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Computation of Piecewise
Quadratic Lyapunov F\rnctions for

Hybrid Systems

Mikael Johansson*and Anders Rantzerr
Department of Automatic Control

Lund Institute of Technology, Box 1-1-8, Lund, Sweden
Phone +46-46-2228795, Fax +46-46-138LL8

A,bstract The search for a piecewise quadratic Lyapunov functions for non-
linear and hybrid systems is stated as a convex optimization problem in terms
of linear matrixinequalities. Several examples a^re included to demonstrate the
flexibility and power of the approach.

Keyuords Lyapunov stability, nonlinear systems, hybrid systems, LMIs

1-. Introduction

Construction of Lyapunov functions is one of the most fundamental problems
of systems theory. The most direct application is of course stability analysis,
but analog problems appear more or less implicitly also in performance analy-
sis, controller synthesis and system identification. Closely related to Lyapunov
functions are for example the notions of storage functions, energy firnctions
and loss firnctions [Willems, L972].

The objective of this paper is develop a general method for computation of
Lyapunov functions for nonlinea¡ and hybrid systems. A need for such meth-
ods have been recognized for several decades, but only recently an appropri-
ate computational tool has appeared, namely efficient algorithms for convex
optimization in terms of linear matrix inequalities (LMI's) [Nesterov and Ne-
mirovski,l-993, Boyd et a1.,1-994, Elghaoui, L995, Gahinet et a7.,199õ]. These
algorithms have quickly become a powerful tool in design and analysis, but so

far mainly for linear systems.
Working exclusively with piecewise linea,r system dynamics, our main idea

is to state the search for a piecewise quadratic Lyapunov function as an LMI
* Email: nikael j Ocontrol . 1th. se
I Email: rantzerOcontrol. Ith. se
I Th. *.oor"ript has been submitted for journal publication.
Future versions of this manuscript will appear on http://rrr.control.lth.se/-rantzer
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optimization problem. The Lyapunov function will sometimes be forced to
be continuous, a"nd will always be decreasing with time. For hybrid systems,
that have both continuous and discrete states, the Lyapunov firnction will be
quadratic in the continuous state. The dependence on the discrete state will
be arbitrary except that the function must be non-increasing at the jumps of
the discrete state.

Looking back, a rich theory has been developed based on linear systems
and quadratic Lyapunov/loss functions. A beautiful early representative of
the theory is the circle criterion [Yakubovich, 1964], which considers a linear
system interconnected with a nonlinear element represented by a quadratic
inequality. The theorem gives a frequency domain condition on the transfer
fi:nction of the linear system, that is sufficient for existence of a quadratic
Lyapunov function for the interconnection. Such frequency domain criteria
give valuable insight and were particularly important before the computer
era, since they allowed for simple geometrical verification, rather than solving
difficult matrix inequalities in the time domain.

It was soon recognized that the circle criterion u¡as unnecessarily conserva-
tive and that it could easily be strengthened under some additional assump-
tions on the nonlinearity. The tool for such improvements was the so called
"multipliers", and the results can often be interpreted as a generalization of
the set of allowable Lyapunov functions [Desoer and Vidyasagar, L976]. How-
ever, the multiplier conditions had an abstract form and only in the most
simple cases, like the Popov criterion [Popov, L962], it was possible to modify
the graphical methods of verification.

It took until the 80-s before the situation changed thanks to new com-
putational tools. Multi-loop generalizations of the circle criterion were then
introduced for problems involving pa,rametric uncertainty. The appropriate
multipliers t\¡ere computed frequency by frequency and the results ïyere pre-
sented in terms of so called structured singula,r values [Doyle, L982, Safonov
and Atha¡rs, L98L].

A general approach to computation of multipliers using LMI optimization
was introduced in [Megretski and Rantzer, 1-995]. Some of the stability con-
ditions used there can also be as criteria for existence of quadratic Lyapunov
functions on an extended state space.

