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Robust Control of Set-Valued Discrete-Time
Dynamical Systems
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Abstract—This paper presents results obtained for the con- under smoothness and invariance assumptions, to establish
trol of set-valued discrete-time dynamical systems. Such systemsasymptotic stability of the closed-loop system under the ab-
model nonlinear systems subject to persistent bounded noise.gance of exogenous inputs. An important consequence of the
A robust control problem for such systems is introduced. The h is that tually sh th trolled
problem is formulated as a dynamic game, wherein the controller ?‘pp“?ac IS thatl one can conceptually s aF_’e e _Con ro_e B
plays against the set-valued system. Both necessary and suffiinvariant sets of the closed-loop system. This has immediate
cient conditions in terms of (stationary) dynamic programming bearings on attempts to extehdoptimal control to nonlinear
eqya|ltlﬁ5 are presenfted. _Tf]le output feedbaCthYOblerg is 50||\_/ed systems [12]. However, unlike the viability theory [13] based
using the Concept of an Information state, where a ecoupling H i
between estimation and control is obtained. The methods yield 3pproaph foIIoweI? tm [7] artldth[ltZ]., Otzr apptrtpachtﬁllelds a
a conceptual approach for constructing controlled-invariant sets _ynamlc game. urns ou at in this settng, the game
and stabilizing controllers for uncertain nonlinear systems. involves the controller as one player and the set-valued system
as the other. For the output feedback problem, we employ
the information statd14], [15] concept to obtain a separation
between estimation and control. We furthermore show that
under appropriate conditionsdrtainty equivalenge one can
. INTRODUCTION employ an estimate of the state and the state feedback policy.

N THIS paper, we consider the robust control of nonlinedsiven that the problem can be cast as a dynamic game, the
systems modeled as inclusions. Examples of systems tHvelopment parallels the dynamic game framework devel-
give rise to such models include those subject to parametric @fed in the nonlineati., context. However, unlike nonlinear
certainty, parameter varying systems (with known bounds &=, Where one is concerned with tfi& gain, in the current
the parameters), and systems subject to bounded disturbané@gtext we are concerned with asymptotic rejection of bounded
In the linear systems context, a number of results can be foutigturbances on some regulated output.
in the literature concerned with stabilization and ultimate In particular, consider the following system:
boundedness of systems with uncertain parameters [1]-[5].
Furthermore, in the linear systems context, the problem of
systems subject to bounded additive noise is treated upeer Yt1 = g(Tk, U, V)

optimal control [6], [7]. The inclusion representation employe\q,herewk € W,u, € V, where both" and V' are bounded

in this paper enables us to treat these cases in a unified settidgs The set-valued system is then defined as
Other systems that one could model in this framework are

hybrid systems, where an upper logical level switches between Tpy1 € Flag,ug) = U flp, up, wy)
plant models depending on observed events [8]-[10], and wrEW
systems with discontinuities [11]. _
In contrast to the large body of results of such problems Yers € Glan, i) = ,ULEJV 9@, v, vi)
in the linear context, corresponding results in the nonlinear *
context are lacking. Furthermore, there is no unifying colong with a corresponding regulated output of the type
text within which such problems can be posed. The results
presented in this paper contribute toward the development

of such a framework. In particular, we show that solving aghere we assume that in general the functiohas been
appropriate robust control problem for inclusions yields comshtained via an appropriate selection from a set-valued map.
trollers that render the Closed-loop SyStem.ultlmately boundqgne interpretation of our results iS, g|var> 0’ one is try|ng
In certain cases, these results can be considerably strengthegegptain a controller such thatif, = 0, then |Zkq1] < v, for
all k > 0; else, ifzg # 0, thenlimsup;,_, ., |Zx+1| < 7. Here
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appeared repeatedly in papers dealing with nonlinear robige will also writer, s € I'g’s- () in a similar manner as for

control (e.g., [14] and [16]-[20]). I'5 x(z). Lastly, A¥(zo) and I'*¥(zo) represent the infinite
The rest of the paper is organized as follows. In Section hprizon cases [as i (xzq)].

we formulate the robust control problem for inclusions. Given any set-valued mafi(z), we occasionally write

Section Il deals with the state feedback case, followed by

Section IV which treats the output feedback case. Certainty AM) = U Az).
equivalence is discussed in Section V, and an example is zeM
presented in Section VI. Finally, X% denotes the system with an initial state value

x, employing a control policy:, and X%, the system under
control policy« and any initial state valueg € X,.

) ) ) Remark 1: Of particular interest here is the case when
The system under considerati¢h) is expressed as | - | denotes thesxoc norm. But since the results are norm-

Il. PROBLEM FORMULATION

Tyt € Flzn, u), 20 € Xo independent, we choose to pursue this level of generality.
2 <yt € G(@n, ur) (1) The following assumptions are made on the sysiem
Zia1 = Uapa1, un), k=0,1,---. Al) X, is closed, and) € X.
. . A2) F(x,u),G(z,u) are compact for allz € R" and
Here, z;, € R" are the states, wittX, denoting the set of we U,

possible initial state valuesy, € U C R™ are the control  A3) The origin is an equilibrium point faf, G, andl, i.e.,
inputs, y, € R are the measured variables, ande R? are

the regulated outputs. We will employ the following notation 7(0,0) 30, §(0,0) >0, 1(0,0) = 0.
throughout the paper. A4) For anye > 0, for any z € R*,u € U, and any
| - | denotes any suitable norm. r € F(z,u), there existss, > 0 such thatB.,(s) C
xi,; denotes a sequendei, Tiy1, -, %} _ B.(r) (N F(z,u) for somes € Be(r) () F(z,u).
Iy x(z) denotes the truncated forward cone of the point A) I(-,u) € CL(R") for all u € U and is such thaly > 0,
z € R" [21]. In particular such that -
Lia(@) 2 {oonlesi € Floguy), o2 {ieRBucUse. ‘aﬁxs,u) <o}
X

j:O,---,k‘—l;.’L’O:.’L’}
is compact and contains the origivty > ~. In

ie., Fg}k(a:) is the set of all possible state trajectories that the particular, v represents the smallest value offor
system can generate in the time interjgglk], given a control which 0 € £7. In what follows, without loss of
policy » and initial conditionz. In case the time horizon under generality, we assume that= 0.

consideration is infinite, we simply writB“(z). A6) U c R™ is compact. -

Aji(xg) C R is the cross section of the forward cone of pemark 2: The smoothness assumptions in A5) can be
o at time instant:. In particular, it represents the set of stategypjaced by directional differentiability. Also in A5), we can
that the system could be in at tinke under a policyu, with  epace compactness by boundedness. Furthermore, in A5)
the initial state equall t@o. , we can get away with a subset of the states being bounded,

We furthermore writer, s € 'y (x) to denote the set of h,\ided we can use invariance to establish that the remaining
trajectories such that € I' (), andsi+1 € F(ri,ui) for - gates are bounded as well. We can also relax Ad), toFlet
i=0,---,k—1rscl"(z)is defined similarly. be locally connected. How one deals with these situations is

_ Ba(b) denotes an open ball of radiuscentered ab, and \ery much problem dependent, and for clarity we assume that
B, (b) similarly denotes a closed ball. the above assumptions hold.

