we give a version o © assumed in Section V). Thus, given that the feedback equa-

- . o ions have a solution (e.g., over extended spaces), feedback
our robustness theory for gain-function stability (Theorem Gétability is the requirement thaf ¢, is stable, i.e., bounded

The theorem is applied to a system with cubic nonlineariI
(Example 6). A brief discussion of hysteresis perturbations Is
given. Section Vi presents' t\_NO examples of cpntrol SySterﬁ'esrnative notions of stability. These are defined here. Let
with zero robustness margin: a Nussbaum universal adaptiye . .

. . (1 = 1,2) be signal spaces or subsets of such spaces. A
controller and a parameter adaptive controller. In each Cacsabusal operatal: X — X» is said to bestableif F0 — 0 and
it is shown that these may be destabilized by a perturbatioh P P 2 -
which is infinitesimally small in the gap. The two final sections . | Fxl|-
present generalizations of the robustness theory to the cadd’lx |l := sup IR
where uncertainty is present in both the plant and controller ] ) )
(Section VIII) or in several elements in an arbitrary feedback causal operato#™: X; — X, is said to beincrementally

interconnection (Section 1X). stableif F0 = 0 and

a suitable sense.
In the subsequent sections we will consider several al-

cx € X, Tm>0,7- ;é()}<oo.

Fz — F
|| ], || A == sup {H T1,%0 € A1, 7>0,
Il. PRELIMINARIES ON FEEDBACK STABILIZATION ! 2llr
In this paper we assume that the plant and compensator are |z1 — 22|~ # 0} < 0.

causal mapping®: ¢/ — Y andC: Y — U which satisfy
P0 = 0 andC0 = 0, wherel{ and Y are appropriate signal It is standard to check that the noijm || and the incremental
spaces. We define a signal space to be an extended spacegaim || - ||a satisfy the usual triangle and submultiplicative
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inequalities. We define the gain functigft](-) of a causall” the two parallel. projgctions. Furthef] ./, zr (rgspectively,
via I/ 04) is the identity operator oM (respectively ) so
. ) each has norm greater than or equal to one. Finally, a parallel
glF (@) = sup{||[Fal|-:z € X1, 7> 0, |lz]l < o} projection IT: W — W always induces a coordinatization
The operatorF" is said to begain-function (gf)-stableif ©f WV in the following sense: anys € W has a unique
g[F](c) remains finite for allo > 0. additive decompositionv = m + n, wherem € IIW and
It is fruitful to think of a system in terms of its graph instead? € (I — IW.
of as a mapping, i.e., as the set of all possible input—output m

. . . . . . GLOBAL ROBUSTNESS
pairs which are compatible with the description of the system.

Formally, thegraph of P is defined as In this section we d(_eal with robustness of_global stability
of feedback systems, in the sense that the induced norm of
Gp = {( U ): wel. Puc y} CW. the input-to-error mappindip ¢ is finite and remains finite
Pu ’ for suitable perturbations of the nominal plaft To quantify

In caseP is defined for all: € ¢ (e.g., whenP is an operator _allowed pertl_ergtions we introduce a_distance measure which
on extended spaces), the conditidh. € ) is redundant. 1S @ generalization of the_gap metric to nonh_near systems
However in general, e.g., in cagé ) are Banach spaces,on extended or Banach :s_lgna_l spaces. For this measure we
the requirement thafu € ) may restrict the inputs to a PfOve that feedback stability is preserved for perturbations

proper subset . We adopt the convention that the element¥hich are smaller than the inverse of the norm of the parallel

of the graph are ordered according to the decomposition RjPiection onto the graph of the plant. Next we prove a result
the ambient spac®) = U x ). Thus, we define the graphWh'Ch shows a close connection between norm convergence

of the closed-loop operators and convergence in the distance
measure. We then investigate the metric properties of the mea-
Go = {(Cy): Cyecl,yec y} cwW. sure. Finally, we study a related alternative distance measure
Y and give a direct proof of the corresponding main robustness
ﬁ]eorem. The circle criterion is shown to be a corollary.

(sometimes called the inverse graph)®@fas

In order to study stability of the feedback system in Fig.
a convenient device is thr@immation operatodefined on the A Robust Stability Margin

cartesian product of the two graphd := G and’ := Gc as Let X, Y C W whereW is a signal space. The following

Yy M XN = W: (m,n) —m+n. definition represents a generalization of a metric given in [20]:
Under the well-posedness assumptidin, - has an inverse inf{”(_f_l5 —_I)|X||¢ @ is a causal _
on the whole ofW, and moreover 5, V) = b'JeCth]Ef map from" to J with
e @0 = 0},
EH,N =Hpc. oo if no such operato® exists

= =

Thus (induced norm, incremental, or gf-) stability of the feed- (&, := max{6(X, V), 6(), X)}.

back system is equivalent to the same notion being |mp051|eﬁie theorem below generalizes a standard result from linear

on X7} 2 ) .
MN- . robust control. More specifically, i?, P,,C are linear sys-
In order to study robustness of feedback stability, tr} b A y

. . Bms and/{,) are Hilbert space$-, -) specializes to the usual
Sgﬁnwéng pair of operators plays a central role [8], [9], [14]'gap metric (see Proposition 5 in the Appendix). Theorem 1

then becomes the sufficiency part of [12, Th. 5] and [8, Th.

iy /n =1 Hp ¢ and Hypypg = H:Hp ¢ 3]. The tightness of (2) is not examined here. However, it is
believed that a suitable necessity construction could be carried

where II;: W x W — W denotes the natural projectiongyt for appropriate classes of plants (cf. [29]). Here we will

onto theith component(: = 1,2) of W x . These op- pe content to cal|l /|| ~" the robust stability margin.

erators represent the mappings, in Fig. 1, from the externalrheorem 1: Consider the feedback system in Fig. 1. Denote

disturbances to the input and outputBfand the output and 44 .— Gp, N := Gc, and letHp ¢ be stable. If a systen;,

input of C, respectively. Each of these operators is a paraligin M; = Gp,, is such that

projection. The relevant definition, given in [5], is that an .

operatorII: W — W is a (nonlinear)parallel projection if S(M, M) <|[H pqyyn]| 2

for any wy,w, € W

then Hp, ¢ is stable and

14 8(M, M)

We summarize several interesting properties of parallel pro- ML py ]l < ||HM//N||1 I7t SM M)

jection operators which will be used below. FiBtp ¢ = = ay i llGM, M)

(L payynrs M prppaq) @nd I pq) 00 4+ aryyaq = 1. Therefore  The proof of the theorem uses the following simple lemma.
the stability/causality of one parallel projection implies the Lemma 1:Let X C W where W is a signal space, and
stability/causality of the other, and hence Hf> . Clearly, A: X — W with « := ||A|| < 1. Supposew = (I + A)z.

the stability/causality oH > c implies the same property for Then||z — w||, < [|w||;o/(1—«) and||z||- < ||w||-/(1— ).
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Ug o _ . w where vg :_luo + yo. We first calculate the stability margin
S = . I pty /0|7 where
uo Ul Vo — T
H M — = .
e ()= () = (°27)
Y Yo For anywvo, up = yo = v/2 gives (**) = (*°*) with the
1 O, " w) T
+ smallest input norm. Thus

Fig. 2. Integrator with saturation. M pny)arl| =2

vo— X
Vo
T

=2 x max{||vo — (vo — )|, |Jvo — 2|} (7)

Proof: Clearly, ||z — w||- £ «l|z||-. Then

for the mapping defined by (6). We now claim thaty —
z|| = 1. To see this, consider any intervigl, 7’| and suppose
that x(¢) achieves a maximum which is positive & €
from which the inequalities follow. O [0,7]. Then, for anye > 0, there exista) < ¢; < #¢ such that
Proof of Theorem 1:As observed previousW|II v; a|| #(t1) > 2(to)—c andi(t;) > 0. The latter means that (t,) >
> 1. Since §(M, M;) < oo there exists a causal bijectiver(t1), hencevo(t1) > z(to) — ¢ for anye. A similar argument
mapping® from M to M, such that applies for the minimum ofc(¢), so ||wl||lr > ||z||r. But
vo(t) = 1 for all ¢ givesz(t) = 1—e™*, hencel|vg — z|| = 1.
a:= (@ - D pynll < N8 — Il - [ pzynll <1 (3)  Next observe thajug — (vo — z)|| < 1+ |jvo — || = 2.
In fact, this upper bound can be approached arbitrarily closely
by the inputug(t) = 1 for 0 < t<T andvg = -1 fort > T,
w=U+(@—-DHUuyn)r (4) since thenvg — z)(T) = =2+ e~ 1. Therefore, from (7), we
—(II &I T 5) conclude that|Il v/ /|| = 4.
ULxjan ¥ 2//8) ©) We will now caICL/JI/ate the gap betwedhand a perturbation
We claim that this equation has a solution for anye W. P, in order to apply Theorem 1. Assume that the perturbed
To see this, note th@]jww = (my,n) for somem; € M plant P, is described by
andn € N because of the well-posedness assumption. Next, )
&m = m,; has a solution for somen € M since @ is (t) = sab(ui(t — h)), z(0) =0
surjec_tive. It can now be seen that=m + n is a solution of anduo(t) = yo(t) = 0 for ¢ <0, which means thati, (t) = 0
(5). Sincemy = Il ry, yynw andm = Il pyy ne, then for ¢ < 0. Define a mappingd: M — M, by

allzll; =2 (1 = a)llz —wll- + oz — wl/-

2 (1= a)lle —wll- + ofle]l- — allwll-

Consider the equation

I pa,yynvw =P pay e Q(ul(t)> _ < i () )
At the same time, from (4) and Lemma |||~ < [Jw]|,/(1— a(t) w(t —h)
Oé) Thus Then
® t)—a(t—h)| < i) - h
IWMMMMSMMWNwﬂ[l [o(t) —at =Ml < =wp i(r)
1+||® - 1| < sup  Jui(m)| ke
<||IT : . relt—h
Sy T e e =T cli=r

Since this is true for all suctp, the result follows on taking Hence

the infimum overd. O _ () — 2t — h)|l+

. . . I - = su <h
Example 1 (Integrator with Saturation)Consider the feed- a0 max|[ua |-, ||z]l-}

back configuration of Fig. 2. We will use Theorem 1 to show . _

that the feedback loop remains stable in the presence Vdfich means that(M, M) < h. In fact, the gap is equal to

sufficiently small time delays in the plant. The nominal plarthis bound (for: < 1). To see this, takey;(t) = 1 on [0, ],

P is defined by for which (Pu;)(¢) = t on [0, h]. SinceT,w = () for any
w € Mj; we have
2(t) =sat(uy(t)), z(0)=0
2 [[Pual|n h

i (t) =a(t SM, M) 2 - '

1( ) ( ) . . ( 1) Inax{HulH}“ ||PU1||h} max{l,h}
wheresat(u;) = u; whenlu;| < 1 and is equal teign(u,) Theorem 1 now asserts thaHpc will be stable if
when |u;|>1. We takelf = YV = L. and choose the SM.M I -1 which predicts that th turbed
feedback controller to b€ = —1. The instantaneous gains A M) < iyl which predicts that ihe perturbe

of P and C are zero and one, respectively, so the loop %’Stfn; V\Il;” rﬁmﬁ;n bstablet fgrt:"t vt:;lll_ues o:;_trt\_e t|m;a :ellay
well-posed. The feedback equations reduce to < / - 1t should be note at this prediction ot detay
margin is conservative and can be improved (e.g., by use of

& = sat(vog — ), z(0)=0 (6) the scalingl/s — k/s andC — —1/k). O
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B. Nonlinear Gap Topology |lwl|roq/(1—e) and||z;||- < ||wl||+/(1—c;) from Lemma 1.