Several types of methods have been proposed for analysis of systems with
piecewise linea¡ dynamics. These range from qualitative methods such as phase
plane a"nalysis via computational geometry methods [Pettit and Wellstead,
L995] to algebraic approaches [Sontag, 1996].

The work on Lyapunov stability of hybrid systems dates back to the sixties

[Pavlidis, 1967]. Some recent and rather general results for hybrid systems have
been developed in [Branicky, 1994j and [Peleties and DeCarlo, L991] using so-
called 'multiple Lyapunov functions'. When it comes to construction of the
Lyapunov functions, however, only simple examples have been considered and
no general methods have been proposed.

The most general approach for construction of Lyapunov functions that has
been suggested for piecewise linear systems, is known as quadratic stability.
This means to search for a globally quadratic Lyapunov function

V(n) = rr P,

that is valid globally, and for all linea,r systems ù = Aíæ, i e I. Although
conservative, this method has several attractive features. The search for a
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common P matrix requires simultaneous solution of the matrix inequalities

P=Pr>0
,+{r+PA;<o (1)

for i € -t. This is a convex optimization problem in P, which can be solved
efficiently using LMI software. This allows for automated stability analysis of
systems with a large number of .r4,¿-matrices.

In some cases, it is of interest to verify that no contmon solution P exists.
This verification can be made by solving the following dual problem. If there
exists positive definite matrices -R¿ with i e "I satisfying

R¿=RT>o

lnl n; * R¿A¿ 1o (2)
ieI

then (1) does not admit a positive definite solution P = PT .

Another attractive feature of having a globally quadratic Lyapunov firnc-
tion is that stability can be guaranteed independently ofthe cell partition, and
for a large class of switching schemes. For examples, see the work on Lyapunov
stability forE\tzzy Systems fZhao,1995], [Tana.ka et aL.,1996]. However, it is
not hard to come up with systems which are stable, but for which no com-
mon globally quadratic Lyapunov function on the form I/(o) : æT Pæ exists.
Indeed, this is the case for all examples given in this paper.

2. System Description

Systems with piecewise linea¡ or affi.ne dynamics can be represented in several
ways. In this report, we shall use the notion of a cell partition (cf [Caines and
Ortega, 1995]). We shall assume that the state space IR' is partitioned into
a finite number of closed sets X;, i € -I called cells. A typical cell partition is
shown in Figure 1.

Each cell constructed as the intersection of a p half pla^nes, each given by
an affine inequality

("r,i)'rliI¿,¡)0

Thus, each cell can be characterized by the vector inequality

C¿æ*D¿)0 neX;

with C¿ € IRPX" and D¿ € IRP. The vector inequality æ ) 0 means that each
entry of æ should be non-negative. We shall further assume that the cells are
constructed so that C¿æ* D¿= Ciæ* D¡for n e X¿fiX¡,i,i e I. Within
each cell, the dynamics is piecewise affine

ù(t):A;æ(t)+B;

3
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A2

I1

X¡

Figure 1 A typical cell partition.

In a more general setting,'we also consider hybrid systems with autonomous
switching between a set of piecewise a,ffine dynamics [Branicky, 1995]. We
model these systems as

,ù(t):A¿æ(t)+B;
i(t): v(æ(t),i(ú-))

The discrete state i(t) € .[ is piecewise constant. The notation ú- indicates
that the discrete state is piecewise continuous from the right. In our setting,
changes in the discrete state i(ú) occur when the continuous state ø(t) hits a
cell boundary, i.e.

(c¿,¡)r æ(t) + d¿,i = 0

for some irj e I. For a nice review of hybrid phenomena and models, the
reader is referred to the thesis [Branicky, 1995].

3. A Simple Example

As a simple a^nd illustrative example, consider the following nonlinear differ-
ential equation

Ars,

Azæ,

if æ1 < 0

if c1 ) 0

where

At= -5
-1

-4
-2

Az= -2
20

-4
-2

By solving the dual problem stated in (2), one can verify that there is no
globally quadratic Lyapunov function V(æ) = aT Pa that assures stability of
the system. Still, the simulations shown in Figure 2 indicates that the system
is stable.
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-2 0 2 4

Figure 2 Ttajectories of the simple switched system.

