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Stability Theory for Hybrid Dynamical Systems

Hui Ye, Anthony N. Michel,Fellow, IEEE and Ling Hou

_Abstract— Hybrid systems which are capable of exhibiting the present time, there does not appear to exist a satisfactory
simultaneously several kinds of dynamic behavior in different general model for hybrid dynamical systems which is suitable
parts of a system (e.g., continuous-time dynamics, discrete-time ¢ he qualitative analysi®f such systems. As a consequence,

dynamics, jump phenomena, switching and logic commands, and s . .
the like) are of great current interest. In the present paper we & general qualitative theory of hybrid dynamical systems has

first formulate a model for hybrid dynamical systems which Nnot been developed thus far. In the present paper we first
covers a very large class of systems and which is suitable forformulate a model for hybrid dynamical systems which covers
the qualitative analysis of such systems. Next, we introduce a very large class of systems. In our treatment, hybrid systems

the notion of an invariant set (e.g., equilibrium) for hybrid . . .
dynamical systems and we define several types of (Lyapunov-like) are defined on arabstract time spacevhich turns out to

stability concepts for an invariant set. We then establish sufficient P€ @ Spgcial Compl_etely o_rdgred metric.space. When this
conditions for uniform stability, uniform asymptotic stability, =~ abstract time space is specialized to tbal time spacede.qg.,

exponential stability, and instability of an invariant set of hybrid R+ — [0,00), or N = {0,1,---,1}), then our definition of

dynamical systems. Under some mild additional assumptions, we a hybrid dynamical system reduces to the usual definition of
also establish necessary conditions for some of the above stability I d ical t 16 31
types (converse theorems). In addition to the above, we also 9eneral dynamical system (see, e.g., [16, p. 31]).

establish sufficient conditions for the uniform boundedness of ~ For dynamical systems defined on abstract time space (i.e.,
the motions of hybrid dynamical systems (Lagrange stability). To for hybrid dynamical systems) we define various qualitative
demonstrate the applicability of the developed theory, we present properties (such as Lyapunov stability, asymptotic stability,

specific examples of hybrid dynamical systems and we conduct aand so forth) in a natural way. Next, we embed the dynamical
stability analysis of some of these examples (a class of sampled- ’ ’

data feedback control systems with a nonlinear (continuous-time) SyStém defined on abstract time space into a general dynamical
plant and a linear (discrete-time) controller, and a class of systems System defined o™, with qualitative properties preserved,
with impulse effects). using an embedding mapping from the abstract time space to
Index Terms—Asymptotic stability, boundedness, dynamical R*. The resulting dynamical system (defined now Brr)
system, equilibrium, exponential stability, hybrid, hybrid dynam-  consists in general of discontinuous motions.
ical system, hybrid system, instability, invariant set, Lagrange  The Lyapunov stability results for dynamical systems de-
stability, Lyapunov stability, stability, ultimate boundedness. fined onR™* in the existing literature require generally conti-
nuity of the motions (see, e.g., [16]-[19]), and as such, these
|. INTRODUCTION results cannot be applied directly to the discontinuous dynami-
YBRID SYSTEMS which are capable of exhibitingcal systems d'escribed a}pove. We establish in'the pr§§ent Paper
esults for uniform stability, uniform asymptotic stability, ex-

simultaneously several kinds of dynamic behavior i tial stabilit d instability of an ant set h
different parts of the system (e.g., continuous-time dynamic%?nen lal stability, and instability of an invariant set (such as,

discrete-time dynamics, jump phenomena, logic commandsd- an equilibrium) for such discontinuous dynamical systems
. 1 . 1 L + - .

and the like) are of great current interest (see, e.g., [1]-[9 gfmed onki .and hence .for the class of hybnd.dynamlcal

Typical examples of such systems of varying degrees s’ge_ms cons!d_ered herein. These results prowd_eT not pnly

complexity include computer disk drives [4], transmission an%ufflment conditions, but also some necessary conditions, since

stepper motors [3], constrained robotic systems [2], intelligeﬁ?nverse theorems for some of these results are established

vehicle/highway systems [8], sampled-data systems [10]_[12&]“’|der some very minor addi'FionaI a.ss.umptions-.- In addition
the above, we also establish sufficient conditions for the

discrete event systems [13], switched systems [14], [15], aFRi . :
many other types of systems (refer, e.g., to the papers includ§tiform boundedness and uniform ultimate boundedness of
in [5]). Although some efforts have been made to provide e motions of hybrid dynamical systems (Lagrange stability).
unified framework for describing such systems (see, e.g., [9]EXiSting results on hybrid dynamical systems seem to have
and [29]), most of the investigations in the literature focudeen confined mostly tinite-dimensional modelsVe empha-
on specific classesf hybrid systems. More to the point, atSize that the present results are also applicable in the analysis
of infinite-dimensional systems
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between the controller and the plant is a D/A converter. lll. HYBRID DYNAMICAL SYSTEMS
The qualitative behavior of sampled-data feedback controltpq present section consists of three parts.
systems has been under continual investigation for many years,

with an emphasis ofinear systems (see [10]-[12]). For the

present example we show that under reasonable conditionsAhéHybrid Systems

qualitative behavior of the nonlinear sampled-data feedback, require the following notion of time space.
system can be deduced from the qualitative behavior ofpqfinition 3.1 (Time Space)A metric spaceT’, p)
the corresponding linearized sampled-data feedback systemi. o spaceif: ’
Although this result has been obtained by methods otherl) T is completely ordered with order-:”
than the present approach [26], [32], we emphasize that our2) T has a minimal elemert.,... € T ie, for anyt € T
objective here is to demonstrate an application of our theory andt £ tog it is true tha‘Eltm~ ) ’t_' "

to a well-known class of problems. i o '

In addition to sampled-data feedback control systems, wed) for anyty, s, 25 € T such thatt, = t2 < t3, It s true
that p(t1,t3) = p(t1,t2) + p(t2, ts);

apply the results d_ev<_e|oped herein in thg stability analysis of a4) T is unbounded from above, i.e., for adf > 0, there
class ofsystems with impulse effecEor this class of systems, .

: . S exists at € T such thato(t, tmin) > M. O
the results presented constitute improvements over existin i . .
results. We have also analyzed a class of switched systems by/Nen ¢ is clear from context, we will frequently writ

the present results. However, due to space limitations, thédgPlace of (T, p). _ .
were not included. Definition 3.2 (Equivalent Time Spacesjor two time

For precursors of our results reported herein, as well §8aces’’, T, we say thatT” and 7" are equivalent (with

additional related materials not included here (due to spd@PeCt ton) if there exists a mapping : 7" — 1" such that
limitations), please refer to [22]-[28] and [30]. his an |sc_)met_r|c mapping frorfl” to 7', and such that the
order relations iril” and’ are preserved undér. Henceforth,

we use the notatio” ~ 7" to indicate thatZ” and 7" are
equivalent. In addition, fofl, c 7,7y c 7', we use the
notation (T',Tp) ~ (I',1p) to indicate thatT” and 1" are
equivalent (with respect td), and 7, and 7}, are equivalent
(with respect tohg,), where hy;, is the restriction ofh to

. O

We can now introduce the concept of motion defined on a
time space(T, p).

is called

Il. NOTATION

Let R denote the set of real numbers and It denote
realn-space. Ifr € R", thenz? = (zy,---,z,) denotes the
transpose of. Let R**™ denote the set of realx m matrices.
If B = [bijlnxm € R™*™, then BT denotes the transpose o 0
B. A matrix A € R™"™ is said to beSchurstable if all

igenval re within the unit circle of th mplex . .
eigenvalues ofd are within the unit circle of the comple Definition 3.3 (Motion): Let (X, d) be a metric space and

plane. Forz € R&, let ||z|| denote the Euclidean vector :
norm, ||z|| = (z7=)/2, and forA € R™*" | let ||| denote let A_c X. Let (T, p) be a time space, and _Iétlc T. For
any fixeda € A, to € Tp, we call a mappingi(-, a,to) :

the norm of A induced by the Euclidean vector norm, i.e.,- . .
) " T,:, — X amotionon 7 if:
Al = [)‘maX(ATA)]Z- to 7

Let R* denote the set of nonnegative real numbers, i.e.,1) Za;, iS the subset of a time spacE (in general
R+ = [0,+00), and let N denote the set of nonnegative not equal to7") which is determined bya, %), and

integers, i.e.,N = {0,1,---,}. For anyr € R*, [r] denotes
the greatest integer which is less than or equal.tbet X be
a subset of™ and letY be a subset oR™. We denote by
C[X,Y] the set of all continuous functions fro’ toY", and
we denote byC*[X, Y] the set of all functions fromX to Y’

which have continuous derivatives up to and including ofder

(T, T.1,) is equivalent to(T, T, 1) (-6, (T, Tuty) ~
(T, T,.+,)) with respect toh : T — T, where T, ;, =
{teT:tg 3t p(t,to) <l}is asubsetof andl >0
is finite or infinite, depending oK«, to);
2) ﬁ(h(to), a, to) = a. O
We are now in a position to define the hybrid dynamical

A set7 is said to be completely ordered with the ordesystem.

relation “<” if for any ¢;,t, € T' andt; # t, eithert; < t,
orty < t1. We let(T, p) be a metric space wheférepresents
the set of elements of the metric space andenotes the
metric.

