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Optimal Control of Ankle Joint Moment:
Toward Unsupported Standing in Paraplegia

Kenneth J. Hunt,Member, IEEE, Marko Munih,Member, IEEE, Nick Donaldson, and Fiona M. D. Barr

Abstract—This paper considers part of the problem of how
to provide unsupported standing for paraplegics by feedback
control. In this work our overall objective is to stabilize the
subject by stimulation only of his ankle joints while the other
joints are braced. Here, we investigate the problem of ankle
joint moment control. The ankle plantarflexion muscles are first
identified with pseudorandom binary sequence (PRBS) signals,
periodic sinusoidal signals, and twitches. The muscle is mod-
eled in Hammerstein form as a static recruitment nonlinear-
ity followed by a linear transfer function. A linear-quadratic-
Gaussian (LQG)-optimal controller design procedure for ankle
joint moment was proposed based on the polynomial equation
formulation. The approach was verified by experiments in the
special Wobbler apparatus with a neurologically intact sub-
ject, and these experimental results are reported. The controller
structure is formulated in such a way that there are only two
scalar design parameters, each of which has a clear physical
interpretation. This facilitates fast controller synthesis and tuning
in the laboratory environment. Experimental results show the
effects of the controller tuning parameters: the control weighting
and the observer response time, which determine closed-loop
properties. Using these two parameters the tradeoff between
disturbance rejection and measurement noise sensitivity can be
straightforwardly balanced while maintaining a desired speed
of tracking. The experimentally measured reference tracking,
disturbance rejection, and noise sensitivity are good and agree
with theoretical expectations.

Index Terms—Functional electrical stimulation, modelling, op-
timal control, rehabilitation engineering.

I. INTRODUCTION

PARALYZED muscles generally retain their ability to
contract, and electrical stimulation is used in rehabilitation

as a therapy because it restores muscle bulk and brings several
collateral benefits [1]. The authors are interested in functional
electrical stimulation (FES) in which the aim is to restore
paralyzed muscles to some normal motor activities. For people
who have spinal cord injuries at the thoracic level, these
activities include standing and stepping. Artificial systems
which stimulate the motor nerves in order to cause the muscles
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to contract are neuroprostheses since they replace a defective
part of the natural neuromuscular system.

The seminal paper in FES was by Kantrowitz [2] who
demonstrated that paraplegics could stand with stimulation.
Throughout the 35 years since then, the putative advantages of
applying feedback control to stimulators have been acknowl-
edged. At present, however, it is little used. There are several
reasons for this, one being that, to date, most FES systems
have been external, with electrodes attached to the skin over
the muscles and with sensors strapped to the joints or limb
segments. The concomitant unsightliness and need to make
frequent attachments and detachments has probably deterred
many from using the systems and certainly has kept the
systems simple in order to be practicable. The most common
arrangement is to place electrodes over the quadriceps muscle
group in the thigh to extend the knees, perhaps over the buttock
muscles to extend the hips, and over the peroneal nerves below
the knee to cause flexion at all the leg joints by reflex action
[3]. Because fatigue of the quadriceps may limit standing time,
goniometers have been added at the knees to provide angle
feedback signals so that the quadriceps stimulation may be
modulated. Ideally the quadriceps contraction should just be
sufficient to maintain standing, and therefore the fatigue rate
should be less than if there is no feedback, in which case the
intensity remains strong [4], [5].

In the same period implant technology has advanced, and we
now have stimulators with many channels [6] which we could
use with implanted sensors to make more complex systems
without the subject having the penalty of a greater setting-up
time. Given this possibility, the question of how to control
the stimulation is important and is the subject of research at
several centers [7]–[9].

From the point of view of the Control Engineer, the phys-
iology of the nerve stimulation, its activation of the muscle,
and the mechanical properties of the muscle are mostly well
understood [10], [11]. This has usually been the focus of
attention when considering feedback control. However, if we
consider the mechanics of a paraplegic standing up using
stimulation of his knee extensors, we find that, using whatever
handles he has to help lift and balance, and his upper-body
musculature, he is able to apply moments to his paralyzed
leg joints [12]. In this way, the intact neuromuscular system
exercises sufficient control to allow most paraplegics to stand.
It also means that artificial feedback control of knee angle, as
described above, occurs in parallel to the control actions of
the brain. It follows that such knee controllers, though they
may be perfectly satisfactory for their purpose, have not been
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designed conventionally on the basis of measurements from
the plant. The parameters for the controllers have been chosen
empirically, partly on the subjective opinion of the paraplegic
user.