As an alternative to a globally quadratic Lyapunov firnction, it is natural
to consider the following Lyapunov function candidate

v(æ):
æTPæ, ifcl(0
,rPrtqr?, ifcl)o

(3)

where P and ? € IR are chosen so that both quadratic forms are positive
definite. Note that the Lyapunov function candidate is constructed to be con-
tinuous and piecewise quadratic. The search for appropriate values of 4 a,nd P
can be done by numerical solution of the following linear matrix inequalities

P=Pr>0
ATP+PAt<o
P+qcrc>o

ATe + qcr c) + (P + rìcr c)A2 < o

with C = [1 0]. One feasible solutionis givenby P - diag{l,3} and T=7.
The level surfaces of the computed Lyapunov function is plotted with dashed
lines in Figure 2.

It is instructive to compaxe this solution to an application of the classical
circle and the Popov criteria, to the simple switched system. Noting that

Az: At + BC

with

l3l
'= L"l ' c =[1 o]

rye can re-write the system equation as

ù,=Ara-B$(Ct)
lo, if 3¡ < o

óþ)= I '

l.Y' if 3¡ > o

This situation is illustrated in Figure 3.
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ôo

C(sI - At)-'B

Im
Figure 3 Switched system ¿s feedback connection

Im

-2

4681012
Re

Figure 4 The ci¡cle c¡iterion (left) fails to prove stability. The Popov plot (right)
is separated from -1 by a straight line of slope 1/4. Hence stability follows.

Defining G(s) = C(sI - At)-LB, we obtain the frequency condition

Re G(iø) > -1 Vø e [0, oo]

for the circle criterion and

Re [(1 * i.uq)G(iu)] > -1 Vø e [0, oo]

for the Popov criterion.Inspection of the Nyquist and Popov plots of Figure 4,
reveals that stability follows from the Popov criterion but not from the circle
criterion.

The failure of the circle criterion comes as no surprise, as the circle criterion
relies on the existence of a conì.mon Lypuanov function on the form I/(c) =
æT Ps lKhalit, 1992], which we know does not exist. The standard proof of the
Popov criteria, on the other hand, is based on a Lyapunov function on the
form

-2 -202488t0t2
Re

V(æ) : ,r P, * r, ["" $(o)d,o
Jo

For the simple switc.hed system, this Lyapunov function reads

æTPæ, ifæ1 <0

,r (P + qCr C)æ, if c1 ) o
v(æ):

which is identical to (3), used. successfully in the numerical optimization above

6
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4. Piecewise Linear Systems

Although classical frequency domain methods can be applied to assess stability
of simple switching systems, it is not clear how to generalize these methods to
more realistic cases, with several switches and more varying dynamics. Using
the LMI formulation, on the other ha^nd, it is possible to generalize the stability
conditions to the case when we have a cell pa,rtition with an a,rbitra¡y number
of cells with boundaries (q,¡)"c = 0 through the origin.

Requiring only continuity of the Lyapunov function across the cell bound-
aries, we can use more general quadratic forms tlrranr¡CrC as'local patches'
in the Lyapunov function. Let

V(') = 'r P¿' (4)

be a Lyapunov function for cell X¿ and let the boundary between X¿ and a
neighbouring cell X¡ be given by (c¿,¡)T æ = 0. Then, the composite Lyapunov
function is continuous if and only if the Lyapunov function in cell X¡ has the
form

V¡(æ) = ,' (P, + 
"¿,i(u¿,i)r 

¡ e;,¡(c;,¡)r) n

The LMI conditions in the previous section are stated globally. This is
unnecessarily restrictive, since the Lyapunov function % only has to decrease
for æ(ú) € X¿. One way to decrease conservatism in the stability conditions is
to modify the condition

AT P, + P;A; 10 (b)

to

AT P, + P;A¿ I cI n¿c; < o (6)

where the matrix.R¡ has non-negative coefficients. Since C¿æ ) 0, (6) implies
that the Lyapunov function decreases along the trajectories of the system
within fi. For æ outside of Xi, CT R¿C; ( 0, which may make the inequality
simpler to satisfy. This method is known as the S-procedure [Aiserman and
Ga¡rtmacher, 1"965]. We summarize the discussion in the following stability
theorem.