S5 andO denote the space of static state and dynamic outpUtrhe rohust control problem can now be stated as: Given
feedback policies respectively. if € S, then for anyk, the ~ > 0, find a controlleru (€ S or O depending on what is

control valueu;, = u(zx) € U. Furthermore, we write; ; 10 measured) such that the closed-loop systtnsatisfies the
denote policies defined only for the time interval+1, - -, j. following three conditions.

Similarly, if w € O, then for anyk, . = u(yir) € U C1) T* is weakly asymptotically stable, in the sense that
Furthernlore;Oi,g is defined in a similar manner &, ;. for eachk, there exists amy, € F(z,ux) such that
by R* — R s defined by the sequencey, — 0 ask — oo.

A0, ifzeM C2) >* is ultimately bounded, i.e., there exists a bounded
bur () = { —o0,  else. (2) set M such that for any state trajectofy:;,} one has
. T, — M ask — oo.
For the output feedback case, we define C3) (Finite Gain) Given ay € [1,00) there exists a finite

A:LLLJ((OUO) ={y1,k|yr+1 € G(ar, wr), p(x), with 5(0) = 0 such that

Ve el'g _{(x ad
" d1c-1(w0)) sup S Uress, us) = Usign, )
Loic(@o) ={wo, i € I'g (z0)|yn+1 € G, ), rs€le(zo) i2g
k=0,---,K—1}. =Y rit1 = sit1]? < B*(z0), Vzo € Xo. (3)
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Remark 3: Assumption A4) preclude$(x,u) from being
a singleton, for which C3) is trivially satisfied. Assumption
Ab) precludes certain types of cost functions, e.g., linear, for
52 which C3) will be trivialized by~ large enough.

Ill. STATE FEEDBACK CASE

v Vrxay In the state feedback case, the problem is to find a controller
k=0 k=1 k=2 u € S, ie.,u, = u(zry), wherew: R* — U, such that the
three conditions stated above are satisfied. For the state feed-
back case, we could have considered a more general problem,

o o ) o with state dependent control constraibféz). However, the
We call the closed-loop systefimite gainif C3) is satisfied. development of this section is unaffected.

The cost employed in C3) can be interpreted as setting up
the robust control problem so as to attenuate the influence f
the set-valued dynamics on the regulated outpUio this end S N
consider a finite-time problem, where the time horizon is two. FOr the finite-time case, conditions C1) and C2) are not
We are given ay > 0 and an admissible control policy. 'equired. From C3) we require for a giveR' > 0, the
We denote the initial state value by Consider Fig. 1. From €Xistence of a finite3y (o), 33 (0) = 0 such that
Z, the system can go to any point IR(Z, ug). Suppose that x—1
the next state the system goes taris Note that the system Z (Cripr, us) = U(sig1, w) | — A ripr — sig1]9)
could have also gone tg . Now, from »; we can go to any =0
arbitrary point inF(ry,u,), wherew; is the control value at < B(xo), vr, s € I' i (zo), Ve € Xo. (4)
time & = 1. We again pick two pointsy, s in F(r1,u1). The

variation in the regulated output that could occur is therefore 1) Dynamic Game:Here, the robust control problem is
converted into an equivalent dynamic game. kEaf Si x_1

Fig. 1. Set of possible state trajectories.

Finite-Time Case

(11(r1,u0) = sy, u0)|% + |I(ra, ur) — U(s2,un)| )M, andz € X(xo), for any zo € X, define
We now normalize this by the distance betweemds, i.e., by K-1
Jzp(u) = sup I(rigr,uw) — s, ui)|?
(Jr1 = 51|24 |r2 — 32|q)1/q_ :k( ) raelt  (3) ; (Ji(riqr, i) (Sig1,ui)l

The reason for doing so is that we are trying to attenuate the
influenceof the set-valued dynamics on the regulated output —y!lrit1 = 3i+1|q)}- ()
and not the variation in the regulated output itself. We can
write the worst case normalized variation in the regulated Clearly
output as

Jza(u) = 0.
sup
rs€lY ,(T) Now, the finite-gain property can be expressed as below.
(11, w0) = 1(s1,u0)| + [1(r2, ur) — I(s2,u1)|2)Y/ @ Lemma 1: X% is a finite gain ok, K] if and only if there

: (s = 51|71 |72 — 52|1) 1/ - exists a finitef (7), 4% (0) = 0 such that
If Z = 0, we now require that for the given, the control Jzi(uw) <Pk (@), JelkK]l, VreXo (6)
policy must be such that this worst case normalized variationTh

e problem is hence reduced to findingua € S x—
is bounded byy or that P gra € oK1

which minimizes Jz ;.
2 2) Solution to the Finite-Time State Feedback Robust Con-
sup Z [0(7; wp—1) trol Problem: We can solve the above problem using dynamic
o€lE2(0) j=1 programming. Define
— sk, ur—1)|? = ¥4 — s < 0.

K-1
Generalizing to arbitrarf € X, we require the existence ofVx(Z) = uegnf sup { Z [(rigr,wi) = 1(sipr, ui)|?
a finite 8*(z) > 0, 8%(0) = 0, such that A Y A
2
g —_ . q
sup Z (s 1) — U, wg—1)|? Y rig1 = siqal } (7)
r,sEFé"Z(E) =1
— ¥ — si|? < BT The corresponding dynamic programming equation is

sup  A{l(r,u) = (s, )| = *|r — 5]

for all € X,. This condition requires that the worst case Vi(z) = in
L r,s€F (x,u)

f
normalized variation of the regulated output be finite for all uev
initial conditions. One now repeats the above process for an + Vi1 (r)}
arbitrary large time horizon to obtain (3). Vi (z) =0. (8)



64 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998

Note that we have abused notation, and heres a vector

instead of a function as in (5).
Theorem 1 (Necessity)Assume that* € Sy ;1 solves

the finite-time state feedback robust control problem. Then,f/u (
there exists a solutiol to the dynamic programming equation

(8) such thatVy(z) > 0,V4(0) =0,k € [0, K — 1],z € Xo.
Proof: Forz € Xy, k € [0, K — 1] define

Vk(a:) = uesi{,lic_l J,;yk(u)
Then, we have
0< Vi(e) <Pk (x), ke[, K-1], weXo

Thus, V4 is finite on Xo, and by dynamic programming{
satisfies (8). Also, sincgy. (0) = 0, V,(0) = ]

i): AssumeX® is finite gain. For anyg € Xy andk > 0,
define forz € X} (zo)

Z,Zp) = Sup

k,j
r,s€l (xz)

j—1
{Z |l z—l—lvul) - Z(SZ+17U1)|

—Yrig1 — 3z‘+1|q}-

Then we have for any € A}(xzq)
0 < V@, o) € B*(z0), Vi =0
and

f/;;“j_i_l(a:,a:o) > f/ iz, 70), Vo € X (x0).