The paralyzed muscles, seen as the plant, are nonlinear time-
varying with a transmission delay and a low-pass frequency
characteristic [10]. We would like to know how to control this
plant when the intact neuromuscular system cannot interfere;
to consider, for example, whether performance can be im-
proved if we can stimulate with irregular interpulse intervals
[13]–[15] or make the controller adaptive to compensate for
fatigue [16]. The isolated distal spinal cord of a paraplegic
continues to exhibit reflex activity which is manifested as
spasticity, in which there is coactivation of antagonist muscles
resulting in limb rigidity and spasm. We would also like to
know how well the controllers cope with the spasticity and
spasm manifested in real subjects.

We have chosen to conduct experiments on the ankles and
are using a special apparatus called the Wobbler [17]. The
ankles have a number of advantages for study: during quiet
standing, the joints remain at mid-range; since the masses
of the feet are small, the ankle moments can be easily and
accurately estimated from external torque transducers aligned
with the joints; and the ankle muscles are easily stimulated
with electrodes on the calves. Our subjects stand in the
apparatus, strapped into a polythene body brace which extends
from their head to their shanks immobilizing their other
joints. They do not and need not use their hands for support
and therefore, in this arrangement, the intact neuromuscular
system cannot interfere with the controller at the ankles. The
objective is to see whether we can artificially restore balance
by stimulation of the ankle muscles, analogous to one mode
in which normal people stand. The Wobbler allows a series
of tests to be performed which may lead to this objective. In
all these tests except “actual standing,” the subject is held
vertical by stay ropes. Some tests are isometric, in which
case the feet (in the foot boxes) are fixed and the torques
in the supporting shaft are measured to observe the ankle
moments. Alternatively, the stiffness of the ankles can be
measured by applying sinusoidal motion at frequencies up to
6 Hz. Controllers can be tested isometrically or in motion, the
latter imitating the situation during artificial-balance standing,
except that instead of the feet being on the ground and the
body swaying, the body is fixed while the feet are rocked.

An early decision [18] was to follow the lead set by Bajzek
and Jaeger [19], using a nested controller structure in which
the ankle moments (left and right) and the common ankle
angle (equivalent to the inclination of the whole body during
“actual standing”) were fed back so that the whole controller is
more robust. The overall control strategy envisaged for ankle
angle control is shown in Fig. 1. An inner-loop controller
provides relatively high bandwidth control of muscle moment,
while the outer loop controller controls the angle. The
output of the angle controller is the desired moment set-point.

In our current series of experiments, we are using optimal
control methods, and this paper describes the estimation of
muscle model parameters, the design of the moment con-
trollers, and shows results from a normal subject.

Fig. 1. Cascade control structure for unsupported standing:� is measured
ankle angle,m is measured ankle moment,p is muscle stimulation pulse
width, �

ref
is angle set-point,m

ref
is moment set-point,C

�
is angle

controller, andCm is moment controller.

From the control engineer’s point of view, a major aim in
this work was to provide a controller design setup for straight-
forward day-to-day use in the laboratory. It is desirable to have
a small number of controller design parameters, each of which
have a clear physical interpretation and which allow direct
tuning and tradeoff of the key closed-loop properties: reference
tracking, disturbance rejection, and measurement noise sensi-
tivity. This aim was achieved by specializing the polynomial
equation approach for the linear-quadratic-Gaussian (LQG)
regulator design to the problem at hand. The polynomial
approach [20], [21] provides a very clear transfer-function
alternative to the Wiener–Hopf [22] and state-space [23]
versions of the LQG regulator. Efficient numerical algorithms
are available for controller computation [20], [24].

Moment-controller results from a paraplegic subject are
reported in [25] and [26]. The development to the nested
controller for angle allowing actual balanced standing has also
been carried out [27], [28].

Notation: This work employs real polynomials in one in-
determinate , where is to be interpreted as the unit
delay operator described by the relation
for a sequence . For simplicity, the arguments of poly-
nomials are sometimes omitted such that polynomial
is denoted as . For any polynomial its adjoint in
positive powers of is denoted by .

II. CONTROLLER SYNTHESIS AND ANALYSIS

A. Plant Structure and Optimal Controller

The feedback control structure for muscle moment is de-
picted in Fig. 2. The main signals in this structure are as
follows.

Muscle moment.
Desired moment (reference).
Desired muscle activation.
Stimulation pulse width.
Disturbance generation signal.
Measurement noise.

The signal is a notional control signal associated with
the idealized setup of Appendix 1. The disturbance and mea-
surement noise signals and are modeled as mutually
uncorrelated stochastic signals with intensities and ,
respectively.

The muscle is modeled in Hammerstein form and consists
of the static recruitment nonlinearity followed by the linear
transfer function . Procedures for experimental
determination of and are described in Section V.
The integer is a discrete input–output time delay.
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Fig. 2. Closed-loop system for muscle moment,� = 1 � q�1.

and are polynomials in the delay operator and have
the form

(1)

(2)

The net effect of disturbances is represented at the output by
the signal driving the filter . The integrating
term is included here to model the effect of
stepwise-changing constant disturbances and offsets, which are
typical due to the muscle physiology.1 In addition to model
error and other effects, a major source of disturbance is muscle
stiffness [17]. Rejection of muscle stiffness disturbances is
experimentally verified in the sequel.