Tunonplvt 1

For every index i, e l,let X¿ be a closed subset of IR' and let C¿ C ß,Pxn.
Suppose that C¿æ ) 0for æ € X;andC¿æ = Cis for æ € X¿ñX¡,i,j e I.
If there exist matrices Q and Ã¿, where -R¿ has non-negative coeffi.cients, such
that the matrices

p, = l':l' q lt:l (z). LTJ -L/I
satisfy

o<Pt
O 1 P¡A¿ + AT P¿ + CT N;C;

7



for i € .I, then every continuous piecewise Cl trajectory in U¿6¡X¿ with

¿(¿) : A;æ(t) for c(ú) e xi

tends to zero exponentially. ¡
The proof of this theorem is omitted, since it is a special case of Theorem 2,

which will be proved in the next section. To show the applicability of Theo-
rem 1-, we consider the following piecewise linear system.

Exaupr,n l-Flownn Svsrnu
Consider the following piecewise linea¡ system

¿(¿) = A;æ(t)

o,r, = [t, 
,?(t) - n]1t¡ < o

\/ 
[2, ,?(t)-n'zrçt¡20

where the continuous dynamics a,re given by

Ar:l -u øl l-e: 
L-o, -.1 ' o': l-,

AU

-e

(8)

(e)

(10)

( 11)

(12)

(13)

Letting a : 5, u : L and e = 0.1", the trajectory of an initial value simulation
from c6 = ( -2.5, 0 )' moves towards the origin in a flower-like trajectory,
as shown in Figure 5. Ilsing the enumeration of the cells indicated in Figure 5,

2

-1

-2

-3-2-r0123æ¡

Figure 5 Initial value simulation (full) and cell boundaries (dashed).

the linear inequalities characterizing the cells are given by the matrices

n _fl -1r l-1 tl
''=11 1l' cz:Lt 

1l

n_l-t lt 11 -11
" = L-, -11 ' tn= l,-, -11

trhom the conditions for a continuous piecewise quadratic Lyapunov fulction,
as stated in Theorem 1 we find

Qt ;l

8

.2.

a-
0



ï¡ith

ett:å ["1,";t], Þ:12[";t.ir] (14)

The level surfaces of the computed Lyapunov function along with a typical
system trajectory is shown in Figure 6. tr

-3-2-1 0123l1

Figure 6 .Initial v¿lue simulation (full) ¿nd level surfaces of the computed Lya-
punov function (dashed).

5. Piecewise Affine Systems

In ma,ny situations, the requirements that the dynamics should be linear and
that the cell boundaries should cross through origin a,re too restrictive. For
example, approximating a nonlinear function by linearizations around a set of
operating conditions results in a piecewise affine system. In hybrid systems,
switches often occur when state va¡iables exceed certain limits, which is typi
cally stated as affine conditions in the continuous state. Thus, it is important
to consider stability of piecewise a,ffine systems. Conditions for continuous
piecewise quadratic Lyapunov functions for such systems are formulated next.

Tsnonou 2

For every index i e I,let C¿ C IRpx', D; € IRp and let X¿ be a closed subset
of IR'. Suppose that C¿æ * D¿ ) 0 for æ e X¿ and C¿æ t D; = Ciæ I D¡ for
æ e X;n Xi, i,j e LIf there exist e ) 0, vectors r¿ and matrices Q and R¡,
where r; and .R¿ have non-negative coefficients, such that

-1

P¿-
C; D;
IO
01

C¿

I
0

T D¿

a 0

1

ieI

satisfy

0 :l

;l

<Pc<
e-11

0

0

-(r¿)r D¿
( 15)

1_

-e [i' i] . [i'
C; D; C¿ D;

( 16)
B;

0

T

00

9

4

:
.\;.,

0
2P¿

T
P;*

L
R¿



for i € .[, then every continuous piecewise Cl trajectory in U¿6¡X¡ with

¿(ú) = A¿æ(t) I B¿ for a(t) e X;

tends to zero exponentially. !

