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Abstract. Many �ltering applications are characterized by continuous

state dynamics Xt =
R t
0
m(Xs)ds + �Wt + �, discrete observations Yk = Ytk ,

and observation noise that is non-additive or non-Gaussian. In most such in-

stances, neither exact �nite-dimensional �lters nor known on-line/o�-line split-

ting methods apply. Thus, there is a pressing issue to determine how best

to calculate the conditional density Pr fXt 2 dzj Yk; 1 � k � lg : Ideally, one

would like an answer which avoids solving partial di�erential equations on-line.

In this note, we show that a combination of convolution, scaling, and sub-

stitutions e�ciently solves this problem under certain conditions. The most

noteable aspects about our method are that it is extremely easy to use and

that it assumes nothing about the observations other than the ability to con-

struct pYkjXtk

; the conditional density of the kth observation given the current

state.

1. Introduction

Traditionally, non-linear �ltering theory for continuous-time state variables consisted
of elegant mathematical solutions which were too abstract and too computationally
expensive for use in real tracking and prediction problems. How should one imple-
ment continuous-state �lters with continuous or discrete observations in real time
for practical problems with either non-linear equations where the Kalman �lter does
not supply the optimal state estimate or with non-Gaussian noise where the Kalman
�lter does not provide enough information to reconstruct conditional densities? Until
recently, this imposing question invariably led system engineers to mathematically
unjusti�ed adaptations of the Kalman �lter such as the extended Kalman �lter. The

�The author is grateful to Lockheed Martin Tactical Defense Systems-Eagan and the National
Science Foundation for their support.
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resulting �lters are often unsatisfactory and our participation in the current compre-
hensive e�ort to develop real-time implementable non-linear �lters is well justi�ed.

Since many process measurements are not made continuously but rather at dis-
crete instances and computers are digitals instruments it is often natural to work
with discrete observations. Suppose measurement Yj is taken at time tj, j = 1; 2; 3; :::
Then, the basic problem of continuous/discrete non-linear �ltering is to obtain the dis-
tribution of state Xt conditioned on the past and current observations fYj; 0 � tj � tg.
The state is modeled by a <d-valued Itô equation

dXt = mt(Xt) dt + �t(Xt) dWt; X0 = � (1)

driven by some <e-valued standard Brownian motion Wt. The observations are de-
scribed by a conditional density

pYk jXk
(�j�) de�ned by

Z
A
pYk jXk

(zjXk)dz = Pr fYk 2 Aj�(Xk)g a.s. (2)

and usually calculated from a mapping Yk = htk(Xtk ; vk);where each htk is a function
from <

d
� <

l
! <

n and fvk; k = 1; 2; 3; :::g is a sequence of independent <l-valued
random variables independent of W and �. Under certain regularity conditions the
conditional distribution for Xt given fYj; 0 � tj � tg admits a density which can
be determined iteratively by solving Kolmogorov's forward equation (also called the
Fokker-Planck equation) for (1) with random initial conditions between samples and
using a Bayes' formula update with (2) at sample times (see Ch. 6 of Jazwinski [10]).

E�orts to implement continuous-state non-linear �lters with either continuous
or discrete observations have been focused in three directions: (i) Obtaining exact
\�nite-dimensional �lters" which can be implemented on-line as a �nite number of
ordinary di�erential equations (e.g. Benesh [1], Ocone et. al. [16], and Daum [6], [7]),
(ii) decomposing the non-linear �ltering problem into time-consuming o�-line and
computationally e�cient on-line components (e.g. Bensoussan et. al. [2], Budhiraja
and Kallianpur [3], Mikulevicius and Rozovskii [14], and Lototsky, Mikulevicius and
Rozovskii [13]), or (iii) solving Kolmogorov's second order partial di�erential equation
on-line using multi-grid or other numerically-sophisticated methods (Cai et. al. [4],
Mirkovi�c [15]. Whereas the �rst method has only been proven for a limited number
of signal models

dXt = mt(Xt) dt+ �t dWt (3)

where � does not depend on Xt and m satis�es certain conditions, the second method
invariably imposes its own restrictive conditions, involves approximations, and en-
tails considerable apriori o�-line work. Moreover, all of these works from the �rst
two methods require limiting conditions on the observation noise (e.g.Gaussian and
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additive) which is a severe limitation in certain problems. Indeed, the very method
of looking for �nite dimensional �lters forces restrictive conditions on the observation
model. The third method is general but requires long, sophisticated computer algo-
rithms which are well-tuned for a particular �ltering problem. Moreover, to obtain
similar accuracy as is possible with the former two methods, one must often utilize
a large number of grid points and/or high order di�erence approximations for the
derivatives making this method quite slow even when multi-grid or other e�cient
algorithms are used.

