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Stability Theory for Hybrid Dynamical Systems
Hui Ye, Anthony N. Michel,Fellow, IEEE, and Ling Hou

Abstract— Hybrid systems which are capable of exhibiting
simultaneously several kinds of dynamic behavior in different
parts of a system (e.g., continuous-time dynamics, discrete-time
dynamics, jump phenomena, switching and logic commands, and
the like) are of great current interest. In the present paper we
first formulate a model for hybrid dynamical systems which
covers a very large class of systems and which is suitable for
the qualitative analysis of such systems. Next, we introduce
the notion of an invariant set (e.g., equilibrium) for hybrid
dynamical systems and we define several types of (Lyapunov-like)
stability concepts for an invariant set. We then establish sufficient
conditions for uniform stability, uniform asymptotic stability,
exponential stability, and instability of an invariant set of hybrid
dynamical systems. Under some mild additional assumptions, we
also establish necessary conditions for some of the above stability
types (converse theorems). In addition to the above, we also
establish sufficient conditions for the uniform boundedness of
the motions of hybrid dynamical systems (Lagrange stability). To
demonstrate the applicability of the developed theory, we present
specific examples of hybrid dynamical systems and we conduct a
stability analysis of some of these examples (a class of sampled-
data feedback control systems with a nonlinear (continuous-time)
plant and a linear (discrete-time) controller, and a class of systems
with impulse effects).

Index Terms—Asymptotic stability, boundedness, dynamical
system, equilibrium, exponential stability, hybrid, hybrid dynam-
ical system, hybrid system, instability, invariant set, Lagrange
stability, Lyapunov stability, stability, ultimate boundedness.

I. INTRODUCTION

H YBRID SYSTEMS which are capable of exhibiting
simultaneously several kinds of dynamic behavior in

different parts of the system (e.g., continuous-time dynamics,
discrete-time dynamics, jump phenomena, logic commands,
and the like) are of great current interest (see, e.g., [1]–[9]).
Typical examples of such systems of varying degrees of
complexity include computer disk drives [4], transmission and
stepper motors [3], constrained robotic systems [2], intelligent
vehicle/highway systems [8], sampled-data systems [10]–[12],
discrete event systems [13], switched systems [14], [15], and
many other types of systems (refer, e.g., to the papers included
in [5]). Although some efforts have been made to provide a
unified framework for describing such systems (see, e.g., [9]
and [29]), most of the investigations in the literature focus
on specific classesof hybrid systems. More to the point, at
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the present time, there does not appear to exist a satisfactory
general model for hybrid dynamical systems which is suitable
for thequalitative analysisof such systems. As a consequence,
a general qualitative theory of hybrid dynamical systems has
not been developed thus far. In the present paper we first
formulate a model for hybrid dynamical systems which covers
a very large class of systems. In our treatment, hybrid systems
are defined on anabstract time spacewhich turns out to
be a special completely ordered metric space. When this
abstract time space is specialized to thereal time space(e.g.,

, or ), then our definition of
a hybrid dynamical system reduces to the usual definition of
general dynamical system (see, e.g., [16, p. 31]).

For dynamical systems defined on abstract time space (i.e.,
for hybrid dynamical systems) we define various qualitative
properties (such as Lyapunov stability, asymptotic stability,
and so forth) in a natural way. Next, we embed the dynamical
system defined on abstract time space into a general dynamical
system defined on , with qualitative properties preserved,
using an embedding mapping from the abstract time space to

. The resulting dynamical system (defined now on )
consists in general of discontinuous motions.

The Lyapunov stability results for dynamical systems de-
fined on in the existing literature require generally conti-
nuity of the motions (see, e.g., [16]–[19]), and as such, these
results cannot be applied directly to the discontinuous dynami-
cal systems described above. We establish in the present paper
results for uniform stability, uniform asymptotic stability, ex-
ponential stability, and instability of an invariant set (such as,
e.g., an equilibrium) for such discontinuous dynamical systems
defined on and hence for the class of hybrid dynamical
systems considered herein. These results provide not only
sufficient conditions, but also some necessary conditions, since
converse theorems for some of these results are established
under some very minor additional assumptions. In addition
to the above, we also establish sufficient conditions for the
uniform boundedness and uniform ultimate boundedness of
the motions of hybrid dynamical systems (Lagrange stability).

Existing results on hybrid dynamical systems seem to have
been confined mostly tofinite-dimensional models. We empha-
size that the present results are also applicable in the analysis
of infinite-dimensional systems.

We apply the preceding results in the stability analysis of
a class ofsampled-data feedback control systemsconsisting
of an interconnection of a nonlinear plant (described by a
system of first order ordinary differential equations) and a
linear digital controller (described by a system of first-order
linear difference equations). The interface between the plant
and the controller is an A/D converter, and the interface
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between the controller and the plant is a D/A converter.
The qualitative behavior of sampled-data feedback control
systems has been under continual investigation for many years,
with an emphasis onlinear systems (see [10]–[12]). For the
present example we show that under reasonable conditions the
qualitative behavior of the nonlinear sampled-data feedback
system can be deduced from the qualitative behavior of
the corresponding linearized sampled-data feedback system.
Although this result has been obtained by methods other
than the present approach [26], [32], we emphasize that our
objective here is to demonstrate an application of our theory
to a well-known class of problems.

