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Robust Control of Set-Valued Discrete-Time
Dynamical Systems

John S. Baras,Fellow, IEEE, and Nital S. Patel,Member, IEEE

Abstract—This paper presents results obtained for the con-
trol of set-valued discrete-time dynamical systems. Such systems
model nonlinear systems subject to persistent bounded noise.
A robust control problem for such systems is introduced. The
problem is formulated as a dynamic game, wherein the controller
plays against the set-valued system. Both necessary and suffi-
cient conditions in terms of (stationary) dynamic programming
equalities are presented. The output feedback problem is solved
using the concept of an information state, where a decoupling
between estimation and control is obtained. The methods yield
a conceptual approach for constructing controlled-invariant sets
and stabilizing controllers for uncertain nonlinear systems.

Index Terms—Dynamic games, dynamic inclusions, informa-
tion state, output feedback, robust control.

I. INTRODUCTION

I N THIS paper, we consider the robust control of nonlinear
systems modeled as inclusions. Examples of systems that

give rise to such models include those subject to parametric un-
certainty, parameter varying systems (with known bounds on
the parameters), and systems subject to bounded disturbances.
In the linear systems context, a number of results can be found
in the literature concerned with stabilization and ultimate
boundedness of systems with uncertain parameters [1]–[5].
Furthermore, in the linear systems context, the problem of
systems subject to bounded additive noise is treated under-
optimal control [6], [7]. The inclusion representation employed
in this paper enables us to treat these cases in a unified setting.
Other systems that one could model in this framework are
hybrid systems, where an upper logical level switches between
plant models depending on observed events [8]–[10], and
systems with discontinuities [11].

In contrast to the large body of results of such problems
in the linear context, corresponding results in the nonlinear
context are lacking. Furthermore, there is no unifying con-
text within which such problems can be posed. The results
presented in this paper contribute toward the development
of such a framework. In particular, we show that solving an
appropriate robust control problem for inclusions yields con-
trollers that render the closed-loop system ultimately bounded.
In certain cases, these results can be considerably strengthened,
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under smoothness and invariance assumptions, to establish
asymptotic stability of the closed-loop system under the ab-
sence of exogenous inputs. An important consequence of the
approach is that one can conceptually shape the controlled-
invariant sets of the closed-loop system. This has immediate
bearings on attempts to extend-optimal control to nonlinear
systems [12]. However, unlike the viability theory [13] based
approach followed in [7] and [12], our approach yields a
dynamic game. It turns out that in this setting, the game
involves the controller as one player and the set-valued system
as the other. For the output feedback problem, we employ
the information state[14], [15] concept to obtain a separation
between estimation and control. We furthermore show that
under appropriate conditions (certainty equivalence), one can
employ an estimate of the state and the state feedback policy.
Given that the problem can be cast as a dynamic game, the
development parallels the dynamic game framework devel-
oped in the nonlinear context. However, unlike nonlinear

, where one is concerned with the gain, in the current
context we are concerned with asymptotic rejection of bounded
disturbances on some regulated output.

In particular, consider the following system:

where where both and are bounded
sets. The set-valued system is then defined as

along with a corresponding regulated output of the type

where we assume that in general the functionhas been
obtained via an appropriate selection from a set-valued map.
One interpretation of our results is, given , one is trying
to obtain a controller such that if then for
all ; else, if then Here

with equal to the partial derivative
of with respect to the states However, for the sake of
generality, we will set up and study the problem for inclusions.
We will present both necessary and sufficient conditions for
solvability, along with a version of the bounded real lemma.
The latter is stated in terms of a dissipation inequality and has
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appeared repeatedly in papers dealing with nonlinear robust
control (e.g., [14] and [16]–[20]).

The rest of the paper is organized as follows. In Section II,
we formulate the robust control problem for inclusions.
Section III deals with the state feedback case, followed by
Section IV which treats the output feedback case. Certainty
equivalence is discussed in Section V, and an example is
presented in Section VI.