Our present work is in the direction of implementing exact (in�nite dimensional)
continuous/discrete �lters under more general conditions on the observations. As will
be shown in later sections, our method is easy to implement, does not require any
apriori o�-line work, and avoids the usual restrictive conditions on the observations
by not requiring that there be �nite-dimensional su�cient statistics:

To motivate our method consider the case where Xt � Wt + � is just a <d-
valued standard Brownian motion added to some (possibly non-Gaussian) random
variable � which is independent of W . Moreover, suppose that pYk jXk

(�j�) denotes
the conditional density of Yk given Xtk and pXj jYk (�) is the conditional density of Xtj

given Yk
:
= �fYi; i � kg: Then, a fundamental solution to Kolmogorov's forward

equation (which gives the density for X's transition probability function) is just the
heat kernel

�t�� (x� �) = �(x; t; �; � ) =
exp

n
� jx� �j

2
=2(t� � )

o
(2�(t� � ))d=2

(4)

and the continuous/discrete �ltering problem is solved as: (I) pX0jY0 = p�; the density
of �; and then for all k = 0; 1; :::

(II) pXk+1jYk(x) =
Z
<d
�(x; tk+1; �; tk)pXkjYk(�) d� = ��tk � pXk jYk(x) (5)

where �tk
:
= tk+1 � tk; and

(III) pXk+1jYk+1(x) =
pYk+1jXk+1

(Yk+1jx)pXk+1jYk(x)R
<d pYk+1jXk+1

(Yk+1j�)pXk+1jYk (�) d�
: (6)

In the general case where X solves (1) or (3) steps (I) and (III) remain unchanged
but � must be replaced with an alternate fundamental solution � and convolution
in (II) is often not possible. Therefore, to solve (II) directly one would have to
store � for all x 2 <

d (or subdomain where X lives) and � \close to x". However,
when convolution is possible one only has to store a function of x� � which, being a
fundamental solution of a parabolic equation, has rapidly decreasing tails. Our goal
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is to determine conditions under which this convolution method holds. It is often
the case, for example in position velocity models, that only some of the states are
randomly excited. Hence, we assume that (
;F ; fFtg ; P;X;W ) with Xt 2 <

d and
Wt 2 <

e (e � d) is the weakly unique weak solution to

"
dX1

t

dX2
t

#
=

"
m(X1

t ) dt+ � dWt

(� + �X1
t ) dt

#
:
= fm(Xt)dt+ e� dWt; X0 = �; (7)

and show under conditions on m similar to Benesh's [1] that the convolution method
applies and, moreover, one can always (at every iteration) perform the convolution
with respect to the standard normal density. This means that (i) the fundamental
solution in (II) does not have to be stored at all and (ii) standard (�xed-grid) Fast
Fourier transform (FFT) routines, which can be implemented on a computer with
about 2n log2 n operations, are ideally suitable. It is possible to devise O(n) adapta-
tions of our methods. However, our only sources of error are in approximating Fourier
transforms by FFTs and it is felt that the loss of accuracy incurred by additional ap-
proximation would usually far outweigh the very limited asymptotic time advantage
gained by such an adaptation. Finally, it is well known that slight modi�cations to
�ltering algorithms like ours provide prediction and smoothing estimates for Xt:

In the following section we give the remainder of our notation, state the conditions
under which this \standard normal convolution" method is known to hold, state a
supportive mathematical proposition, and outline an algorithm for this method. In
Section 3, we prove the proposition of Section 2, in Section 4 we discuss a simple
example which has been implemented and tested in both Mathematica and C, and in
Section 5 we brieymention the more technical details in implementing our algorithm.

2. Result and Algorithm

Throughout the remainder of this note we let j�j denote Euclidean distance, assume
that X and W are as de�ned in (7), let � 2 <

e�e; � 2 <
d�e; and � 2 <

(d�e)�e be
constants with � non-singular and � having full row rank, and �x S > 0 large enough
that our time between observations tk+1 � tk � S for all k. For Proposition 1 (to
follow), we also assume:

C0 For each x 2 <e; y 2 <d�e there exists a weakly unique, weak solution on [0; S]
to the Itô equation

Y x;y
t =

"
x

y

#
�

Z t

0
fm(Y x;y

s ) ds+ e�Wt: (8)
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C1 m is continuously di�erentiable and satis�es a linear growth condition i.e. @im
:
=

@im
@xi

is a continuous function on <e for i = 1; 2; :::; e and jm(x)j2 � K � (1 +

jxj
2) 8x 2 <e.