Rnu¡.nx 1

The non-strict inequalities in the formulation of this theorem can usually be
replaced by strict inequalities in the numerical treatment. However, for all
regions that contain æ = 0, the last row and column of the corresponding P¿

are zero, so one has to restrict to the upper left corner, before imposing srict
inequalities. tr
The proof of the theorem relies on the following standard lemma.

Hence

Lpuu¡. L

tet V(t) be decreasing andpiecewise CL.fi there exist a,þ,1) 0 such that

clc(t)12 <v(t) < þl*(t)l'
dv..
E(ù < -tl'þ)l'

then læ(t)12 1Ba-L¿-tt/Plæ@)12. tr
Proof. The inequalities

dV
#=tl,lz=-1,

and the fact that I/ is positive imply that

*^u t -i

l,(¿)1, =Lvþ)5 
r{9)u*p

Proof of Theorem 2. Define i(ú) such that æ(ú) e XiG) and let

,(t)
1

(i,)

v(t) = l"f']'¿,,, i
The upper bound for P; implies that the last row a¡rd column a,re zero if D¿ ) 0,
i.e. if æ : 0 is admissible. Hence there exists a B fot which the upper bound
on I/ in Lemma t holds. The inequalities elæ(t)12 <v(t) ana ü(t) < -elæ(t)12
follow directly from (15) and (16) after multiplication by (r,1) from the left
and right and noting that

lt" i 
o'l' 

^,1t" i''] - o, æ € x¿

because of the non-negative coeffi.cients in -R¿. Hence Lemma 1- completes the
proof. tr

An example of the application of Theorem 2 is given next.

10



Ex¡,tr¡pr,o 2-A Procpwrsn Ar.rwn Sysrptvr
Consider the piecewise a,ffine system

ù=A;æ*B¿

where the dynamics a,re given by

A1

A2

As

-10 -10.5
10.5 I
-L -2.511 -1 l,
-10 -10.5
10.5 -20

0.3434 0.3066 0.33791

0.3066 0.3408 0.4224 
| 

z

0.3379 0.4224 0.67961

0.347L -0.115e 0l
-0.L159 0.3408 0l z

0 0 0l
2.8553 0.0850 --t.9526
0.0850 0.3408 -0.2008

-L.9526 -0.2008 1.3969

,r=[

"r=l
,r= 

|

-111
?.5 l

:l
11.0

50.5

(17)

(18)

(1e)

(20)

(22)

(23)

(24)

and the switching conditions are given by

1 ær(-1

-1<æ1 (1
L 1æ1

þ- 2 (21)

3

Letting , = l" 1], the convex optimization routines return the following

Figure 7 Initial value simulation and Lyapunov funcüion level surfaces.

Lyapunov function.

0

Vt= zT

Vz= zT

Vs= zT z

The level surfaces of the computed Lyapunov function a¡e indicated by the
dashed lines in Figure 7. ¡

I

I

I

J.'
I
I
I
I

\l \J
I
I

iil
¡l

t.l
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5.1 A Rernark on Sliding Modes
Up to this point, we have disregarded the fact that piecewise affine systems
may be of variable structure type, and as such can exhibit sliding modes
along the cell boundaries [Utkin, L977].It can be interesting to investigate the
implications of the derived stability citeria on the behaviour of the system
along possible sliding modes.
According to lUtkin, L977], the equations of the sliding modes on a cell bound-
ary ôX¿ of r adjacent cells ca,n be calculated by the equivalent dynamics

,ù(t) : I rif @(t), i) æe0X¿
I

i=L
(25)

(26)

(27)

where the coefficients ¡.r,¡ ) 0 a,nd D]=t lri: L holds. It is simple to verify that
the value of the continuous piecewise quadratic Lyapunov functions derived
so far strictly decreases along the possible sliding modes of the system.