II. PROBLEM FORMULATION

The system under consideration is expressed as

(1)

Here, are the states, with denoting the set of
possible initial state values, are the control
inputs, are the measured variables, and are
the regulated outputs. We will employ the following notation
throughout the paper.

denotes any suitable norm.
denotes a sequence

denotes the truncated forward cone of the point
[21]. In particular

i.e., is the set of all possible state trajectories that the
system can generate in the time interval given a control
policy and initial condition In case the time horizon under
consideration is infinite, we simply write

is the cross section of the forward cone of
at time instant In particular, it represents the set of states

that the system could be in at time under a policy with
the initial state equal to

We furthermore write to denote the set of
trajectories such that , and for

is defined similarly.
denotes an open ball of radiuscentered at and

similarly denotes a closed ball.
and denote the space of static state and dynamic output

feedback policies respectively. If then for any the
control value Furthermore, we write to
denote policies defined only for the time interval
Similarly, if then for any
Furthermore, is defined in a similar manner as

is defined by

if
else.

(2)

For the output feedback case, we define

We will also write in a similar manner as for
Lastly, and represent the infinite

horizon cases [as in ].
Given any set-valued map we occasionally write

Finally, denotes the system with an initial state value
, employing a control policy , and the system under

control policy and any initial state value
Remark 1: Of particular interest here is the case when

denotes the norm. But since the results are norm-
independent, we choose to pursue this level of generality.

The following assumptions are made on the system.

A1) is closed, and
A2) are compact for all and

A3) The origin is an equilibrium point for and , i.e.,

A4) For any for any and any
there exists such that

for some
A5) for all and is such that

such that

is compact and contains the origin In
particular, represents the smallest value of for
which In what follows, without loss of
generality, we assume that

A6) is compact.

Remark 2: The smoothness assumptions in A5) can be
replaced by directional differentiability. Also in A5), we can
replace compactness by boundedness. Furthermore, in A5)
we can get away with a subset of the states being bounded,
provided we can use invariance to establish that the remaining
states are bounded as well. We can also relax A4), to let
be locally connected. How one deals with these situations is
very much problem dependent, and for clarity we assume that
the above assumptions hold.

The robust control problem can now be stated as: Given
find a controller ( or depending on what is

measured) such that the closed-loop systemsatisfies the
following three conditions.

C1) is weakly asymptotically stable, in the sense that
for each there exists an such that
the sequence as

C2) is ultimately bounded, i.e., there exists a bounded
set such that for any state trajectory one has

as
C3) (Finite Gain) Given a there exists a finite

with such that

(3)
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Fig. 1. Set of possible state trajectories.

We call the closed-loop systemfinite gainif C3) is satisfied.
The cost employed in C3) can be interpreted as setting up

the robust control problem so as to attenuate the influence of
the set-valued dynamics on the regulated outputTo this end
consider a finite-time problem, where the time horizon is two.
We are given a and an admissible control policy
We denote the initial state value by Consider Fig. 1. From

the system can go to any point in Suppose that
the next state the system goes to is Note that the system
could have also gone to Now, from we can go to any
arbitrary point in where is the control value at
time We again pick two points in The
variation in the regulated output that could occur is therefore

We now normalize this by the distance betweenand , i.e., by

The reason for doing so is that we are trying to attenuate the
influenceof the set-valued dynamics on the regulated output
and not the variation in the regulated output itself. We can
write the worst case normalized variation in the regulated
output as

If we now require that for the given the control
policy must be such that this worst case normalized variation
is bounded by or that

Generalizing to arbitrary we require the existence of
a finite such that

for all This condition requires that the worst case
normalized variation of the regulated output be finite for all
initial conditions. One now repeats the above process for an
arbitrary large time horizon to obtain (3).

Remark 3: Assumption A4) precludes from being
a singleton, for which C3) is trivially satisfied. Assumption
A5) precludes certain types of cost functions, e.g., linear, for
which C3) will be trivialized by large enough.

III. STATE FEEDBACK CASE

In the state feedback case, the problem is to find a controller
, i.e., where , such that the

three conditions stated above are satisfied. For the state feed-
back case, we could have considered a more general problem,
with state dependent control constraints However, the
development of this section is unaffected.