For the next two conditions we let l(x)
:
= ��1m(�x) 8x 2 <e and some K > 0:

C2 There are constants k; r; q and Q with Q = QT
� 0 such that

jl(��1x)j
2

�
Pe

j=1
@jlj(�

�1x)

2
+
Pd

i=1 @ifmi(x) = xTQx+ rTx+ k and 2Qq = �r:

C3
@lj
@xk

= @lk
@xj

holds for all 1 � j < k � e; x 2 <e which is necessary and su�cient

for existence of a function L : <e
! <, unique to within an additive constant,

such that lj = @L=@xj 81 � j � e:

C4 For every g 2 C0(<d); the space of continuous functions with compact support,
the Cauchy initial data problem on [0; S] � <

d for the Kolmogorov forward
equation corresponding to (7)

@tqt =
eX

i;j=1

Ai;j@
2
i;jqt �

dX
i=1

fmi @iqt �
dX

i=1

@ifmi qt; q0 = g; A
:
=

��T

2
(9)

has a solution qt which satis�es the polynomial growth condition

max
0�t�S

jq(t; x)j �Mg(1 + jxj�g); (10)

where Mg > 0 and �g � 1 are constants which depend on g:

Remark 1. It is well known (see Benes [1] and Daum [5]) that there are interesting

examples of �lters for non-linear m satisfying (C2).

Remark 2. Suppose m is a�ne i.e.fm(x) � fm0+fm1x: Then, under Condition (C4)

there is a Fundamental solution to (9) which has the form

�(x; y; t; �; �; � ) = exp f� tr(fm1)(t� � )g ��t�� (�t�� (x; y)�(�; �)); (11)

where �� is as in (17), and �t�� (x; y) and �t�� are the mean and covariance of

Y
x;y
t =

 
x

y

!
�

Z t

�

fm(Y x;y
s ) ds + e�

 
Wt��

0

!
: (12)

(This is easily derived and is an immediate consequence of (22), (25), and (26) of the

proof in Section 3.) Hence, our convolution method and the algorithm given below
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apply even if Condition (C3) is not satis�ed! This a�ne case was �rst presented at

Lockheed Martin Tactical Defense Systems-Eagan (formerly LORAL Defense-Eagan)

by the author on November 9, 1995. A project to consider its use in altitude tracking

for air tra�c control was immediately thereafter initiated. The results have been

encouraging and are being reported in [12].

Remark 3. If L is not known in closed form it may of course be solved for at any x

by evaluating the line integral L(x) =
R


Pe
i=1 li dxi along any path  connecting the

origin and x:

Remark 4. Condition (C4) is a mild assumption; there are known constraints on m

that ensure (C4) will hold (see e.g. Friedman [9] p. 147, [8] p. 140, and Sonin [17]).

Now, under the above conditions, the classical �ltering theory applies and the
density for Xtk given �fYi; i � kg is given by (I-III) of the introduction. The only
remaining question is how are we going to ensure that we can factor its fundamental
solution in such a manner that convolution in (II) will take place. For notational
convenience, we de�ne R

:
= the symmetric, positive semi-de�nite square root of �TQ�;

R0 := �R��1; R
:
= (��1)TR��1; M(x)

:
= L(��1x); k0

:
= k + jqj2; and semi-group

U(s)
:
= exp

(
s

"
�2R0 0
�� 0

#)
: (13)

Proposition 1. Under Conditions (C0-C4), there is a fundamental solution to (9)

which is given by

�(x; y; t; �; �; � ) = �(t�� )�(x)��t�� (�t��(x; y)�(�; �))�
�1(�) (14)

for all (x; y); (�; �) 2 <d and 0 � t� � � S; where

�(s)
:
= exp f�(k0 + tr(R))sg ; �(z) = exp

n
M(z)� (q + z)TR(q + z)

o
; (15)

�s(x; y)
:
= U(s)

"
x+ q

y

#
�

"
q

�s+ �qs

#
; (16)

and �� is the zero mean Gaussian kernel

��(z) =
1

((2�)d det(�))1=2
exp

n
�1=2 zT��1z

o
(17)

with covariance

�s
:
=
Z s

0
U(u)e�e�TUT (u)du: (18)
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The decomposition (14-18) may at �rst seem complicated and di�cult to use.
However, it is already convenient for computer implementation and in practise it will
simplify further. For instance, when we use Proposition 1 in our algorithm t� � will
normally just be a �xed time step tk+1 � tk so �(t� � );�t�� ; and U(t � � ) become
�xed matrices.

Remark 5. In the linear case mentioned in Remark 2, �s and �s(x; y) will have a

similar form and the following algorithm will still apply.