In [40, Th. 1] it was shown, for the case of linear systemfdOW consider the following identity:
over Hilbert spaces, that open-loop uncertainties which cor-
respond to small closed-loop errors are precisely those thidd my/nv = pn, g yn)w
are small in the gap. The following theorem is an attempt = =@ pqjynwi + H pgyyvw — M pgyynewic (8)
to generalize this result to the nonlinear case. In particular, it
shows the equivalence in the case that the nominal closed-Igagt a) now follows from the continuity O I pay 5 =

is incrementally bqunded. In ge_neral, it shows that cIosej-—THM//NTT7 the uniform boundedness of, and the fact
loop convergence in norm implies convergence in the gapat,; — 0 asi — oo. Assuming incremental boundedness,
Conversely, any stabilizing controller for a given plant willye have from (8)

stabilize some neighborhood of the plant. However, closeness
in the gap does not necessarily imply closeness of the closed-
loop operators, as shown in Example 2. For this to be the case
some form of continuity of the nominal closed-loop operator
iS necessary. from which Part b) follows. O
Theorem 2: Let Hp ¢ be stable and consider a sequence of Remark: Theorem 2 was first given in [14] for stability
plantsP; for i = 1,2, --.. Define M := Gp, M; := Gp,, and defined in the sense of incremental gain boundedness. We
N := Ga. Then the following statements hold. point out that the proof of [14, Th. 2(b}> (a)] contains an
1) If Hp, ¢ is stable for all sufficiently largeand||Hpc— €O Namely, the summation operator cannot be premultiplied
Hp, || — 0 asi — oo, then§(M, M;) — 0. in the fogrth dlsplgyed equation of [14, P 93] bgcause of
2) If §(M, M,) — 0 asi — oo, thenHp,  is stable for incompatible domain. However, the result is still valid and can
all sufficiently largei. Furthermore: be provetld ezx(actly as Theorefné I2—2)C—ib) of trg presentmp;]ﬁ)er.
: - : Example 2 (Discontinuity of Closed-Loop Operatorsi: the
a) if for somer >0, T, Hp T |sxc0nt|nuous, then feedback configuration of Fig. 1, l&# =0, P; (i = 1,2,---)
(Hpc — Hp, c)w|l — 0 asi — oo for any ) ol ,
w e W ’ b(_e defined as scalar muI_t|pI_|cat|on uy; and_C be a relay
with dead zone and a unit time delay in series

v

ML pjgyyar = M pg, il < (1 + M pqynlla)

1—041‘

b) if Hpc is incrementally stable, theflHp ¢ —
Hp. || — 0 asi — .

oot ot Dot 1 for we(t—-1) > 1,
roof of 1): Define Clug)(t) =mp(t)=¢ 0 for |up(t-1) < 1,
-1 for w(t—-1) < -1.

D, ::I_HM//N‘i‘HMi//N-

Since||Hp,c — Hp, c|| — 0, it follows that||®; — I|| — 0. The feedback systems are well-posed due to the time delay.
We now show thath; mapsM bijectively onto M. LetU =Y = Lo For the constant inpub := (,) = (7),
Let m € M. Then with ¢ > 0 and0<e<1

@im:m—HM//Nm—i—HMi//Nm e—1

:HMi//Nm €M, (HM//Nw)(t) = < 0 ), for t>1
Thus @; maps M into M,. Further,m = @®;m + n for

n = Il r/y pm;m € N, and this is unique among such additive

decompositions into a sum of elements M; and A [cf. ¢

(1)]. Now consider the operato¥ s _ s, which has a well- (U pm;pyvw)(t) = <6 i)’ forall ¢
defined (not necessarily bounded) inverse by the assumption of

well-posedness. We observe thafi/, . (®;m) = m, SiNCe |+ t5l10ws that (Hp.c — Hp, ¢)wllee > 1 for all i while

we can write®@;m = m + (—n). Thus Ilxy)-n@ilm = 5001, M;) — 0. This behavior is due to the fact that the
I, which shows tha®; is a 1-1 map fromM into M,.

o nominal closed-loop operator is discontinuous. O
By a similar argument we ge®. Il /) nlm, = Im,.
Therefore®; is a 1-1 map fromM onto M;. This means ) )
that 5(/\/1 M;) — 0. C. Metric Properties of the Gap
Using the operator®; := I+ 11 y1//n — a4,/ /07, WE CAN We now investigate the metric properties 6f-,-). In
show analogously thaf(M;, M) — 0. fact, we show that a suitable scaling 6f-,-), defined by

2): Suppose (M, M;) — 0. Then there exist®; mapping d(-,-) := log(1 + 6(-,-)), is @ metric under certain natural
M bijectively ontoA; so that]|(®; —I)| x| — 0. It therefore assumptions imposed on its arguments (cf. [20]). We begin
follows from Theorem 1 thaHp, ¢ is stable for sufficiently with the triangle inequality.
large . Now note, as in the proof of Theorem 1, that= Proposition 1: Let A, Y, Z C W where W is a signal
(I + (®; — I)H oy /5)z; has a solutione; € W for all ¢ and  space. Then
HMZ-///\/TU = Qiﬂm///\/ﬂh‘- Leto; := ||(¢i—I)HM///\/|| and
assume for convenience that< 1 for all ¢. Then|jw—x;||- < dX,2) < dX,Y)+dY, 2).
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Proof: If either of d(&,Y),d(},Z) is oo, then the Proof: Assuming thaté(X',)) = 0, for any 1>¢>0
statement is obvious. So assume that bét’, V), d(Y, Z) there exists a bijective mapping.: X — ) such that
are less thanco and, consequently, that there exist 1-JJ(@. — I)|x||<e. For any giveny € )Y there exists a
mappings®; (i = 1,2) for which@, X = Y and®,)Y = Z. family z. € & such that®.z. = y. Moreover, for any
Then® = &,9,; is 1-1 and mapg’ onto Z. From the identity 7> 0, ||y — z.||- <||y||-¢/(1 — €), as in Lemma 1. Hence we

can find a sequence € A such that, for any, T, x. — T y.

D3P —I=(P:-1)P1+ P, — 1 Since T'. X is closed, it follows thatT’.y € T.X. Since
X is la.c.,, it now follows thaty € X, hence)y C X.
we obtain Conversely, given any ¢ X, the family y. = &2z € Y
satisfies|y. — z||» = ||(®. — z|| < ¢||z||-. Again, using the
(@221 — I)| x| fact that) is l.a.c., it follows thatz € V', henceX C Y. O
<@y = D y|| - || @ x|l + ||(B1 — D) x| Corollary: d(-,-) is a metric on l.a.c. subsets bY. O

< (@2 = DIy[[(I(L = Dlxll + 1) + (L1 = D)]x |-
D. An Alternative Distance Measure
This shows that It is possible to make Theorem 1 stronger by altering the
) definition of induced norm used ah— I. Let F' be a causal
log(1 +[(2:21 — Dl.x) operator on¥ C W with F0 = 0. Define thels-gain
<log(1 +[[(@1 — D] x||) +log(1 + [[(@2 — D)[y|])

and completes the proof. O || €] 2, ||1s. :=lim sup sup 1]
In generalé(X',Y) = 0 does not implyX = ). However, T>O e, [l

this is the case for the following type of subsets. We say that

X C W islocally and asymptotically compleea.c.) if, for all and theBanach gain

7>0,T.X is a closed subset & W, and moreovert’ has

the property that it contains any € WV such thatl’, w € T X

for all 7. This type of subset is motivated by the following |F|x, |5 := sup lim sup ”Fx”T_

proposition. eeXy >0 ll|l-

o

Proposition 2: SupposeP: ¢/ — Y is causal andl’. PT -
is defined and continuous dd for all 7> 0. ThenGp is an -
La.c. subset oY — U x V. v In general||[Flx, [l < 1F|xlhs. < [1F|, ]| If Xy satisfies
We remark that, in cas® is not defined on the whole ¢ 1€ Property thatl-z € T4, implies that Tz € &
(e.g., wheri{, Y are Banach spaces), the property tFaf’T’- (truncation invariance), then it can be seen HAl,||; =
is defined for every. € U/ is called causal extendibility. This 1F ]2 1s. = [1F]x,]|. If F and A are shift-invariant, then
property requires that for any € &/ and anyr, there exists 1F]2, [l1s. = |lFl |l However, in general, the three gains

u’ with Py’ € Y such thatl’- (v — «) = 0. This concept has may _ze d|ff_(;,\r:etnht. W lls. 3 Ba;ach Spilce, '_[PE_’H" ~ls ol
been studied for linear shift-invariant systems in [13]. concides wi € usual inguced norm. NOW 1t 1S possible

Proof: Fix a valuer > 0 and consider a sequenae = to rework Lemma 1 and the proof of Theorem 1 using
w; o o Il - |lz or || - |ls.. The changes are that the inequalities
I(_Zéit) €9p (=12, ) suchthatl’rw; is a Cauchy SeqUence- 1 oid only for sufficiently larger. At the final step of the
proof of the theorem one obtains bounds|di ., //||5 Or
. Q _ u; ||IIM1//N||1,S,, respectively. However, these are the same as
w= <A> = lim TT( ) 11 11,/ /|| because of the truncation invariance of the space
W. Thus one can use the Banach or Is-gain in the definition

=

SinceT, PT, is continuous thef’, PT.u; — T, PT, 4. But ©f (M, My), but otherwise the statement of Theorem 1 is
T.PT.u; = T,Pu; = T,y;. HenceT,.PT, i = 4, which unchanged. We remark that Theorem 2-2) and Proposition 3

T—00 Yi

means that do not hold with such strengthening.
Further consideration of the proof of Theorem 1 indicates
b =T < T4 ) €T Gp that the conditions imposed a@hin the definition ofs(X’, V)
"\PT, 4 T can be relaxed while allowing the basic robust stability the-
orem to remain valid. The essential requirementdois that
This proves thafl’.Gp is closed. the mapping is surjective. The theorem still holds eve if
Now consider anyw = (Z) € W such thatl’-w € T-.Gp fails to be injective, a single-valued map, or defined on the

for all 7> 0. Thus, for anyr, there exists as € &/ such that whole of M.