The recruitment nonlinearity is cancelled by an inverse
nonlinearity at the controller output. Assuming perfect
cancellation the open-loop muscle can be represented by the
model

(3)

Due to the difficulty in obtaining reliable models of the noise
polynomial , it is assumed in the sequel that .

The moment is corrupted by a measurement noiseso that
the signal

(4)

is available for feedback. Since the muscle contains no inher-
ent integrating behavior, and since the disturbance contains
constant offsets, an integrator must be incorporated in the
controller. This is represented by the term, with

, in Fig. 2. The controller has a two-degrees-of-freedom
form so that the reference tracking behavior can be influenced
independently of the feedback loop properties and is described
by

(5)

1Such nonstationary disturbances can be represented in the stochastic
framework of Appendix 1 by consideringd to be a compound or generalized
Poisson process, i.e., a sequence consisting of random pulses of variable
magnitude occurring at random times; see [21] for details.

where and are polynomials in the delay operator.
The choice of is described in Section III. The polynomials

and are determined in the optimization procedure and
correspond to the solution of the optimal regulator problem.

The optimization cost function is chosen to allow a simple
tradeoff between output moment variance and control variable
activity. A suitable cost function to achieve this aim is

(6)

where is the expectation operator and is the tunable
control weighting. Due to inclusion of integral action via the

term, it is in fact the increments in activation which
are penalized. A formal solution to this optimization problem,
including underlying assumptions and solvability conditions,
is given in Appendix 1. Here, the solution is specialized to
the muscle moment control setup of Fig 2. The controller
polynomials and which correspond to the minimal value
of the cost-function (6) are obtained from the solution of the
linear polynomial equation

(7)

subject to the condition

strictly proper (8)

i.e., . A sufficient condition to ensure
existence of a unique solution with this property is that the
polynomials and have no common factors2 (see
Appendix 1).

The polynomials and in (7) are the stable solutions
to the spectral factorizations

(9)

(10)

Stable solutions for and exist when and have
no unstable common factors.

2This condition can be easily checked numerically. If stable common factors
are detected, the two coupled equations, (46) and (47), can be solved.
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B. Feedback Loop Analysis

By some straightforward algebraic manipulation, the closed-
loop equations relating the external signals and to
the signals and are obtained

(11)

(12)

Here, .
A number of the above transfer functions play an important

role in the frequency-domain design and analysis of the con-
trollers. The effect of disturbances on the output is determined
by thesensitivity function, denoted , and from (11) defined by

(13)

Also important is the effect of measurement noise which is
determined by thecomplementary sensitivity function

(14)

Note from (13) and (14) that these functions are related by
, and this is the reason for the term “complementary.”

This reveals the fundamental tradeoff between disturbance
rejection and measurement noise effects: to reject disturbances

should ideally be “small,” and to make the output insensitive
to measurement noise should also be small. Due to the
relation , this is clearly not possible. A solution may
be provided in specific cases by makingsmall in frequency
ranges where disturbances occur (usually low frequencies)
while letting it grow at frequencies where measurement noise
is known to predominate (normally high frequencies). A
further important point is to look at the effect of disturbances
and noise on the control signal. From (12) it is clear that
both affect the control signal through the transfer function

(15)

This again implies that ideally should be kept small, but
the frequency characteristics of the plant (which is
low pass) also need to be considered here. The sensitivity and
complementary sensitivity functions will be used in the sequel
to analyze the feedback properties of the muscle moment
control loop for various design parameter settings.

III. PRACTICAL ASPECTS ANDDESIGN PROCEDURE

A. Effect of Design Parameters

The parameters which affect the calculation of the optimal
controller are the control weightingand the intensities of the
disturbance and measurement noise signalsand . Since

these intensities are difficult to determine accurately, they can
be considered, along with, as control design parameters.
Since from (10) it is merely the relative values of and

which determine , it may be assumed without loss of
generality that . Thus, there are two scalar control
design parameters: control weightingand measurement noise
intensity .

The effect of varying can be seen clearly from the
cost-function definition (6). Higher values of will penalize
changes in activation more strongly, and the variance of the
muscle moment will be correspondingly higher. In frequency
domain terms, higher will reduce the bandwidth of the
closed loop, resulting in poorer disturbance rejection but less
sensitivity to measurement noise. The qualitative effect of
changes in on reference tracking is the same, i.e., faster
reference tracking is achieved with lower control weighting.
The direct effect of on the sensitivity and complementary
sensitivity functions will be illustrated in the sequel for specific
muscle parameters.