Theorem 2 (Suff|C|ency)Assume that there exists a so-
lution V to the dynamic programmmg equation (8), suchurthermore, note that by time invariandg;, (z, zo) depends

thath() OVk()—OkJE[ 1]$6X0 Let

u* € Sk, -1 be a control pollcy such that; achieves the Vk Sz, ) =
K — 1. Thenu solves the

minimum in (8) fork = 0,-
finite-time state feedback robust control problem.

Proof: Dynamic programming arguments imply that for

a givenz € X
Vo(ai) = JJ;’()(U,

)= 'uESi£1£<_1 J,;70(u).

only on z and j. Thus if z € A} (a:o)ﬂX“ (z3), then
Vk j(z,x3). Hence

f/kjj(a:,a:o) — V% z), as k— oo, VreA(zo),
k> 0,20 € Xo.

Also, we have

0 < V*(x0) < B*(x0)-

Thus«* is an optimal policy for the game and Lemma 1 issjce

satisfied withu = u*, where we obtaimdi (z) = Vo(z). =

B. Infinite-Time Case

Here, we are interested in the limit @ — oo. Invoking
stationarity (8) becomes

V(z)=inf sup {V(s)+|l(r,u) —I(s,u)?
ucl ,sEF (w,u)
=y = s|*}. 9)
1) The Dissipation Inequality\We say that the systei®
is finite-gain dissipativéf there exists a functio’(x) (called
the storage function) such th&t(z) > 0,V(0) = 0, and it
satisfies the dissipation inequality

V()2 sup  {V(s) —+%r —s|"+[l(r,u(x))
r,s€F (xu(x))
— (s, ax))|?}, Vo€ X (xo),
VE>0, Vo€ Xo (10)

wherew(x) is the control value for state.
Theorem 3: Let u € S. The systen®* is finite gain if and
only if it is finite-gain dissipative.

Proof i): AssumeX* is finite-gain dissipative. Then (10)

implies
k—1

Vi(wo) 2 V(re) + Y [1(rigr,us) = Usipr,wi)|®
1=0

=Y rig1 — siy1|%, Vk>0; Vr,sel(xg).
SinceV > 0 for all 7, s € I'y ;. (x0), this implies

k—1

D Nrign,w) = Usirn, ua)|* = ¥4rigs — siga|? < V(o).
1=0
Thus £* is finite gain.

V(z) = inf V¥(z) =

inf Vi) < V(@)

dynamic programming implies that™*(z) solves the dissi-
pation inequality (10) for alk: € &}*(x0),k > 0,20 € Xo.
Furthermore} “(x) > 0 andV“(0) = 0. ThusV* is a storage
function and henc&* is finite-gain dissipative. ]

We now have to show that the control poliey € S,
which renderst* finite-gain dissipative, also guarantees ulti-
mate boundedness of trajectories; furthermore, under a certain
detectability type assumption, we have the existence of a
sequencey, € F(z,,u,) such thatlim, .., «, = 0. The
above can be also expressed as [22]

0€ lilgninf Flap, ug).

Before proceeding further, we place an additional assumption
on the systeni.
A7) Assume that for a givery > 0, the systen” is such
that

limsup

k—oo

<7

15]
‘% (Trq1,Ur)

implies 0 € liminfy—oo F (T, ur).

Remark 4: The assumption above can be viewed to be
analogous to theletectabilityassumption often encountered
in H., control literature, e.g., [18] and [19]. It also represents
a tightness condition foty.

The following theorem gives a sufficient condition for weak
asymptotic stability.

Theorem 4:1f for a given v > 0,X% is finite-gain dis-
sipative and satisfies Assumption A7), th&¥ is weakly
asymptotically stable.
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Proof: From the dissipation inequality (10), we obtain Remark 6: It is clear from above and from Lemma 8 that

for any zg € Xo we do need some form of continuity assumption loas a
X necessary condition for the system to be finite-gain dissipative.
Z (rigs, @) = Usigpr, )| 2) Solution to the State Feedback Robust Control Prob-

lem: Although the results above indicate that the controlled
dissipation inequality is both a necessary and sufficient con-
dition for the solvability of the state feedback robust control
In particular for anyz € I'%(z) problem, we state here the necessary and sufficient conditions
in terms of dynamic programming equalities.

=0
— U rip1 = sit1]? £ Vo), VK7, s € [™(xo).

S Theorem 5 (Necessity)if a controller z € $S solves the
Z Wi < V(zo), VK state feedback robust control problem, then there exists a
k=0 function V(z) such thatV(z) > 0,V(0) = 0 and V' satisfies

where W is defined in (25). We know that/;* > 0,vk. the following equation, i.e.:

This implies that .
V(z) = inf  sup {|I(r,u) = I(s,u)|?
WE—0 as k— oo. v rseF(eu)
—~r =2+ V(r)} (11)
Hence, by Corollary 6 and Assumption A7) we obtain
z € XM(zo),k > 0,20 € Xo.

0 € lim inf F (T, T.)- Proof: Construct a sequendg;,j = 0,--- of functions

This implies thafa,, € F(Z,, ) such thatlim, .., ay = o> CIOWS:
0. Hence, Vx € I'“(x¢),3oy, € F(xpn,u,) such that Vigr(z) = inf  sup  {|I(r,u) — I(s,u)|?
limy, oo n = 0. ] Ul v s F ()
Corollary 1: If X% is finite-gain dissipative, thei® is —yr — 8|2+ V;(r)}
ultimately bounded. B Vo(z) =0.
Proof: In the proof of Theorem 4, we observe thatif
is finite-gain dissipative, then Clearly
Wy —0 as k — oo. Vj(a:)ZO, Vi € Re”, Vi>0

Hence, by Corollary 6 and

. 0 _

sy |5t )| <5 Vi) 2 V@),  VeeRe', o0,

which implies that agi — oo,z — L7, which is bounded For anyz, € X, andk > 0, pick anz € X(x0). Then
by Assumption AS5). Then there exists an> 0, s.t. VK > dynamic programming arguments imply that

0,3k > K, such thatB.(z;) () £" = ¢. This implies that

there exists ard > 0, such thatvK > 0,3k > K, such that 0< Vi) < /ﬁ(wo), Yz € XE(%)-

[(8/0x) l(xy1,Tr)| > v + € which implies that

Furthermore, note that;(z) depends only ori andz. Hence

. 0 _

lim sup ‘— Wzpy1,Tp)| > _

k—oo |07 Vi(z) = V(z) asj — oo, Yz € A (zo)
and here we have a contradiction. In particular, due to the k>0, zo € Xo
continuity of (3/dz) I(x,u) and compactness daf”, the two
conditions are equivalent, i.e., and by definition}” satisfies (11). Furthermor®&,(x) > 0 and