2.1. ALGORITHM. In this subsection, we expand the algorithm (I-III) given in
the introduction to include systems (7) having fundamental solutions to Kolmogorov's
forward equation which have the form given in Proposition 1. We de�ne Ps to be the
symmetric, positive de�nite matrix

Ps
:
= ��1=2

s and let N (z)
:
= exp

n
� jzj

2
=2
o
=(2�)d=2: (19)

Moreover, to ease the notation we make the following de�nitions

�tj
:
= tj+1 � tj; pj

:
= pXjjYj ; pj+1jj

:
= pXj+1jYj ; ��tj

:
= ���tj

: (20)

Then, the basic algorithm is as follows

(a) p0(x; y) = p�(x; y); the density of �

Do j = 0; 1; 2; :::

(b) rj(x; y)
:
= ��1(x) pj(x; y)

(c) �j =
R
<d

h
x

y

i
rj(x; y) dxdy=

R
<d rj(x; y) dxdy

(d) �j(
h
w

v

i
)
:
= ��tj � rj(

h
w

v

i
) =

R
Rd N (P�tj(

h
w

v

i
+ �j)� z) rj(P

�1
�tj
z � �j) dz

(e) pj+1jj(x; y) = �(�tj)�(x)�j(U(�tj)
h
x+q

y

i
�

h
q

(�+�q)�tj

i
)

(f) Evaluate \prediction" statistics E[�(Xtj+1)j Yj ] =
R
�(x; y)pj+1jj(x; y) dxdy

(g) Wait for next observation Yj+1(!)

(h) qj+1(x; y)
:
= pYj+1 jXj+1

(Yj+1jx; y)pj+1jj(x; y)

(i) pj+1(x; y) = qj+1(x; y)=
R
<d qj+1(�; �) d� d�

(j) Evaluate \tracking" statistics E[�(Xtj+1)j Yj+1] =
R
�(x; y)pj+1(x; y) dxdy:
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The second equality in (d) is the key to making the algorithm practical and
e�cient. De�ning erj(z) :

= rj(P
�1
�tj
z � �j) to be the centered and scaled version of rj ;

one �nds that this equation is e�ciently evaluated as

F
�1
h
exp

n
� juj

2
=2
o
exp

n
�i uTP�tj�j

o
F [erj] (u)i (P�tj

"
w

v

#
); (21)

where F denotes Fourier transform. On a computer FFTs would be used in place of
the Fourier transforms. However, (21) suggests that: (i) the inverse Fourier transform
is well approximated by an integral over a bounded domain centered at the origin, (ii)
a �xed, uniform grid centered at the origin in the frequency domain is appropriate to
evaluate the inverse FFT, and (iii) the scaling and size of grid can be determined by

examining exp
n
� juj

2
=2
o
: More technical details about implementing the algorithm

are given in Section 5.

3. Proof of Proposition

In this section, we give the proof of Proposition 1 which was partially motivated by

Benesh [1]. Throughout this proof we will let
D
= mean equal in distribution and P [Z]

( eP [Z]) denote the expectation of Z with respect to probability measure P ( eP ):
Let us �x 0 � T � S; x 2 <e; y 2 <d�e and rewrite (9) subject to some continuous

initial data g with compact support on <d as

@tqt + cqt =
eX

i;j=1

Ai;j@
2
i;jqt �

dX
i=1

fmi@iqt; q0 = g; c =
dX
i=1

@ifmi: (22)

Remark 6. Our linear growth assumption on m is necessary to ensure that the

solution to (8) does not blow up. It is explicitly required for our use of Feynman-Kac's

formula (see (5.7.2) of Karatzas and Shreve [11]) and Girsanov's theorem. Indeed,

to show that Girsanov's theorem applies in (28) below, we use Fernique's lemma and

Condition (C1) to �nd an " > 0 respectively a K 0
x > 0 such that

E[expf" jN j2g] <1 and jl(W x
s^T )j

2
� K 0

x(1 + jWs^T j
2) 8 s � 0; (23)

where N is a standard normal random vector. Then, letting tn = 2�
K0

x T
n for n =

0; 1; 2; ::: and using Jensen's inequality with measure ds=(tn � tn�1), we �nd

E[expf
1

2

Z tn

tn�1

jl(W x
s^T )j

2 dsg] � exp
�
"

T

�
E[expf

tn � tn�1

2
K 0

xT jN j
2
g] <1 (24)

for all n = 1; 2; 3::: and the Novikov condition (Corollary 3.5.14 of Karatzas and