T,y =T-P(T.u+(I-T.)v). Hence, by causality (replacing Below we give an alternative distance measure which is

T.P by T, PT; in the last equation)]’.y = T, Pu for all 7. motivated by the above observations and a direct derivation

This implies thaty = Pu and sow € Gp. O of the corresponding robustness theorem. A discussion on the
Proposition 3: Let X, C W be l.a.c. subsets. Then,relationship of this measure with the gap metric for linear

8(X,Y) = 0 implies thatt = ). operators on Hilbert space is given in the Appendix.
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Let X', Y C W, wherelV is a signal space. We define the
following: v ey
2 . . lly — ||~ Y ke
bo(X,Y) :=lim sup sup inf ————. <
>0 Hyy\\e,—io H;\\%;O |||~ /,"\i\/& N(uy)
Theorem 3: Theorem 1 holds Witif(/\/t,/\/tl) replaced by /7 Joiy i
(50(./\/1,./\/11). . //:/’
Proof: Suppose|lII v, /x|l = v and éo(M, M) <a Z
with aey < 1. Take anyw € W and writew = m1 + n, where 77 Uy

m; € M; andn € A. Such a decomposition exists and
is unique because of the well-posedness assumption of Hige 3. Sector bounded nonlinearity.

perturbed feedback loop. By definition, we can finde M, ) ) . )
possibly depending on, such that|m; —m||, < a|jm|. for done by selecting: (on the line with slopé:.) so thaty — x is

all sufficiently larger > 0. (If ||my ||~ = 0, then we can choose Orthogonal toy (see Fig. 3). Thefly — x| /||z|| < sin(¢) = v.
|lm||~ = 0.) For the nominal feedback system, we must have Now consider the (stereographic) projection of the disc with
H i/ (m+n) =m so that||m||, < 4|lm + |, for all diameter[-k;*,—k;'], and of the locusg(jw), onto the
7>0. Now note that Riemann sphere of unit diameter placed above the origin of
the complex plane. It can be seen directly (see also [35] and

||m1 +7’L||-;— = ||m1 -m-4+m +7’L||‘r [36]) thata := ||HM//N||_1 (WhereM — ng andN — gc)

2 =[fmy = mlls +[lm +nll- is the smallest chordal distance gfjw) to —1/k.. As long
> _al|ml|, + leHT as g(jw) avoids the circle with diamete[r—kl_l,—.kgl], it
follows that « > +. (Note thaty is the chordal radius of the
_l-oay ]| projection of the disc from the projected centet /k..) This
v proves the assertion on the stability of the feedback system by
for sufficiently larger. Further, [|my|l- < ||m1 — m||» + Theorem 3. H
[m[l> < (14 a)||m]|; for sufficiently larger. Thus IV. STABILITY AND ROBUSTNESS ONBOUNDED SETS

It is often the case that a feedback system cannot have
a bounded response outside a restricted set of disturbance
signals. Such an example is an unstable nominal plant with
for sufficiently larger. This gives the required bound onjnpyt saturation. In this section we present a local version of
M a1, /5|1, Which is equal tol| 2T aq, 7/ |- L' the robustness theory, and introduce a suitable modification

Example 3 (Circle Criterion): Here we show that the stan-o¢ 5. ) for such a class of disturbances. The main result
dard circle criterion is a coro'llary of Theorem 3. LHt = (Theorem 4) states that, as long as the plant perturbation is less
)sca2t7ig;fy?1 gﬁg’<P/€1: <N Nvelsle)r/eujj '<S Z;?grm;r:yerzzlzc;n;ggacr,ny than a certain robustness margin, bounded operation for the
; . o = - . perturbed feedback system can be guaranteed over a suitably
is a linear shift invariant system with transfer functieg(s). . . : . .

e(Iestrlcted set of disturbance signals. The predicted size of the

Suppose thag(jw) does not penetrate the disc with diamet ,
[_kl—l —k;l] encircles it the correct number of times fordllowable disturbance set for the perturbed system decreases
) )

closed-loop stability, and the loop is well-posed (eg(s) with the magnitude of the perturbation from the nominal plant.

is strictly proper). We will show that the feedback system is Let P, P, be causal operators mappiig — V,C a
stable. causal operator fron)) — U, and as before, denoté1 =

We take as a nominaP, the linear gain Gp, M := Gp,, and NV := G¢. Let S, be the open ball of
radiusr, i.e., S. C W is defined by

ke = (kikz +4/(1+ R+ k3) — 1)/ (k1 + k2). Sy i={weW: sup ||w|-<r}

This is chosen so that the line with slopg bisects the and define

1+ a)

.
Imalle < 2T s+l

angle between the two lines with slopés and k». It is inf{||(® — D)|mns. ||: @ is causal
straightforward to show that . mapsM N S,. into M; with @0
bs, (M, M;1):=< =0, and is such thal’-(® — I)T-
So(ky, ke) = Bo(ke, ko) = sin(¢) =: is compact for allr > 0},

oo if no such operato® exists
where 2¢ is the angle betxveen the two lines with slopas Theorem 4:Let Hp ¢ be bounded orf,. with
andkz. We now show thabg(k., V) < . It suffices to show I _
that for any point on the graph @f we can select a point on I /‘”L//NLST =«
the nominal graph so thdy— || < v||z||. This can always be and let P; be such thats_ (M, M;) = v with y<a™L.
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Then Hp, ¢ is bounded onS,;_,.) with u
a(l+
MLty g /180y I S 1(—7047) 9) Yo - | /l\ u [, —hs| Y1
The proof of the theorem uses the following basic lemma. o | ~ s—1-8

Lemma 2: Let X be a Banach spacé,. the open ball of
radiusr in X', and consider a mappird: S, — X'. Supposed
is a continuous compact mapping such that ||Als, || < 1.
Then the equatio + A)z = w has a solutionr € S,. for Fig. 4. Unstable plant with saturation.
any givenw € S;_¢)-, and moreover

Proof: On the rectangld0,7] x [0,T], ¢(¢,7) can be
uniformly approximated by simple functions, i.e., functions
which have finite range. Since measurable sets can be approxi-
mated arbitrarily closely in measure by rectangles, the integral

Proof: Define the homotopyB, := I + AA: S, — X operator can be approximated in norm by replacifig 7)
for X € [0,1]. Since By is the identity operator andh € S,,,  with functions of the form:2_, f;(#)k;(7), where each of the
the Leray—Schauder degree of relative to the setS, and functions f;, k; is a scalar times the characteristic function of
the mapB, (see [18, Th. 4.3.1]) is degréB,, S,,w) = 1. an interval. But such approximations are finite rank operators
Furthermore, sincgA\A|| < ¢ andw € S;_¢)., it follows and hence compact, so the original operator is compacl
thatw ¢ B, (9S,) for any A € [0, 1], whereds, denotes the  Example 4 (Robust Stabilization of an Unstable Linear Sys-
boundary ofS,.. Thus, we have degréB,,S,.,w) = 1 for all tem with Saturation, Over a Bounded Set of Disturbances):
A € [0,1] (see [18, Th. 4.3.4]). Consequently, there exists aonsider the feedback configuration of Fig. 4, whdte is
z € S, such thatB,z = (I + A)z = w (see [18, Th. 4.3.2]), described by
and the required bound follows immediately. O .

Proof of Theorem 4:Sinceds, . (M, M,) = ~, then for (1) = (L4 Ba(t) + 2ur(t =),  y(t) = z(t)
any v, >~ there exists a causal ma M N S, — M; with 2(0) = 0,4;(¢) = 0 for ¢ <0, and the nominal planP
with [|[(I —®)| pmns.. || < v andT-(®—I)T, compact for all hasg = h = 0. We wish to illustrate Theorem 4 by finding
7> 0. We choose such @ for which y; < o', The operator bounds on the parametefsand i for which stability of the
A = (@ - I)ll ,,,, satisfies the conditions of Lemma 2feedback system can be guaranteed. We téke Y = L.

1
ol < Tl

(with ¢ < a7;). Hence, the equation We begin by finding thel.-induced gain of the mapping
(50) = (31), for the nominal mode($ = A = 0). We first
w=I+(®— DI /)T compute the gain of the mapping°) — y1 = =, for uo, yo

_ constrained so thaug| < by and |yg| < be. The nominal
has a solutionr € S, for any w € S,.(1_a+,), @nd moreover closed loop is described by the equations
] #(t) = z(t) + 2uo(t) + 2 sat (yo(t) — z(t))
l#ll- < 7= =t J(@(t) uo(t), yo(t))

_ (with f plotted in Fig. 5 as a function af). We first note that
Sincew = My //pma+PH ni/ 5z, Wherell vy px € Nand g o0 > 1 then f(x, uo, yo) > 0 for all z > 0 if uo > 0, which
@I j1/)nw € My, and the perturbed system is well-posedyeans that: can become unbounded for constant, bounded

then disturbances. We therefore need to assumethatl. We next
note that if2ug + 4o > 1, then f(=z, ug, 40) > 0 for all =z > 0,
Aty yyvw = PU iy ne- and once agaim can become unbounded. We therefore assume
that 2b; + b < 1. We now claim thatr,,.. = 2(b; + b2) is
Hence the infimum ofz > 0 such thatf(, 10, yo) is Nnonpositive for

all Jug| < b1, |yo| < b2. To see this, note that the two right-

L py g vwlle < NI@lsns, M g yavls A1 ]l most z-axis intercepts off are 2(uy + yo) and 2 — 2uo and