A. Finite-Time Case

For the finite-time case, conditions C1) and C2) are not
required. From C3) we require for a given the
existence of a finite such that

(4)

1) Dynamic Game:Here, the robust control problem is
converted into an equivalent dynamic game. For
and for any define

(5)

Clearly

Now, the finite-gain property can be expressed as below.
Lemma 1: is a finite gain on if and only if there

exists a finite such that

(6)

The problem is hence reduced to finding a
which minimizes

2) Solution to the Finite-Time State Feedback Robust Con-
trol Problem: We can solve the above problem using dynamic
programming. Define

(7)

The corresponding dynamic programming equation is

(8)
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Note that we have abused notation, and hereis a vector
instead of a function as in (5).

Theorem 1 (Necessity):Assume that solves
the finite-time state feedback robust control problem. Then,
there exists a solution to the dynamic programming equation
(8) such that

Proof: For define

Then, we have

Thus, is finite on and by dynamic programming,
satisfies (8). Also, since

Theorem 2 (Sufficiency):Assume that there exists a so-
lution to the dynamic programming equation (8), such
that Let

be a control policy such that achieves the
minimum in (8) for Then solves the
finite-time state feedback robust control problem.

Proof: Dynamic programming arguments imply that for
a given

Thus is an optimal policy for the game and Lemma 1 is
satisfied with where we obtain

B. Infinite-Time Case

Here, we are interested in the limit as Invoking
stationarity (8) becomes

(9)

1) The Dissipation Inequality:We say that the system
is finite-gain dissipativeif there exists a function (called
the storage function) such that and it
satisfies the dissipation inequality

(10)

where is the control value for state
Theorem 3: Let The system is finite gain if and

only if it is finite-gain dissipative.
Proof i): Assume is finite-gain dissipative. Then (10)

implies

Since for all this implies

Thus is finite gain.

ii): Assume is finite gain. For any and
define for

Then we have for any

and

Furthermore, note that by time invariance, depends
only on and Thus if , then

Hence

as

Also, we have

Since

dynamic programming implies that solves the dissi-
pation inequality (10) for all
Furthermore, and Thus is a storage
function and hence is finite-gain dissipative.

We now have to show that the control policy ,
which renders finite-gain dissipative, also guarantees ulti-
mate boundedness of trajectories; furthermore, under a certain
detectability type assumption, we have the existence of a
sequence such that The
above can be also expressed as [22]

Before proceeding further, we place an additional assumption
on the system

A7) Assume that for a given the system is such
that

implies

Remark 4: The assumption above can be viewed to be
analogous to thedetectabilityassumption often encountered
in control literature, e.g., [18] and [19]. It also represents
a tightness condition for

The following theorem gives a sufficient condition for weak
asymptotic stability.

Theorem 4: If for a given is finite-gain dis-
sipative and satisfies Assumption A7), then is weakly
asymptotically stable.
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Proof: From the dissipation inequality (10), we obtain
for any

In particular for any

where is defined in (25). We know that
This implies that

as

Hence, by Corollary 6 and Assumption A7) we obtain

This implies that such that
Hence, such that

Corollary 1: If is finite-gain dissipative, then is
ultimately bounded.

Proof: In the proof of Theorem 4, we observe that if
is finite-gain dissipative, then

as

Hence, by Corollary 6

which implies that as which is bounded
by Assumption A5). Then there exists an s.t.

such that This implies that
there exists an such that such that

which implies that

and here we have a contradiction. In particular, due to the
continuity of and compactness of the two
conditions are equivalent, i.e.,

iff as

Remark 5: If we impose sufficient smoothness assumptions
on such that is continuous in (10), then all trajectories
generated by are stable in the sense of Lyapunov, with

the corresponding Lyapunov function. In this context,
the work of Blanchini [23] is similar in spirit, where state
feedback compensators were constructed for discrete-time
linear systems to achieve ultimate boundedness control via set-
induced Lyapunov functions. This procedure was then applied
to the state feedback-optimal control problem [24].

Remark 6: It is clear from above and from Lemma 8 that
we do need some form of continuity assumption onas a
necessary condition for the system to be finite-gain dissipative.

2) Solution to the State Feedback Robust Control Prob-
lem: Although the results above indicate that the controlled
dissipation inequality is both a necessary and sufficient con-
dition for the solvability of the state feedback robust control
problem, we state here the necessary and sufficient conditions
in terms of dynamic programming equalities.