5 V(zo) < f%(xo). Hence,V(0) = 0. ]
lim sup ‘— Uzps1,up)| < viff 2 — L7, ask — . Theorem 6 (Sufficiency)Assume that there exists a solu-
k—oo | O tion V to the stationary dynamic programming equation (11)

m forallz € D C R"0 ¢ D, satisfyingV(z) > 0,z € D,

Remark 5: If we impose sufficient smoothness assumptiorgnd V(0) = 0. Let u(x) be the control value which achieves
on X%, such thatl” is continuous in (10), then all trajectoriesthe minimum in (11). Therz € S solves the state feedback
generated by:¥ are stable in the sense of Lyapunov, wittiobust control problem provided that* satisfies assumption
V the corresponding Lyapunov function. In this contex\7) and U, .x, Uiso &x'(z0) C D.
the work of Blanchini [23] is similar in spirit, where state Proof: Since V satisfies (11),X* satisfies (10) with
feedback compensators were constructed for discrete-tieguality. HenceX¥ is finite-gain dissipative, and hence by
linear systems to achieve ultimate boundedness control via SEteorem 3% is finite gain. Furthermore, by Theorem>¥
induced Lyapunov functions. This procedure was then applied weakly asymptotically stable, and by Corollary> is
to the state feedbacdk-optimal control problem [24]. ultimately bounded. [ |
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3) Characterization of Controlled-Invariant Set$or a Proof: We need only establish that undgyX* is finite
state feedback policy, € S, let K% be defined as that setgain. Pick anyé > 0 and anyzo € Xo. Now let e > 0 be
for which: 1) 0 € KY and 2) ifzg € K%, thenz, € K% defined as in (12). Then since
for all £ > 0. We call such a seK% controlled-invariant
with respect to policyu. The solutionz € S to the robust
control problem guarantees that the systEfnis ultimately )
bounded. In particular, we had for any state trajectoMye have that there exist(xo) such that
z € I'"(Xo), o — L7, ask — oco. We now show that XT(x0) C L7, Wk > K(z0).
there exists a sek’) € L7, such thatK¢ is a controlled-
invariant set for the closed-loop system. Hence, any sta#so, sinceF(z,w) is upper semicontinuous, an application
trajectory starting inC% remains ink%. of Berge’s theorem [25] establishes that

Theorem 7 (Sufficiency)Suppose conditions of Theorem 6 T
are satisfied, withi € S the resulting policy. Then there exists Xyl (wo0) C M (o), k=1, K(zo)
a % C L7 such that i)0 € K% ii) furthermore, ifzg ¢ K%, where eachMy(xo),k = 1,---, K(xo) is compact. Hence,

thenz, — LY ask — oc. there exists aVf(x), such that
Proof: To establish part i), suppose the system has initial 1
condition zo = 0. By A5), 0 € £7. SinceV(0) = 0, this o, | — . N e vl
implies that for anyr € I'™(0), for any & > 0, and any i (wo) = Tsei‘;p(%);{ﬂ(uﬂ) = (si+) =T + 8 rit1
sk+1 € F(re, k), With sp1 # 7141, We have CoeeE —
— sip1|} < M(zo)

limsup A (zo) C L7

k—oo

W{ree1, @) — W(skg1, Ti)|Y — Y rpgr — sp41]9 <0
b, ) = st W)l = riegs = st < for all & > 0, with J¢(zo) > 0. Since Ji,  (zo) >
which implies that JiH(@o), J™(zo) = limp_.o0 Ji* (o) exists and is finite. Also,
if o = 0, then A*(0) C £7*° for all £ > 0, and hence
<7 J*(0) = 0. Thus setting3*(z¢) = J*(x¢) we conclude that
¥ is finite gain withy = + 6. ]
and hencer41 € £7. Thusry, € £ for all k& > 0. Hence, The following corollary is an immediate consequence of
we can defineK% as the theorems above.
Corollary 2: Let all the assumptions in Theorem 8 hold,
Ké=J ¥0). however, with [ not necessarily independent of. Let
k>0 h{z,u) = (0/0z) l(x,u), and assume thal¥ is such that

_ S _ if zo € K%, then for anyz € I'(xo), |[h(zpi1, )] < 7,

Clearly 0 € K. Furthermore, via time invariance and thgor gl & > 0, and if =g ¢ KZ, then for anyz €
static nature of the state feedback policy, it“follows that Fﬁ(wo),limsupk_,oo \h(zx41,%x)| < 7. Then for anys > 0,
zo € K, thenz, € Kk > 0. For part ii), we have there exists a functio’(z) such thatV'(z) > 0,V(0) = 0,
already established thaty — £ ask — oc in the proof 541 satisfies (11) withy =7 + & for all z € X7 (z0), k >
of Corollary 1. _ _ _ B 0,20 € X,. Conversely, assume that conditions for Theorem 6

We now show that under certain assumptions, if there exig{g satisfied, withz the resulting policy. Then there exists a
any policyw € S such thatCé C L7, then there exists a KZ c £7 with 0 € KT and such that: 1) for alt, € K% and
(suboptimal) solution to the dynamic programming equatio)| ,. I%(z0), |h(zrgr, )| < v and 2) for allzy ¢ K2, for
(11) for allz € &y, k > 0,20 € Xo. all z € I'(xo), limsupy_, oo |A(Tra1,u)| < 7.

Theorem 8 (Necessity)in addition to Al)-A6), assume
that

1) F(z,u) is upper semicontinuous for af € R" and
u € U,

2) [ is independent of; and satisfies the following: Given
any~ > 0,V¥6 > 0,3de > 0, such that

15]
‘% U(Tht1, Ur)

IV. OuTPUT FEEDBACK CASE

We now consider the output feedback robust control prob-
lem. We denote the set of control policies @s Hence, if
u € O, then U = f(y17k,uO7k_1).

B (LY) C LF8, (12) A. Finite Time

For the finite-time case, we are only interested in the
satisfaction of Condition C3) of Section Il. Hence, the problem
is, giveny > 0 and a finite-time interval0, K], find a control
policy © € Oy x—1 such that there exists a finite quantity

Now suppose for a given = 7, there exists a control policy
@ with a controlled-invariant se% with 0 € K% C £,
Furthermore, suppose that

U limsup A (zo) C L7, B (x) with 8%(0) = 0 and
zo€Xo k—oo
K-1
Then for anyé > 0, there exists a solutiol” to the dynamic Z [[(rig, ws) = U(siq1, w)|T — Y rig1 — seg1|?
programming equation (11), with’(z) > 0,V(0) = 0,Vz € =0

X (o), k > 0,20 € Xo, With v =7 + 6. < Bi (wo), Vr,s € I'g i (%0), Vo € Xo.
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1) Dynamic Game:In this subsection, we transform the 2) Information State FormulationMotivated by [14] and
output feedback robust control problem to a dynamic gam@5], for a fixedy, , € A'ik(Xo) andu; 1, we define the

We introduce the function space information statep;, € £ by
E={pR"—- R} pr()

Foru € Op, k-1 andp € £ define a functional/,, 5 (u) by 2 sup sup {po(azo)—i—z [(si,2i—1) — Uri, wim1)|?