<(1+ fyl)c)él”ﬂ_ 2(uo + ¥o) € Tmax < 2 — 2ug. Thus
o sup{a(t): i(t) = F(@(t), uo(t), vo(t)), =(0) =0,
The above holds for any; > ~. Therefore (9) holds true luo| < b1, |yo| < bo}

. we !nclude here a useful proposition which Sh_OWS thabnnot exceed,,x. A similar argument for the range of neg-
linear integral operators are compact when restricted t0,g\ e values shows that(t) > —u In fact, by examining
- max- )

finite interval. In particular, linear systems with strictly propef,a torm of f in Fig. 5, it can be seen that the upper bound
transfer functions define such operators. This fact will be Usediignt for wo(t) = b ,yo(t) = by (constants). Let us now

in the exgr_nple belov_v which illustrates T_heorem 4, specialize to the case whebe = b, = /3 with + < 1. Then
Proposition 4: A linear operator defined byy(t) =

J& g(t,T)u()dr is compact when restricted td.[0,7] Sup{llx(t)lloo: H <“0> < f} _ A

it g(t,7) € Lao([0,T] x [0,T]). Yo 3) 3
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f which takesGp onto Gp,. Then
Yo+ 2ug + 1 M M
a-o)ls, = (i Joo - (\ o)
M M
=1 \yo+1 ; :<<N>— Nll))(l,l)
Yo+ 2ug — 1 /3
= 5, st1 y (1,1).
I (1—e")
Fig. 5. f(x,uo,y0) as a function ofz. ST
We now estimate th€..-induced norm of I—@)|g. . It holds
that
Hence
(L = @)lge |l <[I(T = D)l
() =) |- =t = ®)hwls
Yo Sus ' B
—9 s+1
Next we estimate the gain df’) — w, subject to|ug| < s 1(1 —c )
1/3, lyo| < 1/3. Sincew; = g + sat(yo — ), then 8 2
=2 max JAl——=(1 =) .
s+1 s+1
lur| <|uol + [yo| + || ,
U But ||/3/(8}+ DI = 1B e, = B, and ||2(1 — e7**) /(s +
=3T3t DI = 205 et dt + 21— e7)eh 7t dt) = 41— ),

being in both cases th&;-norm of the relevant convolution
providing |uo| < 7/3, |yo] < r/3. In fact, this upper bound kernel. It follows that
can be achieved for < 3/5 (for which the saturation o _n
remains inactive) as follows. Take, = y = 7/3 on a v = [|(I = D)lg, || < max{28,8(1 —e™")}.
sufficiently long interval so that(T) is close _to4§0/3, then  From Proposition 4, it follows that this choice offasatisfies
apply uo(T") = yo(T') = —r/3. Thus the mappind;’) = w1 the compactness requirement in the definitiogf(-, -). We
has gain six onSy /3 which means that finally apply Theorem 4 forr = 1/3. Since the norm of
the nominal parallel projection i& = 6, it follows that the

U Uy —6 perturbed system is stable on the restricted &fs)(1—c+)

w ) \n Sus o provided thaty < max{23,8(1 — e~")} < 1/6. O
We now consider a perturbation of the paramefers 0 V. ROBUSTNESS FORSYSTEMS WITH
and g from their nominal valueg3 = h = 0) and apply the POTENTIAL FOR FINITE-TIME ESCAPE

above theory to assess robustness of stability. To this end wgn this section we are motivated by the need to provide
obtain an estimate of the gap betweBnand P;. It can be 3 ropustness theory for nonlinear systems which allows for
shown (e.g., see [34, p. 234]) that the respective graphs gig possibility of a finite-time escape. An example of such a

s—1 () =2%(t) +ui(t),  with z(0)=0
G:<%): s+l y(t) =at).
s+ 1 We first remark that global robust stabilization is impossible
and for such a system. To see this, consider an arbitrarily small
time delay at the plant input. The feedback equations are
-1-4
s-1-4 #(t) =22 (t) +uo(t — h) — ua(t — h)
L=AN, )T 9e-ms | up(t) = Clyo(t) — x(t)). (10)
s+1 If yo(t) = 0 andug(t) = d for t € [0,h], thenz(t) = 0

) o " on the same interval. This means that(t) = 0 on [0, /]
Let (V,U) := (1,1) (which satisfies(V.U)(y) = 1), and for any causal controlle€’. Then, on the intervalh, 24] the

define the mapping state evolves according tig(t) = x2(¢) + d with a solution of
the formz(t) = v/d tan(v/d(t — h)). Clearly if d > (x/2h)?,
= <M1>(V7 U) the state escapes to infinity befare= 2h. Thus, no (causal)
Ny controller can prevent finite-time escape in the presence of
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small time delaysunlessthe disturbances are subject to some Proof: As in the proof of Theorem 4, for anw €
fixed bound. Below we will discuss a way to extend thé_..,). there exists a solutiom € W to the equation
theory of Section IV to deal with such systems. The main _

new element is the fact that such systems cannot be viewed as w= I +(@ =Dy n)z. (11)
operators on signal spaces in the way which has been assumiegeover, for anyr >0, |||~ < |lw|l-/(1 = ay) < . Note
so far. that @11 pq//prx € M. By Assumption 1, there exists a

The basic idea of the summation operator carries over evgaximal 7> 0 for which T, %3} w is bounded for all
if some responses escape to infinity in finite time. To see this< 7. Over such an interval
note that the solution of the feedback equations requires that
for any external disturbance = (Zg) € W, the components Trllpmyyypw =T @ pyyn.
of the feedback system respond accordingly by producipg,ce
responsesn = (Zi) andn = (Z;) so thatw = m + n.
However, in the present context, some of these signals may be [[ I a1,/ nvwllz @l amnsa. || - [y arls || - 1|l -
defined only over a finite intervd, 7) and escape to infinity (1+7)a
att = T. Below we will impose a well-posedness assumption < WH
on the feedback system which requires that this decomposit'gn

wlly < (1 +)ar. (12)

is unigue on the interval over which all the signals are define pte that (12) provides a uniform bound on the response of

In this case, the summation operator still plays its normal rol
and its inverse, being the map from the external signab
the feedback signalén,n), is a well-defined map with the
provision that(m,n) may not necessarily belong W& x W.
Thus, the difference from the earlier situation is that the grap
of the plant and the controller belong to a space which includ
signals that are defined only on finite intervflsT’). We will (t) =22(t) + w (1), z(0)=0
study the case where the nominal feedback system is bounded i (t) =2(t)
on some bounded s&}. C W, i.e.,EXj’NS,, C W x W with
||E;}7N|5T || < o0, and we will give conditions for a perturbe
system to be stable in 'the same sense. . ua(t) = 13(t) — kya(b).

Formally, a systemP is a collection of input—ouput pairs
with the provision that these may be defined only on a finifd his controller aims to cancel the quadratic term and replace
interval [0, 7). We will assume for all systems consideredt With a stable linear term.) We will takld = JV = L[0, 00).
that finite-time escape behavior cannot occur instantaneoudijie closed-loop system evolves according to
Thus, in this section, the following replaces our standing oy _ 2
well-posedness assumption. #(t) = (2yo(t) = R)(t) +uo(t) + kyo(t) = o ()

Assumption 1:All feedback systems considered, togetheand satisfies Assumption 1. We will study the robustness of
with their perturbations, satisfy the property that for eacihis system to a time delay at the plant input, using Theorem 5.
w = (;?) € W there exists a unique paifm,n) with  Claim 1:

e perturbed system for any< 7. This fact prevents the
possibility of finite-time escape since the perturbed system
satisfies Assumption 1. Hen@ = oo. O

Example 5 (Robustness of Stability for a System with
quadratic Nonlinearity): We consider the feedback inter-
(égnnection of Fig. 1 withP defined by

gand the controllelC' by

m = (yi) E.gP andTL = (yz) 6. Go such thatw = m +n ||HM//N|ST||
over a maximal interva0,T") with 0 <7 < oo. Moreover,
X . . - 1+k—r

the mappingsy — m, n are causal off0, T'). Finally, if T is = max{ ———,
finite, then||m||, — oo asT tends toT from below. O k—2r

For this type of system the conclusions of Theorem 4 carry 1+ (1+2k = 3r)(r + 5% = 3r%) (13)
over without modification as we now show. (k—2r)?

Theorem 5: Let P, Py, andC satisfy Assumption 1. Denote =: f(r, k).
M =Gp, M; =Gp,,N = G¢. Let Hp ¢ be bounded o1, ) ) .
with P o ¢ he Proof of Claim 1: Recall thatll v,/ is the mapping

from (:3) — (“1). We will first consider the bounds
[ pay 05, = [uollee <8, Nwolloe < 0.

To guarantee boundedness of the induced norm it is necessary
Suppose there exists a mappiigM N Sa. — M; N W  thatn<k/2. Otherwiseup = 0, andyo = k/2 givess = k?/4
such that||(® — D|yns, || = n<a™t, andA = (& — which diverges. We claim that

N1, satisfies the conditions of Lemma 2. Théhy, ¢ sup ][ oo = sup | Ao, yo)| = A
is bounded onS(;_a-,)- With lalloe <. lluolloe <n Jual <8Iyl <n
(14)
1+ e where A(uo, yo) = (uo + kyo — 43)/(k — 2yo). This can be

I NISG—arell S . .
M a1l | 1—am seen by noting that(t)(t) < 0 when|2yo — k|- |(£)] > |uo +
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kyo — y2|. Thus|z(¢)| is decreasing whenever(t)| exceeds 2
Amax- But z(t) — A(ug, yo) ast — oo for ug, yo identically
constant.

We next note that the maximum d#(ug,yo)| will be a7}
achieved forug = £8, so that A,.x = max{A;,A_}
where Ay = max|,|<, |A(£5,40)|. Computing the partial  f(1,%) *[
derivative

28

25+
% _ Jug + (/f — 2y0)2 + k2
8y0 o 2(/€ bt 2y0)2

shows A, achieves its maximum at an extreme point
yo = =£n, while A_ achieves its maximum either at an b
extreme point or at a possible turning pointdfi/dy, = 0
in the interval —-n < 79 < 7. Considering first the 2, 4 3 6 7 8 s 10
extreme points, it is clear thatA(s, —n)| <|A(=73,—n) k

and|A(—73,n)| <|A(3,n)|. Furthermore, it is straightforward Fig. 6. Plot of|[IT
to check that|A(—3, —n)| <|A(3,7n)|. Considering the sign ’

of A /9y, at the extreme points, a turning point Af exists

24

| = f(1,k) versusk.