The effect of measurement noise intensity can be seen
from the filter spectral factorization (10) for . It should be
noted that the filter spectral factor corresponds to the observer
poles in a state-space formulation of the regulator problem (see
[29] and [30]). As , the feedback system effectively has
a deadbeat observer since in this case. On the other
hand, as tends toward a large number, the observer poles
tend to the poles of the open-loop system, which in the case
of the ankle muscle has low-pass characteristics. The effect of
increasing the noise intensity is thus to generate faster roll-off
of the loop transfer function. This will reduce sensitivity to
measurement noise (for the control signal in particular) while
generally leading to somewhat poorer disturbance rejection.
As described in Section III-B, the controller setup is such that

has no effect on tracking speed.
An alternative method for choice of the observer poles

which avoids the spectral factorization (10) is based on the
observation that increasing leads to a low-pass characteris-
tic with a dominant pair of poles (the muscle transfer function
is predominantly second-order). The alternative is therefore to
directly specify the observer poles to correspond to a second-
order transfer function with given time-domain properties,
such as rise-time and damping. This method has been success-
fully implemented for moment control. It is assumed that the
desired damping factor is unity (critical damping) and only the
rise-time, denoted , must be specified. This specification
of rise-time and unity damping leads directly to an equivalent
continuous-time transfer function

(16)

where is the natural frequency associated with specified
rise-time and unity damping factor. From a simple time-
domain analysis of the second-order system (16),can be
shown to be related to through . is
then given by the denominator of the discretized version of
this transfer function. Qualitatively, increasing has the
same effect as increasing . The effects of varying the design
parameters are summarized in Table I.
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B. Reference Tracking

Servo performance is defined by the transfer function be-
tween and , denoted as , and from (11) and
(7) is given by

(17)

The open-loop zeros appear in this expression since in general
the optimal controller performs no zero cancellation within the
loop.3 It is important to introduce the reference signal in such
a way that it does not excite the observer dynamics [30]. This
is achieved by constraining as

(18)

where is a scalar which is set to achieve unity steady-state
gain in this closed-loop transfer function. Combining (17) and
(18), the closed-loop transfer function becomes

(19)

and the appropriate value of is therefore

(20)

The reference tracking properties of the system as defined
by are effectively decoupled from measurement noise
effects due to the constraint (18). Thus, the design variable
(or ) has no effect on the speed of reference tracking; servo
characteristics depend solely on the control weighting. The
lower is, the faster reference tracking is.4 On the other hand,
perturbation of the output from the setpointwill be affected by
changes in (or ) because the effect of disturbances and
measurement noise will change; generally, whenincreases
the disturbance rejection will be poorer, but the sensitivity to
measurement noise will improve (see Table I).

C. Design Procedure

The design procedure can be summarized in the following
steps:

Given data: . Choose design parameters: .

Step 1) Perform spectral factorization

(21)

for stable .
Step 2) Convert the given to corresponding natural

frequency , and calculate as
the denominator of the discretized transfer function

.

3Cancellation of stable zeros could be arranged if desired by incorporating
the zeros to be cancelled as factors ofT .

4The tracking response can additionally be decoupled from the disturbance
rejection response through the introduction of a reference prefilter. Since such
a filter appears outside the feedback loop, the closed-loop dynamics can be
arbitrarily shaped by cancellingDc and the stable part ofBm [see (19)]
and introducing the desired closed-loop reference transfer function. In the
experiments reported here, satisfactory performance was achieved without
this additional measure.

TABLE I
EFFECT OF VARYING CONTROLLER DESIGN PARAMETERS

Step 3) Calculate

(22)

Step 4) Calculate

(23)

Step 5) Solve the equation

(24)

for and , subject to
.

Step 6) Evaluate sensitivity functions and closed-loop per-
formance. If necessary, choose new design param-
eters following the guidelines of Section III-A and
return to Step 1).

IV. WOBBLER SETUP AND EXPERIMENTAL CONDITIONS

Disregarding various safety features, the Wobbler comprises
two “foot boxes,” in which the subject’s shoes are fixed with
the ankles aligned to the supporting shaft, which can be put
in sinusoidal motion by a crank mechanism driven from a DC
motor. Two torque transducers measure the ankle moments
and these are resolved by the A/D card in the PC486 to
0.1 Nm quantization steps; a shaft encoder measures the angle
in increments of 0.018 degrees. There is also a tachometer
on the DC motor which is connected to another A/D input.
The computer is connected by a serial port to a “Stanmore
Stimulator” [31], operating in “Laboratory Mode.”

The software for the experiments comprises a library of C
programs. Beside the digital controller algorithm, there are
many other tasks, including:

1) instructing the stimulator to deliver pulses and checking
the transmission (20-Hz pulse frequency);

2) reading the A/D inputs at 20 Hz;
3) reading the shaft encoder at 20 Hz;
4) storing variables in RAM during each test;
5) saving variables to .BIN files on disc at the end of each

test;
6) calculating the stimulus pulse width from the current

activation level using the inverse recruitment function.
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There are also several utilities, used later for converting
the .BIN files to ASCII format. These .DAT files are then
loaded by the appropriate MATLAB script which plots and
analyzes the results or may design a controller using given
design parameters.