In addition to sampled-data feedback control systems, we
apply the results developed herein in the stability analysis of a
class ofsystems with impulse effects. For this class of systems,
the results presented constitute improvements over existing
results. We have also analyzed a class of switched systems by
the present results. However, due to space limitations, these
were not included.

For precursors of our results reported herein, as well as
additional related materials not included here (due to space
limitations), please refer to [22]–[28] and [30].

II. NOTATION

Let denote the set of real numbers and let denote
real -space. If , then denotes the
transpose of . Let denote the set of real matrices.
If , then denotes the transpose of

. A matrix is said to be if all
eigenvalues of are within the unit circle of the complex
plane. For , let denote the Euclidean vector
norm, , and for , let denote
the norm of induced by the Euclidean vector norm, i.e.,

.
Let denote the set of nonnegative real numbers, i.e.,

, and let denote the set of nonnegative
integers, i.e., . For any , denotes
the greatest integer which is less than or equal to. Let be
a subset of and let be a subset of . We denote by

the set of all continuous functions from to , and
we denote by the set of all functions from to
which have continuous derivatives up to and including order.

A set is said to be completely ordered with the order
relation “ ” if for any and , either
or . We let be a metric space whererepresents
the set of elements of the metric space anddenotes the
metric.

We denote a mapping of a set into a set by
, and we denote the set of all mappings from

into by .
We say that a function (respectively,

) belongs toclass K(i.e., ), if and
if is strictly increasing on [respectively, ]. We
say that belongs toclass KR if and if

. A continuous function
is said to belong toClass Lif is strictly decreasing on
and if where .

III. H YBRID DYNAMICAL SYSTEMS

The present section consists of three parts.

A. Hybrid Systems

We require the following notion of time space.
Definition 3.1 (Time Space):A metric space is called

a time spaceif:

1) is completely ordered with order ‘‘;’’
2) has a minimal element , i.e., for any

and it is true that ;
3) for any such that , it is true

that ;
4) is unbounded from above, i.e., for any , there

exists a such that

When is clear from context, we will frequently write
in place of .

Definition 3.2 (Equivalent Time Spaces):For two time
spaces , , we say that and are equivalent (with
respect to ) if there exists a mapping such that

is an isometric mapping from to , and such that the
order relations in and are preserved under. Henceforth,
we use the notation to indicate that and are
equivalent. In addition, for , we use the
notation to indicate that and are
equivalent (with respect to), and and are equivalent
(with respect to ), where is the restriction of to

.
We can now introduce the concept of motion defined on a

time space .
Definition 3.3 (Motion): Let be a metric space and

let . Let be a time space, and let . For
any fixed , , we call a mapping

a motion on if:

1) is the subset of a time space (in general
not equal to ) which is determined by , and

is equivalent to (i.e.,
) with respect to , where

is a subset of and
is finite or infinite, depending on ;

2) .

We are now in a position to define the hybrid dynamical
system.

Definition 3.4 (Hybrid Dynamical System):Let be a
family of motions on , defined as

where
and where is uniquely determined by the

specific motion (as explained in Definition 3.3).
Then the five-tuple is called a hybrid
dynamical system(HDS).

Remarks—i): In Definition 3.3, a mapping
is called a motion on , even though this mapping

is in fact defined on the subset of another time space.
This depends on the initial conditions and in general
varies if changes. However, any such is equivalent
to the prespecified time space. Due to this equivalence,
we may view any motion as another
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mapping which is defined on a subset
of . Accordingly, we can equivalently regard an HDS

as a collection of mappings defined only on
subsets of .

ii): The preceding way of characterizing motions as map-
pings that are defined on equivalent but possibly different time
spaces is not a redundant exercise and is in fact necessary.
This will be demonstrated in Example 2 (Subsection B of the
present section).

In the existing literature, several variants for dynamical sys-
tem definitions are considered (see, e.g., [16]–[19]). Typically,
in these definitions time is either or ,
but not both simultaneously, , and depending on
the particular definition, various continuity requirements are
imposed on the motions which comprise the dynamical system.
It is important to note that these system definitions are not
general enough to accommodate even the simplest types of
hybrid systems, such as, for example, sampled-data systems of
the type considered in the example below. In the vast literature
on sampled-data systems, the analysis and/or synthesis usually
proceeds by replacing the hybrid system by an equivalent
system description which is valid only at discrete points in
time. This may be followed by a separate investigation to
determine what happens to the plant to be controlled between
samples.

B. Examples of HDS’s

In the following, we elaborate further on the concepts
discussed above by considering two specific examples of
HDS’s.

Example 1 (Nonlinear Sampled-Data Feedback Control Sys-
tem): We consider systems described by equations of the
form

(1)

where , , , ,
, , , , and .

System (1) is an HDS. In the present case the time space
is given by

(2)

The space is equipped with a metric which has the property
that for any and ,

. The set is a completely ordered space
in such a way that if and only if . The set

is given by . The motion
determined by (1) is of the form

(3)

where in (3) . The state space for system (1) is
and .