6. Lyapunov Functions for Hybrid Systems

It is trivial to extend the application of Theorem 1 to a class of hybrid systems.

Tunonnu 3
For every i e I let C¿ € Rp*"'. Let c(ú) be a continuous piecewise C1 trajectory
in IR' and let i(t) e I be piecewise consta,nt and such that

¿(¿) = A¿p¡æ(t) a.e.

C¿p¡æ(t) > 0 Vú

C;ç-'¡æ(t) = C;p¡æ(t) Vt

If there exist matrices P, -E and B¿, where .E¿ has non-negative coeffi.cients,
such that the matrices P¿ : P + Cl E + ET C; saiisfy

0<Pi
o ) P¿A¿ + A! e, + CT n¿C¿

for i e -I, then æ(t) tends to zero exponentially. tr
Proof. The result follows from Lemma 1 with V(t) = æ(flr e;ç¡æ(t). D

For hybrid systems, there are many situations where continuous Lyapunov
functions are too restrictive. Inspired by [Pettersson and Lennartson, ].996],
we give the following motivating example.

Ex.q,r\dpr,n 3-Hysnlo Sysrnu wttu SwlrcHINe Sr¡,rn
Figure 8 shows an initial value simulation of the piecewise linear hybrid system
given by

¿(ú) = A¿p¡n(t)

nlr¡: [''
[ 1,

if i(¿-) : l- and (c1,2)ræ = 0

if i(ú-) : 2 and (c2,1)ræ = 0

L2



I2

-1

-1

-3

-L -100
10 -1

t1

110
-100 L

-2 -1

Az=

(28)

(2e)

(30)

0

Figure E Tlajectories of the hybrid system.

In this example, the switching boundaries are given by

c1,2 = [-L0 -1]"
cz,r = 1.2 -1]T

and the system matrices used are

A

The simulations indicate that the system is asymptotically stable. Flom
the simulated trajectory of the system, however, it is also clear that it is not
possible to find a single quadratic Lyapunov function that guarantees stability
of the hybrid system. tr
Despite the fact that there is no single Lyapunov function that assures sta-
bility of the hybrid system of Example 3, it is still possible to use Lyapunov
theory to prove stability of the switching scheme. One way of doing this is
to use multiple Lyapunov functions and require that the value of the Lya-
punov functions should be non-increasing at the switching instants [Branicky,
1994]. The following discussion shows that these 'compatibility conditions'on
the Lyapunov functions along the switching boundaries can be formulated as
linear matrix inequalities.

Consider the situation depicted in Figure 9. Initially, the discrete state
has the value i. The system trajectory evolves within the cell X¿, for which
the Lyapunov function V = ær P;æ is valid. As the continuous state hits the
cell boundary (c;,¡)ræ: 0, the discrete state changes its value to j, and the
Lyapunov function Vi = ,T Pi, should be used. The condition that the value
of the multiple Lyapunov function should be non-increasing at the switching
instants can be written as

,TP¡æ<rTP¿u æ:(c¿,¡)Tæ:o (31)

This condition can be expressed as the linear matrix inequality

P¿- P¡*c¿,¡(e;,¡)r *(e;,¡)(c;,¡)t > O (32)

for e;,¡ € IRlx"'. We formalize the discussion in the following stability theorem.

ù-

v

13



ù(t) = Aiæ
V¡(æ) = ær P¡æ

c;,¡)ræ :0

ù(t) = ¡t,
V(r): ær P¿æ

Figure 9 The switchings ofLyapunov functions occur as the continuous state hits
a cell boundary.

Tunonpu 4
For every i,j e I let C¿ € IRP and c¿,¡ € IRæ with q,¿ : 0 for all i. Let c(t)
be a continuous piecewise Cl trajectory in IR' and let i(t) € .[ be piecewise
constant a"nd such that

¡ù(ú) = A4r¡æ(t) a.e.