Theorem 5 (Necessity):If a controller solves the
state feedback robust control problem, then there exists a
function such that and satisfies
the following equation, i.e.:

(11)

Proof: Construct a sequence of functions
as follows:

Clearly

and

For any and pick an Then
dynamic programming arguments imply that

Furthermore, note that depends only on and Hence

as

and by definition, satisfies (11). Furthermore, and
Hence,

Theorem 6 (Sufficiency):Assume that there exists a solu-
tion to the stationary dynamic programming equation (11)
for all satisfying ,
and Let be the control value which achieves
the minimum in (11). Then solves the state feedback
robust control problem provided that satisfies assumption
A7) and

Proof: Since satisfies (11), satisfies (10) with
equality. Hence, is finite-gain dissipative, and hence by
Theorem 3 is finite gain. Furthermore, by Theorem 4
is weakly asymptotically stable, and by Corollary 1 is
ultimately bounded.
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3) Characterization of Controlled-Invariant Sets:For a
state feedback policy let be defined as that set
for which: 1) and 2) if , then
for all We call such a set controlled-invariant
with respect to policy The solution to the robust
control problem guarantees that the system is ultimately
bounded. In particular, we had for any state trajectory

as We now show that
there exists a set such that is a controlled-
invariant set for the closed-loop system. Hence, any state
trajectory starting in remains in

Theorem 7 (Sufficiency):Suppose conditions of Theorem 6
are satisfied, with the resulting policy. Then there exists
a such that i) ii) furthermore, if
then as

Proof: To establish part i), suppose the system has initial
condition By A5), Since this
implies that for any for any and any

with we have

which implies that

and hence Thus for all Hence,
we can define as

Clearly Furthermore, via time invariance and the
static nature of the state feedback policy, it follows that if

, then For part ii), we have
already established that as in the proof
of Corollary 1.

We now show that under certain assumptions, if there exists
any policy such that , then there exists a
(suboptimal) solution to the dynamic programming equation
(11) for all

Theorem 8 (Necessity):In addition to A1)–A6), assume
that

1) is upper semicontinuous for all and

2) is independent of and satisfies the following: Given
any such that

(12)

Now suppose for a given there exists a control policy
with a controlled-invariant set with

Furthermore, suppose that

Then for any there exists a solution to the dynamic
programming equation (11), with

with

Proof: We need only establish that under is finite
gain. Pick any and any Now let be
defined as in (12). Then since

we have that there exists such that

Also, since is upper semicontinuous, an application
of Berge’s theorem [25] establishes that

where each is compact. Hence,
there exists a such that

for all with Since
exists and is finite. Also,

if then for all and hence
Thus setting we conclude that

is finite gain with
The following corollary is an immediate consequence of

the theorems above.
Corollary 2: Let all the assumptions in Theorem 8 hold,

however, with not necessarily independent of Let
and assume that is such that

if , then for any
for all and if then for any

Then for any
there exists a function such that
and satisfies (11) with for all

Conversely, assume that conditions for Theorem 6
are satisfied, with the resulting policy. Then there exists a

with and such that: 1) for all and
all and 2) for all for
all

IV. OUTPUT FEEDBACK CASE

We now consider the output feedback robust control prob-
lem. We denote the set of control policies as. Hence, if

then

A. Finite Time

For the finite-time case, we are only interested in the
satisfaction of Condition C3) of Section II. Hence, the problem
is, given and a finite-time interval find a control
policy such that there exists a finite quantity

with and
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1) Dynamic Game:In this subsection, we transform the
output feedback robust control problem to a dynamic game.
We introduce the function space

For and define a functional by

(13)

for
As will be shown, we follow the convention that the

supremum over an empty set is The finite-gain property
of can now be expressed in terms ofas follows.

Lemma 2: is finite gain on if and only if there
exists a finite on with such that

For notational convenience, we introduce the following
pairing for any two functions :

Lemma 3: If is finite gain on then

Proof: Set in (13). Then clearly

Since is finite gain on this implies that for any
and

Hence,
Thus, solving the finite-time problem amounts to finding a

control policy which minimizes This
also motivates characterizing values of that yield
bounded values for Thus, given that is finite
gain on we define

is finite

2) Information State Formulation:Motivated by [14] and
[15], for a fixed and we define the
information state by

(14)

Remark 7: The functional in (14) is supposed to
reflect any a priori knowledge concerning the initial state

In particular, one has for all
Furthermore, if one knew the initial state value with certainty,
i.e., one could then set

Clearly, if is finite gain, then

and a finite lower bound for is obtained for all feasible

Now, define by

(15)

where the function is defined by the equation shown at the
bottom of the page.