System (1) may be viewed as an interconnection of two
subsystems: aplant which is described by a system of first
order ordinary differential equations, and as such, is defined
on “continuous-time,” , and a digital controller which
is described by a system of first-order ordinary difference

Fig. 1. Graphical representation of the time spaceT for Example 1.

equations, and as such, is defined on “discrete-time,” . The
entire system (1) is then defined on .

In our considerations of the above sampled-data system,
we did not include explicitly a description of the interface
between the plant and the digital controller (a sample element)
and between the digital controller and the plant (a sample and
hold element). In Fig. 1, we provide the “graph” for.

Example 2 (Motion Control System):Several different
classes of systems that arise in automation have recently
been considered in the literature (see, e.g., [3]). Such systems,
which are frequently encountered in the area of motion control,
are equipped with certain types of nonlinearities in the form
of trigger functions. We consider in the following a special
example of such systems which concerns an engine-drive train
system for an automobile with an automatic transmission. This
system is described by the equations

(4)

where denote vehicle ground speed and engine
rpm, respectively, denotes the external input as the
throttle position, the term describes the inability of the
vehicle to produce torque at high rpms, represents the
shift position of the transmission, where is some subset of

, and determines the shifting rule.
The variable represents a special “clock”
or “counter.” The notation denotes the most recent time
when passes an integer.

System (4) is an HDS with state space
, time space , and . For any

specific initial condition, (4) determines a specific solution
. If we define

, then is another time space with metric
and order relation , having the property that for any

, , , and
if and only if . The specific solution
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Fig. 2 Graphical representation of a time spaceT for Example 2.

can be regarded as a motion in the
form of , where .
Although is a mapping defined on, we still view it as a
motion in an HDS defined on , as defined in Definition 3.4,
since is equivalent to . In Fig. 3, we depict the graph of
the time space of a specific motion. (We use left brackets
to indicate that left end points are included.)

C. Some Qualitative Characterizations

In the present paper we will primarily focus our attention
on the stability properties of invariant sets of HDS’s.

Definition 3.5 (Invariant Set):Let be an
HDS. A set is said to beinvariant with respect
to system if implies that for all

, all , and all . We will state the
above more compactly by saying that is an invariant set of

or is invariant.
Definition 3.6 (Equilibrium): We call an equilib-

rium of an HDS if the set is invariant
with respect to .

Definition 3.7—Uniform (Asymptotic) Stability:Let
be an HDS and let be an invariant set

of . We say that is stable if for every ,
and there exists a such that

for all and for all
, whenever . We say that is uniformly

stable if . Furthermore, if is stable and if
for any , there exists an such that

(i.e., for every , there
exits a such that whenever
and ) for all whenever ,
then is called asymptotically stable. We call
uniformly asymptotically stableif is uniformly stable
and if there exits a and for every there exists
a such that for all

, and all whenever
.

Fig. 3. Representation of the embedding mapping of motions.

Exponential Stability:We call exponentially stable
if there exists , and for every and , there
exists a such that
for all and for all , whenever

.
Uniform Boundedness: is said to beuniformly bounded

if for every and for every there exists a
(independent of ) such that if ,

then for all for all
where is an arbitrary point in . is uniformly

ultimately boundedif there exists and if corresponding
to any and , there exists a
(independent of ) such that for all ,

for all such that ,
whenever , where is an arbitrary point
in .

Instability: is said to beunstableif is not
stable.

Remark 3.1:The above definitions of stability, uniform
stability, asymptotic stability, uniform asymptotic stability,
exponential stability, uniform boundedness, uniform ultimate
boundedness, and instability constitute natural adaptations of
the corresponding concepts for the usual types of dynamical
systems encountered in the literature (refer, e.g., to [16,
Secs, 3.1 and 3.2]). In a similar manner as was done above,
we can defineasymptotic stability in the large, exponential
stability in the large, complete instability, and the like, for
HDS’s of the type considered herein (refer to [22]–[28]
and [30]). Due to space limitations, we will not pursue
this.

IV. STABILITY OF INVARIANT SETS

We will accomplish the stability analysis of an invariant
set with respect to an HDS in two stages. First we
embed the HDS (which is defined on a time
space ) into an HDS (which is defined
on ). We then show that the stability properties of
can be deduced from corresponding stability properties of

. Finally, we establish stability results for the HDS
which is a system with discontinuities in

its motions.
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A. Embedding of HDS’s into Dynamical
Systems Defined on

Any time space (see Definition 3.1) can be embedded
into the real space by means of a mapping
having the following properties: 1) , where
denotes the minimum element in and 2)
for . Note that if we let , then is an
isometric mapping from to [i.e., is a bijection from
onto , and for any such that it is true
that ].

The above embedding mapping gives rise to the following
concepts.

Definition 4.1 (Embedding of a Motion ):Let
be an HDS, let be fixed, and let

be the embedding mapping defined above. Suppose that
is a motion defined on . Let

, where , be a
function having the following properties: 1) ;
2) if ; and
3) if . We call the embedding
of from to with respect to . The graphic
interpretation of this embedding is given in Fig. 3.

It turns out that is a motion for another dynam-
ical system which we define next.

Definition 4.2 (Embedding of an HDS ):Let
be an HDS and let . The HDS

is called the embeddingof from T to
with respect to (w.r.t.) x, where and

is the embedding of
w.r.t. .