/\’\sl|

in the interval—n < y9 < 1, providing 10 T “
k—2n)2 + k2 ki +2n)? + k2 T R
(k=28 5 (k2074 (15) A
4 4
7+ e 28
in which case it occurs ajo = (k — /45 — k?)/2 with a o L 1 e
corresponding value ofA(—p3,yo)| = /48 — k?/2. From Fonin o _zof(r’k’“i“)
(15)
VaAB —k2/2<n +k/2 (16) of et {re
/3 + k?’] d 7’]2 I{JQ 2t ,."’/,, {8
A(B,n) = . 17
B =5 > 3= (17) )
It is easy to check that the upper bound in (16) is smaller % oz o4 o6 o8 1 12 12 15 18  °
than the lower bound in (17). We have therefore shown that r
Apax = A(ﬁ, 77). Fig. 7. kmin (dashed) and (r, kmin) (dashed-dotted) versus

We now turn to the mappinng) — wu;. From the

expressionu; = ug — (yo — z)? + k(yo — z) it is easy to achieves a minimumi,.;, (see Fig. 6). A plot ofk;, and
see that f(r, kmin) versusr is shown in Fig. 7 (where the values for
) kwin are given on the left and the values fé(r, kyin(r

sup{[[urfloo? [[tolloo < B, ltolloc <7} < Bruax — (18) - (1% right). Experience from linear control dEasign ir(ld)iiates
where B = 8+ (7 + Amax)? + k() + Amax). In fact, that the parallel projection norm should not exceed about
equality is achieved in (18), since the disturbanags= 3 four or five for good robustness properties. From Fig. 7 it
on [0,7),uo(T) = —f,50 = n on [0,T),4(T) = —n make IS necessary that < 0.0784 in order that|| I pq//p|Sr ]| < 5,
#(T) as close as desired t,,., and |u; (T)| as close as assuming thak = k. This suggests that good performance
desired toB.,.x for large enoughl’. We will now specialize Of this control system requires a rather tight constraint on the

to the case3 = n = r<k/2. Then disturbance signal magnitudes.
We will now consider the effect of time delays on the
ESHP{HHM///\«UO) H . H <“0> H < T} control system, and we will use Theorem 5 to give a bound
r Y0/ lloo Y0/ |l on the delay which will not destabilize the loop. Suppd3e

is defined by the equations

i) =2*(t) +u(t), 2(0)=0

yi(t) =x(t = h).
ct%'inceP is shift-invariant, it is equivalent to place the delay
at u; or y;.) We first remark that Assumption 1 is satisfied

because the closed-loop system is defined through a differential
equation. Next we consider the mappgGr — Gp, defined

= 1 InaX{Amaxv Bmax}
r
= f(Tv k)

It can be checked that each of the terms in (13) is a monot
ically increasing function of- for fixed k& > 2r (for the second
expression, each of the numerator factors divided/y 2r)
is separately increasing). Therefore, we conclude ftfatk)

is equal to|[ Il aq//nrs, ||- O by

Itis interesting to consider the behavior|d v/, x|s. || for
fixedr and variables. As k | 2r and ask T oo, f(7,k) — oc. 45(“1 (t)) _ < 1 (t) )
Generally there is an intermediate valuekoft which f(r, k) z(t) z(t—h) )
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We will check below thatA := (@ — I)1I ,,,,, satisfies the perturbed loop:
conditions of Lemma 2. We will now proceed to bound the

norm of A. 1
Claim 2- (HEVIRIGEA BN ||¢HM//N|ST||W
2h(/€(1 + k) _ 27,2) < (H(dS - I)HM//N|ST|| + ||HM//N|ST||)T
(@ — DI pyynls. || < o =: g(r, k). < (0.534 + 41.273) x 2.147 = 89.752.
Proof of Claim 2: Note that It remains only to verify thatd = (@ — I)1I /s Satisfies
o ) the conditions of Lemma 2. Note that the first component
‘A<yo)H = [lz(#) = 2(t = h)lloo < AllE(E)]oo- of A is zero, while the second component equals) —

xz(t — h). It follows from the fact thatz(¢) is the output

Since ] ) ) of an integral operator tha#l is causal and continuous for
&=z +u = (2y0 — k) +uo + kyo — u5 10, Yo € Loo[0,00), With [|uo]|eos [|50]lee < 7. We will now
then show that the mapping'Zg) — z is (sequentially) compact on
[0, 7. This mapping is determined by
su; .’L’ o S Cmax 19 .
\‘\‘uongﬂ Il (19) #(t) = —a(t)z(t) + b(t) (20)
h wherea(t) = k — 2yo(t), andb(t) = uo(t) + kyo(t) — yo(t)?
where both belong toL... We need to show that, for any bounded
) sequences;(t), b;(t) in £L.,]0,T], the corresponding sequence
Cumax =B+ kn+n 4+ (2n+k)- WS [[]lo- z;(t) has a convergent subsequence. Note that (20) has a
llvollo <7 solution
t t
In fact, equality is achieved in (19), since the disturbances z(t) :/ exp{_/ a(o) dO’}b(T) dr.
Ug = /3 on [OvT)7U'0(T) = —/3790 =mnon [OvT)vyO(T) =N 0 T

make|#(T)| as close as desired 6, for large enougi¥.

Once again we can sgt = 7 = 7 to find From Proposition 4 we know that a(o)do defines a com-

pact operator froml..[0,7] to L..([0,T] x [0,T]). Hence
Jta;(0) do has a subsequence which converges uniformly on
[0, 7] x [0,77], and so the same is true etp{— [’ a(c) do}.
Thus we can select a subsequence so that

Crmax _ 2(E(14+Fk) — 27’2)
ro k—2r

which is a monotonically increasing function ofor r < k/2. T
Therefore, we have the bounidi|s, || < g(r, k). O i) = / (g(t,7) + ei(t, 7))bi(T) dr

Consideringg(r, k) for fixed + and variablek, we note that 0
ask | 2r and ask T oo, g(r, k) — oo. A minimum of g(r, k) where g(t,7) € Lo([0,7] x [0,7]) and |e;(¢,7)] — 0
is achieved ak; (r) := 2r + +/2r2 + 2r, which may be close uniformly on [0,77] x [0,7]. By Proposition 4 we can select
to, but is not identical tok,.;, calculated previously. This another subsequence so that
gives T

/ g(t, T)b;(T) dr
g(r,ky) = 2h{dr + 14 2v/2r2 4 2}, 0
converges, in which case;(¢) converges to the same limit.
To guarantee stability of the perturbed system (Witk= k1)  The conclusion now follows by noting that is the sum of
on some bounded set we ne@dr, ki) <1. Note that the two compact operators, which is therefore compact. O
perturbed loop will only be guaranteed to be bounded on a
set S?‘(l—g(r,kl))'

Suppose we wish to determine a bouhgl such that the
nominal loop will tolerate any time delay < ho for a In the present section we will develop a version of the
suitablek in the presence of external disturbandles||., < robustness results of Section Ill which makes use of a “gain
1, ||yolleo < 1. We require, forh = hg, (1 — g(r, k1)) = 1 function” to quantify the size of closed-loop operators and

VI. ROBUSTNESSANALYSIS USING GAIN FUNCTIONS

where we seleck = k;(r). Solving for ko gives the mismatch between the nominal and perturbed plant. In
the first result we show how the gain function of the parallel

ho = r—1 projection must relate to that of a mapping from the nominal

2r{dr + 1 +2v2r2 4 2r} to the perturbed system graph for stability to be preserved.

In the second result we show that the existence of such a
which is maximized forr = 2.147 giving hy = 0.0158. mapping is a consequence of simultaneous stabilizability, and
The corresponding value fok is k1(r) = 7.969. Under we investigate how the mismatch between the graphs relates
such conditions we can compute the following bound for the gain functions of the closed-loop errors.
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We recall the standard notatidgt,, for the set of functions then IT v, ;1 is gf-stable and
g: [0,00) — [0,00) which are continuous, strictly increasing, 17 Tt
and satisfyg(0) = 0 and g(c0) = oo. As usual we denote I py 3 = L gy (@)
M = Gp, My = Gp,, and N := Go. < A I < A ) 25

Theorem 6:Let Hp ¢ be gf-stable. If there exists a m&p =12 92wyl @ 1-AX (25)
from a subseD C M onto My, and if there exists a function

where
e(-) € Ko such that
_ galF(e, B) == sup |Fz1 — Fiyl|.
9l = D) o gl jiyynl(c) < (L +€)7H ) 720,z || <ol — 2 - <

for all « > 0, then Hp, ¢ is gf-stable and Proof of 1): This result follows in the same way as the

) proof of Theorem 2-1) using the choice
G pa, sy )(@) < g[@] o gl pqyyn] 0 (1 + € ) (). (21)

We remark that, as pointed out in Section Ill-®ijs allowed ) . _
to be a multivalued map, e.g., defined as the inverse relatior?): Since A<1, Theorem 6 implies thatlp, c is gf-
of a map®: M, — D C M selected so as to control theStéPle. As in the proof of Theorem 1, for any € W,
size of I — ¥~: however, the theorem will be worked Outthere exists ar € W such that (22) holds. From Lemma 1,

in the simpler form. It was suggested in [10] that a resulft = Zll- < [lwll-A/(1=A) and||z[|; < [lw]|;/(1—=A). From

along the lines of Theorem 6 may be obtained by applying t

Mareels—Hill small gain lemma [19] to the basic framework (I pny o = M py ) )

set out in [14]. Subsequently, Teel developed an independent — ([-®)IT vt 11 w—1I z  (26)

approach to such a result usii@,.-functions [31]. M/IN MIIN M/IN

Proof of Theorem 6:1t is a standing assumption thatwhich gives the required result. O