Shreve [11]) is satis�ed so Girsanov's theorem applies.
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Now, Condition (C4), an application of Feynman-Kac's formula (see e.g. p. 366 of
Karatzas and Shreve [11] with a time reversal) and (7) yield

q(T; x; y) = P

"
g(Y x;y

T ) exp

(
�

Z T

0
c (Y x;y

s ) ds

)#
(25)

where Bt
:
= �Wt and (
;F ; fFtg ; P; Y

x;y
t ;W ) is a weak solution on [0; T ] to

Y
x;y
t =

 
x

y

!
�

Z t

0
fm(Y x;y

s ) ds+

 
Bt

0

!
: (26)

Now; we recall l(x)
:
= ��1m(�x); de�ne Bx

s

:
= x+Bs;

W x
s
:
= ��1Bx

s ;
d eP
dP

:
= exp

8<
:�

eX
j=1

Z T

0
lj(W

x
s ) dW

i
s �

1

2

Z T

0

eX
j=1

jlj(W
x
s )j

2
ds

9=
; ; (27)

and note from Girsanov's theorem that

fBx
s ; 0 � s � TgP

D
=
�
Bx
s +

Z s

0
m(Bx

s ) ds; 0 � s � T

�
eP : (28)

Hence, by (7) and the weak uniqueness of (26) we have that

fY x;y
s ; 0 � s � TgP

D
=

(
Zx;y
s

:
=

 
Bx
s

y � �s � �
R s
0 B

x
u du

!
; 0 � s � T

)
eP ; (29)

and from M(x)
:
= L(��1x); (27), Condition (C3) and Itô's formula that

M(Bx
T )�M(x) =

eX
j=1

Z T

0
lj(W

x
s ) dW

j
s +

eX
j=1

Z T

0

@jlj(W
x
s )

2
ds: (30)

Therefore, it follows by (25), (29), (22), Condition (C2), (27), and (30) that

q(T; x; y) = eP
"
g(Zx;y

T ) exp

(
�

Z T

0
c (Zx;y

s ) ds

)
d eP
dP

dP

d eP
#

(31)

= exp fM(x)gP [g(Zx;y
T ) expf�M(Bx

T )�
Z T

0
BxT
s QBx

s + rTBx
s + kdsg]

= exp fM(x)gP [g(Zx;y
T ) expf�M(Bx

T )�
Z T

0
Bz
s
TQBz

s + k0dsg];

where z
:
= x + q; 2Qq = �r; and k0

:
= k + jqj

2. Now; we let R be the symmetric,
positive semi-de�nite square root of �TQ�; de�ne the processes

W z
t = ��1Bz

t ; �zt = �2
Z t

0
R�zs ds +W z

t ; (32)
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�xt = �2
Z t

0
R�xs ds+W x

t ; �
x;y
t

:
=

 
��xt

y � �t� �
R t
0 ��

x
s ds

!
(33)

for all t 2 [0; T ]; and rede�ne

d eP
dP

:
= exp

(
�2

eX
i=1

Z T

0
(RW z

s )
i
dW i

s �

Z T

0
(Bz

s )
TQBz

s ds

)
: (34)

Then, it follows from Itô's formula with R
:
= (��1)TR��1 that

2
eX

i=1

Z T

0
(RW z

s )
i
dW i

s = (Bz
T )

TRBz
T � zTRz � T tr(R) (35)

and from Girsanov's and weak uniqueness of the linear stochastic di�erential equation

in (32) that f��zs ; 0 � s � TgP
D
= fBz

s ; 0 � s � TgeP so by (13)

(
�x;ys

:
= �x;ys + U(s)

"
q

0

#
�

"
q

�qs

#
; 0 � s � T

)
P

D
= fZx;y

s ; 0 � s � TgeP : (36)

Therefore, by (34), (31), and (35) it follows that

q(T; x; y) = 	(T; x)P
h
g(�x;yT ) exp

n
�zT

T�TR��zT �M(��xT + exp f�2R0Tg q � q)
oi
(37)

where
	(T; x) = exp

n
M(x)� (x+ q)TR(x+ q)� k0T � tr(R)T

o
: (38)

The proposition follows by the observation

�
x;y
t =

Z t

0

"
�2R0 0
�� 0

#
�x;ys +

"
0

��

#
ds+

"
�Wt

0

#
+

"
x

y

#
: (39)

4. Example

To illustrate use of our algorithm on a simple, practical1 yet unsolved problem
(meaning the Kalman �lter, other �nite-dimensional exact �lters, and on-line/o�-
line splitting methods do not apply) it su�ces to consider the following simple \posi-
tion/velocity" example with non-linear observations corrupted by non-Gaussian noise.
Let ht denote the position of some object and suppose we would like to track ht. Over