In general, different choices of will result in different
embeddings of an HDS. It is important to note, however, that
different embeddings corresponding to different elements
contained in thesameinvariant set will possess identical
stability properties.

In view of the above definitions and observations, any HDS
defined on an abstract time spacecan be embedded into
another HDS defined on real time space. The latter system
consists of motions which in general may be discontinuous and
has similar qualitative properties as the original hybrid system
defined on an abstract time space. This is summarized in the
next result.

Proposition 4.1: Suppose is an HDS. Let
be an invariant subset of, and let be any fixed

point in . Let be the embedding of
from to with respect to . Then is

also an invariant subset of systemand and
possess identical stability properties.

Proof: By construction it is clear that is invariant with
respect to if and only if is invariant with respect to .
In the following, we show in detail that is uniformly
asymptotically stableif and only if is uniformly
asymptotically stable. The equivalence of the other qualitative
properties between and , such asstability, ex-
ponential stability, uniform boundedness, anduniform ultimate
boundedness, can be established in a similar manner (see
[22]–[28] and [30]) and will therefore not be presented here.

Our proof consists of two parts. First, we show that
is uniformly stableif and only if is uniformly stable.
Next, we show that is uniformly asymptotically stable
if and only if is uniformly asymptotically stable.

1): If is uniformly stable, we know that for every
there exists a such that for every ,

for all with , for all
and all . For any it

is true that

if
if

where , and . Hence, whenever
is satisfied, we have either for
or for

. This leads to the conclusion that is uniformly
stable.

Next, assume that is uniformly stable. Then for
every there exists a such that for every

, for all with
, for all and all . Therefore, for

any satisfying , it follows that
. We conclude

that is uniformly stable.
2): If is uniformly asymptotically stable, we

know that is uniformly stable, and there exists a
and for every there exists a such that

for all and all
whenever , where , and

. For any satisfying , it is true
that for or

if . Furthermore, since in
the latter case it is true that ,
it follows that as long as .
Therefore, by using the conclusions of part 1), we conclude
that is uniformly asymptotically stable.

If is uniformly asymptotically stable, we know that
is uniformly stableand there exists a and

for every there exists a such that
for all and all

whenever , where , and .
Therefore, for any satisfying ,
it is true that
for all since

. Therefore, we conclude that is alsouniformly
asymptotically stable.

In view of Proposition 4.1 and other similar results
[22]–[28], [30], the qualitative properties (such as the stability
properties of an invariant set) of an HDScan be deduced
from the corresponding properties of the dynamical system

, defined on , into which system has been embedded.
Although dynamical systems which are defined on have
been studied extensively (refer, e.g., to [16]–[19]), it is usually
assumed in these works that the motions are continuous, and
as such the results in these works are not directly applicable
in the analysis of the dynamical system .
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B. Lyapunov Stability Results

In the following, we establish some stability results for
HDS’s , with discontinuous motions. To
simplify our notation, we will henceforth drop the tilde,,
from and and simply write in place
of .

Theorem 4.1 (Lyapunov Stability):Let
be an HDS, and let . Assume that there exists a

and defined on such
that

for all .
1): Assume that for any ,

is continuous everywhere on
except on an unbounded closed discrete subsetof
( depends on ). Also, assume that if we denote

, then is nonincreasing for
. Furthermore, assume that there exists

independent of such that and such that
for ,

Then is invariant anduniformly stable.
2): If in addition to the assumptions given in 1) there ex-

ists defined on , such that

where
then

is uniformly asymptotically stable.
Proof 1): We first prove that is invariant. If

, then since
and . Therefore,

we know that for all , and
furthermore for all since

. It is then implied
that for all . Therefore, is
invariant by definition.

Since is continuous and , then for any there
exists such that as long as

. We can assume that . Thus for any motion
, as long as the initial condition

is satisfied, then
and

for , since is nonincreas-
ing. Furthermore, for any we can conclude
that and

Therefore, by definition, is uniformly stable.
2): Letting , we obtain from

the assumptions of the theorem that
for . If we denote

, then and the above inequality becomes
Since is nonincreasing

and , it follows that
for all . We thus obtain that

for all . It follows
that

(5)

Now consider a fixed . For any given , we can
choose a such that

(6)
since and . For any with

and any , we are now able to show
that whenever The above
statement is true because for any , must belong to
some interval for some , i.e., .
Therefore, we know that . It follows from (5)
that which implies that

(7)

and

(8)

if . In the case when , it follows from
(7) that , noticing that (6) holds. In the
case when , we can conclude from (7) that

. This proves that is uniformly
asymptotically stable.

Remarks 1): In Theorem 4.1 (and in several subsequent re-
sults) we required that every motion be continuous everywhere
except on an unbounded closed discrete set .
With this requirement, we ensure that will converge to
without finite accumulation. The reason for requiring this is
because our main interest concerns the asymptotic behavior
(when goes to ) of the (discontinuous) motions of HDS’s.

2): In cases where the qualitative behavior of a dynamical
system is of interest when time approaches some finite instance
(point), say , no essential difficulties are encountered
in establishing qualitative results similar to those given above.
In this case we require that each motion be continuous
everywhere on , except on
with .