Y my,wn has a well-defined inverse. This, together with the Theorem 7 provides the analog of Theorem 2 in the context

fact that® is surjective, implies as in the proof of Theorem bf gain functions. In particular, 1) captures the essence of the

that, for anyw € W, there is anr € W such that idea: “convergence of closed-loop norms implies convergence

of the gap to zero.” More precisely, if a plaRtand a sequence

w=I+(@= Dy n)z @2) o plantsP; (i = 1,2,---) are all stabilized by a compensator

C, and the gain function of the difference of the corresponding

closed-loop operators tends to zero, then there are mappings

S=1—Upyn—Upg,yyn)

and moreover, that

Uy yynvw =PU pgy/nm. (23) betweenGp andGp, which tend to the identity operator in the
) same sense. The converse idea is expressed in 2). Namely, if
From (22) it follows that for anyr there are mappings frogp ontoGp, which tend to the identity
||+ < [[w]l- + [[(@ = DI pt)/pr]| - in suc.h a way that the ga}in fungtion of the differencg (of these
mappings from the identity) acting on the gain function of the
< llwll- + 9@ = 1] 0 gL nayyw ]Il nominal closed-loop tends to zero, théhstabilizes theP;'s,
<Jwllr + (L4 )7 (|]l+)- and the closed-loop errors tend to zero, providing the nominal
closed loop has a bounded incremental gain function.
Hence "
Below we present two examples. The first example (Exam-
ol > (1 = (14 )™ (|z]-) ple 6) shows a gf-stable feedback system and, using Theorem
=co (147 (z].). 6, gives a bound on a possible time delay that can be
tolerated in the feedback loop and for which gf-stability can
Therefore be guaranteed for the perturbed system. The second example
2]+ < (1+ €) o e (||w];) (Example 7) illustrates the usefulness of equation (26) to

| estimate closed-loop errors. This example does not impose the
=@+ (lwll)- “small gain” condition (24), so (25) is not directly applicable.
From (23) it now follows thatll o4, /5 is gf-stable and is Example 6 (A gf-Stable System with Cubic Nonlinearity):

such that (21) holds. [0 the feedback configuration of Fig. 1, defifitby
Theorem 7:Let Hp ¢ be gf-stable. The following hold. #(t) = —2(t) + (2, 2(0) = 0 27)
1) Let Hp, ¢ be gf-stable. Then, there exists a causal () =(¢)
bijective mapping?: M — M such thay[®—1](«) < =
G pn, gy =  pqyya)(@) for all o > 0. andC by u»(t) = —y2(t). The closed loop is then given by
2) Suppose thay[II v/l = 0 and that there exists a ) 5
mapping® from a subsef® C M onto M, for which &(t) = —z(t)” — () + vo(t) (28)

g 1] = m. If where vy = ug 4 yo. We takeld = Y = Lo, .. We will

first calculate the gain function of the parallel projection

1
— = 24 : [ETH Vg —
P a(’yl °o70)(e) = A<1 (24) gU iy (cr) Wherell vy is the mapping(s?) — (7).
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Note that maximizing over the s¢{'")||-. < « is equivalent R
to maximizing over||uwl|lc < 2a. We first consider the
mappinguy — x defined by (28). Clearly st

sup  ||z]|eo < inf{|z|: zz < 0in (28) for all |vg| < 2c¢}

llvolloo <2a

= f(20) (9 Fle)

where f(2«) is the unique real root of the equatiofi + z =
2« In fact, the bound in (29) is tight sincg(2«) can be
approached arbitrarily by choosing = 2«. We next observe
that

sup  ||vo — 7|oo < 20 + f(2c0)
[lvo|lee L2c0

[

0 0:2 0:4 0?6 OjB ; 1;2 1?4 1?6 1?8
which again is tight, since we can sef = 2« on [0,7) and o
vo(1) = —2c. We thus obtain Fig. 8. F(a) := g[I o/ 5](«) versusa.

g py /v )() = 2a + f(2c0).

We now consider the effect of a small time delay, namely
a perturbed plani,
(t) =—z(t)* +w(t),  2(0)=0

yl(t) :-T(t - h) G(O) 025}

0.4

0.351

0.3

Consider a mappin@: M — M; defined by@('il((tt))) = oer
(;(Ltlf})b)). Note that, in (27), given any;; € L., ||z~
lu]7® and sollzll, < [llf2 + [lull- < 2lfusll,. Since otr

|x(t) — xz(t — h)| < h||Z||- for t < 7, we get

g[I—dS](a):sup{Ha_@@) \(Z)

U
< sup {H(I_ 45)(;) Hullr £ O‘} Fig. 9. G(a) := g[I — ®|(«) versusa for h = 0.1.
<hsup{[ll-: [lurll, < o} < 20h.  (30)

0151

A

0.051

< o o . . . . . . . . .
- 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18
-

[e%

T

Note, fora > 1, all the above inequalities hold with equality. 18}

Also
g[I— @](O{) :hsup {H.’L’Hi + ||U’l||‘r: ‘(1;1> S a} 1.4}
T 1ok

<h(a® + @) (31) GtE(@)

which, with a choice ofy; = « on [0,7") andu; (T') = —a, os}
can be approached arbitrarily closely.

Fig. 8 shows the gain function of the parallel projection,
which we denote by'(«). Fig. 9 shows the upper bound on
the distance to the identity for the map computed using ozr
(30) and (31), forh = 0.1. This upper bound we denote ol
by G(«). In order to guarantee gf-stability for the perturbed
system using Theorem 6, it is required that the composition
of the two functions is bounded away from the identity map/9- 10- G(F(«)) (solid line) versusx for i = 0.12.
in the sense of the theorem. For this to be the case, because
of the shape of the two functions, it turns out that we only Example 7 (A System with Hysteresid)e consider pertur-
need to check thaf#(F(«)) < 1 for the value ofw for which  bations of hysteresis type on a feedback loop as shown in
F(«) = 1. This value iseg = 0.2733. It follows thats should Fig. 11. The hysteresis is modeled by the (simgigteron
not exceed a maximal value af,/2 = 0.1366. Fig. 10 shows, Y., shown in Fig. 12, as defined in [17], also called the
for h = 0.12, the composition functioZ( F'(«)) (solid line) ordinary play. Its behavior on continuous functions can be
compared to the line of slope 1 (dotted line). O physically realized using the piston and cylinder arrangement
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Example 8 (Nussbaum Universal Controlledn the feed-

1
SR P — T, back loop of Fig. 1 defind” by

(t) = ax(t) + bui(t)
B n(t) =x(t)

C ) whereb # 0, but otherwisea andb are unknown. LeC be
defined by [1, p. 291], [24]

6(t) =y3(t)

Fig. 11. Feedback system with hysteresis perturbation.

ua(t) = y2(t)0%(t) cos O(t).
Yy
In the case where,y = 0 andyy = 0 (SOu; = —up and
y1 = —y2), the controller regulates the outpyf(t) to zero

asymptotically for an arbitrary initial condition(0) = xo.
However, we will show that, ifug # 0 and |ug| < € for

an arbitrarily smalle >0, then z(¢) can become unbounded
with z(0) = 0. Thus, any form of the robustness margin as
considered in this paper should be assigned the value zero. We
will further show by construction that an arbitrarily small gap
perturbation of the plant from the assumed model class can
lead to instability (even of the autonomous system).

_ We assume thdlf = Y = L, and takez(0) = §(0) = 0.

Fig. 12 Hysteron. Consider a nominal plant withw = 0,5 = 1, and let

ug = € >0, yo = 0. The feedback equations reduce to

u(t) T y(t) Z ixSQ cosf +¢ (22)
=z°. (33)
Fig. 13. Piston and cylinder. First, we claim that ag — oo, 6(t) — oo. To see this assume

the contrary, i.e., tha#(t) remains bounded. Sincg¢ > 0

of Fig. 13. In case the piston is at the extreme right-hadffom (33)], 6(¢) — 6o < oco. Then (33) implies that(t) — 0.
position andu(t) is increasing, or at the extreme left-hand\t the same time (32) implies that(t) — € # 0. This
position andu(t) is decreasing, the@(t) — U,(t) remains is a contradiction. TherEforﬁ(t) — Q. Second, we claim
constant. Otherwisey(¢) remains constant. It is typical tothatz(t) grows unbounded as well. It is easy to see that the
initialize w(¢) and y(t) to zero att = 0 and the piston to 9ain 62 cos @ in (32) exceeds any value. For instance, in the
the midpoint position. The definition of’. on continuous, interval [6(t1),6(¢2)], where6(t1) = 2km — (7 /4), 6(t2) =

piecewise monotone inputgt) is illustrated in Fig. 12. 2km + (w/4), andty, t; are chosen accordingly, the feedback
We consider the graphs d@?, P; to be gann Is
I o I oo V2 N2
M= €710, 00), My = 20, 00). 2 > M, = Y2 U
<P) [0, 00) 1 <r€ P) [0,00) 62(t) cos () 2 My = 5 (2k7r 4)

Observe that there is a natural bijective mappindrom M 10 |t js clear thatM, exceeds any value for a suitable choice of
M, which is the identity on the input component and satisfi§ge integerk > 0. Over such an interval

I = @)zlloc = | = T Palloo < c de_afeost e M,

for any z € M. From (26) we get g x? "
I pyyar = gy pyn)wlloo < €14 [ g ynlla) Integration overfty, t;] gives
sincew = (I + (D — DI pq/ )z implies ||w — ]| <e. |2(t2)| > /2Mi(6(t2) — 0(t1)) + 22(t1)
We remark that this bound can also be obtained by modeling
the hysteresis nonlinearity by the identity map plus an external z \/2Mk(9(t2) —0(t)) = \/MW'

source for a disturbance of magnitude no larger than [ Thus, |z(t)| exceeds any bound as claimed. We conclude that

the relevant parallel projection operator is unbounded over any
bounded set, no matter how small.

The examples of this section have zero robustness marginywe now consider a perturbation of the nominal plant by
and the feedback loops are destabilized by arbitrarily smaitroducing a first-order lag with transfer functia//(s +
gap perturbations of the plant. M) (M >1) in series with the plant. We claim that this

VIl. EXAMPLES OF NONROBUST CONTROLLERS
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perturbation is arbitrarily small in the gap fad sufficiently
large. This can be seen as follows. The graphBP ehd P; are

S
1 400
gp = 8—{ Loo =: GLo
S + 1 300}
S
s + 1 ‘/L‘? y’ 6 200
gPl = M ['oo
(S+1)(S+M) 100}
Consider a mapping from Gp ontoGp,, which is the identity
on the input component. Then, fere £, 0
5 0 ) . . . . .
s+ 1 1005 0.05 0.1 0.15 0.2 0.25 03
(I - ®) 1 v= s v. t (seconds)
s+1 (s+1)(s+ M)

Fig. 14. Universal controller with perturbed plant.
Since (1, 1) is a left inverse aff, we see thal|T v|| <
2||T-Gv||- Thus

M =10

S S
Ty —————— )| R —
H <s+1><s+M>“Hoo< H <s+1><s+M>”Hoo
1T+ G| o - 17| 0

MMt — ™" e,

2
M-1
4

- M-1
for any v € Loo. Thus ||(I — @)|g.|| < 4/(M — 1) which
proves the assertion.