We denote a mapping’ of a setV into a setW by

Definition 3.4 (Hybrid Dynamical System):et S be a
family of motions onT’, defined asS C {p(-,a,t0) € A :
p(h(to), a,to) = a}, whereA = U, 1yycaxty {Za,t0 X {0} X
{to} — X7}, and whereh is uniquely determined by the
specific motion (-, a,t) (as explained in Definition 3.3).

f:V — W, and we denote the set of all mappings fronThen the five-tuple {7, X, A, S, Ty} is called a hybrid

Vinto W by {V — W}.

We say that a functio € C[[0,r], RT] (respectivelyp €
C[R™, R™]) belongs toclass K(i.e., ¢ € K), if #(0) =0 and
if ¢ is strictly increasing orf0, r] [respectively,[0, oc)]. We
say thatp € C[RT, RT] belongs toclass KRif ¢ € K and if
lim;_.o ¢(s) = co. A continuous functiory : [s1,00) — Rt
is said to belong t€lass Lif ¢ is strictly decreasing ofs; , oc)
and if lim;_., o(s) = 0 wheres; € R*.

dynamical systenfHDS). O
Remarks—i):In Definition 3.3, a mappingp(-, a,to)
T, +, — X is called a motion off’, even though this mapping
is in fact defined on the subsé}, ,, of another time spacg.
This 7" depends on the initial conditior{g, ¢,) and in general
varies if (a, t9) changes. However, any suth is equivalent
to the prespecified time spac. Due to this equivalence,

we may view any motiorg(-, a, %) : 1,4, — X as another
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mappingp(-,a, to) : To, — X which is defined on a subset
1o, Of T. Accordingly, we can equivalently regard an HDS
{T,X,A,S,To} as a collection of mappings defined only on 7 |
subsets off".
ii): The preceding way of characterizing motions as map-6 | —
pings that are defined on equivalent but possibly different time
spaces is not a redundant exercise and is in fact necessany.r —
This will be demonstrated in Example 2 (Subsection B of the
present section). O 4r —_)
In the existing literature, several variants for dynamical sys-
tem definitions are considered (see, e.g., [16]-[19]). Typically,; | —
in these definitions time is eithé = RT or T = N,
but not both simultaneouslyls = 7’, and depending on , | —)
the particular definition, various continuity requirements are
imposed on the motions which comprise the dynamical system. |
It is important to note that these system definitions are not
general enough to accommodate even the simplest types gf, ‘ | ,} | | | |
hybrid systems, such as, for example, sampled-data systems o 1 2 3 4 5 6 7 8
the type considered in the example below. In the vast literatufig. 1. Graphical representation of the time sp@téor Example 1.
on sampled-data systems, the analysis and/or synthesis usually
proceeds by replacing the hybrid system by an equiV‘"‘Ie(—{‘“tﬁuations and as such, is defined diistrete-timg’ N. The
system description which is valid only at discrete points i@ntire sysiem 1) is ther,l defined Ghc R+ x N. O
time. T_his may be followed by a separate investigation 1o In our considerations of the above sampled-data system,
determine what happens to the plant to be controlled betwqﬁg did not include explicitly a description of the interface

samples. between the plant and the digital controller (a sample element)
and between the digital controller and the plant (a sample and
hold element). In Fig. 1, we provide the “graph” far.

B. Examples of HDS's

In the following, we elaborate further on the concepts Example 2 (Motion Control SystemBeveral different
discussed above by considering two specific examples aésses of systems that arise in automation have recently
HDS'’s. been considered in the literature (see, e.g., [3]). Such systems,

Example 1 (Nonlinear Sampled-Data Feedback Control Syshich are frequently encountered in the area of motion control,
tem): We consider systems described by equations of thee equipped with certain types of nonlinearities in the form

form of trigger functions We consider in the following a special
i(r) = f(z(r) + Bu(k),r € [k, k + 1) example of such systems which concerns an engine-drive train
{u(k +1) = Cu(k) + Da;(k) ’ (1) system for an automobile with an automatic transmission. This

system is described by the equations

wherez € R*, f € CYR",R"], f(0) = 0, u € R™, &1(r) = z2(r)

Be Rrxm c RmXxm n c Rmxn . c R-I— andk € N. . _
g ’ ’ ’ . da(r) = [—alwa(r)) +u(r)]/[1 + z([p])] 4
_ Systemb(l) is an HDS. In the present case the time space p(r) = lz1, 22,0), (I(z1, T2, 1) > 0) (4)
'S given by 2([pl + 1) = F(2([p]); 21 (rp)), w2(rpp)))
T2 {(r,k) e R?:7 >0,k =[r]}. (2) wherez;,z2 € R denote vehicle ground speed and engine

_ ) ) _ ) rpm, respectivelyu(r) € R denotes the external input as the
The spacd’ is equipped with a metrip which has the property throttie position, thea(-) term describes the inability of the
that for anyt, = (ri,k) € T andt; = (r2,k2) € T, yehicle to produce torque at high rpmse Zx represents the
p(t1,tg) = [r1 — ra|. The setl is a completely ordered spacegpft position of the transmission, whegy is some subset of
In guch a way that, < #, if and only if 1 < 5. Th? Sl N, andf: Zx x R x R — Zj determines the shifting rule.
Ty is given byTy = {(k,k) € R? : k € N}. The motionp  The variablep € C'[R*, R*] represents a special “clock”
determined by (1) is of the form or “counter.” The notation,; denotes the most recent time

p(t) = [x(T)T’u(k)T]T ©) when p passes an integer. _

System (4) is an HDS with state spacé = R x
where in (3)t = (r, k) € T. The state space for system (1) iR x Zy, time spacel = R*, and T, = T. For any
X =R*xR™andA C X. specific initial condition, (4) determines a specific solution

System (1) may be viewed as an interconnection of twer, (r), z2(r), z([p()])]. If we defineT = {(r,[p]) € R? :
subsystems: @lant which is described by a system of first- > 0,p = p(r)}, then7 is another time space with metric
order ordinary differential equations, and as such, is definpdand order relation<, having the property that for any
on “continuous-timg R*, and adigital controller which ¢ = (r1,[p1]), t2 = (r2,[p2]), p(t1,t2) = |r1 — 72|, and
is described by a system of first-order ordinary differende < t¢,, if and only if r; < 73. The specific solution
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P T p . X
7 N M
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[38]

3T : d 3 ~
L +
o R P - X
/\L Fig. 3. Representation of the embedding mapping of motions.
L -

: ! Exponential Stability: We call (S, M) exponentially stable
i i T, T if there existsae > 0, and for everye > 0 and¢, € Tp, there
exists & = §(¢) > 0 such thatl(p(t, a, t), M) < ee=F(t:t0)
for all ¢t € T,:, and for all p(-,a,?y) € S, whenever
d(a, M) < 6.
[(#1(r), z2(r), 2([p(r)])] can be regarded as a motion in the Uniform Boundednesss is said to beuniformly bounded
form of ¢(¢) = [z1(r), z2(r), z([p])]*, wheret = (r,[p]) € T. if for every @ > 0 and for everyt, € T, there exists a
Although ¢(¢) is a mapping defined of, we still view it as a B = B(a) > 0 (independent of,) such that ifd(a, z0) < «,
motion in an HDS defined oR*, as defined in Definition 3.4, then for all p(-,a,ty) € S d(p(t,a,t0),z0) < 3 for all
since? is equivalent taR™. In Fig. 3, we depict the graph of ¢ ¢ 7, > Wherezg is an arbitrary point inX. S is uniformly
the time spacd’ of a specific motion. (We use left brackets,ltimately boundedf there existsB > 0 and if corresponding

Fig. 2 Graphical representation of a time spdtéor Example 2.

to indicate that left end points are included.) O toanya > 0 andt € 1,,,, there exists a = AMa) > 0
(independent of € T,,) such that for allp(-,a,ty) € S,
C. Some Qualitative Characterizations d(p(t,a,to), zo) < B for all t € T, ¢+, such thatp(¢,t9) > A,