1This problem is a simpli�ed version of an altitude tracking model used in air tra�c control.
Indeed, our algorithm is also being used on the more realistic model (see [12]) but we do not wish
to add technicalities to this exposition so we will stick with the idealized version here.
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short time periods one often assumes that velocity dht
dt

is just a Brownian motion and
that ht itself is not randomly excited. The observations are rounded to the nearest
quantization level (increments of 40 meters here) and subject to non-Gaussian noise.
Thus, our model is given by

dXt =

"
0 0
0 1

#
Xt dt+

"
�

0

#
dWt; X0 = � (40)

yk = 40 � [htk=40 + :5] + vk; Xt =

"
dht
dt

ht

#
;

with fvk; k = 1; 2; :::g being a zero-mean i.i.d. sequence with marginal distribution pvk
and [�] denoting truncation to the nearest meter: In this case, it is easy to determine
that

pYk+1jXk+1
(Yk+1jx; y) = pvk (Yk+1 � 40 � [y=40 + :5]): (41)

For comparison purposes, we also constructed an extended Kalman �lter by lin-
earizing the observation function, which entails treating the rounding as a second,
independent noise source, and then replacing fvk; k = 1; 2; :::g plus roundo� noise
with a zero-mean, i.i.d.Gaussian sequence. In the case where the variance of vk
plus roundo� noise exists the Gaussian random variables are chosen by matching
this variance. In the case where pvk is a Cauchy or other heavy-tailed distribution
the Gaussian random variables for the extended Kalman �lter were chosen by try-
ing several di�erent variances experimentally and keeping the one that gave the best
results.

Our algorithm has been thoroughly tested in Mathematica and C on this example
under a variety of combinations of di�erent �; pvk ; �; and number of grid points. The
following two general conclusion have been made:

1. As the tails of pvk increase or � decreases (i.e. the signal to noise ratio decreases)
one has to represent the tails of pj+1jj better to maintain the same level of
accuracy in the estimates. This is due to the increased probability that the
observation will be in the tails of pj+1jj and means that a larger number of grid
points (64, 128 or higher per dimension) should be used when the signal to noise
ratio is very low.

2. When a reasonable number of grid points are used the non-linear �lter always
outperforms the extended Kalman �lter in terms of root mean square (RMS)
error from ht over long enough time periods. As the number of grid points
increases the performance of both �lters increases but the ratio by which the
non-linear �lter outperforms the extended Kalman �lter also increases.
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For this note, we illustrate the operation of our algorithm with our example under
the two cases of non-existent and heavy tails for vk :

Table 1: Cases Considered
pvk � No.Grid pts. p� �tj

Uniform[-20,20] 4.1 50�50 �((x; y)� (2000; 0)) 4.8 s
Cauchy(0,15) 5.3 50�50 �((x; y)� (2000;�5)) 4.8 s

i.e. we started the system at 2000 meters and 0 or �5 meters/s and obtained a
new observation every 4:8 s. In order to produce nice graphics we decided to use
Mathematica which limited us to about 50 � 50 grid points on a SUN Sparcstation
10 and means that there will still be a noticeable di�erence between our discretized
densities and the unrepresentable exact continuous densities. This will of course
adversely a�ect our estimates and somewhat better performance occurs when our
algorithm is run under C with a larger number of grid points. (Grid sizes up to
256 � 256 were easily used on 486 PC with C.)

Figures 1 and 2 at the end of this note illustrate use of our non-linear �lter and
an extended Kalman �lter in mid-operation under the two cases documented above.
Because it is not economical to represent pj+1jj and pj+1 as explicit functions of (x; y)
on a computer (see Paragraph 4 of Section 5), the axes of graphs (a) and (b) of both
Figures 1 and 2 are not position and velocity but rather an a�ne function of both.
Similarly, the axes of (c) and (d) are not quite position and velocity but, in this case,
the lines of constant position are readily discernible by the edges of the truncated
densities.

In the uniform density prediction case, one can easily see that the top of the
extended Kalman �lter density Figure 1 (b) is slightly broader than that of the non-
linear �lter (a) reecting the fact that the rounding had to be modeled as additional
noise in the Kalman �lter case. Moreover, one can see that the base of the non-
linear �lter density is a lot narrower in some directions reecting (proper treatment
of rounding and) the fact that the tails of this density decrease faster than Gaussian
tails. This rapid decrease is a result of the fact that this density is derived from the
convolution of a Gaussian with the previous tracking density which has no tails in
one direction (see graph (c)). The next step tracking densities based upon the same
observation Yj+1 are given in graphs (c) and (d). Based upon these densities it is
reasonable to expect the extended Kalman �lter to give poorer estimates especially
for position and to show \less con�dence" in these estimates. When statistics other
than the conditional mean are required it is obvious that the non-linear �lter will do
a far better job. Data for a typical run through ten time steps is given below:
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Table 2: Uniform Observation Noise Tracking Data