We now examine the behavior of the perturbed closed-
loop system. We continue to assume the nominal parameters
a = 0,b = 1. The autonomous feedback system evolves

<

A

according to 6
Cfl—f :y92 cos 6 (34) Fig. 15. Universal controller with perturbed plant.
dy
o~ Mz -y (35)  y(8) =6%*as + 6 %a5 + 67/ *(aycos(6) + ag) + -~ (40)
ﬁ —? (36) where the fractional powers éfon the right-hand side (RHS)
dt '

decrease by one-half between subsequent terms of the series.
A typical response of the system is shown in Fig. 14, whef&imilar series are common in the solution of certain types
z(0) = y(0) = 10,60(0) = 0, and M = 10. A similar of linear time-varying differential equations (e.g., see [6]).
diverging solution can be observed &5 is varied. This is an instance of a nonlinear differential equation whose
To better understand the form of the solution we can viegolution appears to have a similar asymptotic expansion. We
x andy as functions off and eliminatet from (34)—(36) to have no formal proof that the solution to (37) and (38) can
obtain be represented by (39) and (40). However, the following

dv 62 cos 6 37 considerations support this hypothesis. Substitution of (39) and
a6 Y (87) (40) into (37) and (38) gives the following algebraic equations
dy M(z—vy) for the coefficientss; to a4 of the dominant powers of in
a0~ T (38)  the drift and the periodic components:

The numerical solution of andy versus, for z(0) = y(0) = _ o\ 1/8

10 and M = 10, is shown in Fig. 15. Numerical analysis of a; = <i> 7 as = 3

the data suggests dominant termszirof #4siné and in 8M? 4Ma?

y of #3/%, Further numerical analysis suggests the following _ 1 — _Md3

. : as =—, ay = ay.
asymptotic expansion far(¢) and y(6): ay

2(0) = 6°/*(ay sin(6) + a2) 4+ 6>/ *(ag sin(0) + a7) + - --
(39)

Interestingly enough, these values are independent of initial
conditions and agree with the results of numerical integra-
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tion using a variety of initial conditions. The form of the M =10
series justifies the observed growthzofindy and moreover g
suggests, sincé = y%(t) = O(#%*), that the solution of o=
(34)—(36) diverges in finite time. The prediction for finite-time b @ z
escape appears again to be corroborated by the simulations. We _100}
remark that the independence of the leading terms from initial g -
conditions suggests that this type of behavior (which occurd> #- a0l
also in Example 9) indicates the presence of some kind of sk
“explosive attractor.” O ool
Example 9 (A Parameter Adaptive Controllerln the feed- )
back configuration of Fig. 1 defin® by o
_aco}
a:(t) = aa:(t) + bug (t) —as0f
yi(t) =(t) % ooz oos o006 008 01 012 014 016
whereb # 0 andsign(b) is known, but otherwise, andb are t (seconds)
unknown. LetC be defined by Fig. 16. Parameter adaptive controller with perturbed plant.
0(t) =7y (t)’ , , o
us(t) = —0(t)ya(t) A typical response of the system is shown in Fig. 16 where

y(0) = z(0) = 10, (0) = 0, and M = 10.
where v is a constant chosen so thabt>0. In the case  Again we eliminatet to obtain

whereug = 0 andyy = 0 (SOu; = —ue andy; = —yo),

the system is globally stable, since the Lyapunov function dy _ z+ 0y (41)
V(z,0) == 22 +a (§ —6)? hasV = 0 for o = b/y o y?

and# = a/b. This controller can be obtained from a model dz _ M(z+ 20y) (42)
reference adaptive scheme (e.g., see, [1, p. 127]) with a zero dé y? '

reference signal.
Now consider a nominal plant with = 0, 5 = 1, and The diverging solution appears to be governed by a series
take v = 1. We assume that{ = Y = L., and take €xpansion with leading terms
z(0) = 8(0) = 0. If ug = e>0 andyy = 0, the feedback _
equations reduce to y(8) =16 +ag + 67 (a_1 »(log 6)*
+ a_1,1 IOg 0 + CL_L()) e

T=e—0z
P 2(6) =010 +blog 6+bog+---.
=z

The same reasoning as Example 8 shows @&t — oo as Substitution of the series into (41) and (42) gives

t — oo. It can also be seen tha(t) — 0 ast — . (To see W2 =1 ao = by = —2May
this, notice thatz(t) >0 for ¢ >0 sincex(t) = 0 = &(t) = L 5 5
e>0. If 2(t) <¢/6(t)), thenx(t) is increasing. But/6(t) is a_12 =—May,  b=-2Ma

decreasing to zero, so eventually there will b& auch that
x(to) = €/0(to) and thereaftet:(¢) remains negative. Now if
x(t) > n>0 for sufficiently larget, then eventuallyi(t) is
less than any negative number, which is a contradiction.) Th

which are independent of initial condition apart from the
sign. These values agree with the results of simulation with a
vr;i\riety of initial conditions. Sinc# = y* = O(6?), the finite
. _ _ Ime escape is expected (and corroborated by simulation). We
th t | disturb = = o ; :

e external disturbancag = « on [0, 7], yo = 0 on [0, 7) remark that the infinite gain of certain closed-loop operators,

andyo(T) = e giveu 1 (T) = e+8(T)(e—x(T)) which can be .
made arbitrarily large. We conclude that the relevant paral%rlld the consequent lack of robustness, of parameter adaptive

projection operator is unbounded over any bounded set, %%ntrollers was first pointed out in [25]. =
matter how small. Thus, any form of the robustness margin as
considered in this paper should be assigned the value zero.v|||. CoMBINED PLANT AND CONTROLLER UNCERTAINTY
We now consider a small gap perturbation of the nominal , . . .
. In this section we discuss how the results of Section Il
plant, namely we introduce an all-pass fadtbf —s) /(A +s) : :
; . . . extend to the case where uncertainty occurs in étndC.
in series with the plant. It can be shown as in Example 8 that
Let P and P, be causal operators frold — ), and let
the gap tends to zero @4 — oc. The autonomous feedback :
system with perturbed plant now evolves according to C and C, be causal operators frof — /. Denote their
Y P P 9 respective graphs byt := Gp, M; := Gp,, N := G¢, and
y=z+0y N = Ge, -
¥ =—M(z + 20y) Theorem 8:Let Hp ¢ be stable. If

- ) )
o=y F(M, MOy |l + SN, NIy aal| <1 (43)
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then Hp, ¢, is stable and

o
(Fzgval 1o o P,
Lty /|| (1 4 6(M, M) -
T 1= (M MO pay il = SN NN vy mall
An analogous bound holds fd x, /4, -
Proof: It is sufficient to assume from (43) the weaker
requirement that there exist mappings,, from a subset Uy Yo
DPm € M onto M; and @, from a subsetD € A onto Ps e
N1, such that
||(¢M - I)HM//N + (45/\/ - I)H/\///MH Fig. 17. Feedback interconnection with three subsystems.
<1 @at = 1| - | pay v
H|Pn = I|| - [ pnryypal| < 1. we can define®y = I — Hrjjpg + Iz /01, and
Consider the equation show it is a bijection fromA/ to V.
w=(I+ (@ — DI pi) 5 + @pr — DIy p1)e 2) For anyw € W we can find anz € W such that
(BT P I+ (Pp — Dl iy + (B = Dllyyyaa)z = w
=@mI piyn + Pl pa). as in the proof of Theorem 8. The identity
Since®,, (respectively@,,) is surjective ontaM; (respec-
tively, A1), for anyw € W we can find a solutiom € W. In T pay v = M pay g Jw
particular, ifm; = I v, j/nw andng = Iy, ) aq,w then = = Sp) pqyyje + M pgyypw — U gy
= h D D h that . .
Zl :ﬂ;&;; \;vncej;elm: ZNﬁitnfoellowg/tﬁz chosen so tha and Lemma 1 now give the required result. O
el ] IX. GENERAL FEEDBACK CONFIGURATIONS
w||-
< 1= @ — 11| - [Ty ]| — 185 — I - x| In this section we point out that the framework for ro-

bustness analysis, involving graphs and summation operators,

Finally, since I, //pw = @mlliay e, the required applies equally well to more general feedback configurations.

bound, and hence the stability &fp, ¢,, now follow. U e will demonstrate this by way of example.

Theorem 9:Let Hp c be stable. The following hold. " congiger an interconnection of three systems as shown in
1) Let HP1,01 be stable. Then there exist causal buectmaig_ 17. We consider three signal spaéest, and ) where
mappings® ., from M onto M; and@, from A onto "¢ ¢/ (; = 0,1,2,3), etc., and denot@V = U x X x V.
N1 such that We denote bylI; (i = 1,2,3) the natural projection froryy
1@a1 = I|| < atyjne — pny ol ic:}nt)t/)vué;‘v}oalllr;?,vjsi-, respectively. We embed the graphs 18f

|@x = 1|l S H wpypa = Mg, gy s, |- '

2) Suppose that there exist mappings, from a subset Gp _< U1 ) _ (gi)

Dy C M onto M; and@, from a subseDy C N Py Y
onto A; such thate < 1 where 0 ;L)
a:=|[(@sm = Dol - paywll G, :( Lo ) = <x2>
+[[(@x = Dl |l [ nrsypall- Py Y2
Then o (P 393) (u‘z)
= 0 =10 ].
b1 -1 Ps
T pay 1 rMy/ /il Ys ys
<7 _QH@M = Dol M aay vl Write M; := Gp. (i = 1,2,3) and define the summation

operator

EMI,MZ,MS:MI X MQ X Mg — W

67
— || A
T a|| MmyNlla

Proof: )

1) We define @y = I — Hpyyn + gy yn,. Hma,maz, mg) =+ s +ms.
As in the proof of Theorem 2-1)p,, maps M We will assume well-posedness of the feedback configuration,
into M; and @pm|lm = Huq, /0, |m. Moreover, which means thadl v, a1, 11, has a well-defined inverse on

X m,—n, has a well-defined (not necessarily boundedhe whole ofW. Stability of the feedback loop requires that
inverse by the assumption of well-posedness adaj\thszg is stable.