20 €Xo r,s€ly ) (z0)

k 9| qp, —
A =y — 8|k = 2}
Jpr(u) = sup  sup  A{p(xo) + ) [I(si;ui-1)
P z0€Xo 1,8€* (x0) ; (14)
=i, ui—1)|Y = Y si —mil? , . .
(riy wic)I* = 7% 7(|13]:) Remark 7: The functionalpy € £ in (14) is supposed to

reflect anya priori knowledge concerning the initial state
xo. In particular, one hago(xz) = —oc, for all g ¢ Xo.
Furthermore, if one knew the initial state value with certainty,
I.e., zo = T, one could then sty = 6(z;.

Clearly, |f 3% is finite gain, then

fork =0,--- K.

As will be shown we follow the convention that the
supremum over an empty set-sx. The finite-gain property
of X% can now be expressed in terms .bfas follows.

Lemma 2: X is finite gain on|0, K], if and only if there —o0 < pr(z) < (po, B) < 400
exists a finite3}. > 0 on X, with g3-(0) = 0, such that

and a finite lower bound fop, () is obtained for all feasible
J—ﬁ}},k(u)sov kIOva z € R".

) ) ) ~ Now, defineH(p,u,y) € £ by
For notational convenience, we introduce the following

pairing for any two functions:, b € &: H(p,u,y)(z) 2 qup {p(¢) + B(&, z,u,y)}  (15)
¢eR"
(a,b) = sup {a(x) 4+ b(z)}. o .
zER® where the functionB is defined by the equation shown at the

bottom of the page.
Lemma 4: The information state is the solution of the
following recursion:

Lemma 3: If X* is finite gain on[0, K], then
¢ :H ¢y Uk s YK s k:()’-..’K_l
Proof: Setr = s € T'(x¢) in (13). Then clearly Pr+1 (Pre i, Y1)
po €€ (16)

0) < Jyk k=1--- K. .
(p,0) < P:k(u)7 o with po(z) = —o0, for all z ¢ Xo.

Since X* is finite gain on0, K], this implies that for any Proof: We use induction. Assume that (16) is true for
r,s € T¥, (x0), 20 € Xo, andk € [1, K] 0,---,k; we must show thapy+1 equals H(px, uk, Yr+1)-
’ Now
k
H(pr, ur, Yr+1)(x)
p(zo) + [(si,wi—1) — Ui wim1)|* — v ]si — i
; 2551;? {pe(§) + B(&, @, un, yrt1)}
<R
< plzo) + Br(zo) < (p, Br).
—p( 0) /IS( 0)_(p /IS) :Slg)l{pk(g)
Hence,J, i (v) < (p, B}). ] s ; : q
Thus, solving the finite-time problem amounts to finding a T Seji‘épuk) (1, ur) = Us, ur)l
control policy u € Og x—1 Which minimizes.J, x (u). This q ’ q g
also motivates characterizing values pf e & that yield =7 = s Jyrsr € G(E ur)
bounded values for, i (u). Thus, given that:* is finite x € F(& un)}
gain on[0, K], we define = pry1(7)
dom J. x(u) = {p € & (p,0), (p, B} ) is finite}. by the definition (14) fomp, and py.;. ]
. € F(&,v)
su Wz, v) = l(s,v)|T — 4z — 5|7}, if + ’
By 2 0 ) = He =yl —siny, i {5 7

—00, else.
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Remark 8: The relationship between the information statéor k£ € [0, K], and the corresponding dynamic programming
and the indicator function of the feasible sets was establisheguation is
in [15]. In particular, it was established thatgf = 6(4,y,

thenpi(z) > 0 if and only if z € AY"“(z0), where X" (z¢) Mi(p) = LILIE% ;gg {Mi—1(H(p,w, )}, ke(l,K]
is the set of feasible states at timke given ug x—1 andy; (19)
(i.e., the set of state values the system could achieve at tigigh the initial condition
k, given the observation sequenc@sy_1, y1,k)-
Theorem 9:For u € Og —1,p € &, such thatJ, k (u) is Mo(p) = (p,0).
finite, we have Remark 11:In the above equations, we have inverted the
Jp(u) = sup {(px,0)|po = p}, ke [0,K] time index to enable ease of exposition when dealing with
YL €AY (Xo) the infinite-time case. Since the system is assumed to be time
(17) invariant, it does not matter if we write the equations as above

where p;. is generated via (16). or as

Proof: We have the equation shown at the bottom of thaz,,(p) = sup { My 1(H(p,u, %))}, kel0,K —1]

page. ] yeR!

Remark 9: This representation theorem is actually a separg@jith the initial condition
tion principle and enables us to express the finite-gain property .
of ¥* in terms of the information statge. Mk (p) = (p,0)

Corollary 3: For any output feedback controlles <
Oo,k—1, the closed-loop syste* is finite gain on[0, K] if by solving (19).
and only if the information statg;, satisfies

Define for a functiond: £ — R*
LO0)po = =LY <0, VEE[0,K .
yl,kEE‘i(Xo) e, Olpo Pic < 0. %] dom M = {p € €|M(p) finite}.

inf
uwcl
as long as we invert the index of the control policy obtained

for some finite3y (xo) > 0,20 € X, with 33 (0) = 0. Theorem 10 (Necessity)Assume thati € O x_; Solves
Remark 10: Thus the namenformation statefor p is jus- the finite-time output feedback robust control problem. Then,
tified, sincep; contains all the information relevant to thethere exists a solution/ to the dynamic programming equa-
finite-gain property ob.* that is available in the observationstion (19) such thatlomJ. (%) C dom My, My (—8%) =
Y1,k 0, My(p) > (p,0),p € dom My, k € [0, K].
The information state dynamics (16) may be regarded as Proof: For p € dom J. i (), define My (p) by (18).
a new (infinite dimensional) control syste® with control Then
u and uncertainty parameterized by The statep;, and the .
disturbancey, are available to the controller, so the original Mi(p) = et Tp(1).
output feedback dynamic game is equivalent to a new game ’
with full information The cost is now given by (17). Note Now, we also have
that now the control will depend only on the information stated/; (p) =  inf sup sup  {p(zo)
Hence, the controller has a separated structure. UCk-1 20€Xo 1,sCTy , (w0)
We now need an appropriate clagsi_, of controllers, k
which feedback this new state variable. A controbelongs + Z [1(siywic1) — L(ra wim1)|T — % si — 7|}
to I; x_1, if for eachk € [i, K — 1], there exists a mapy i=1
from a subset of*~**+! (sequenceg; ;) into U, such that

- ; or v = w, by using the finite-gain property f&* we get
ur = u(p; ). Note that sincep;, depends on the observable

informationy; , Iox—1 C Ogg—1, for k =1,--- K. M (p)
3) Solution to the Finite-Time Output Feedback Robust Con- k
trol Problem: We use dynamic programming to solve the< sup sup {p(a:o)—lrz [1(si,—1)— (i, Tim1)|?
game. Define the value function by T0EXo0 rs€ly , (w0) i=1
. _,y(1|3i_7>i|(1}
My(p) = _inf sup  {(pr,0)[po=p}  (18) _
uC€O k-1 yEAY  (Xo) < (p7 /3;()
k
sup — {(pr,0)lpo = p} = sup sup sup  {p(xo) + > Usi,ui1)| = 7ri — 5|}
y1.L €AY (Xo) z0€Xo YL €AY, (wo) rs€lY Y (wo) i=1

k
= sup  sup  {p(wo) + Y _ [Usi,wim1) = Uriyuim1)|? — y¥|ri — si]*}
zo€Xo r,5€TY | (o) =1