In the following we state additional Lyapunov stability
results for HDS’s.We omit the proofs of these results due to
space limitations. For some of these proofs, refer to [22]–[28]
and [30].

Theorem 4.2 (Exponential Stability):Let ,
be an HDS, and let . Assume that there

exists a function and four positive
constants and such that,

for all . Assume that
for any , is continuous

everywhere on except
on an unbounded closed discrete subsetof . Let

with strictly increasing. Furthermore,
assume that there exists such that

for ,
, and that for some positive constant, satisfies

(i.e., ). Assume

that for all
. Then is exponentially stable in the large( is

defined in Theorem 4.1).
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Theorem 4.3 (Boundedness):Let be an
HDS, and let where is bounded. Assume that there
exists a function and
such that for all

and .
1): Assume that for any ,

is continuous everywhere on
except on an unbounded closed discrete subsetof

. Let with strictly increasing.
Assume that is nonincreasing for all
such that where is a constant.
Furthermore, assume that there exists
such that for

, , and that there exists such that
whenever .

Then is uniformly bounded.
2): In part 1), assume in addition that there exists

defined on such that

for all such that . Then is
uniformly ultimately bounded.

Theorem 4.4 (Instability):Let be an
HDS, and let . Assume that there exists a function

which satisfies the following conditions.
1): There exists a defined on such that

2): For any , is continuous

everywhere on except on an un-
bounded closed discrete subsetof , and there exists

such that for
all .

3): In every neighborhood of there are points such
that . Then is unstablew.r.t. .

For further results which are in the spirit of the above
theorems, refer to [24] and [28].

C. Converse Theorems

In this subsection we establish a converse to Theorem 4.1
for the case ofuniform stability and uniform asymptotic
stability under some additional mild assumptions. We will
be concerned with the special cases when
and . Accordingly, we will simplify our notation
by writing and in place of

and .
Assumption 4.1:Let be an HDS. Assume

that: 1) for any , there exists a
with , such that

for all and 2) for any two motions
, if , then there

exists a such that
for and for .

The above assumption is also utilized in the analysis of
continuous dynamical systems (see, e.g., [16, Assumption
4.5.1]). In this assumption, we may view in 1)
as a partial motion of the motion , and we may

view in 2) as acomposition of and
. With this convention, Assumption 4.1 can be

restated in the following manner: 1) any partial motion is
a motion in and 2) any composition of two motions is a
motion in .

Theorem 4.5:Let be an HDS and let
be an invariant set, where is assumed to be a neighbor-

hood of . Suppose that satisfies Assumption 4.1 and that
is uniformly stable. Then there exist neighborhoods
such that , and a mapping

which satisfies the following conditions: 1)
there exists such that

for all and 2) for every
with is nonincreasing

for all .
The proof of Theorem 4.5 follows along the same lines as

the proof of an existing converse result for the uniform stability
of continuous dynamical systems. This proof, however, does
not make use of any continuity assumptions for the dynamical
system (refer to the proof of [16, Th. 4.5.2]). For the converse
theorem of uniform asymptotic stability, the results in the
literature cannot be adopted directly because of continuity
assumptions in the proofs of those results (see, e.g., [16]).
However, under some additional mild assumptions, we will
be able to establish a converse theorem for the uniform
asymptotic stability of invariant sets of the types of hybrid
systems considered herein.

Assumption 4.2:Let be an HDS defined
on and assume that every is continuous
everywhere on except possibly on

[where depends on ], and that: 1)

and 2)
.

Remark: Notice that in part 2) of Assumption 4.2, starts
from zero. However in part 1), we require only thatstarts
from one since in general there is no lower limit for .

We are now in a position to state and prove the following
converse result.

Theorem 4.6:Let be an HDS and let
be an invariant set. Assume that satisfies Assumptions

4.1 and 4.2, and furthermore assume that for every
, there exists aunique . Let

be uniformly asymptotically stable. Then, there exist neigh-
borhoods and of such that , and a
mapping which satisfies the following
conditions.

1) There exist such that
for all

2) There exists such that for all
, we have

where , ,
and where is defined in Theorem 4.1

3) There exists an , , such
that for all

and all .

In the proof of the above theorem, we will require the
following preliminary result.
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Lemma 4.1:Let be defined on . Then there exists
a function defined on such that for any closed
discrete subset satisfying

it is true that
Proof of Lemma 4.1:We define , where

, by

Clearly, is strictly decreasing for all ,
and for all .

Furthermore, is invertible, is strictly decreasing, and
for all .

We now define and for
. Then it is obvious that and

It follows that

If we denote , we know
that . Hence it is true that

(9)

We now proceed to the proof of Theorem 4.6.
Proof of Theorem 4.6:Since is uniformly asymp-

totically stable, we know by Theorem 4.5 that there exist some
neighborhoods and of such that and
a mapping which satisfies the following
conditions.

1) There exist such that
for all

2) For every with ,
is nonincreasing for all .

From 1) and 2) above, we conclude that for any
, it is true that

which implies that

(10)

for all , and .
By the result in [16, Problem 3.8.9], there exists a function

defined on , for some , and another
function such that

(11)

for all and all , where .
Define , and

if
otherwise.