In the present paper we will primarily focus our attentlowh?everd(a’ o) < a wherezo is an arbitrary point

on the stability properties of invariant sets of HDS's.
Definition 3.5 (Invariant Set):Let {7, X, A, S,Tyo} be an
HDS. A setM C A is said to beinvariant with respect

to system S if « € M implies thatp(t, a,t9) € M for all tabilit totic. stabilit ” totic stabilit
t €Ty, alltg € Ty, and allp(-, a,to) € S. We will state the stability, asymptotic: stability, unitorm -asymptotic stability,

above more compactly by saying thiat is an invariant set of Sxpogegtlal stab 'I:jty.’ utnlgqlr{n bountqte?ness;, ur:lfo(;m tu I:!mate f
S or (S, M) is invariant [ boundedness, and instability constitute natural adaptations o

the corresponding concepts for the usual types of dynamical
systems encountered in the literature (refer, e.g., to [16,

Instability: (S, M) is said to beunstableif (S, M) is not
stable. O
Remark 3.1: The above definitions of stability, uniform

Definition 3.6 (Equilibrium): We call z, € A an equilib-
rium of an HDS{T, X, A, S,T,} if the set{z,} is invariant
with respect taS. O

Definition 3.7—Uniform (Asymptotic) Stability:et {7, X,
A, S, Ty} be an HDS and letM C A be an invariant set
of S. We say that(S, M) is stable if for every ¢ > 0,
and ¢ty € Ty, there exists a8 = &(e,tp) > 0 such that
d(p(t,a,to), M) < efor all t € T, ;, and for allp(-,a,ty) €
S, wheneverd(a, M) < 6. We say that(S, M) is uniformly
stableif § = 6(¢). Furthermore, if(S, M) is stable and if
for any ¢y € Ty, there exists am = n(to) > 0 such that
limy o0 d(p(t, a,t9), M) = 0 (i.e., for everye > 0, there We will accomplish the stability analysis of an invariant
exits at. € T such thatd(p(t,a,t9), M) < e whenevert € T set M with respect to an HDSS in two stages. First we
andt. < t) for all p(-,a,t9) € S wheneverd(a, M) < n, embedthe HDYT, X, A, S,To} (which is defined on a time
then (S, M) is called asymptotically stableWe call (S, M) spaceT) into an HDS{R*, X, A, S, R7} (which is defined
uniformly asymptotically stablé (S, M) is uniformly stable on R*). We then show that the stability properties(¢f, M)
and if there exits & > 0 and for everye > 0 there exists can be deduced from corresponding stability properties of
a7t = 7(¢) > 0 such thatd(p(t,a,to), M) < ¢ for all (S,M). Finally, we establish stability results for the HDS
te{teT,,, : p(t,to) > 7}, and allp(-, a, ty) € S whenever {R", X, A, S, RY} which is a system with discontinuities in
d(a, M) < 6. its motions.

we can defineasymptotic stability in the large, exponential
stability in the large, complete instabilityand the like, for
HDS's of the type considered herein (refer to [22]-[28]
and [30]). Due to space limitations, we will not pursue
this. O

IV. STABILITY OF INVARIANT SETS

Secs, 3.1 and 3.2]). In a similar manner as was done above,
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A. Embedding of HDS'’s into Dynamical Our proof consists of two parts. First, we show thé )
Systems Defined aR™ is uniformly stableif and only if (S, M) is uniformly stable
ANext, we show  thats, M) is uniformly asymptotically stable
if and only if (S M) is uniformly asymptotically stable

1): If (S, M) is uniformly stablewe know that for every
e > 0 there exists a(¢) > 0 such that for every, € T,
d(p(t,a,t0), M) < ¢ for all a € A with d(a, M) < §, for all
t € Tos, and allp(t, a,to) € S. For anyj(r,a,ro) € S it

Any time space?’ (see Definition 3.1) can be embedde
into the real spacé&k®™ by means of a mapping : 7" — R*
having the following properties: 1)(t,,i,) = 0, wheret,;,
denotes the minimum element i and 2)g(¢) = p(¢, tmin)
for ¢t # tmin. Note that if we letR; = ¢(T), theng is an
isometric mapping fron¥’ to R; [i.e., g is a bijection from7

onto Ry, and for anyt;,t, € T such thatt, < t, it is true > TU€ that
that p(t1,t2) = g(t2) — g(t1)]. S ar
The above embedding mapping gives rise to the following d(p(r; a; o), M) .
concepts. _ { B 0, ) if r ¢R,
Definition 4.1 (Embedding of a Motion )et {7, X, A, dp(g=(r),a,97(r0)), M), ifreR

S,To} be an HDS, letr € A be fixed, and ley : ' — R* N .
be the embedding mapping defined above. Suppose twgerm € ¥, andro € Ky Hence, wheneved(a, M) < §

p(-a,to) € S is a motion defined o, ,,. Let (-, a, o) : is satisfied, we have elth@l](p(7 a, 7o), Ji/[) =0forr ¢ Ry

Rf — X, whereRf = {r € R* : r > no}, be a O db(r,a,m0), M) = d(p(g™ ()ag (r0)), M) < « for

functlon having the foIIowmg properties: L)y = g(to); " € R;. This leads to the conclusion thét, M) is uniformly

2) p(rya,m0) = plg~t(r),a,t0) if + € R = ¢(T); and stable

3)i(r, a,r0) = « if » ¢ Ry. We callj(-,a, ro) the embedding Next, assume thatS, M) is uniformly stable Then for
of p(-,a, o) from T to R* with respect toz. The graphic everye > 0 there exists a(¢) > 0 such that for every

interpretation of this embedding is given in Fig. 3. O € Ry, d(p(r,a,70), M) < e for all a € A with d(a, M) <

N . . 6 for all ro € R+ and all p(-,a,t) € S. Therefore, for
It turns out thatj(-, ag, 7o) is a motion for another dynam- 0 u Al b dhto . )
ical system whicrtf)(weode?i?qe next. y any p(t,a,tg) € S satisfying d(a, M) < 6, it follows that

Definition 4.2 (Embedding of an HDS et {7, X, 4, 9Pt o). M) = d(ply(t).a.9(to)), M) < e We conclude

S, Ty} be an HDS and let € A. The HDS{R*, X, A, 5, Rt} Nat(S, M) is uniformly stable

2): If (S,M) is uniformly asymptotically stabjewe
is called the embeddingof {7,X,A, S,To} from T to e :
R* with respect to (w.rt) x where R(Jf — (Ty) and know that(S, M) is uniformly stableand there exists &> 0

<A B _ _ and for everye > 0 there exists a = 7(¢) > 0 such that
S ={p(, a0, 70) : (- a0, 7o) is the embedding (-, ao,t0)  g(p(t, a, ty), M) < e for all £ € Tty < t, p(t,t0) > 7 and all
W.rt. z, p(+, ao, to) € S} p(t,a to) € S wheneverd(a, M) < ¢, wherea € A, andt, €

In general, different choices of will result in different T,. For anyj(r, a,ro) € S satisfyingd(a, M) < 6, it is true
embeddings of an HDS. It is important to note, however, tha{, d(p(r, a, o), M) =0 forr ¢ Ry or d(p(r,a,r9), M) =

different embeddings corresponding to different eIemezntsd( (g=1(r), a, g~ (ro)), M) if r € R,. Furthermore, since in
contained in thesameinvariant setA/ will possess identical {ne |atter case it is true that — ro = p(g=L(r), g~ (ro)),

stability properties. it follows that d(p(r, a,70), M) < ¢ as long asr — rg > 7.
In view of the above definitions and observations, any HDfherefore, by using the conclusions of part 1), we conclude
defined on an abstract time spatecan be embedded intoihat (5 M) is uniformly asymptotically stable
another HDS defined on real time spag&¢. The latter system | (S, M) is uniformly asymptotically stablave know that
consists of motions which in general may be discontinuous a(@l7 M) is uniformly stableand there exists @ > 0 and
has similar qualitative properties as the original hybrid systefyr every ¢ > 0 there exists ar = 7(e) > 0 such that
defined on an abstract time space. This is summarized in H@(T, a,10), M) < eforall r—ro >+ and allp(r, a, o) € S
next result. wheneverd(a, M) < &, wherea € A, andry € RJ.
Proposition 4.1: Suppose{T’, X, 4,5, 1o} is an HDS. Let Therefore, for anyp(t, a,to) € S satisfying d(a, M) < 6,
M C A be an invariant subset &f, and letz be any fixed it is true thatd(p(t, a,t0), M) = d(p(g(t),a, g(to)), M) < ¢
point in M. Let {R*,X,A,5 R{} be the embedding of for all t € Tty < t,p(to,t) > 7 since p(to,t) = g(t) —
{1, X, A,8, 1o} from T to R with respect tar. ThenM is  g(t,). Therefore, we conclude th&s, M) is alsouniformly
also an invariant subset of systesnand (S, M) and (S, M) asymptotically stable O
possess identical stability properties. O In view of Proposition 4.1 and other similar results
Proof: By construction itis clear tha¥/ is invariant with - [22]-[28], [30], the qualitative properties (such as the stability
respect toS if and only if M is invariant with respect t&. properties of an invariant set) of an HD&can be deduced
In the following, we show in detail thatS, M) is uniformly  from the corresponding properties of the dynamical system
asymptotically stableif and only if (S,M) is uniformly S, defined onR*, into which systemS has been embedded.
asymptotically stableThe equivalence of the other qualitativeAlthough dynamical systems which are defined Bh have
properties betwee(@, M) and (S, M), such asstability, ex- been studied extensively (refer, e.g., to [16]-[19]), it is usually
ponential stability, uniform boundednessiduniform ultimate assumed in these works that the motions are continuous, and
boundednesscan be established in a similar manner (sess such the results in these works are not directly applicable
[22]-[28] and [30]) and will therefore not be presented heren the analysis of the dynamical syste®t, X, A, 5‘,R5r }.
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B. Lyapunov Stability Results Now consider a fixed > 0. For any givere > 0, we can
In the following, we establish some stability results fof00se & > 0 such that