C¿1t'tx(t) 2 0 V¿

c¿1¿-¡,;1¿¡æ(t) : 0 Vú

If there exist vectors s;,¡ and matrices P¿ and .R¡, where .& has non-negative
coeffi.cients, such that

0<4
0 < 4 - P¡ * c;,i(s;,i)r + t¿,i("¿,i)r

O ) P¿A¿ + A{ T' + CT R¿C¿

for i,, j € "I, then æ(t) tends to zero exponentially. tr
Proof. The result follows from Lemma L with V(t): æ(t)r P¿ç¡æ(t). tr

As an application of Theorem 4, we return to the hybrid system with a
switching state.

Ex¡,upr,o 4-Sr¡.¡ltITy oF Swltcnr¡¡e Sr¡.rp Sysrptr¡
Letting

r -10 -1111 ' -l (33)2 -rl
The linea,r matrix inequalities of Theorem 4 for the system of Example 3 a,re

readily found as

P1rP2)0
Pt - Pz * 

"t,z(et,z)T 
¡ e1,2(c1,2)T ) 0

Pz - Pt + cz,t(ez,t)T + "r,r("r,t)t > 0

ATpr+hAttcr

ATpr+ PzAz*Cr (38)

(34)

(35)

(36)

(37)i]". o

i]". o

t;
t;
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Figure 10 Initial value simulation and the corresponding values of the multiple
Lyapunov function.

The convex optimization routines of LMI lab returns the feasible solution

P1

Pz

0.8444 0.0665\
I

0.0665 7.0790 )
32.2811 -2.24L5
-2.24L5 4.2587

(3e)

(40)

€ IR with ci,i = 0

trajectory in IR'

A trajectory of the system is simulated and shown in Figure L0 along with
the values of the active Lyapunov function as function of time. Notice the
discontinuities in the value of the multiple Lyapunov function at the switching
instants. fl
The stability conditions for piecewise linear dynamics can be extended to the
case of hybrid systems with piecewise affine dynamics.

T¡ruonur¡ 5
Forevery i, j e Ilet C¡ € IRpx', D¿ € IRP, q,¡ € IR'and
andd,¿,; = 0 for all i. Let æ(t) be a continuous piecewise
and let i(t) e.I be piecewise constant and such that

¿(ú) = A¿ç¡æ(t)+ B¿U)

C¡1¿7n(t)*D¿(,)10

(.4,-¡,;1r¡)ræ(t) + d¿þ-),;(t): o

d¿,i

CL

a.e.

V¿

Vú

If there exist e ) 0 vectors si,irr¿ and matrices P¿ a^nd Ã¿, where ri arLd ni
have non-negative coeffi.cients, such that

le 0l le-rl o I

Loo.J 
<4<Lo -(r¡)rD¿l (41)

o < 4 - P¡ ilî,;t01("¿'¡)'* 
"'' l î,::,]' $2)

h' 3] 
- * li' i'] - [i ",'f' ,,- [i 1']' ^,1'; i'] (ß)

for i,j € 1, then c(t) tends to zero exponentially. tr
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Proof. Define

v(t): Pt(r)
,(t)

1

T,(t)
1

The upper bound for P¿ implies that the last row and column are zero if
D¿ ) 0, i.e. if o : 0 is admissible. Hence there exists a P for which the
upper bound on I/ in Lemma L holds. The derivative bound is obtained by
multiplication of (43) from the left and right by (r,1). Hence the theorem
follows from Lemma 1. tr

7. Conclusions

The search for a piecewise quadratic Lyapunov functions for nonlinear and
hybrid systems has been stated stated as a convex optimization problem in
terms of linear matrix inequalities. The power of this approach appears to be
very strong and we believe that the ideas can be generalized in a large number
of directions including

r performance analysis

o global linea,rization

o controller optimization

o model approximation

and we hope to return to such issues in later publications.
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