= Jp(w)



BARAS AND PATEL: SET-VALUED DISCRETE-TIME DYNAMICAL SYSTEMS 69

Thus,dom J. x () C dom M. Also We say that the information state systé&ih is finite-gain
M > (5.0 dissipativeif there exists a function (storage functiohJ(p),
k(p) 2 (1, 0). such thatdom M contains—3 (8 > 0 and finite for all

Also — 4% < 0, with #%(0) = 0, and henceM,(—g%) =0. = € Xo, with 5(0) = 0), M(p) = (p,0),M(-f) = 0, and
m satisfies the following dissipation inequality:
Theorem 11 (Sufficiency)Assume there exists a so- —
lution M to the dynamic programming equation (19) Mip) j;l,% {M(H (p,ulp).y))}, Vp € dom M. (22)
on some nonempty domaidom AMj, such that—3 ¢ N o
dom M; (B(z) > 0 and finite for allz € X,, with Note thatif =* is finite-gain dissipative, fimgi € dom M,
B(0) = 0), My(=fB) = 0, My(p) > (p,0),k € [0,K]. Let thenH(p,u(p),y) € dom M for all y € R". Consequently,
w* € Ipx_1 be a policy such that! = wi_,(pi),k = Po € dom M, ImplleSpk € dom M,Vk > 0.
0,---,K — 1, wherew}(p) achieves the minimum in (19). Lemma 6: M, is monotone nondecreasing, i.e.,
Le’F po = —/3. and p;, be the corresponding information state Mi_1(p) < Mi(p).
trajectory withp, € dom My _j,k = 1,---, K. Then u*
solves the finite-time output feedback robust control problem. Proof: Note that
Proof: We see that

M (p)
My (p) = Jpx(u") < Jp i (u) k
= Wriywim1) = U(si wim)]?
for all u € Opx—1,p € dom My. Now S ,,ﬁ;l{;f(%){p<wo>+;| (riyuim1) = Usi uim1))|
sup  {(px,0)lpo = -3} < Mg(-p) =0 =5 —mil*}.

YEAY , (Xa)
. Then for anye > 0, chooser; € Xo, andr’, s € I'y ,_ (5)

which implies by Corollary 3 that*" is finite gain, and such that

henceu* solves the finite-time output feedback robust control k—1
problem. o ] My—1(p) <p(xh) + Y 1}, uicy) = U(sG, ui—1)|?
Corollary 4: If the finite-time output feedback robust con- i=1
trol problem is solvable by an output feedback controller — 7t — sl f e
@ € Og x_1, then it is also solvable by an information state . . , . ,
feedback controllen* € Io j_1. Let zo = z{, and definer, s € Fg}k(azo) by r =+',s=3s"on
’ [0,k — 1], and 7y, = si. Then
B. Infinite-Time Case k
For the infinite-time case, we need to satisfy the conditions My (p) 2 p(zo) + Z| Uiy uim1) = Usiy wi)|*
C1)-C3) stated in Section Il. We pass to the limitids— oo . =1 .
in the dynamic programming equation (19) —¥ri = sil
k—1
dm  My(p) = M(p) > plah) + 3 (1 wimy) = (s wimy)|
. . . . . =1
\c/)\/fh((alrg;\/[k(p) is defined by (18), to obtain a stationary version = S U wg1) = L(55 wr )|
I - M(H 20 > My—1(p) — e
= 1nf su , U, . . . . . .
() ucl yEE (MHp,w1)} (20) Sincee > 0 is arbitrary, lettinge — 0+ gives
1) Dissipation Inequality: The following lemma is a con- My(p) > My_1(p).

sequence of Corollary 3.
Lemma 5: For anyu € O, the closed-loop systerii* is
finite gain if and only if the information state satisfies

[
We are now in a position to prove a version of the bounded
real lemma for the information state syste&in
sup  sup  {(px;0)|po =-5"} <0 (21)  Theorem 12:Let u € I. Then the information state system
k2l yeAT . (Xo) = is finite gain if and only if it is finite-gain dissipative.
for someB“(zo) > 0, finite on X, with 4(0) = 0. n Proqf i)_: Assume thaE“ is finite-gain dissipative. Then
By using Lemma 5 we say that the information state systepy the dissipation inequality (22)
=* [(16) with information state feedback € I] is finite gain M(pi) < M(po), Yk > 0, Yy € AV (Xo).
if and only if the information state,, satisfies (21) for some - ’
finite 3“(xo), with 5*(0) = 0. If Z* is finite gain, we write  Settingpy = —/3, and using the fact that/(p) > (p,0), we

dom J.(w) = {p € €|(p, 0), (p, 3*) finite} get

L0 < M(=58) =0, vk > 0, Yy € ATy, .
where for everyp € £ we defineJ,(u) as J,(u) = supys (P2, 0) < M(=F) y € ALi(wo)
Tp(u). Therefore=* is finite gain, withp, = —4.
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ii): AssumeZ* is finite gain. Then For anyr € F&k(ajo), there is a sequence
(p,0) < Jp p(w) < (p, ), Vk > 0,p € dom J.(u). We = sup {0, w) — Ui, ui)|?
Writing My (p) = Jpi(w) so that e — ¥ = T |9}
(p,0) < Mi(p) < (p, ),  k20,p € dom J.(u). 0=0 k-1
>0.

By Lemma 6,M;, is monotone nondecreasing. Therefore

Ma(p) = lim Mi(p)

Also, from above we obtain that

k
WP < +o0,  VE>O.

exists and is finite orlom M,, which containsdom J.(u). i—0
To show thatM, satisfies (22), fixp € dom M,,y € R Hence, W — 0, asi — oo and by Corollary 6 and
ande > 0. Selectk > 0 and§; ,—1 such that Assumption A7)
Mo (H(p,u(p),y)) < (Pr-1,0) +¢ 0 € liminf F(7;,u;).
Hence, X" is weakly asymptotically stable. [ |

wherep;,j = 0,.--,k — 1 is the information state trajectory

generated byj, with po = H(p, u(p),y). Corollary 5: If = is finite-gain dissipative, thert* is

ultimately bounded.