HDS's {R*, X, A, S, R{} with discontinuous motiong. To {d)—l <¢—1 <¢2(5)>) o1 <f<¢_1 <¢2(5)>>) } <e

simplify our notation, we will henceforth drop the tilde, 1 T L T

from S andp and simply write{R*, X, A, S, R} in place (6)

of {R* X A S RI}. since ¢1,¢2, ¢ € K and f(0) = 0. For anya € A with
Theorem 4.1 (Lyapunov Stability):et {R*, X, A, S, RT} d(a,M) < § and anyro € R, we are now able to show

be an HDS, and let/ C A. Assume that there exists athatd(p(r,a,ro), M) < ¢ wheneverr > ro 4 7. The above

V:X x Rt — R+ and ¢y, ¢ € K defined onR+ such Statementis true because for ang o+, » must belong to

that some intervalr,,,r,41) for somen € N, i.e.,r € [rn, 7ni1)-
Therefore, we know that, 1 — ro > 7. It follows from (5)
¢1(d(z, M)) < V(z,r) < ¢o(d(z, M)) that ¢(z,) < “527“), which implies that
forall z € X,r € RT. L[ $2(6)
1): Assume that for any(-,a,r9) € S, V(p(r,a,r0),r) Vi(p(rn,a,70),mm) = 2n < ¢ <T> (7)

is continuous everywhere oR; 2 {re Rt v >
except on an unbounded closed discrete sulisetf R
(£ depends ornp). Also, assume that if we denote = V(p(r,a,ro),70) < f<¢—1<¢2_(6)>> (8)
{r1,72,---}, thenV(p(ry, a,r9), ) iS NONiNcreasing fon = T
0,1,---. Furthermore, assume that there exjsts C[R*, R*] if » € (r,,7,11). In the case whem = r,,, it follows from
independent ofp € S such thatf(0) = 0 and such that (7) thatd(p(r,,a,r0), M) < €, noticing that (6) holds. In the
Vip(r,a,r0),7) < f(V(p(rn,a,70),7n)) fOr 7 € (rn,7n41),  case whenr ¢ (n,Tnt1), We can conclude from (7) that
n=20,1,---. Then(S, M) is invariant and uniformly stable d(p(r,a,m0), M) < e. This proves thats, M) is uniformly
2). If in addition to the assumptions given in 1) there eXasymptotically stable. N
ists ¢3 € K defined onR*, such thatDV (p(rn,a,70),7.) < Remarks 1):In Theorem 4.1 (and in several subsequent re-
—¢3(d(p(rn,a,10), M)), where DV (p(rn,a,r0),7n) 2 sults) we required that every motion be continuous everywhere
L [V(p(rni1,a,70),mmy1) — V(p(rn,a,70),7,)], then except on an unbounded closed discretefset {71, 1o, - -}.

and

ol —Tn

(S, M) is uniformly asymptotically stable With this requirement, we ensure that will converge toco
Proof 1): We first prove tha{.S, M) is invariant. Ifa € Wwithout finite accumulation. The reason for requiring this is
M, thenV (p(ro,a,r0),70) = 0 since V(p(ro,a,r0),70) = because our main interest concerns the asymptotic behavior

V(a,m0) < ¢a2(d(a, M)) = 0 and d(a, M) = 0. Therefore, (whenr goes toxc) of the (discontinuous) motions of HDS's.
we know thatV(p(r,,a,70),r,) = 0 for all n > 0, and  2): In cases where the qualitative behavior of a dynamical
furthermore V(p(r,a,r0),7) = 0 for all » > 7y since systemis of interest when time approaches some finite instance
V(p(r,a,ro),r) < f(V(p(rn,a,r0),7s)). It is then implied (point), sayr., < oo, no essential difficulties are encountered
that p(r,a,70) € M for all » > ro. Therefore,(S, M) is in establishing qualitative results similar to those given above.

invariant by definition. In this case we require that each motion be continuous
Sincef is continuous ang(0) = 0, then for any > O there everywhere on{r : r < r..}, except onE = {ry,r2, -}
exists§ = 6(¢) > 0 such thatf(y) < ¢1(¢) as long a®d < with {r,} —r . O

y < 8. We can assume that< ¢;(¢). Thus for any motion  In the following we state additional Lyapunov stability
p(-,a,m0) € S, as long as the initial conditiod(a, M) < results for HDS's.We omit the proofs of these results due to
¢2—1(6) is satisfied, therV (p(ro,a,70),70) = V(a,70) < space limitationsFor some of these proofs, refer to [22]-{28]
da(d(a, M) < ¢a(y(8)) = & and V (p(ryi,a,ro),ry) < 6 and [30]
for n = 1,2,---, since V(p(rp,a,70),7,) is nonincreas-  Theorem 4.2 (Exponential Stability)-et {R*,X, A,
ing. Furthermore, for any- € (r,,7,+1) we can conclude S, R}} be an HDS, and letM C A. Assume that there
that V(p(r, a,r0),7) < f(V(p(rn,a,70),m)) < ¢1(c) and exists a functionV : X x Rt — R* and four positive
d(p(r,a,r0), M) < ¢T (V(p(r,a,70),7)) < ¢7(p1(e)). constantsii,az, as, andb such thata [d(z, M)]* < V(z,r)
Therefore, by definition(S, M) is uniformly stable. < agld(z, M)]® for all z+ € X,r € R. Assume that
2): Letting z, = V(p(rn,a,70),7:), we obtain from for any p(.,a,r0) € S, V(p(r,a,70),7) iS continuous
the assumptions of the theorem that,; — z, < —¢3 0 everywhere onR; 2 {r € Rt : r > 7o} except
¢35 (20)(Tng1 — 7n) for n = 0,1,---,. If we denote = on an unbounded closed discrete sub&tof Rf. Let
¢s0¢;' , theng € K and the above inequality becomest = {ry,ry,---} with r, strictly increasing. Furthermore,
Zng1—Zn < —P(2n)(Tny1 — 7). Since{z,} is nonincreasing assume that there existy € C[R*,R*] such that
andgs; € I, itfollows thattzy 1 — 21 < =¢(ea)(rkr=r1) < V(p(r,a,70),7) < F(V(p(rn, a,70), 7)) O 1 € (r, ),
—¢(zn)(req1 — 1) for all & < n. We thus obtain that , = 0,1, .-, and that for some positive constantf satisfies
Zotl = 20 S =$(za)(rat1 = ro), for all n > 0. It follows  f() = o(jt|") as [f| — 0 (i.e., lim,—o £ = 0). Assume
that that DV (p(rn, a,70),7n) < —as[V(p(rn, a, o), 7 )]?, for all
P(zn) < 20Tl o 20 (5) n Then(S,M) is exponentially stable in the largeDV is
Tntl =70 Tni4l =70 defined in Theorem 4.1). O
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Theorem 4.3 (Boundedness)et { R, X, A, S, R3'} be an

467

view p(-,a1,71) in 2) as acomposition of p;(-,a;,r;) and

HDS, and letM C A whereM is bounded. Assume that therep, (-, a2, r2). With this convention, Assumption 4.1 can be

exists a functio/ : X x Rt — Rt and¢, € KR, ¢» € KR
such thate;(d(z, M)) < V(z,7) < ¢o(d(x,M)) for all
z € X andr € RT.

1): Assume that for any(-,a,r) € S, V(p(r,a,ro),r)
is continuous everywhere oR;} 2 {r e Rt :r > 7o}
except on an unbounded closed discrete suhBetof
RY. Let E = {ry,ry,---} with r, strictly increasing.
Assume thatV (p(r,,a,79),7,) IS nonincreasing for all-,
such thatd(p(r,,a,r0), M) > &, where ¢ is a constant.
Furthermore, assume that there exists € C[RT,R*]
such thatV(p(r,a,r0),7) < f(V(p(ra,a,r0), 7)) for r €
(FnyTne1), n=0,1,---, and that there exists > 0 such that
d(p(TTH-lvav 7)0)7M) < CWheneverd(p(Tn,CL,T()),M) z 5
Then S is uniformly bounded

2): In part 1), assume in addition that there exigtse K
defined onR* such that

DV(p(Tn,CL, 7’0)77’71) < _¢3(d(p(7’n7a77’0)7M))
for all r, such thatd(p(rn,a,ro),M) > & Then S is

uniformly ultimately bounded O
Theorem 4.4 (Instability):.Let {R*, X, A,S,Rf} be an

restated in the following manner: 1) any partial motion is
a motion inS and 2) any composition of two motions is a
motion in S.