Lemma 4: The information state is the solution of the
following recursion:

(16)

with for all
Proof: We use induction. Assume that (16) is true for

we must show that equals
Now

by the definition (14) for and

if

else.
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Remark 8: The relationship between the information state
and the indicator function of the feasible sets was established
in [15]. In particular, it was established that if
then if and only if where
is the set of feasible states at time given and
(i.e., the set of state values the system could achieve at time

given the observation sequences ).
Theorem 9: For such that is

finite, we have

(17)

where is generated via (16).
Proof: We have the equation shown at the bottom of the

page.
Remark 9: This representation theorem is actually a separa-

tion principle and enables us to express the finite-gain property
of in terms of the information state

Corollary 3: For any output feedback controller
the closed-loop system is finite gain on if

and only if the information state satisfies

for some finite with
Remark 10: Thus the nameinformation statefor is jus-

tified, since contains all the information relevant to the
finite-gain property of that is available in the observations

The information state dynamics (16) may be regarded as
a new (infinite dimensional) control system with control

and uncertainty parameterized by The state and the
disturbance are available to the controller, so the original
output feedback dynamic game is equivalent to a new game
with full information. The cost is now given by (17). Note
that now the control will depend only on the information state.
Hence, the controller has a separated structure.

We now need an appropriate class of controllers,
which feedback this new state variable. A controlbelongs
to if for each there exists a map
from a subset of (sequences into such that

). Note that since depends on the observable
information for

3) Solution to the Finite-Time Output Feedback Robust Con-
trol Problem: We use dynamic programming to solve the
game. Define the value function by

(18)

for and the corresponding dynamic programming
equation is

(19)
with the initial condition

Remark 11: In the above equations, we have inverted the
time index to enable ease of exposition when dealing with
the infinite-time case. Since the system is assumed to be time
invariant, it does not matter if we write the equations as above
or as

with the initial condition

as long as we invert the index of the control policy obtained
by solving (19).

Define for a function

finite

Theorem 10 (Necessity):Assume that solves
the finite-time output feedback robust control problem. Then,
there exists a solution to the dynamic programming equa-
tion (19) such that

Proof: For define by (18).
Then

Now, we also have

For by using the finite-gain property for we get
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Thus, Also

Also with and hence

Theorem 11 (Sufficiency):Assume there exists a so-
lution to the dynamic programming equation (19)
on some nonempty domain such that

and finite for all with
Let

be a policy such that
where achieves the minimum in (19).

Let and be the corresponding information state
trajectory with Then
solves the finite-time output feedback robust control problem.

Proof: We see that

for all Now

which implies by Corollary 3 that is finite gain, and
hence solves the finite-time output feedback robust control
problem.

Corollary 4: If the finite-time output feedback robust con-
trol problem is solvable by an output feedback controller

then it is also solvable by an information state
feedback controller

B. Infinite-Time Case

For the infinite-time case, we need to satisfy the conditions
C1)–C3) stated in Section II. We pass to the limit as
in the dynamic programming equation (19)

where is defined by (18), to obtain a stationary version
of (19)

(20)

1) Dissipation Inequality:The following lemma is a con-
sequence of Corollary 3.

Lemma 5: For any the closed-loop system is
finite gain if and only if the information state satisfies

(21)

for some finite on with
By using Lemma 5 we say that the information state system
[(16) with information state feedback ] is finite gain

if and only if the information state satisfies (21) for some
finite with If is finite gain, we write

finite

where for every we define as

We say that the information state system is finite-gain
dissipativeif there exists a function (storage function)
such that contains and finite for all

with , and
satisfies the following dissipation inequality:

(22)

Note that if is finite-gain dissipative, and
then for all Consequently,

implies
Lemma 6: is monotone nondecreasing, i.e.,

Proof: Note that

Then for any choose and
such that

Let and define by on
and Then

Since is arbitrary, letting gives

We are now in a position to prove a version of the bounded
real lemma for the information state system