We are now ready to define the Lyapunov function
for . Since for any ,
there exists a unique motion which is continuous
everywhere on except on , we define

(12)

where will be specified later in such a manner that
the above summation will converge. Obviously,

Hence, if we define
, then is true for all

.
Consider and the corresponding set

. If we denote , and
for some , we know there exists a unique motion

which is continuous everywhere on
except on . By the definition of given by
(12), we know that
However, by the uniqueness property, we know that

, and
Therefore, it is clear that

It follows that

for . Since by Assumption 4.2-2),
it follows that

where we defined .
We now show how to choose so that the infinite

summation (12) converges. It follows from (11) that for any
, we have

(13)

Let . Then . Hence, by Lemma 4.1,
there exists an defined on such that

If we define ,
then it follows that

(14)

Hence, we conclude from (12)–(14), and (9) that

.
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If we define by
then it follows that . Thus

we have proved parts 1) and 2) of Theorem 4.6.
To prove part 3) of the theorem, let . We have

already shown that
Furthermore, since , (10) is satisfied. Hence, we
know that

(15)

On the other hand, we have also shown that
which implies that

(16)

Combining (15) and (16), we obtain that

for all ,
, and all . If we now define

then , ,
and This concludes
the proof of the theorem.

Although converse theorems are in general not very use-
ful in constructing Lyapunov functions, their importance in
stability analysis cannot be overemphasized. In particular,
such results ensure theexistenceof Lyapunov functions with
appropriate properties under suitable conditions. Furthermore,
converse theorems tell us that under a given set of hypotheses,
a stability result is as good as you can possibly expect. For
additional converse theorems, refer to [22]–[28] and [30].

Before proceeding to applications, we wish to point to the
generality of all results presented above. These allow analysis
of finite-dimensionalas well asinfinite-dimensionalsystems.

V. APPLICATION TO NONLINEAR SAMPLED-DATA SYSTEMS

Our primary objective in this section is to present a detailed
application of the stability theory developed herein to the
most widely known class of HDS’s, sampled-data systems.
The qualitative analysis of sampled-data control systems has
been of great interest in the past, and because of significant
advances in digital controller technology it continues to be of
current interest (see, e.g., [10]–[12]). These investigations are
primarily concerned with linear models. In the present section
we apply the results of Section IV in the stability analysis
of sampled-data control systems of the type considered in
Example 1 (refer to Section III), given by equations of the
form

(17)

where all symbols in (17) are as defined in (1). We note that
since , is an equilibrium of
(17).

In this section we will show that the asymptotic stability
of the equilibrium of (17) can be
deduced from the asymptotic stability of the trivial solution of
the associated linear system given by

(18)

where denotes the Jacobian of evaluated at
, i.e.,

(19)

We note that in (17) the components of the state, are
directly accessible as subsystem outputs (of the plant and the
digital controller, respectively). When this is not the case,
transducers are used to measure the states indirectly, resulting
in linear output equations, as given for example in the system
description

(20)

where , , and and are real matrices of
appropriate dimensions. By using the methodology employed
herein, it is possible to establish a stability result of the type
described above for (17), using the linearization of (20) about
the equilibrium . We will not pursue
this.

For the linear sampled-data system (18), we have the
following result.

Lemma 5.1:The equilibrium of
the linear HDS determined by the system of equations (18) is
uniformly asymptotically stableif and only if the matrix

(21)

is Schur stable, where

(22)

The conclusion of Lemma 5.1 is well known (refer, e.g., to
[10] and [11]).

We are now in a position to prove the main result of the
present section.

Theorem 5.1:The equilibrium of
(17) is uniformly asymptotically stableif the equilibrium

of the linear dynamical system deter-
mined by the system of equations given in (18) is uniformly
asymptotically stable, or equivalently, if the matrix given
in (21) is Schur stable.

Proof: Since and , we can
represent as

(23)

where the matrix is given in (19) and
satisfies

(24)

It follows from (24) that there exits a such that

(25)
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whenever . If we let then we can
conclude that for any , it is true that for
all whenever and .
For otherwise, there must exist an such that

and for all . We will prove
that this is impossible. Since for any we have that

(26)

it is true that
for all . In particular, when

, we have that

(27)

where we have used in the last step of (27) the fact that
, since for all

by assumption. By Gronwall’s inequality (see, e.g., [20]), (27)
implies that

(28)

for all . Hence

(29)

since . Inequality (29) contradicts the assumption
that . Therefore, we have shown that for any

, it is true that for all
whenever and . In view of (25), we
can further conclude that

(30)

for all whenever and .
Equation (30) implies that (27) and (28) hold for all

, assuming that and
Therefore, it follows from (28) that

(31)

for all , assuming that and
.

Since , the first equation in (17) can be
written as

(32)

for . The solution of equation (32) must have
the form

(33)

for all . Specifically, when , we have that

(34)

where

(35)

Before proceeding further, we require the following inter-
mediate result.

Claim 1: For any given , there exists a ,
, such that for any it is true that

whenever and .
Proof: For the given , we choose such that

We know by (24) that there must
exist a such that

(36)

whenever . We choose

Then, whenever and , it is true by
(28) that

(37)

for all . Combining (37), (36), and (31), we
obtain that

(38)

for all whenever and .
Hence, for given by (35), we know that

(39)

whenever the conditions and are
satisfied, concluding the proof of Claim 1.