Theorem 4.5:Let {R*, X, A, S} be an HDS and leM C
A be an invariant set, wherg is assumed to be a neighbor-
hood of M. Suppose tha$ satisfies Assumption 4.1 and that
(S, M) is uniformly stable Then there exist neighborhoods
A, X; such thatA; C X; C A, and a mappingV :
X x RT — RT which satisfies the following conditions: 1)
there existspy, p2 € K such thatp; (d(z, M)) < V(z,r) <
¢o(d(z, M)) for all (z,7) € X; x RT and 2) for every
p(-,a,m0) € S with a € Ay, V(p(r,a,ro),r) iS nonincreasing
for all » > rq. |

The proof of Theorem 4.5 follows along the same lines as
the proof of an existing converse result for the uniform stability
of continuous dynamical systems. This proof, however, does
not make use of any continuity assumptions for the dynamical
system (refer to the proof of [16, Th. 4.5.2]). For the converse
theorem of uniform asymptotic stability, the results in the
literature cannot be adopted directly because of continuity
assumptions in the proofs of those results (see, e.g., [16]).
However, under some additional mild assumptions, we will

HDS. and letM  A. Assume that there exists a functiorpe able to establish a converse theorem for the uniform

V : X x RT — R* which satisfies the following conditions.

1): There exists ap € K defined on Rt such that
V(z,7r) < ¢(d(z, M)).

2): For anyp(-,a,79) € S, V(p(r,a,ro),r) is continuous
everywhere onR;t 2 {r e R*:r > 1} except on an un-
bounded closed discrete subgeof R, , and there existg ¢
K such thatDV (p(r,,, a,70), ) > (d(p(rs, a, 1), M)) for
all n.

3): In every neighborhood ofif there are points: such
that V(x,79) > 0. ThenM is unstablew.r.t. S. O

asymptotic stability of invariant sets of the types of hybrid
systems considered herein.

Assumption 4.2:Let {RT, X, A, S} be an HDS defined
on RT and assume that evep(-,a,79) € S is continuous
everywhere onR* except possibly onE = {ry,rs,---}
[where £ depends offa, ro)], and that: 1) 2 inf{rpi1—rn:
(a,70) € AXR*,n=1,2,---} >0and 2)L 2 sup{rp+1 —
rn i (a,m0) € AX RT \n=0,1,---} < o0. O

Remark: Notice that in part 2) of Assumption 4.2, starts
from zero. However in part 1), we require only thatstarts

For further results which are in the spirit of the abovéfom one since in general there is no lower limit far— rg.

theorems, refer to [24] and [28].

C. Converse Theorems

In this subsection we establish a converse to Theorem 44

for the case ofuniform stability and uniform asymptotic

stability under some additional mild assumptions. We wi

be concerned with the special cases whBj Rt
and 7, = 7. Accordingly, we will simplify our notation
by writing {R*, X, A, S} and {T,X,A,S} in place of
{R* X, A, S, RT} and {T, X, A, S, Tp}.

Assumption 4.1:Let {R*, X, A, S} be an HDS. Assume

that: 1) for anyp(-,a,ro) € S, there exists &(-, a;,71) € S
with 71 > 7o, a1 p(ri,a,r9) such thatg(r,ay,r) =
p(r,a,rg) for all » > r; and 2) for any two motions
pi(-,ai,ri) € Si =12 if az = p1(7’2,a1,7‘1), then there
exists ap(-,a1,71) € S such thatp(r, a1, r1) = p1(r,a1,7r1)
for r € [r1,r2) andp(r,a1,71) = p2(r,az,72) forr > r.. O
The above assumption is also utilized in the analysis

continuous dynamical systems (see, e.g., [16, Assumption

4.5.1]). In this assumption, we may viey{-,a;,r1) in 1)
as apartial motion of the motion p(-,a,ry), and we may

We are now in a position to state and prove the following
converse result.
Theorem 4.6:Let {R*, X, A, S} be an HDS and led C
be an invariant set. Assume thétsatisfies Assumptions
4.1 and 4.2, and furthermore assume that for every,) €

x RT, there exists ainique p(-,a,to) € S. Let (S, M)
be uniformly asymptotically stableThen, there exist neigh-
borhoodsA; and X; of M such that4d; ¢ X; C A4, and a
mappingV : X; x RT — R* which satisfies the following
conditions.

1) There exist¢y,¢2 € K such that¢(d(z,M)) <
V(z,r) < ¢o(d(z, M) for all (z,r) € X; x RT.

2) There exists ¢35 € K such that for all
p(,a,m0) € S, we have DV (p(ry,a,70),7) <
—ps(d(p(rp,a,r0), M))wherea € Ay, n = 0,1,--,
and whereDV is defined in Theorem 4.1

3) There exists anf € C(RT,R*), f(0) 0, such

that V(p(r,a,70),7) < f(V(p(ry,a,ro),r,) for all

7 € [rpn,mne1) and alla € Ay, 1o € RT. O

In the proof of the above theorem, we will require the
following preliminary result.

of
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Lemma 4.1:Let 3 € L be defined o2+ . Then there exists We are now ready to define the Lyapunov functigiiz, o)
a functiona € K defined on0, 3(0)] such that for any closed for (z,7¢) € X; x R*. Since for any(z,r) € X; x R*,
discrete subsefrg,r1,---} C RT satisfyinginf{r,+1; —r, : there exists a unique motiop(-, z, 7o) which is continuous
n=1,2---}>0,itis true that) ;2 a(B(r; — 7)) < +00. everywhere omR* except onE = {rg,1,-- -, }, we define

Proof of Lemma 4.1:We definen € C[R4, R], where oo
R+ = (0’ OO)' by V(‘/EvTO) = Zu(d(p(TkvvaO)?M)) (12)
B(t)/t,t € (0,1) F=0
n(t) = /3( ),t € [1,00). whereuw € K will be specified later in such a manner that

the above summation will converge. Obviously(x,ry) >
Clearly, n(t) is strictly decreasing for allt > 0, w(d(p(ro,,70),M)) = w(d(zx,M)). Hence, if we define
lim; o+ n(t) = +oo and n(t) > B(t) for all ¢ > 0. ¢, =, thenV(z,ro) > ¢1(d(x, M)) is true for all(z, 7o) €
Furthermore,n is invertible, n~1 is strictly decreasing, and X, x Rt
YB() = nHn(r)) = 7 for all 7 > 0. Consider p(-,z,79) € S and the corresponding set
We now definea( ) = 0 and a(r) = exp(—n~(r)) f E ={ry,rs,---}. If we denotez = p(r,,a,rq), andry = r,
r > 0. Then it is obvious thatx € K and 04(/3(7)) for somen > 1, we know there exists a unique motion
exp(—1~1((1))) < exp(—7). It follows that 37,7, (3()u p(-,&,70) € S which is continuous everywhere an> 7,

o
=

|/\|

T0)) S dicoexp(ro —m) < 1+ 357, eXP(70 =T except on{r1,7s,---}. By the definition of V' given by
1+ 302 exp(r — ri). (12), we know thatV (z,70) = > reo u(d(B(rk, T, 70), M)).
If we denotel = inf{r,,4+1 —7, : n =1,2---}, we knOW However, by the uniqueness property, we know that
thatr; —r; > (¢ — 1)l. Hence it is true that P = Tago @Nd (75, 7, 70) = P(Frgier D, @y 70), 1) =
oo oo p(rntk, a,70). Therefore, itis clear tha (p(r,,, a,70),7) =
Z alB(ri —ro)) <1+ Zexp(—(i - 1) Yo, w(d(p(ry, a, o), M)). It follows that
=0 1 =t Dv(p(7n7 @, 7)0)7 Tn)
=t T ey < O = W(p(rat1 a,70) mng1) = V(p(rns a;70), 1))/ (Prg1 = )
o = [ Z U’(d(p(Tkvav TO)vM))
We now proceed to the proof of Theorem 4.6. k=n+1
Proof of Theorem 4.6:Since(S, M) is uniformly asymp- i
totically stable we know by Theorem 4.5 that there exist some — Z w(d(p(ri, a,r0), M)/ (rnt1 —70)
neighborhoodsd; and X; of M such thatd; ¢ X; c A and k=n

a mappingV : X; x R* — R+ which satisfies the following = —(d(p(rn,a,70), M))/(rni1 — 7n)

conditions. forn=0,1,---. Sincer,,, — r, < L by Assumption 4.2-2),
1) There eX|st¢1,¢2 € K such that¢1( (z,M)) £ it follows that
V(z,r) < dold(z, M)) for all (z, 7)€X1><R+
2) For everyp( a 70) e Swithae A, V(p(r,a,r0),7) DV (p(rn,a,r0),mn) < —u(d(p(ry,a,10), M))/L
is nonincreasing for alt > . = —p3(d(p(rp,a,ro), M))
From 1) and 2) above, we conclude that for anye
[rr, Tnt1), 1t is true that

Fuld(plr,a,r0), M)
< Vi(plra, a,70),7n)

where we defineds = u/L.