Theorem 12:Let Then the information state system
is finite gain if and only if it is finite-gain dissipative.
Proof i): Assume that is finite-gain dissipative. Then

by the dissipation inequality (22)

Setting and using the fact that we
get

Therefore is finite gain, with
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ii): Assume is finite gain. Then

Writing so that

By Lemma 6, is monotone nondecreasing. Therefore

exists and is finite on which contains
To show that satisfies (22), fix

and Select and such that

where is the information state trajectory
generated by with

Define

if
if

and let denote the corresponding information
state trajectory with Then

Since and are arbitrary, we have

Hence, solves the dissipation inequality. Also, by defini-
tion This implies that

Thus, is finite-gain dissipative.
We now again assume that satisfies A7).
Theorem 13:Let If is finite-gain dissipative and
satisfies assumption A7), then is weakly asymptotically

stable.
Proof: Inequality (22) implies

for all Let and let Then the
above gives

For any there is a sequence

Also, from above we obtain that

Hence, as and by Corollary 6 and
Assumption A7)

Hence, is weakly asymptotically stable.
Corollary 5: If is finite-gain dissipative, then is

ultimately bounded.
Proof: The proof is similar to that of Corollary 1.

We also need to show that the information state system
is stable.

Theorem 14:Let If is finite-gain dissipative,
then is stable on all feasible

Proof: Inequality (22) implies that

for all and for all For the lower bound,
note that by definition (14)

For any this implies that for any feasible

Therefore, is stable.
2) Solution to the Output Feedback Robust Control Problem:

As in the state feedback case, it can be inferred from the
previous results that the controlled dissipation inequality (22)
is both a necessary and sufficient condition for the solvability
of the output feedback robust control problem.

However, we now state necessary and sufficient conditions
for the solvability of the output feedback robust control
problem in terms of dynamic programming equalities.

Theorem 15 (Necessity):Assume that there exists a con-
troller which solves the output feedback robust
control problem. Then there exists a function such that

and
solves the stationary dynamic programming equation

(23)

for all
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Proof: For define as
follows:

Clearly

Furthermore, a modification of Lemma 6 establishes that

Hence

as

and satisfies (23) for all
Furthermore, and

Thus, since
Theorem 16 (Sufficiency):Assume that there exists a solu-

tion to the stationary dynamic programming equation (23)
on some nonempty domain such that

and finite with
and Let be a policy such that
achieves the minimum in (23). Let and let be
the corresponding information state trajectory satisfying

Then, solves the information
state feedback robust control problem if the closed-loop system

satisfies Assumption A7).
Proof: Since satisfies (23), satisfies (22)

with equality. Hence, is finite-gain dissipative and by
Theorem 12, is finite gain. Furthermore, Theorem 13
establishes that is weakly asymptotically stable, and by
Corollary 5 is ultimately bounded. Also by Theorem 14,

is stable for all feasible
3) Characterization of Controlled-Invariant Sets:For an

output feedback policy let be defined as that set
for which: 1) and 2) if then
for all Hence, unlike the state feedback case, we
require that be controlled-invariant only for all trajectories
starting from zero. This allows us to define such a set without
referring to the states of the dynamic controller. The results in
this subsection follow very much along the lines of the state
feedback case, and we present them (omitting the proofs) for
completeness.

Theorem 17 (Sufficiency):Suppose the conditions of The-
orem 16 are satisfied with the corresponding policy
Then: 1) there exists a with and 2) if

then as
Theorem 18 (Necessity):In addition to A1)–A6), assume

that

1) is upper semicontinuous for all
2) is independent of and satisfies the following: Given

any for all there exists an such that

Now suppose for a given there exists an output
feedback policy such that

and Then for any and with
there exists a function such that

and solves the
stationary dynamic programming equation

Remark 12: The output feedback counterpart of
Corollary 2 immediately follows, where one requires that

with defined as in Corollary 2.