Before a session of experiments, 2-in-diameter self-adhesive
electrodes are attached on the midlines of the soleus and
gastrocnemius muscles of the subject. A neurologically intact
subject can step into the apparatus before the body brace is
strapped on and the stays tightened to maintain a normal up-
right posture with the feet horizontal. While standing quietly,
the A/D inputs are read as well as the torque readings used
for the zero ankle moment values during subsequent tests.

Stimulus intensity is a function of both the pulse width
and the pulse current, both of which are adjustable in the
Stanmore Stimulator. For these experiments, we use pulse
width to modulate the intensity, having set the current initially
in Test A. This is done by choosing a starting current [10,
20, 30 150] mA and then ramping up the pulse width in
a 20-Hz train while measuring the ankle moment. Usually the
response is sigmoidal. In a normal subject, this is repeated at
increasing currents until it begins to become painful, usually
at 60 mA. The maximal moment with a maximal pulse width
of 500 s is typically 50 to 60 Nm in one leg. This nearly
painful current is adopted for the following tests. The pulse
width is defined in steps of 2s in the range 0–500s.

One method of measuring the frequency response is by
Fourier transformation of the twitch responses, the responses
to well-separated stimulus pulses from which the muscle
contraction or twitch is completed before the next stimulus
pulse. As Durfee and Maclean [32] pointed out, this test has
two advantages: it causes little fatigue and it also finds the
recruitment curve for the muscle. In our Test, 50 pulses
are applied at 1.2-s intervals; they are of ten pulse widths
and in random order. The five responses for each pulse width
are averaged, and the results are plotted as a surface with
moment versus pulse width and time since the last pulse. The
peak value of each averaged twitch, plotted versus the stimulus
pulse width, is the recruitment curve for that channel. Having
found the inverse recruitment curve, we then describe the level
of stimulation by its “activation level,” which is the input to the
inverse recruitment block ( in Fig. 2). In our experiments
we do not use Fourier methods to determine the nonparametric
frequency responses. Instead, parameter identification methods
are used with a variety of open-loop activation test signals
[sine and pseudorandom binary sequence (PRBS)] to estimate
the linear transfer-function part of the muscle response (see
Section V-B).

After designing one or more controllers, Testis of closed-
loop reference tracking. The usual reference signal is a step up,
onto which is then superimposed a sine wave with three cycles
at each of [0.3, 0.5, 0.8, 1.2, 2, 3.2] Hz frequencies, followed
by a step down to zero. The same control program is used to
observe the disturbance rejection except that the reference is a
step up to a level which is maintained during most of the test,
then a step down. While the reference is constant, the feet are
rocked so that the ankle moments are disturbed due to the ankle
stiffnesses. In the following results, we make step changes to

Fig. 3. Twitch response data for estimation of recruitment nonlinearity.

the frequency of rocking during this test. Experimental results
for reference tracking and disturbance rejection are given in
Section VI.

The disturbance rejection test cannot be evaluated on its own
without a measure of the ankle stiffnesses. This is done in Test

. While the ankles are rocked at one of the rocking frequen-
cies used ([0.3, 0.5, 0.8, 1.0] Hz), the muscle is activated for
3 cycles with mAct. The
test is repeated for all the rocking frequencies.

V. MUSCLE MODELLING: EXPERIMENTAL RESULTS

A. Approximation of Recruitment Nonlinearity

Test , as described above, involves the application of
isolated pulses with 10 distinct pulse widths of [50, 100, . . .
500] microseconds. A typical set of averaged responses is
shown in Fig. 3, which shows measured ankle moment against
time, for the range of pulse widths applied.

The recruitment nonlinearity is obtained by plotting the
maximum moment for each pulse width, against the pulse
width. For each pulse width this results in a notional muscle
activation , normalized in the range 0–1 Act. It is assumed
that a pulse width of 500 s corresponds to maximum acti-
vation, i.e., to 1000 mAct. Thus, to find the activation (in
mAct) corresponding to pulse width we use

(25)

where is the maximum moment measured for
and is the maximum moment measured for the given
pulse width . An approximation to the recruitment curve
is obtained by interpolating the experimental points, and the
recruitment nonlinearity is denoted as

(26)
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Fig. 4. Typical recruitment curvefr.

Fig. 5. Open-loop system for muscle identification,d0 = d=Am(1).

For some desired muscle activationthe estimated pulse width
required is given by the inverse recruitment nonlinearity

(27)

A typical recruitment curve obtained using this method is
shown in Fig. 4.

B. Estimation of Transfer Function

In order to generate test data for estimation of the linear part
of the muscle model, the approximated recruitment nonlinear-
ity is first cancelled; the setup for open-loop identification is
shown in Fig. 5.