We now show how to choose € K so that the infinite
) summation (12) converges. It follows from (11) that for any
(z,70) € X1 x RT, we have

u(d(p(r; z,70), M)) < u(¢(d(z, M))o(r —10))

L < [uw(p(d(z, M))o(0))]? [u(¢(ho)o(r — o))]7.  (13)
dp(r,a,70), M)) < g1 [o2(d(p(ra; a,70), M))] - (10) ) o B(t) = ¢(ho)o(r). ThenB € L . Hence, by Lemma 4.1,

for all 7 € [ry,7p41), andn = 0,1, -- there exists ana € K defined on|0,3(0)] such that

By the result in [16, Problem 3.8. 9] there exists a functiotico @(B(Tit1 — 7)) < oc. If we defineu(r) = [a(r)]?,
¢ € K defined on[0, ko], for somehy > 0, and another then it follows that

p(r,a,mo),
(d

V(
(/; ( (7n7a770)7M))

<
<

which implies that

function ¢ € L such that [u(p(ho)o(r — 7’0))]%

d(p(r, a,ro), M) < ¢(d(a, M))o(r — ro) (11) = [a(p(ho)o(r = ro))]* = a(B(r —10)).  (14)
for all p(-,a,m0) € S and allr > ro, whered(a, M) < ho. Hence, we conclude from (12)~(14), and (9) thétz, ro)
Define X; = {z € A; : d(z, M) < ho}, and Yisould(p(ri @ r0), M)) < FZ,  [uw(d(d(x, M)

| g | oONF X [u(o(ho)
A, = {leeXucda M) <¢7H (o)}, if d(ho) >ho  5(0))]Ex T2, i
{ X1, otherwise. [1+ 1/(1 — exp(=1)

x a(ri = ro))]? = [u(é(
]z r0)) < [u(g(d(x, M)) x

x
d(, M))x
; ()] x
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If we defineg, € K by ¢o(r) = [u(¢(c(0)r))]2[1+1/(1— where A € R™" denotes the Jacobian ¢f evaluated at
exp(—1))] then it follows thatV (z, ro) < ¢2(d(x,M)). Thus = = 0, i.e.,
we have proved parts 1) and 2) of Theorem 4.6. of
To prove part 3) of the theorem, letc [r,,,7,41). We have A= [8_
already shown thaV'(p(r, a,rq),r) < ¢2(d(p(r, a,r0), M)). v
Furthermore, since € A; C A, (10) is satisfied. Hence, weWe note that in (17) the components of the statey, are
know that directly accessible as subsystem outputs (of the plant and the
-1 - digital controller, respectively). When this is not the case,
Vip(r,a,r0),7) < d20dr 0 da(d(p(rn, a,70), M)). (15)  ransducers are used to measure the states indirectly, resulting
in linear output equations, as given for example in the system

(O scn- (19)

On the other hand, we have also shown tHa&{p(r,,

a,70),7m) > ¢1(d(p(rn, a, 7o), M)), which implies that description
ot 1% n ’ ) = d n 0), M). 16 37(7) = f($(7)) + Bw(k)77 € [kv k+ 1)
(7)1 © (p(7 ,CL,70),7 ) - (p(7 ,CL,70), ) ( ) y(7) _ M.I(T),T c [/i',k‘—i—].) (20)
Combining (15) and (16), we obtain th&(p(r, a,ro),r) < uw(k +1) = Cu(k) + Dy(k),k=0,1,---
brobr 0drod TV (p(rn, a,70), 7)) for all 7 € [rm, rais), w(k) = Pu(k),k=0,1,--
n =0,1,---, and all (a,r9) € A; x R*. If we now define

U 2 + ooy wherey € R, w € R, and M and P are real matrices of
f=¢20¢1 o¢aog¢r, thenf e C(RT,RT), f(0) =0, appropriate dimensions. By using the methodology employed
andV (p(r,a, 7o), 7) < f(V(p(rn, a,70),7x)). This concludes perein, it is possible to establish a stability result of the type

the proof of the theorem. _ L described above for (17), using the linearization of (20) about
Although converse theorems are in general not very Usge equilibrium (27, wT)T = (07, 07)T. We will not pursue

ful in constructing Lyapunov functions, their importance ify;g.

stability analysis cannot be overemphasized. In particular,Fq;r the linear sampled-data system (18), we have the
such results ensure thexistenceof Lyapunov functions with following result.

appropriate properties under suitable conditions. Furthermore| emma 5.1: The equilibrium (z7,u7)T = (07,0T)7 of

converse theorems tell us that under a given set of hypothesgs, inear HDS determined by the system of equations (18) is
a stability result is as good as you can possibly expect. FlS’r'iiforme asymptotically stablé and only if the matrix
additional converse theorems, refer to [22]-[28] and [30].

Before proceeding to applications, we wish to point to the A |Hy Hp
) : H= (21)
generality of all results presented above. These allow analysis D C

of finite-dimensionahs well asinfinite-dimensionabystems. .
is Schur stable, where

V. APPLICATION TO NONLINEAR SAMPLED-DATA SYSTEMS [T i, — /1 AL g B 22)
Our primary objective in this section is to present a detailed ' ’ 2 0

application of the stability theory developed herein to the 0

most widely known class of HDS's, sampled-data SYSIeMS.1he conclusion of Lemma 5.1 is well known (refer, e.g., to

The qualitative analysis of sampled-data control systems %] and [11]).

been of great interest in the past, and because of signific

advances in digital controller technology it continues to be gresent section.

current interest (see, e.g., [10]-[12]). These investigations "®rheorem 5.1: The equilibrium (27, ) = (07,07)7 of

primarily concerned with linear models. In the present secti T?) is uniformly asymptotically stabléf the equilibrium
we apply the results of Section IV in the stability analysi

; 2T )T = (07,07)T of the linear dynamical system deter-
of sampled-data control ;ystems ,Of the type can|dered iined by the system of equations given in (18) is uniformly
Example 1 (refer to Section Ill), given by equations of thgey niotically stable, or equivalently, if the matd given

Myve are now in a position to prove the main result of the

form in (21) is Schur stable.
#(r) = f(z(r)) + Bu(k),r € [k, k+ 1) (17) Proof: Since f € C'[R™ R"] and f(0) = 0, we can
wk+1) = Cu(k) + Dz(k),k=0,1,2,--- representf as
where all symbols in (17) are as defined in (1). We note that f(z) = Az + g(z) (23)
since £(0) = 0, (z¥,+T)T = (07,0T)T is an equilibrium of
@an. where the matrix4 is given in (19) andg € C[R™,R"]
In this section we will show that the asymptotic stabilitysatisfies
of the equilibrium (z%,+T)* = (07,07)T of (17) can be llg(z)]|
deduced from the asymptotic stability of the trivial solution of limo 7] =0. (24)
the associated linear system given by el =
{a‘:(r) — Au(r) + Bu(k),r € [k, k+ 1) a8) It follows from (24) that there exits & > 0 such that
uk+1) = Culk) + Da(k) k= 0,1,2,--- lg()ll < ] (25)
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whenever||z|]| < . If we let §; = 6_”(]‘3“'%6, then we can forall » € [k, k+1]. Specifically, when = k+1, we have that

conclude that for any: € N, it is true that||z(r)|| < 6 for k1
all r € [k, k + 1] whenever||z(k)|| < 6, and ||u(k)|| < &.  x(k +1) = ez(k) +/ A=) Bu(k)dr

For otherwise, there must exist ap € (k,k + 1) such that e k
llz(ro)|| = & and|jz(r)|| < & for all + € [k, ro]. We will prove +/ A=) g0\ dr
that this is impossible. Since for amye [k, k+1] we have that k
- 1
w(r) = x(k) + / [Az(T) + g(x(7)) + Bu(k)ldr  (26) = etz (k) + / A= dr . Bu(k)dr + A(k)
k 0
(34)

itis true that|z(r) || < [lz(k)[|+ [y [IAll-le(r) I+ g((r)]+
|B|| - ||u(k)||)dr for all » € [k,k+ 1]. In particular, when where
r € [k,ro] , we have that

k+1
_ Alk+1-7)
()l < (lz(®)] + (= )I[B] - [[u(k)]]) A(’f)—/k e g(z(r))dr. (35)
+/ AN - Nl + lgle(m)]|]dr Before proceeding further, we require the following inter-
k mediate result.
< (||f(/f)|| +[|BI| - [[u(k)I[) Claim 1: For any givene > 0, there exists a3 > 0,
+/ [HAH . ||$(7_)|| + ||$(7')||]d7' (27) 63 < 61, such that for anyk € N it is true that||A(k)|| <
: c([le(R)]| +[lu(k)]]) whenever|z(k)|| < 65 and[[u(k)|| < &3 .