Define Proof: The proof is similar to that of Corollary 1. m
_ ifi=1 We also need to show that the information state sys#m
Y=g, fi=20k is stable.

o ) Theorem 14:Let w € I. If =% is finite-gain dissipative,
and letp;,j = 0,---,k denote the corresponding informationhen =« s stable on all feasible € R".

state trajectory wittpo = p. Then Proof: Inequality (22) implies that
M, (p) > (px,0) pr(@) < (pr,0) < M(po) < + 00
= (Pr-1,0) for all po € dom M and for allk > 0. For the lower bound,
> Mo(H(p,u(p),y)) — e note that by definition (14)
Sincey and e are arbitrary, we have k
pr(z) = sup sup po(zo) + Z |{(si,ui-1)
Ma(p) 2 sup Mo (H(p,u(p), ). 20€X0 ms€TY , (vo) P
yek — (i, uim1)|
Hence,M, solves the dissipation inequality. Also, by defini- . .
tion (p,0) < Ma(p) < (p, B%). This implies thathl, (- 3*) = — YU = il =@ .
0. Thus,=* is finite-gain dissipative. [ |
We now again assume that* satisfies A7). For anyz, € Xy, this implies that for any feasible € R"
Theorem 13:Letu € I. If = is finite-gain dissipative and
¥ satisfies assumption A7), théit is weakly asymptotically pr() Z po(o) > —o0, vk 2 0.
stable. _ _ o Therefore,Z* is stable. n
Proof: Inequality (22) implies 2) Solution to the Output Feedback Robust Control Problem:
X As in the state feedback case, it can be inferred from the
1rs s previous results that the con_trplled dlss.|pat|on inequality (2_2)
mf‘;ﬁ’% ,,ﬁesr??(m) {p(xo) + ; [1Cris wi1) is both a necessary and sufficient condition for the solvability

of the output feedback robust control problem.

sty we )| = 245t — ]t S < M(p) However, we now state necessary and sufficient conditions
for the solvability of the output feedback robust control
problem in terms of dynamic programming equalities.

for all & > 1. Let 29 € X,, and letp = —3*. Then the = Theorem 15 (Necessity)Assume that there exists a con-
above gives troller @ € O which solves the output feedback robust
control problem. Then there exists a functidfi(p) such that
k dom J.(w) C dom M(p), M(p) > (p,0), M(-B*) = 0 and
TSESF{}P(%) {2 |1(rs, wim1) = U(si, uim1)|? M solves the stationary dynamic programming equation
? 0,k 1=

M(p) = inf sup {M(H(p,u,y))} (23)
— s — 7’i|q} < M(p)+ B*(xo) < +o0. ek
for all p € dom J.(%).
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Proof: Forp € dom J.(uw), defineM(p),k =0,---
follows:

as

My (p) = inf sup My_1(H(p,u,y))
wel yER?
Mo(p) = (p,0).

Clearly
(p,0) < Mi(p) < (p,f) < + 00, ¥p € dom J.(w).
Furthermore, a modification of Lemma 6 establishes that

Mi41(p) > My(p), Vp € dom J.(u).

Hence
My(p) — M(p) ask — oo

and M (p) satisfies (23) for alp € dom J.(%).
Furthermoredom J.(%) C dom M(p) and(p,0) < M(p)
< (p, ™). Thus, since-g* < 0,8%*(0) =0, M(-38*)=0.m

71

Now suppose for a givenr = 7, there exists an output
feedback policyz € O, such that

U limsup A} (zo) C L7

20C Xo k—oo

and0 € K& C £7. Then for any§ > 0, and withy =
¥ + 6, there exists a functiod{(p), such thatdom J.(w) C
dom M(p), M(p) > (p,0), M(—f") = 0 and M solves the
stationary dynamic programming equation

M(p) = inf, sup {M(H(p,u.v))}.

Remark 12: The output feedback counterpart of
Corollary 2 immediately follows, where one requires that

|h(zrr1,ur)|, k>0, Vzel*0)
v 2 q imsupg oo [(@ry1, w)], Vo € IM(20),
xo € Xo\{0}

with h defined as in Corollary 2.

Theorem 16 (Sufficiency)Assume that there exists a solu-

tion M to the stationary dynamic programming equation (23)

on some nonempty domaitom A4 such that—/3 € dom M,
(B(z) > 0, and finiteVz € Xo, with 5(0) = 0), M (-/) =0,
and M(p) > (p,0). Letw € I be a policy such thati(p)
achieves the minimum in (23). Lel, = —73, and letp; be
the corresponding information state trajectory satisfyinge

V. CERTAINTY EQUIVALENCE

In this section, we briefly consider certainty equivalence
controllers for the infinite-time case. The primary motivation
for considering such controllers is the complexity associated
with solving (23), which is a dynamic programming equation

dom M,k = 0,1,---. Then,u € I solves the information on what is in general an infinite-dimensional sp#€e. Let
state feedback robust control problem if the closed-loop systgin ¢ £ be the information state trajectory generated by the

Y% satisfies Assumption A7).

system, letV be the solution to the dynamic programming

Proof: Since M satisfies (23), ¥ satisfies (22) equation (11) corresponding to the state feedback robust
with equality. Hence, =" is finite-gain dissipative and by control problem, and let.» be the corresponding state feed-
Theorem 12,=* is finite gain. Furthermore, Theorem 13back policy. A standing assumption throughout this section is
establishes thakt® is weakly asymptotically stable, and bythat all min, and max are achieved. Following Whittle [26]
Corollary 5%* is ultimately bounded. Also by Theorem 14 dentifying p; as thepast stressand V' as thefuture stress

=¥ is stable for all feasibler € Re™.
3) Characterization of Controlled-Invariant Set$:or an

output feedback policy: € O, let K be defined as that set

for which: 1) 0 € K% and 2) ifzg = 0, thenz, € K

compute

iy € arg max {pi(e) + V(2)} (24)

for all £ > 0. Hence, unlike the state feedback case, wend use the feedback poliaypr) = ur(éz). Before pro-
require thatC, be controlled-invariant only for all trajectoriesceeding further, we define
starting from zero. This allows us to define such a set without

referring to the states of the dynamic controller. The results in
this subsection follow very much along the lines of the state
feedback case, and we present them (omitting the proofs) for

completeness.

Theorem 17 (Sufficiency)Suppose the conditions of The-

orem 16 are satisfied with the corresponding policye 1.
Then: 1) there exists &% C £7, with 0 € K* and 2) if
zg # 0, thenz,, — LY ask — oo.

Theorem 18 (Necessity)n addition to A1)-A6), assume

that
1) F(x,u) is upper semicontinuous for all € R", v € U;

2) lis independent ofi, and satisfies the following: Given

sup
r,s€F (z,u)

Qﬂamé{mm+ {110r, ) — (s, u)|?

—wv—w+vv»}

The result follows from the definition ap?, and the informa-
tion state dynamics (15).
Lemma 7: For anyw € U,U: R* — R, andyp;, € €

sup ngk (.I,U,) 2> sup (H(pkvuv y)vU)
zCR™ yCR!

any~y > 0, for all 6 > 0, there exists am > 0 such that This immediately yields a sufficient condition for the certainty

LY+ B.(0) C LT,

equivalence controller to be a solution of the output feedback
problem.
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Fig. 2. Solution to the state feedback dynamic programming equ&figtop) and the control policy: (bottom) fory = 0.145.