We are now in a position to apply the results of Sections III
and IV to prove the present theorem. As discussed in Example
1 of Section III-B, (17) [or, equivalently, (1)] can be regarded
as a HDS defined on the time space

. The state for this hybrid system, denoted by ,
is given by where .
This hybrid system can be embedded into a dynamical system
defined on by the embedding mapping such
that for any (as was explained in
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Section III-B). If we denote the state in the new embedded
dynamical system defined on by , then

(40)

where . We will show that is an asymptoti-
cally stable equilibrium of this dynamical system. Therefore,

is a uniformly asymptotically stable
equilibrium of the original hybrid system (17).

Since by assumption is Schur stable, where is given
in (21), we know that there exists a positive definite matrix
such that , where
denotes the identity matrix. We now define the Lyapunov
function

(41)

and we show that satisfies all the conditions of
Theorem 4.1 for any motion . Clearly, is a motion
which is continuous everywhere on except on , the set
of nonnegative integers. For any , it is known by (34)
and (17) that

(42)

where is given by (21), is given by

(43)

and is given by (35). It now follows that

(44)

By the definition of , we know that .
Furthermore, by Claim 1, if we choose an such that

(45)

then there exists a such that
whenever and .

Therefore, whenever (noticing that
), it is true that

(46)

must hold. Combining (44) and (46), we conclude that

(47)

whenever . Before concluding the proof, we
require another intermediate result.

Claim 2: For any , (47) holds for all
whenever

(48)

where and denote the minimum and maxi-
mum eigenvalues of , respectively.

Proof: Equation (48) implies that
Since

is satisfied, we know by (47) that
is less than because of (45). Therefore

(49)

must be satisfied as well. Furthermore, since (49) implies that
, it follows that is

less than , and is less than
. By induction, it follows that for all
. Hence (47) is satisfied for all as long as (48)

is true. This concludes the proof of Claim 2.
By Claim 2 we know that for any motion , condition

2) of Theorem 4.1 is satisfiedfor , as long as (48) is
true. Furthermore, it can be shown that (31) implies that

for all , and , by noticing that
whenever (48) is satisfied. Hence, if we define

as

thencondition 1) of Theorem 4.1 will also be satisfiedwhenever
the initial condition for (47) holds. Noting that is
independent of , it follows from Theorem 4.1, that the
equilibrium of (17) is uniformly
asymptotically stableif the matrix [given by (21)] is Schur
stable. This concludes the proof of the theorem.

For further results which are in the spirit of Theorem 5.1,
refer to [26]. Other sources that address the present problem
in a different context, using methods that differ significantly
from the present approach, include, e.g., [32].

VI. SYSTEMS WITH IMPULSE EFFECTS

There are numerous examples of evolutionary systems
which at certain instants of time are subjected to rapid
changes. In the simulations of such processes it is frequently
convenient and valid to neglect the durations of the rapid
changes and to assume that the changes can be represented
by state jumps. Examples of such systems arise in mechanics
(e.g., the behavior of a buffer subjected to a shock effect, the
behavior of clock mechanisms, the change of velocity of a
rocket at the time of separation of a stage, and so forth),
in radio engineering and communication systems (where
the generation of impulses of various forms is common),
in biological systems (where, e.g., sudden population changes
due to external effects occur frequently), in control theory (e.g.,
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impulse control, robotics, etc.), and the like. For additional
specific examples, refer, e.g., to [21] and [31].

Appropriate mathematical models for processes of the type
described above are so-calledsystems with impulse effects. The
qualitative behavior of such systems has been investigated ex-
tensively in the literature (refer to [21] and the references cited
in [21]). In the present section we will establish qualitative
results for systems with impulse effects which in general are
less conservative than existing results [21], [31].

We will concern ourselves withfinite-dimensional systems
described by ordinary differential equations with impulse
effects. For this reason we will let in the present
section, the metric will be assumed to be determined by
norm , and .

The class of systems with impulse effects under investiga-
tion can be described by equations of the form

(50)

where denotes the state,
satisfies a Lipschitz condition with respect to

which guarantees the existence and uniqueness of solutions
of (50) for given initial conditions,

is an unbounded closed discrete subset of
which denotes the set of times when jumps occur, and

denotes the incremental change of the state
at the time . It should be pointed out that in general
depends on a specific motion and that for different motions, the
corresponding sets
are in general different. The function is
said to be asolution of the system with impulse effects (50)
if 1) is left continuous on for some
2) is differentiable and everywhere
on except on an unbounded, closed, discrete subset

; and 3) for any
, , where denotes

the right limit of at , i.e., .
If for (50), we assume further that for all

, and for all , then it is clear that
is an equilibrium. For this equilibrium, the following

results have been established in [21, Th. 13.1 and 13.2].
Proposition 6.1: Assume that for (50) satisfying
and for all and , there

exists a and such that
for all .