where we have used in the last step of (27) the fact that Proof: For the givenc > 0, we choose:; > 0 such that
lo(e(O)] < lle(r)], since ()| < & for all 7 € [k rol, €= 1 cCIAHD F]B]). We know by (24) that there must
by assumption. By Gronwall’'s inequality (see, e.g., [20]), (278Xist aé; > 0 such that
implies that Al llg(x)|| < e1]|x]] (36)
D < k Bl - k ' R 28
lz(MI < (l=(®)I| + [ BI] - [[u(k)l])e (28) whenever||z|| < 6. We choose

for all » € [k,70]. Hence

. 82
o)l < (2]l + 1B] - (k)| )edI4H D00 = %= mm{é“ 201+ [[B])eT+D }
(NAl+1) (ro—k)
s+ HB||)61_6(”A”+1) Then, wheneveflz(k)|| < 65 and||u(k)|| < &3, it is true by
=1+ ||B||)‘3HT5.e<||A||+1><ro—k> (28) that
+1 ,

_ 5. UlIAIHDr—k=1) g (29) ()1l < (el + ()] - (1 + (| B4+

< 2631+ (| B < 6 (37)

sincery < k + 1. Inequality (29) contradicts the assumption N
that ||z(ro)|| = &. Therefore, we have shown that for anyor all 7 € [k,k + 1]. Combining (37), (36), and (31), we
k € N, it is true that|jz(r)|| < 6 for all » € [k,k + 1] obtain that
whenever|z(k)|| < 6; and ||u(k)|| < é;. In view of (25), we
Mz (k)| < 61 lw(B)| < 61 (25) lg(z(r)|| < exl|z(r)]|

can further conclude that (LAll+D)
< a(llz(B) + lu®)) - (1 + [1Bl)e (38)
lg(x(r)Il < [l ()] (30)
for all r € [k, k+1] whenever|z(k)|| < 63 and|u(k)|| < é3.

for all r € [k, k+ 1] whenevel|z(k)|| < é; and||u(k)|| < 61. ;
Equation (30) implies that (27) and (28) hold for alle ' ©"C® fOrA(k) given by (35), we know that

. )
Therefore, 1 folows flom () tat =A< [T M gtatr)lar

(I < ()| + [l - (1 + 1B+ (31) < e ()] + [Fu(R)1) - (1 + || Bl eI+
for all » € [k, k 4 1], assuming thatjz(k)|| < & and = ([l®I + llu(m)I) (39)
[w(R)]| < é1.

whenever the conditionfz(k)|| < 63 and ||lu(k)]| < é3 are
satisfied, concluding the proof of Claim 1.

We are now in a position to apply the results of Sections IlI
#(r) = Ax(r) + g(x(r)) + Bu(k) (32) and IV to prove the present theoreds discussed in Example
1 of Section 11I-B, (17) [or, equivalently, (1)] can be regarded

for » € [k,k + 1]. The solution of equation (32) must haveas a HDS defined on the time spafe= {(r,k) € R : r >

Since f(z) = Az + g(x), the first equation in (17) can be
written as

the form . 0,k = [r]}. The state for this hybrid system, denotedggy),
z(r) = e g(k) + / A=) Bu(k)dr is given byp(t) = [x(r)", u(k)*]* wheret = (r,k) € T.
) k This hybrid system can be embedded into a dynamical system
Alr—7) d 33y defined onRkT by the embedding mapping : 7 — Rt such
+ /k © 9(a(r))dr (33) that go(t) = » for anyt = (r,k) € T (as was explained in
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Section 1lI-B). If we denote the state in the new embedded Claim 2: For any kg € N, (47) holds for allk > kg
dynamical system defined aR+ by w ¢ R**™, then whenever

w(7) — [.’L'(T)T’ u(k)T]T (40) ||w(k0)|| < (imm((-;)) )%63(60) (48)

wherek = [r]. We will show thatw = 0 is an asymptoti- e
cally stable equilibrium of this dynamical system. Therefor&vhereéAwmin() and Ayax () denote the minimum and maxi-
(7, 7Y = (07,0T)7 is a uniformly asymptotically stable mum eigenvalues of’, respectively.
equilibrium of the original hybrid system (17). Proof: Equation (48) implies thatV'(w(ko),ko) <

Since by assumptioff is Schur stable, wherél is given Amax(P)|lw(ko)l? < Amin(P)d3(co). Since |lw(ko)|| <
in (21), we know that there exists a positive definite maffix 93(co) is satisfied, we know by (47) th&t(w(ko+1),ko+1)
such thatHTPH — P = —2I, wherel € Rvtm)x(n+m) s less thanV (w(ko), ko) because of (45). Therefore
denotes the identity matrix. We now define the Lyapunov V(w(ko + 1), ko + 1) < Amin(P)é3(c0) (49)

function
N_ T must be satisfied as well. Furthermore, since (49) implies that
Viw,r) =w" P L) ko + 1) < ds(co), it follows thatV (w(ko + 2), ko +2) is
and we show tha¥/(w(r),r) satisfies all the conditions of less thanV (w(ko + 1), ko + 1), and||w(ko + 2)|| is less than
Theorem 4.1 for any motiom(r). Clearly,w(r) is a motion §3(ep). By induction, it follows that||jw(k)|| < 83(eo) for all
which is continuous everywhere diit except on, the set k > kq. Hence (47) is satisfied for all > kg as long as (48)
of nonnegative integers. For aye N, it is known by (34) is true. This concludes the proof of Claim 2.

and (17) that By Claim 2 we know that for any motiom(r), condition
_ 2) of Theorem 4.1 is satisfiddr » > ko, as long as (48) is
k+1)=Huw(k k 42
wik+1) wik) +m(k) (42) true. Furthermore, it can be shown that (31) implies that
where H is given by (21),m(k) is given by
N V(w(r),r)
m(k) = (AT, 07)" (43) P 2
- <3t L @ B VE| V). b
and A(k) is given by (35). It now follows that Amin(P)
Viw(k+ 1),k + 1) = V(w(k), k) for all » > ko, and k& = [r], by noticing that||w(k)|| <
= wT (k + 1)Pw(k + 1) — w? (k) Pw(k) 63(60)C<R35rl }\%vrenever (48) is satisfied. Hence, if we define
= [Huo(k) +m(O)F PHw(E) +m(®)] - o () Pug) | € CHERT) 2 2
= wT(k)[HTPH — Plw(k) + 2mT(/§)PHw(/€) F(p) = imax(jij) |:1 +(1+ ||B||)G(IIA||+1)\/§:| p
+mT(k)Pm(k) min( )
= =2|lw(k)||* + 2mT (k) PHw(k) +m™ (k) Pm(k) thencondition 1) of Theorem 4.1 will also be satisfigblenever
< —9llwlN2 = 20lm) - I PH - lw(k the initial condition for (47) holds. Noting thads(eg) is
< =2 )||2 + 2lmE) - | - k)] independent ofk, , it follows from Theorem 4.1, that the
+ [lm(R) - {121]- (44) equilibrium (27 «1)T = (07,01)T of (17) is uniformly
By the definition ofm(k), we know that||m(k)|| = ||A(K)||- asymptotigally stablé the matrix H [given by (21)] is Schur
Furthermore, by Claim 1, if we choose afn> 0 such that  Stable. This concludes the proof of the theorem. O
5 For further results which are in the spirit of Theorem 5.1,
2v/2¢||PH]| + 2€2|| P|| < 2 (45)

refer to [26]. Other sources that address the present problem
then there exists &s(co) such that|| A(k)|| < eo(||z(k)|| + in a different context, using methods that differ significantly
|lu(k)|]) whenever||z(k)|| < 63(e0) and ||u(k)|| < &3(eo). from the present approach, include, e.qg., [32].