A series of activation test signals are applied, and
the ankle moment measurement is generated. For the
purposes of estimation it is assumed that the disturbance term

is a constant offset as generated by a pulse with
magnitude . Following application of the final-value theorem
for this leads to an open-loop measurement equation [c.f.
(3)]

(28)

Assuming the measurement noiseis an uncorrelated zero-
mean stochastic signal, the best one-step-ahead moment pre-

diction is

(29)

where the parameter vector and regression vector are
defined by

(30)

(31)

A measure of model fidelity is provided by the least squares
criterion

(32)

where is the number of data points. The analytical solution
for the optimal parameter estimate is [33], [34]

(33)

This is the solution used in the identification experiments
reported in the sequel.

In addition to the twitch responses used for determination
of the recruitment nonlinearity, two further types of activation
test signal can be employed for transfer-function identification.

1) A sinusoidal signal of variable frequency: A repre-
sentative test signal and the corresponding moment
measurement are shown in Fig. 6(a). A typical model
obtained from the sinusoidal activation test signal shown
in Fig. 6(a) is

(34)

(35)

The measured moment and the output predicted by this
model with the input of Fig. 6(a) is shown in Fig. 6(b).

2) A PRBS-type activation signal: A representative PRBS
test signal and the associated moment measurement are
shown in Fig. 7(a). A typical model obtained from the
PRBS-type activation test signal shown in Fig. 7(b) is

(36)

(37)

The measured moment and the output predicted by this
model with the input of Fig. 7(a) is shown in Fig. 7(b).

From the twitch responses shown in Fig. 3, the one at a
pulse width of 350 s was also used for parameter estimation,
again with the above least squares criterion. The estimated
transfer function in this case was

(38)

Since for test the operating point for the muscle is the
rest position with , no offset term was estimated,
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(a) (b)

Fig. 6. Identification with sinusoidal test signal. (a) Activation test signal and measured moment. (b) Measured moment (full line) and model sim-
ulation (dotted line).

(a) (b)

Fig. 7. Identification with PRBS test signal. (a) Activation test signal and measured moment. (b) Measured moment (full line) and model simula-
tion (dotted line).

i.e., . The model (38) is the one used as the basis for
controller design and testing in the sequel.

It should be mentioned that extensive model validation tests
using additional data not used for parameter estimation and
multiple-step-ahead prediction criteria have confirmed that the
second-order model structure with a delay is appropriate
for this application. Since new identification tests must be
performed very quickly, using as brief a test signal as possible,
each time the subject undergoes controller testing, this is
done by simply performing one of the tests described above
without extensive model validation taking place. The full range
of estimation and “off-line” model validation tests will be
reported elsewhere [35].

VI. M OMENT CONTROL: EXPERIMENTAL RESULTS

Given a pair of estimated muscle polynomials and ,
the design parameters and represent tuning knobs for

the controller. The calculated controller polynomials
define its servo tracking performance, disturbance rejection,
and the influence of measurement noise. The effects of both
tuning knobs on all three types of performance were investi-
gated by simulation and verified by experiments in the Wobbler
(Section IV). It will be seen that the qualitative effects of the
design parameters, as outlined in Section III-A, are verified
by the experimental results. In one measurement session,
controllers designed with different and values were
tested in the left leg of the same person and under constant
environmental conditions. The control tests were preceded by
tests for estimation of the recruitment curve and the linear
transfer function parameters (38).

1) To show the effect of varying with a fixed
value (deadbeat observer):

a) High value of : The time-domain response
for the reference tracking test is presented in
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(a) (b)

Fig. 8. Closed-loop control tests:� = 0:5; tobs = 0. (a) Tracking test. (b) Disturbance test: ankle angle perturbed at indicated frequency and magnitude.

Fig. 8(a) with the required reference signal as
a dashed curve and output response as a solid
curve. The bottom part of the figure shows
muscle activation (internal controller variable). The
disturbance response is shown similarly in Fig. 8(b).

The reference signal depicted in the upper graph
as a dashed line is kept constant, while the feet
are rocked with a constant angle amplitude (solid
line). The controller output moment, which should
ideally be equal to the required moment, is also
shown as a solid line. Activation is shown in the
bottom part of the figure. In the reference test, poor
controller servo tracking is seen with a noticeable
phase lag and some amplitude attenuation even at
the lower test frequencies. This is expected from
the cost-function (6), which, at , strongly
penalizes activation changes. That changes inare
not penalized enough is also evident in the negligible
disturbance moment rejection.

Ankle stiffness, which directly defines the ankle
disturbance moment, is a nonlinear function of
the activation, ankle rocking frequency, and ankle
angle and was measured in testas an open-loop
disturbance moment (Table II).