V. CERTAINTY EQUIVALENCE

In this section, we briefly consider certainty equivalence
controllers for the infinite-time case. The primary motivation
for considering such controllers is the complexity associated
with solving (23), which is a dynamic programming equation
on what is in general an infinite-dimensional space Let

be the information state trajectory generated by the
system, let be the solution to the dynamic programming
equation (11) corresponding to the state feedback robust
control problem, and let be the corresponding state feed-
back policy. A standing assumption throughout this section is
that all min, and max are achieved. Following Whittle [26]
identifying as thepast stressand as thefuture stress,
compute

(24)

and use the feedback policy Before pro-
ceeding further, we define

The result follows from the definition of and the informa-
tion state dynamics (15).

Lemma 7: For any and

This immediately yields a sufficient condition for the certainty
equivalence controller to be a solution of the output feedback
problem.
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Fig. 2. Solution to the state feedback dynamic programming equationV (top) and the control policyu (bottom) for 
 = 0:145:

Theorem 19:Assume that

where is the information state trajectory generated by
employing the certainty equivalence controller, then the cer-
tainty equivalence controller solves the output feedback robust
control problem provided that

Proof: Clearly, the conditions of the theorem imply that

Hence, a saddle point exists, and for any
and we have

via Lemma 7. Hence, is a storage function,
and the certainty equivalence controller solves the output
feedback robust control problem, provided

Remark 13: We could have also considered any controller
obtained in the following fashion. For a given function

with consider the
information state feedback policy obtained by

Now let the information
state system be initialized via such that and
let be the information state trajectory generated under
Then, if

solves the output feedback robust control problem.

VI. EXAMPLE

In this section we present a simple example. The system we
consider is given by

where all we know about the coefficients and is
that they have values in the intervals and

, respectively. Also, and are disturbance
inputs bounded in the intervals and

respectively. The state is employed to augment
the system in order to reflect that the disturbance at the output
is primarily of low frequency. Furthermore, and

The regulated
output is chosen to be

Note that does not satisfy A5) directly.
However, observe that the main role of is in showing that
the states are ultimately bounded. From Corollary 6, it follows
that if the problem is solvable for a given value of then

and it follows that for this to
be true, is ultimately bounded as well. Furthermore, it is
clear that remains bounded.

In order to obtain a numerical solution, we discretize the
state space as follows: and

For this example, we employ We first
solve the state feedback dynamic programming equation (11)
using value iteration, employing a bisection search (as done
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Fig. 3. State trajectories obtained employing state feedback(
 = 0:145):

for example in linear control) to obtain a suboptimal value
for For the state feedback case, we need only consider the
dynamics associated with and We obtain
with the optimal lying between 0.14 and 0.145. The upper
value function converges after 13 iterations. Fig. 2 shows the
upper value function and the corresponding control policy

Fig. 3 illustrates the trajectories obtained employing the
state feedback control, starting the system with
and and with and generated via
uniform distributions to after which we set

and
For the output feedback case, we employ the certainty

equivalence controller [obtained via (24)]. We first aug-
ment to include the third state by redefining
as where the right-hand side is
obtained by solving the state feedback problem. In order to
check the conditions for certainty equivalence (Theorem 19)
we resort to simulations, with the idea being to increase
(and recomputing from the suboptimal value for the state
feedback problem until we observe

consistently for repeated simulations at that value ofIn each
case, we initialize as We start
with an initial value of and increase it in increments
of 0.025. The first value of for which the above inequalities
are satisfied is Fig. 4 shows the state trajectories

and obtained by the certainty equivalence controller,
along with the certainty equivalence estimates [i.e.,obtained
in (24)], where all the disturbances are generated via uniform
distributions to and the initial states were picked as

and After we set
and

APPENDIX

We study the convergence of

(25)

to zero, where is a trajectory generated by the control
Lemma 8: If as then such

that such that

Proof: Suppose the contrary, then such that
such that

Fix such that Then for any
with

This contradicts the convergence of
Remark 14: The above lemma gives a necessary condition

for the sequence to converge.
Lemma 9: If as then such

that with and

(26)
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Fig. 4. Statesx1 and x2 (solid) along with their certainty equivalence estimates (dashed)(
 = 0:475):

Proof: We show the proof by contradiction.
such that such that

Hence, such that

Let be such that
Thus

Hence, such that such that

Hence, we get a contradiction.
Corollary 6: If , then

Proof: Take the limit of (26) as using A4) and
A5).
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