Theorem 19: Assume that VI. EXAMPLE

. , In this section we present a simple example. The system we
_ Pk = e
(P, V) = lereltf, 5;1,5’1 Qv (1), k=01, consider is given by

where p, is the information state trajectory generated by — #1[k + 1] =0.821[k] + c1(a2[k])* + coulk] + r1[K]
employing the certainty equivalence controller, then the cer-  zy[k + 1] =z2[k] + 0.1z1[k] + r2[k]
tainty equivalence co_ntroller solves the output feedback robust [k + 1] =0.923[k] + 0.173[k]
control problem provided thaipo, V) = 0. B
Proof: Clearly, the conditions of the theorem imply that ylk +1] = csza[k] + 23[k]

B . e . - where all we know about the coefficients, co, and ¢ is

(P, V) = e 52{, Qv (w,u) = Llfel}‘c, e Qv (2, w). that they have values in the interva.4,0.9], [3,4], and
[1,1.1], respectively. Also,r, 72, and rs are disturbance

Hence, a saddle point exists, and for any € inputs bounded in the intervals-0.2,0.2],[-0.02,0.02], and

T3

argmax, g {px(z) +V(x)}, andi = up(2), we have [-0.1,0.1], respectively. The states is employed to augment
. the system in order to reflect that the disturbance at the output
(px, V) 2 SUII; (H(pr, 0, 9),V) is primarily of low frequency. Furthermor& = [-2,2] and
IS

Xo = [-0.75,0.75] x [-0.6,0.6] x [-0.1,0.1]. The regulated
via Lemma 7. HenceM (p;.) = (px, V) is a storage function, Output is chosen to be

and the certainty equivalence controller solves the output g1 = (walk +1])°
feedback robust control problem, providee), V) =0. = Al 2 )

Remark 13: We could have also considered any controllgqote thatl (z441) = (z2[k+1])2 does not satisfy A5) directly.
obtained in the following fashion. For a given functiorqowever, observe that the main role 67 is in showing that
U: R" — R, with U > 0,U(0) = 0, consider the the states are ultimately bounded. From Corollary 6, it follows
information state feedback policyi obtained byd(p) € that if the problem is solvable for a given value of then
argmin,cy SUp,cpe  Q(x,u). Now let the information 1im sup, - 2|z,[k + 1]| < +, and it follows that for this to
state system be initialized vigy such that(po,U) = 0, and pe true,z; is ultimately bounded as well. Furthermore, it is
let p;. be the information state trajectory generated un@éer ¢legr thatzs remains bounded.
Then, if In order to obtain a numerical solution, we discretize the
state space as followsAz; = 0.05,Az, = 0.01, and
Azxz = 0.01. For this example, we employ = 2. We first
solve the state feedback dynamic programming equation (11)
4 solves the output feedback robust control problem. using value iteration, employing a bisection search (as done

(pr,U) > inf sup Q¥ (z,u), vk >0
wcld zcR®
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Fig. 3. State trajectories obtained employing state feedljgck= 0.145).

for example in lineaH ., control) to obtain a suboptimal valuexz;[0] = 0.5, x2[0] = 0.5, andx3[0] = 0. After & = 50, we set
for ~. For the state feedback case, we need only consider the= 0.65,¢co = 3.5,¢3 = 1.05, andry = ry = r3 = 0.
dynamics associated with; and xz,. We obtainy = 0.145

with the optimaly lying between 0.14 and 0.145. The upper
value function converges after 13 iterations. Fig. 2 shows the
upper value functiotiV’) and the corresponding control policy Ve study the convergence of
(u). Fig. 3 illustrates the trajectories obtained employing thﬁ/g _

APPENDIX

sup  ([{(r,ux) — {(Tpg1, W) — 7 — Trgr|?)

state feedback control, starting the system wiif0] = 0.7 rEF (T i)

and z3[0] = 0.5 and with ¢1,¢z,71, and r2 generated via (25)
uniform distributions tok = 60, after which we sete; =

0.65,¢co = 3.5,71 = 0, andry = 0. to zero, whereg is a trajectory generated by the contil

For the output feedback case, we employ the certaintyLemma 8:If W* — 0, ask — oo, thenVe > 0,3K such
equivalence controller [obtained via (24)]. We first aughat vk > K,36 such that
ment V to include the third staters by redefining V
as V(xy, 22, 23):=V (21, 22), Where the right-hand side is |7 — Ti+1l < 6,7 # Tppr = [U(Thg1, W) — U, | < e
obtained by solving the state feedback problem. In order to )
check the conditions for certainty equivalence (Theorem 192[( Proof: Suppose the contrary, thefe > 0 such that
we resort to simulations, with the idea being to increasev ,3k = K, such thatvé > 0
(and recomputing’) frqm the suboptimal value for the state Ir = Trgr| < 6,7 # Tar = [[(Trar, ) — U(r,T1)| > .
feedback problem until we observe

Fix & such that0 < & < ¢4, Then for anys ¢
(pk+17V) < (pMV) <...< (p()’V) B(g/,\/(fk_kl)ﬂf‘(fk,uk) C f(fk,uk), with s # Tpy1

: . : [l et un) = U0s, )| — v [Thgr — 5" 2 e = 6T =0 > 0.
consistently for repeated simulations at that value.dh each
case, we initializepy aspo(z) = —V(z) — 10|z|>. We start This contradicts the convergence 167 n
with an initial value ofy = 0.15 and increase it in increments Remark 14: The above lemma gives a necessary condition
of 0.025. The first value of for which the above inequalities for the sequencéV;’ to converge.
are satisfied isy = 0.475. Fig. 4 shows the state trajectories Lemma 9:If W;* — 0 ask — oo, thenVe, ¢ > 0,3K such
(x1, andz2) obtained by the certainty equivalence controllethatVk > K, 3r € B.(Zx+1) () F(Tx, Ux) With » # 741 and
along with the certainty equivalence estimates [izeoptained
in (24)], where all the disturbances are generated via uniform (s k) = U1, )| <v+teé (26)
distributions tok = 50, and the initial states were picked as |7 — Trey1]
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60 70 80 20 100

Fig. 4. Statesr; and x2 (solid) along with their certainty equivalence estimates (dasliedy= 0.475).

Proof: We show the proof by contradictioré, ¢ > 0,
such thatvk,3k > K such that

|1(r,70y) — UT41, W)
|7 = Tt1]
>+ g, Vr € Be(fk—i—l) ﬂf(fk,ﬂk),

T # Tl

Hence,3» > 0 such that
L(r, ) = UTppr, W )| = VI = Tpeqa [T 2 nlr — Tpeqa |2

Let r € B.(Tr+1)F(ZTr,uwr) be such thate > |r —
Zr+1| > (€/2). Thus

€l .
—=71n>0.

[1(r,n) = U@ prr, W) = e — Tt [T 21
29

Hence,37 > 0 such thatvK,3k > K such that

Wi > .

Hence, we get a contradiction.
Corollary 6: If W;* — 0, then

limsup

k—oo

<.

a
‘% UTry1,Un)

Proof: Take the limit of (26) as, ¢ — 0, using A4) and
A5).
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