The activation level during the disturbance test
[Fig. 8(b)] was at approximately 600 mAct, and for
the first wobbling frequency at 0.3 Hz the measured
disturbance moment is equal to approximately
18 Nm (from Table II). Comparing this with the
18-Nm amplitude in the output moment in the
disturbance test, we see no attenuation at the 0.3-
Hz wobbling frequency and the same is true at
other frequencies. On the other hand, with the high

value, measurement noise effects are small:
the reference tracking and disturbance activations
are both smooth and noise-free.

b) A low value of was selected in
contrast to case 1a). The reference tracking results
are shown in Fig. 9(a) and the disturbance tests in
Fig. 9(b). An excellent amplitude response and very

TABLE II
THE PEAK-TO-PEAK STIFFNESSMOMENT IN NANOMETERS AS

A FUNCTION OF ACTIVATION AND WOBBLING FREQUENCY.

STIFFNESS APPEARS AS ANOUTPUT DISTURBANCE

small phase lag appears during reference tracking
for signals up to 2 Hz. With the same controller
setup, disturbance signals are very well attenuated.
But, as a penalty for a wider bandwidth, lower

significantly increases measurement noise in the
system, which is noticeable from the activation in
both the reference tracking and disturbance tests.

Values of are for this application
practically unusable due to an increasing activation
instability, while controllers with

show effects between those two cases in all
three respects: reference tracking, output disturbance
rejection, and measurement noise sensitivity.

To interpret the performance changes in the fre-
quency domain, Fig. 12(a) shows the sensitivity and
the complementary sensitivity functions (13) and
(14) for . Low values
in the cost function (6) give low phase lag, better
disturbance rejection, but poorer noise sensitivity,
as the bandwidth is higher for a smaller(changes
in bandwidth can be seen in the complementary
sensitivity plots). For , on the other hand,
the complementary sensitivity function magnitude is
low over the frequency range (low noise sensitivity),
while the sensitivity function magnitude is large
(which allows disturbances to affect the output and
control signals).
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(a) (b)

Fig. 9. Closed-loop control tests:� = 0:00005; tobs = 0. (a) Tracking test. (b) Disturbance test: ankle angle perturbed at indicated frequency
and magnitude.

(a) (b)

Fig. 10. Closed-loop control tests:� = 0:00005; tobs = 0:3. (a) Tracking test. (b) Disturbance test: ankle angle perturbed at indicated frequency
and magnitude.

2) To show the effect of varying with a fixed value of
:

a) Medium value of : This value was se-
lected as a good compromise setting with satisfactory
tracking speed. The results of reference tracking and
disturbance tests are shown in Fig. 10(a) and (b),
respectively, and may be compared to Fig. 9(a) and
(b), where the value is the same but the observer
is deadbeat.

Little difference is seen in the output moment am-
plitude, phase lag, or superimposed noise responses.
But, the noise present in the activation is much
smaller than with the deadbeat observer in both
the reference and disturbance tests. There is slightly
poorer disturbance moment attenuation with this
value.

b) High value of : Fig. 11(a) and (b) shows
the results of the reference tracking and disturbance
tests.

The disturbance test is similar to the poor dis-
turbance response found with , where the
injected moments are not attenuated. The reference
tracking is still fast with larger values but is
degraded compared to the controllers having lower

or a deadbeat observer due to poor disturbance
rejection. The noise in the activation is smaller than
for but noticeably higher than with large

values and deadbeat observers.
The decrease in closed-loop bandwidth for higher

may also be seen from the sensitivity and com-
plementary sensitivity functions which are shown in
Fig. 12(b).

VII. CONCLUSION

Ankle moment controllers are part of the overall controller
for unsupported standing (Fig. 1) being tested on paraplegic
subjects [27], [28]. These experiments will help to assess
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(a) (b)

Fig. 11. Closed-loop control tests:� = 0:00005; tobs = 0:8. (a) Tracking test. (b) Disturbance test: ankle angle perturbed at indicated fre-
quency and magnitude.

(a) (b)

Fig. 12. Sensitivity and complementary sensitivity functions. (a) Effect of varying� with fixed tobs = 0. (b) Effect of varying tobs = 0 with
fixed � = 0:00005.

the feasibility of using controller stimulators for unsupported
standing, leaving the arms free for manipulative tasks.

In this paper we specialized the theory of optimal control
with the polynomial equation approach to ankle joint moment
control. The particularly transparent nature of the polynomial
formulation resulted in the ability to tune controllers using only
two scalar design parameters. The muscle was stimulated at
constant stimulus pulse frequency and a Hammerstein model
structure, to account for the recruitment nonlinearity, was
assumed. Results from a neurologically intact subject in the
Wobbler are presented. Results from paraplegics are presented
in further papers [25], [26].