SO U pyj/—ni Mg jynlm = Iaq and I g 0, The mappings

I piyy—pila, = Iaq, [cf. proof of Theorem 2-1)]. 4 )

Hence®,, maps M bijectively onto M;. Similarly, ) =125 i, a0 (1=1,2,3)
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from the external disturbances onto the graphs of the commmnvention is to arrange that each disturbance enters the
nents, are generalizations of the notion of nonlinear paral®immation junction with a positive sign and all other signals
projection to the case where more than two manifolds (in thigith a negative sign.

casethre@ “coordinatize” the spac&V. It follows easily that

Iy + o)+ =1 X. CONCLUDING REMARKS
Iy =13y, fori=1,2,3 This paper has developed an input—output framework for
oIl —0 fori # j robustness analysis of nonlinear systems which is a gener-
GG =5 i alization of the linear gap metric theory. The essence of
In fact, the generalization of (1) which defines such a set tife approach was shown to be adaptable to a variety of

projections is situations, e.g., global, local, possible finite-time escape. The
initial insight for the approach was provided by an (abstract)
(i) (U (ywy + U yws + U zyws) = H ywi geometric treatment of the linear gap-robustness theory [8],

[9]. This work highlighted the role of the parallel projection

operator for robustness, and in particular, that the inverse of
its norm is the maximum aperture between plant and perturbed
plant which can be tolerated if preservation of feedback

for any wy, we, ws € W.
We now consider perturbed systed®, P, P;, acting on
the appropriate spaces, with graphg, := gp;. Accordingly,

we define R . ;
stability is to be guaranteed. The existence and geometric

’(i) =11, E/_\A,UM&’M, (1=1,2,3). significance of a nonlinear parallel projection operator, when
the elements of the feedback system are nonlinear, was studied

Theorem 10:Let E;Al Mo, M, DE stable. If in [5]. Suitable generalizations of the gap and variants of the

3 basic robustness result [12, Th. 5], [9, Th. 3] were presented

Z (M, M. o]l < 1 in [11] and in [14]., for a _cpncept of Q|ﬁerent|al stability and

—~ of incremental gain stability, respectively. The present work

builds on [14], which contains two basic results of our theory

then EN}, MM is stable and (analogous to Theorems 1 and 2) for nonlinear systems on

’ Banach spaces. In [14], the condition of incremental gain

1 +5(MZ,M ) stability was used, which is quite restrictive in the context

Iy || < [ |

3

> (@ — DIl

=1

of nonlinear systems (e.g., see [3]). This observation, and the
Proof: As in the proof of Theorem 8, it is sufficient to €Xperience gained from treating specific examples, motivated
assume the weaker condition that there exist mapghdeom (e development presented here. ,
D, C M, onto M’ such that We remark that, in each version of the theory presented in
! this paper, the nonlinear gain of a parallel projection needs
3 to be computed. The examples presented here were chosen
< Z 1(®i — Ml < 1. to be tractable with hand calculations. In general, appropriate
=1 computational tools are required (see [32], [16], [26], and [7]
Consider the equation for some examples of recent work in this area). The problem of
computing the nonlinear gap distance measures introduced in
w = <I+ Z ,— DIl ) this paper is also a topic which requires f_urther iqvestigation.
In most cases we were content to definepawhich was
the identity mapping when restricted to the system’s input
<Z¢ I ) component. This is usually quite conservative.

Finally, we point out that one of the most useful aspects
ﬂ]; the linear gap theory has been in the area of controller
syntheS|s In particular, minimization of th€.,-norm of the
parallel projection, suitably weighted, is the basis of #ig,
loop-shaping method [21], [22]. The results of this paper
indicate that a generalization of this design method can be built
around a nonlinear gap robustness theory in an analogous way
to the linear case. This consideration highlights the need to
find tractable methods to optimize system gains for nonlinear
gfstems

As before, because of the well-posedness assumption of
perturbed system and the surjectivity of the mags(: =
1,2,3), there exists a solutior € W of the above equation
for anyw € W (cf. proof of Theorem 8). In fact, the solution
is such thatII(Z)w = @11,z for eachi. Bounds on each
of the closed-loop operator nornfidl(; || (i = 1,2,3) now
follow immediately.

In conclusion, we would like to point out that the ma
elements of the framework when applied to more gener
situations (i.e., more than three plants and arbitrary inter-
connections) are: 1) to introduce additive disturbance signals
at each interconnection point which belong to suitable signal
spaces; 2) to embed the graph of each operator in the cross
product of these spaces; and (3) to consider the generalizetlVe prove that certain versions of the gap as defined in the
parallel projections onto the system graphs. A useful sigmesent paper, when specialized to the case of linear systems

APPENDIX
CONNECTION OF §(+, -) WITH THE GAP BETWEEN
LINEAR SYSTEMS OVER HILBERT SPACES
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over Hilbert spaces, coincide with the usual gap metric (gierpendicular ton,. This is already enough to show the first
[12]). Further, we show that in the same case a compactnesst of the proposition.
condition can be imposed on the mappifigvithout altering  Now if 6,(P,P;) <1, it is standard that,(P,P;) =
the value of the gap. This fact suggests that the COﬂdItIOSlls(P Py = 61(P1, P) 12, Proposmon 3]. Therefore, under
imposed in Sections IV and V o, for capturing a suitable this condition,,(P, P1) = & (P, Py).
notion of distance between systems on bounded sets, ar€onsider any (causal) mappidg M — M. Then
reasonable. -

In the proposition below§y(-, -) is the same as the definition o1(P, Py) = sup (g, — Dl

, : . > Mllla=1
in Section 1lI-D except that no truncations are takép, -) < e liele &1 (DT
represents the usual directed gap between linear systems over = xe/\j‘ﬁ’”zzl 1@ = Dzll2 = (2 = Dml-

Hilbert spaces (see [12])?,2(-, -) represents the specialization
of 6(-,-) given in Section Ill-A but with the Banach gain,Since this is true for any, then 6,(P, P;) < &(P,Py).
and é3(-, ) represents a similar definition with the additionaClearly, 6>(P, P1) < 63(P, P1).

compactness assumption (cf. Section IV). Now suppose that; (P, P;) = a < 1. Then there exists a
Proposition 5: Let P, P, be linear, shift-invariant, finite- Q € H2*™ such that

dimensional dynamical systems with strictly proper transfer M

functions, acting on signals i3'[0,00) = H5'. Define H( ) < )QH

W = H5' x ‘H5 and the graphs
M\ .. M\, with Q=1 € HmX™ [28]. Let V, U be matrices ovel,,, such
M=QP:<N)H2, M1:QP1:<N1>H2 CW  thatVM + UN = I. Define

where NM 1, Ni(M;)~! are normalized coprime factoriza- ¢ = <J\A{1>Q(V U).
tions overH,, of the respective transfer functions. Define L

Multiplication of H, signals by® is the frequency domain
representation (i.e., after taking Fourier transforms) of a causal,
shift-invariant mapping onZ,. Allowing the usual abuse

So(P,Py) = sup inf
st i Il

2 _ f notation, operators considered below as acting /&n
S1(P, Py) = (I g, — T pg)II °
( ) H(. Mo spl . are written as multiplication by matrices @, functions,
o nf{[[(@ = I)|al]: &: M — M, s though they are strictly to be interpreted as their time-domain
62(P, P1) _ causal, bijective 0 = 0}, equivalents. Observe that
oo if No such operato® exists
it {||(@ — ) ua|: : M — M is (® = 1)1 = {(%)Q ~ <J\]§> }(v oy
IS (P,P)) = causal, causally invertiblep0 = 0, 1
AR with 7.(I — @)T,| s compac, and
oo if no such operato® exists -1 M\ (M 0 M
where Il denotes the orthogonal projection onto a closed B N )Y Ny A\~ )Y
subspaceC C W and|| - || denotes the usual induced norm _ _
on a Hilbert space. Then for v € Ly. Since (YY) is an isometry onCs, then ||(® —
. . I)|m|| = . Now let V4, U; be matrices ovef,,, such that
bo(P; Py) = 61(Py, P). ViM, + U,N, = I. Then
(Note the order of P and P;.) Also, if 6,(P,P;) := M 1 My _
max{3,(P, P1),3.(P1, P)} < 1, then N )@ )y )RV Ul =1
So(P, P1) = 6,(P,P1) = 55(P,Py) = 85(P, P1). Hence ® has a causal inverse (betweewt and M;). To
) complete the proof we need to findbeso that® — I is compact
Proof: First note that on finite intervals. This will be achieved i — I can be
F(p P) = (I oy, — T AT made strictly proper (see Proposition 4). Take any), so that
1Py, Py = [[(Ham, M| a + e < 1. Without loss of generality} (o0) = My (o0) = 1.
= sup 1nf W Define
ey mill2 A 1 TS
e Q) =Q) 7 +1 7 (44)
Now considerm € M andm; € M; fixed and separated by T8 ] T8
an angled. Then =(Q - I)— +1I (45)

s+1

and observe tha(}(>c) — I|| £ < 1. Thus we can find a
disc centered at the origin so tHi@(s) — || < «+ ¢ outside
where the first infimum is achieved by taking; — Am the disc in the right half-plane. Thu@(s)—]L will be bounded
perpendicular tom and the second by taking:; — Am outside this disc, from (45). But within the dis@(s)~! is

- A - A
g Im=Amlla _ g gy gy lima = il
xe€  [|ma|2 rec [[Amllz
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bounded. Hence, from (44§)(s)~! will be bounded within
this disc for sufficiently smallr. This means that)(s) is
invertible for sufficiently smali- > 0. Further, insideanysuch (1]
disc, in the RHP||Q(s) — Q(s)|| can be made arbitrarily small [11]
by choosingr small enough, and [12]

I(V)- (i)

can be made less thant¢. On the other hand, we can choosé4l
such a disc to be sufficiently large so that

|- (2)

(9]

[13]

[15]
¥+ (R)-6))e =
‘H(ﬁ ? ) M f 0 [17]
| (%) -0))+]6)- () 9
M I A [19]
() - @) 1
€ 1 € [20]
§Z+H(I—Q(S))TS+1H ‘ .

outside that disc, independentafSo, once again, if the disc

is large enough — Q(s) can be kept withire/2 of I —Q(cc) 22
in norm, i.e., 23]
M M\ A [24]
(¥)-()e] s
[25]
Thus we can find & € H., which is invertible so that
M M\ A [26]
(V) - (3t )a] <o
o0 [27]
for e arbitrary, and with 28]
[29]

M My \ A

() (&)

strictly proper, i.e., compact on finite intervals. But the sanlé®

is now true 9f<1> - 1. [31]

Thereforeds(P, P1) < « + ¢, for any ¢, which means that

63(P,P1) < 61(P, Py). O 32]
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