Step htk yk
bhNtk eNtk

:
= jhtk �

bhNtk j bhKtk eKtk
1 2043.55 2029.58 2036.57 6.98 2024.37 19.18
2 2098.23 2066.14 2081.2 17.03 2067.35 30.88
3 2224.34 2244.76 2238.59 14.25 2241.8 17.46
4 2330.82 2301.46 2319.8 11.02 2302.07 28.75
5 2500.43 2504.56 2518.42 17.99 2501.75 1.32
6 2667.98 2666.35 2680.99 13.01 2667.56 0.42
7 2805.93 2819.01 2800.38 5.55 2818.94 13.01
8 2926.39 2939.68 2919.96 6.43 2940.74 14.35
9 3108.75 3118.41 3119.35 10.60 3118.09 9.34
10 3275.35 3299.89 3279.36 4.01 3298.39 23.04

The non-linear �lter performed better seven times, the extended Kalman �lter per-
formed better twice, and they performed similarly (within two meters) once. More-

over, the RMS error
q

1
10

P10
k=1(e

K
tk
)2 for the extended Kalman �lter was 18.57 m and

only 11.65 m for non-linear �lter. This experiment was repeated six times and the
seven-run average RMS errors for the Kalman and non-linear �lters were respectively
18.64 and 11.04 m or 68% more error for the extended Kalman �lter.

In the Cauchy density prediction case, one can see from Figure 2 (a) and (b) that
the extended Kalman �lter has a broader top due roundo� handling but a narrower
base reecting the fact that the normal distribution has faster decreasing tails than
the Cauchy distribution. Data for a typical run through ten time steps is given below:

Table 3: Cauchy Observation Noise Tracking Data

Step htk yk bhNtk eNtk
:
= jhtk �

bhNtk j bhKtk eKtk
1 1974.22 1937.56 1946.83 27.39 1947.15 27.07
2 1891.75 1867.08 1873.56 18.19 1870.23 21.52
3 1773.28 1755.97 1761.51 11.77 1758.83 14.45
4 1640.3 1640.1 1638.87 1.43 1639.43 0.87
5 1463.29 1520.89 1519.77 56.48 1520.56 57.27
6 1250.35 1253.34 1268.85 18.50 1260.4 10.05
7 1011.39 995.411 999.583 11.807 997.058 14.332
8 747.432 773.497 769.707 22.275 772.752 25.32
9 488.845 515.714 516.496 27.651 517.021 28.176
10 352.556 184.266 194.423 158.133 190.414 162.142

One can see that the non-linear �lter performed better �ve times, the extended
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Kalman �lter performed better once, and the two �lters performed similarly three
times. The extended Kalman �lter has trouble correcting from bad observations
which occur frequently with the Cauchy distribution and provides poorer estimates

when the observations are good. Moreover, the RMS error
q

1
10

P10
k=1(e

K
tk
)2 for the

extended Kalman �lter was 57.2 meters whereas it was only 55.82 meters for the non-
linear �lter. Interestingly enough, if the two highly corrupted observations (steps 5
and 10) are excluded from the RMS calculation, the non-linear �lter still outperforms
the extended Kalman �lter by a slightly larger amount. This same experiment was
repeated six times with our Mathematica program and the average RMS errors in-
cluding the highly corrupted observations (absolute errors of more than 50 meters
between htk and yk) for the Kalman and non-linear �lters were respectively 109.36
and 83.59 meters which corresponds to 31% more error for the extended Kalman
�lter. When the highly corrupted observations were excluded the average RMS er-
rors for the Kalman and non-linear �lters were respectively 41.32 and 16.76 which
corresponds to 147% more error for the extended Kalman �lter. The sizeable dis-
crepancy between the data in Table 3 and the average run statistics can be explained
by the fact that for two runs the extended Kalman �lter was completely \fooled"
by the highly corrupted observations and the non-linear �lter continued to supply
reasonable estimates. Data for one of these runs is given below:

Table 4: Extended Kalman �lter failure

Step htk yk
bhNtk eNtk

:
= jhtk �

bhNtk j bhKtk eKtk
1 2052.85 2041.33 2029.48 23.37 2026.42 26.43
2 2094.69 2096.04 2096. 1.31 2095.96 1.27
3 2239.67 2287.09 2269.88 30.21 2277.66 37.99
4 2408.07 1905.82 2364.38 43.69 2101.31 306.76
5 2519.31 2491.19 2484.9 34.41 2215. 303.69
6 2637.13 2655.8 2649.53 12.4 2629.45 7.68
7 2757.19 2763.21 2763.66 6.47 2774.82 17.63
8 2841.28 2760.29 2770.82 70.46 2771.1 70.18
9 2926.64 2918.42 2910.6 16.06 2914.84 11.8
10 2979.8 2822.5 2840.06 139.74 2828.2 151.6