If these methods are to pass into clinical practice, an impor-
tant consideration is the time taken to set up the controllers.
After the subject has been helped into the Wobbler and secured
in place, the time to determine the stimulator currents and
collect the data for the recruitment and frequency responses
of the muscles, in both legs, is about 5 min. Then by using
MATLAB scripts which minimize the amount of keyboard
interaction, controllers with several combinations ofand

can be designed in another 2 min, after which closed-

loop controller experiments can begin. Demonstrably, this is a
reasonably quick procedure, even compared to the often rather
short time that paraplegics may comfortably stand. Another
favorable observation, for which we present no data here, is
that the frequency responses of the muscles change little from
session to session, so that it may not be necessary to modify
the controllers for each subject very often.

It is clear from these results that there is a very broad range
of and over which the controllers are satisfactory as
regards reference tracking, disturbance rejection, and the effect
of measurement noise. This range is from

and . The measurement quantization
noise in this case is due to the 0.1 Nm resolution of the A/D
convertors on the torque load cells which here are measuring
moments in the range up to 50 Nm.

For the more satisfactory controllers [Fig. 9(a), (b)], we see
that the closed-loop bandwidth (3 dB) is 15 rad/s, when
reference tracking, at which the phase lag is small. Is this
adequate? There is no absolute answer to this question: the
wider is the bandwidth, the greater the disturbance from
which the controller may recover. Possible disturbances are
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Fig. 13. Closed-loop system—regulator problem.

unpredictable, and some may indeed be too great for recovery
however fast the controller; in these cases a normal subject
would make a step with one leg rather than be able to re-
cover entirely by exertion of the ankle plantarflexors. Another
consideration is of the spectrum of the sway seen in normal
subjects; in quiet standing, there is little motion above 1 Hz
[36]. Compared to 1 Hz, our controllers have a bandwidth
about 2.5 times greater, which is relatively fast. Because
paraplegics are weaker than normals, they will not be able
to produce such large accelerations in the inverted pendulum,
and so the sway frequencies will be even lower than 1 Hz.

The disturbance rejection is also good. This is less important
for stabilizing the inverted pendulum, as the ankle stiffness
actually helps stability [17], but it may be relevant to other
applications that satisfactory muscle controllers can give both
good reference tracking and output disturbance rejection.

APPENDIX 1
LQG PROBLEM FORMULATION AND SOLUTION

The general setup for the LQG regulator problem is depicted
in Fig. 13.

The open-loop plant is described by

(39)

and the measurement equation is

(40)

is the plant output and is the control signal. The distur-
bance and measurement noise signalsand are mutually
uncorrelated stochastic signals with intensities and

, respectively. It is assumed that the following hold.

A1) The subsystem is strictly causal,
i.e., .

A2) The subsystems and
are free of unstable hidden modes.

There is no loss of generality in assuming a common denom-
inator polynomial . is the lowest common denominator
of the subsystems and . A causal regulator having the

form

(41)

is sought. The desired optimal regulator evolves from mini-
mization of the cost function

(42)

where is the expectation operator and is the control
weighting. The control and filter spectral factors and
are stable polynomials and are defined, respectively, by

(43)

(44)

The solution of the optimal regulator problem can now be
summarized:

Theorem 1 (Kuˇcera [20], Hunt [21]): The optimal control
problem has a solution if and only if

C1) and have no unstable common factors.

The optimal regulator polynomials and form the unique
solution having the property

strictly proper (45)

of the linear polynomial equations

(46)

(47)

where

(48)

The integer is the smallest integer making (46) and (47)
polynomial in .

Note that when the common polynomial is eliminated
between (46) and (47), the implied linear equation

(49)

arises. The conditions under which this single equation may be
used to generate the unique optimal regulator are summarized
in the following theorem.

Theorem 2 (Hunt anďSebek [37]): The optimal controller
polynomials and are uniquely determined by the implied
equation (49) if and only if:

C2) The subsystem is proper;
C3) and are coprime.

The unique solution has the property

strictly proper (50)

A formal proof of these two results can be found in the
references [20], [21], and [37].
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To verify the specialized optimal regulator solution for
the muscle moment problem as stated in Section II-A, the
following substitutions must be made.

1)
2)
3)
4)
5)
6) .

Note that since the integrator term is prespecified in
the design, it is considered as part of the plant polynomial.
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[20] V. Kučera,Discrete Linear Control: The Polynomial Equation Approach.
Chichester, U.K.: Wiley, 1979.

[21] K. J. Hunt, “Stochastic optimal control theory with application in self-
tuning control,” inLecture Notes in Control and Information Sciences,
vol. 117. Berlin, Germany: Springer-Verlag, 1989.

[22] D. C. Youla and J. J. Bongiorno, “A feedback theory of two degree of
freedom Wiener-Hopf design,”IEEE Trans. Automat. Contr., vol. 30,
pp. 652–665, 1985.

[23] H. Kwakernaak and R. Sivan,Linear Optimal Control Systems. New
York: Wiley, 1972.
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