1): If for any solution of (50), which is defined on
, it is true that is left continuous on

and is differentiable everywhere on except on an
unbounded closed discrete set , where is
the set of the times when jumps occur for , and if it is
also true that

for and
(51)

for all , then the equilibrium of (50) is uniformly
stable.

2): If in addition, we assume that there exists a
such that

(52)

then the equilibrium of (50) isuniformly asymptotically
stable.

The above proposition provides a sufficient condition for
the uniform stability and the uniform asymptotic stability of
the equilibrium of (50). It is shown in [21] that under
additional conditions, the above results also constitute neces-
sary conditions (see [21, Ch. 15]). One critical assumption in
these necessary conditions is that the impulse effects occur at
fixed instants of time, i.e., in (50) the set
is independent of the different solutions. This assumption
may be unrealistic, since in applications it is often the case
that the impulse effects occur when a given motion reaches
some threshold conditions. Accordingly, for different initial
conditions, the sets of time instants when jumps in the motions
will occur will, in general, vary.

It is easily shown that (50) is a special case of the HDS
defined in Section III-A. Applying Theorem 4.1 to (50), we
obtain the following result.

Theorem 6.1:Assume that for (50) and
for all and , that there exists an

such that and a
and such that for
all .

1): Assume that for any solution of (50) which is
defined on , is left continuous on
and is differentiable everywhere on except on an
unbounded closed discrete set where is
the set of times when jumps occur for and that

(which is actually ) is non-
increasing for where

Furthermore, assume that
is true for all , .

Then the equilibrium of (50) is uniformly stable.
2): If in addition to 1), we assume that there exists a
such that, is

true for all , where

then the equilibrium of (50) isuniformly asymptotically
stable.

In the interests of brevity, we omit the details of the proof of
Theorem 6.1. For details concerning this proof and additional
results on impulse systems, refer to [25].

Remarks 1):Theorem 6.1 is less conservative than Proposi-
tion 6.1. Specifically, in Proposition 6.1 the Lyapunov function

is required to be monotonically nonincreasing everywhere
except at the instants where impulses occur, and at every
such the function is only allowed to decrease (jump
downwards). On the other hand, in Theorem 6.1 we only
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require that the right limits of at times , when jumps
occur, be nonincreasing and that at all other times between

and the Lyapunov function be bounded by the
combination of a prespecified bounded function and the right
limit of at .

2): As pointed out earlier, a converse result for
Proposition 6.1 was established in [21, Ch. 15] under
the rather strong assumption that the impulse effects occur at
fixed instances of times. For Theorem 6.1, however, we can
establish a converse theorem, which involves considerably
milder hypotheses (which are very similar to Assumptions
4.1 and 4.2.), by applying Theorem 4.6 (refer to [25]).

To demonstrate a specific application of Theorem 6.1, we
consider the special case of (50) described by equations of
the form

(53)

where , where it is assumed that ,
where , and denotes the
discrete closed unbounded set of fixed instances (independent
of specific trajectories) when impulse effects occur. A special
class of (53) are systems described by

(54)

where and are the same as in system (53) and
is a constant matrix. Such systems have been investigated in
[21, Ch. 4.2]. In particular, the following result was established
in [21, Th. 4.3].

Proposition 6.2: The equilibrium of (54) is asymp-
totically stableif the condition 1)

is satisfied, together with either
the condition 2) , or the condition
3) , where it is assumed that the modulus
of each eigenvalue of is smaller than one and where

, .
By applying Theorem 6.1 to (53), we obtain the following

result.
Theorem 6.2:For (53), let denote the Jacobian of at

[i.e., ] and assume that the condition 1)
and either condition 2) or condition 3) of Proposition 6.2
are satisfied for (54). Then, the equilibrium of (53)
is asymptotically stable. .

Remarks 1):Theorem 6.2 implies that when the lineariza-
tion of (53) satisfies the sufficient conditions in Proposition
6.2, which assure the asymptotic stability of the linear system
(54) with impulse effects, then the equilibrium of the original
nonlinear system (53) is also asymptotically stable.

2): The proof of Theorem 6.2 (which we omit due to space
limitations) can be accomplished by using similar arguments
as in the proof of Theorem 5.1; refer to [25] for the details of
the proof of Theorem 6.2.

VII. CONCLUDING REMARKS

We have initiated a systematic study of the qualitative
properties of HDS’s. To accomplish this, we first formulated

a general model for such systems which is suitable for qual-
itative investigations. Next, we defined in a natural manner
various stability concepts of invariant sets and boundedness
of motions for such systems. We then established sufficient
conditions for uniform stability, uniform asymptotic stability,
exponential stability, and instability of invariant sets and
uniform boundedness and uniform ultimately boundedness of
solutions for such systems. In the interests of brevity, not all of
these results were proved. However, we provided references
where some of the omitted proofs can be found. Next, we
established converse theorems to some of the above results
(specifically, necessary conditions for the uniform stability
and uniform asymptotic stability of invariant sets), using some
additional mild assumptions. These converse theorems show
that under the given hypotheses, the sufficient conditions for
uniform stability and uniform asymptotic stability of invariant
sets established herein are as good as you can get.

The above results provide a basis for the qualitative analysis
of important general classes of HDS’s. To demonstrate this,
we considered two such classes:sampled data control systems
and systems with impulse effects.
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