The extended Kalman �lter was completely fooled by observation 4 and could not
correct at the next observation. In the other �ve runs, when the observations were
highly corrupted they were so far into the tails that they were not represented well by
either �lter and both �lters basically failed due to numerical reasons. It is believed
that with a larger number of grid points making better representation of the tails the
performance of the non-linear �lter relative to the extended Kalman �lter would be
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even better.

5. Programming Notes

In this section, we briey discuss some technical issues associated with implementing
our algorithm on a computer. The Mathematica program used to implement the
previous example according to our algorithm may be requested from the author. The
C program and all information about its current use are the property of Lockheed
Martin corporation and any inquires should be addressed to Lockheed Martin Tactical
Defense Systems, P.O.Box 64525, St. Paul, MN 55164-0525, Mail Stop U1P28.

As was previously mentioned, the routine simpli�es when (i) �tj = constant or
(ii) m is a�ne. There are other obvious simpli�cations that can be made if the
\predictive" and/or \tracking" statistics are not required at each time step. The FFT
routines are usually most e�cient if the number of grid points in each dimension is a
power of 2. For the previous example it was found that 32, 64, or 128 points worked
well depending on the accuracy desired as well as the chosen pvk and �. All integration
was done using a multi-dimensional version Simpson's 1/3 rule. Unfortunately, this
requires an odd number of grid points so the integration routine had to be \patched"
by adding a single column of Trapezoidal rule for each dimension.

A little care is required when mixing Fourier transforms known in closed form with
(multi-dimensional) FFTs for rj: It was demonstrated at the end of Section 3 that
the convolution could be evaluated using a known Fourier transform for N , a FFT forerj, and then an inverse FFT. When this done, one will usually have to premultiply erj
by a phase shift, postmultiply its FFT by a phase shift, and then perform a similar
transformation around the inverse FFT. These phase shifts will depend on the exact
implementation of the FFT routine. An alternate strategy which was not employed
in our example might be to take FFTs of N and the time lag instead of using known
formulae. Of course, there would be a small increase in error with the alternate
strategy. Regardless of which strategy is chosen the phase shift in (21) should be
replaced by a di�erent phase shift to provide nicely centered graphs.

The routine is very linear in the sense that once qj+1 is known there is no longer
any need for pj+1jj etc. and the same storage can be reused many times over. In storing
these objects one must often use two arrays: one for values of �j; pj+1jj ; or like objects
and one for the values of (x; y) for which each function can be evaluated at. Thus, in

(e) of the algorithm the operation �j(U(�tk)
h
x+�
y

i
�

h
q

(�+�q)�tj

i
) is implemented as a

manipulation of the array for the arguments. This method also helps us to maintain
better usage of our uniform grids.

The Fourier transform for erj is trivial to obtain from that of rj and vice versa.
However, the points (x; y) at which rj is evaluated in (b) of the algorithm are not
the exact points required for the convolution or FFT in (d) and, consequently, inter-
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polation is required. This interpolation can be done on either erj or its FFT. In the
previous example it was done on the FFT.

6. Conclusions

� A new method for implementing continuous-state, discrete-observation non-
linear �lters has been introduced.

� This method is particularly useful when the observations have gross (non-
smooth) non-linearities, non-additive noise, or non-Gaussian noise.

� The method is known to handle certain di�usions with non-linear drifts (Propo-
sition 1).

� The method outperforms an extended Kalman �lter on the simple example
given here.

� The method requires at least 32 grid point per dimension which would limit
its use to problems of �ve or less dimensions on most personal computers built
in 1996. However, this compares favorably to current on-line/o�-line splitting
methods and direct on-line partial di�erential equation solving methods.
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Figure 1: Uniform Observation Noise with 50x50 mesh for: (a) Non-Linear Filter
Prediction Density; (b) Extended Kalman Filter Prediction Density; (c) Non-Linear
Filter Tracking Density; (d) Extended Kalman Filter Tracking Density
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Figure 2: Cauchy Observation Noise with 50x50 mesh for: (a) Non-Linear Filter
Prediction Density; (b) Extended Kalman Filter Prediction Density; (c) Non-Linear
Filter Tracking Density; (d) Extended Kalman Filter Tracking Density