Therefore, whenever|w(k)|| < 63(e) (noticing that

lw(®)||? = ||u(k)]|? + |x(k)||?), it is true that VI. SYSTEMS WITH IMPULSE EFFECTS
lm(B)|| = |AE)]] < eol||lz(k)|| + |lu(k)|]) There are numerous examples of evolutionary systems
< cov/2l|w(k)| (46) which at certain instants of time are subjected to rapid

changes. In the simulations of such processes it is frequently
must hold. Combining (44) and (46), we conclude that convenient and valid to neglect the durations of the rapid
Viw(k + 1)k + 1) = V(w(k), k) changes.and to assume that the changes can pe represented
) ) by state jumps. Examples of such systems arise in mechanics
< =2fw(k)||* +2v2eo|[|[PH]| - |l (k)| (e.g., the behavior of a buffer subjected to a shock effect, the
+262||1P|| - [Jw(k)|)? behavior of clock mechanisms, the change of velocity of a
= [Jw(k)||2(=2 + 2V2e0||PH|| + 262 - | P|)) _rocket_at the_time_ of separation of_a stage, and so forth),
(47) in radio engineering and communication systems (where
the generation of impulses of various forms is common),
whenever||w(k)|| < é3(eo). Before concluding the proof, we in biological systems (where, e.g., sudden population changes
require another intermediate result. due to external effects occur frequently), in control theory (e.g.,
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impulse control, robotics, etc.), and the like. For additional 2): If in addition, we assume that there existspga € K

specific examples, refer, e.g., to [21] and [31]. such that
Appropriate mathematical models for processes of the type dV (z(t), 1)
described above are so-callggstems with impulse effecthe — g S sl t # (52)

gualitative behavior of such systems has been investigated
tensively in the literature (refer to [21] and the references cit
in [21]). In the present section we will establish qualitativ<§table . . . ..D

results for systems with impulse effects which in general areThe.above prgposmon prowdgs a sufﬂment_condlt_u.)n for
less conservative than existing results [21], [31]. the uniform stability and the uniform asymptotic stability of

We will concern ourselves witfinite-dimensional systemsthe _e_qumbrluma_: N 0 of (50). It is shown in [21] ‘h"?‘t under
gddltlonal conditions, the above results also constitute neces-

effects. For this reason we will leX = R" in the present sary conditions (see [21, Ch. 15]). One critical assumption in

section, the metriel will be assumed to be determined b)}hese_ necessary (_:ondl_uons. Is that the impulse effects occur at
norm || - |, and T = R+. fixed instants of time, i.e., in (50) the sé& = {7, 72, --}

The class of systems with impulse effects under investig'&- mdbependenlt_ tqf thg dlfferent I.solij'tlons..t .Thlsﬂ ass;lrjlmpnon
tion can be described by equations of the form may be unrealistic, since n applications it 1s often the case
that the impulse effects occur when a given motion reaches

£ )t 4 some .threshold condit?ons: Accordingly,_for different init!al

{Kw _ Ik(;:) ’t . (50) conditions, the sets of time instants when jumps in the motions
’ will occur will, in general, vary.

It is easily shown that (50) is a special case of the HDS

where € X - Rn, denptes the”statef € C[R" x defined in Section llI-A. Applying Theorem 4.1 to (50), we
R*, R"] satisfies a Lipschitz condition with respect to obtain the following result

which guarantees the existence and uniqueness of solution§heorem 6.1: Assume that for (50)(0, ¢) = 0 andZ;,(0) =

of (50) for given initial conditions,> = {7y, 7s,-- : 71 < for all t ¢ R+ and k € N, that there exists amh €
T9 < -+--} C RT is an unbounded closed discrete subset %ﬁRJr R*+] such thath(0) = 0 and aV : X x Rt — R*

R+ which denotes the set of times when jumps occur and |
. ' ,¢2 € K such tha <Viz,t) < for
I, € C[R"*, R™] denotes the incremental change of the stajg, (i)lt)d)Qe X x RT. Wr(llzll) < Vi) < ¢2(]lzl)

at the timer;. It should be pointed out that in general 1): Assume that for any solution(t) of (50) which is
depends on a specific motion and that for different motions, tﬂ‘éfined onfto, o0), V(x(t),1) is left continuous orty, o)
H _ . + ’ ’ ’ ’
corresponding set#’ = {1, 7, : 71 <72 < -} CR" and is differentiable everywhere ofty,oc) except on an
are in general d.n‘ferent. The functp@ | [to,00) — R is unbounded closed discrete $8t= {71, 72, -}, whereE is
_sald to be_asolutlon of_ the system with impulse effects (50),4 set of times when jumps occur feft) and thaty’ (z(7, )+
It 1) ¢(t) s left Cpntlnu0u5d¢0n[t0,oo) for someto > 0; I(z(m)), ,7)) (which is actuallylim, __+ V(z(¢),t)) is non-
2) ¢(t) is differentiable and’;(t) = f(¢(t),t) everywhere increasing form = 0.1, - - where "
on (tg,o0) except on an unbounded, closed, discrete subset o

ﬁé(e-n the equilibriume = 0 of (50) is uniformly asymptotically

E = {71,72,...+; < T < -} C R and+3) for any 0 2 to.
t=m € E, ¢(tT) = ¢(t) + Li(¢(2)), whereg(tt) denotes
the right limit of ¢ att, i.e., p(t*) = Lim, s+ ¢(r). Furthermore, assume thaV'(z(f),t) < h(V(z(m) +

If for (50), we assume further thaf(0,¢) = 0 for all In(z(7)), 7)) is true for allt € (7, 7pa], n = 0,1,---.
t € R*, andI;,(0) = 0 for all k € N, then it is clear that Then thg eqU|I_|l?r|umz: = 0 of (50) is uniformly stab!e
z = 0 is an equilibrium. For this equilibrium, the following 2): If in addition to 1), we assum(ithat there existg:ac
results have been established in [21, Th. 13.1 and 13.2]. £ such thatDV (z(7.) + Ln(2(7a)), 07) < —s(|lz(m)l[) is
Proposition 6.1: Assume that for (50) satisfying(0,¢) = trué for alln = 0,1,---, where
0 and [;;(0) = 0 for all t € Rt and k € N, there A 1
exists aV : X x Rt — Rt and ¢1,¢» € K such that DV(a(ra) + In(a(ra)), 70) = et — Tn [V(@(741)
P1(llzll) < V(z,8) < ¢o(|lz]]) for all (z,£) € X x R*. i I 7 +
1): If for any solutionz(t) of (50), which is defined on w1 (@) Togr) = V(@) 720)
[to, 00), it is true thatV (z(t), t) is left continuous orj#,00)  then the equilibriume = 0 of (50) is uniformly asymptotically

and is differentiable everywhere oftg, o) except on an stable O
unbounded closed discrete $8t= {71, 79,---}, whereE is In the interests of brevity, we omit the details of the proof of
the set of the times when jumps occur feft), and if it is Theorem 6.1. For details concerning this proof and additional
also true that results on impulse systems, refer to [25].
Remarks 1): Theorem 6.1 is less conservative than Proposi-
{% < 0fort # 7, and (51) tion 6.1. Specifically, in Proposition 6.1 the Lyapunov function
V(z(me) + Ie(x(m), 1) < V(). m) V is required to be monotonically nonincreasing everywhere

except at the instants, where impulses occur, and at every
for all ¢, € E, then the equilibriumx = 0 of (50) is uniformly such 7, the functionV is only allowed to decrease (jump
stable downwards). On the other hand, in Theorem 6.1 we only
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require that the right limits of” at times ., when jumps a general model for such systems which is suitable for qual-
occur, be nonincreasing and that at all other times betweitative investigations. Next, we defined in a natural manner
7 and 741 the Lyapunov functionV be bounded by the various stability concepts of invariant sets and boundedness
combination of a prespecified bounded function and the rigbt motions for such systems. We then established sufficient
limit of V' at 7. conditions for uniform stability, uniform asymptotic stability,

2): As pointed out earlier, a converse result foexponential stability, and instability of invariant sets and
Proposition 6.1 was established in [21, Ch. 15] undemiform boundedness and uniform ultimately boundedness of
the rather strong assumption that the impulse effects occursatutions for such systems. In the interests of brevity, not all of
fixed instances of times. For Theorem 6.1, however, we céimese results were proved. However, we provided references
establish a converse theorem, which involves considerabiere some of the omitted proofs can be found. Next, we
milder hypotheses (which are very similar to Assumptionsstablished converse theorems to some of the above results
4.1 and 4.2.), by applying Theorem 4.6 (refer to [25]). O (specifically, necessary conditions for the uniform stability

To demonstrate a specific application of Theorem 6.1, vemd uniform asymptotic stability of invariant sets), using some
consider the special case of (50) described by equationsagiditional mild assumptions. These converse theorems show
the form that under the given hypotheses, the sufficient conditions for

uniform stability and uniform asymptotic stability of invariant

(53) sets established herein are as good as you can get.

The above results provide a basis for the qualitative analysis
where f € C'[R", R"], where it is assumed thgt(0) = 0, of important general classes of HDS'’s. To demonstrate this,
where B, € R™", and {r, < 72 < ---} denotes the we considered two such classesampled data control systems
discrete closed unbounded set of fixed instances (independ@id systems with impulse effects
of specific trajectories) when impulse effects occur. A special
class of (53) are systems described by

t# 1

t=m,keN

a = J(@),
Az = Byz,
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