IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 8, AUGUST 1998 1163

for w & 3.4868. We conclude that the minimal volume is.in ~ Constrained Linear Quadratic Regulation
8.45 and the relative volume is

As an alternative to the classical robustness margin, in this pa|n5
we introduced the notion of minimum destabilizing volume. We ha

Pierre O. M. Scokaert and James B. Rawlings

min_ o 11.2667.

o(r™) Abstract—This paper is a contribution to the theory of the infinite-
horizon linear quadratic regulator (LQR) problem subject to inequality
constraints on the inputs and states, extending an approach first proposed

VI. CONCLUSION by Sznaier and Damborg [16]. A solution algorithm is presented, which

%quires solving a finite number of finite-dimensional positive definite

Uadratic programs. The constrained LQR outlined does not feature

e undesirable mismatch between open-loop and closed-loop nominal

shown that this volume can be easily computed if the control systensigtem trajectories, which is present in the other popular forms of model
affected by interval and affine parametric uncertainties. A problem pfedictive control (MPC) that can be implemented with a finite quadratic
subsequent interest is the extension of these results to more gendgramming algorithm. The constrained LQR is shown to be both

uncertai nty structures.
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optimal and stabilizing. The solution algorithm is guaranteed to terminate
in finite time with a computational cost that has a reasonable upper
bound compared to the minimal cost for computing the optimal solution.
Inherent to the approach is the removal of a tuning parameter, the
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In their remarkably succinct paper, Sznaier and Damborg [16]
present the basics of the approach. They treat a more restricted
class of problems than the one considered here. In their problem
statement, the state and input are constrained to lie in bounded convex
polyhedrons. We make no restriction on boundedness of the constraint
region. A major concern in their work is the real-time implementation
limits on calculation time, which can cause early termination of their
algorithm prior to optimal solution. In this work we have found that
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for many examples, the cost of our algorithm is not much greaterWe summarize the three relevant control problems of interest in
and is sometimes less than the cost of the standard suboptimal MRS paper.

algorithms already in use in industrial process control applications.Problem 0—LQR:

Therefore, many industrial applications exist for which this approach

can be implemented as an improvement over current practice. The min G(e, )

constrained LQR approach also removes what we consider in current subject to:

MPC approaches to be a nuisance tuning parameter, the control 2y = Ay + Bujp, t<J. (6)
horizon N, i.e., the number of future control moves considered in

the optimization. Problem 0 was formulated and solved by Kalman, and the solution

Sznaier and Damborg do not provide a full discussion of ths the well-known linear feedback control law
conditions under which their algorithm is stabilizing nor prove that w = — K %)
it terminates in finite time. The stability of their controller is not Ge= TR

guaranteed if their algorithm terminates before the optimal solutigf which the controller gair” can be calculated from the solution
is calculated. In Sznaier's thesis [15], a contraction constraint ¢ the discrete algebraic Riccati equation. The linear feedback law of

introduced, which, if feasible, does provide asymptotic stability7) is stabilizing under the above assumptions of stabilizability and
however, this added constraint leads to suboptimal control, even wheflectability.

ample computational time is available. We provide more completeproplem 1—Constrained LQR:

results on termination and stability and also highlight the benefits of

constrained LQR compared to other MPC variants in current use. Ii}jﬂ O(ae, m)
The paper is organized as follows. The constrained LQR law is subject to:

defined in Section Il, and its stabilizing properties are established.
g prop i =Axj, + Bu

Section Il outlines the details of a practical implementation of f“
constrained LQR, which is shown to require the solution of a finite Hajp) <h, 1<
number of finite-dimensional positive definite quadratic programs. In Dujj <d. (8)

Section IV, we discuss the computational aspects of the constrained ) ) o )
LQR algorithm and show that the computational cost has a reasondpf@Plem 1 is a natural extension of the infinite-horizon LQR (Problem

upper bound, compared to the minimal cost for computing the optim%)I that includes constraints. The only difficulty is the infinite number
solution. Finally, examples are presented in Section V, where gf decision variables in the optimization and the infinite number of
is demonstrated that constrained LQR achieves significantly bett@nstraints. _
performance than other forms of MPC on some plants, and theProblem 2—An MPC Problem:
computational cost is not prohibitive for online implementation.

' ] ) min ¢(x¢, )
Concluding remarks are made in Section VI. ™

subject to:
Il. OVERVIEW OF THE PROBLEM STATEMENT Tijp1e = Az + Bujy, t<y
We consider time-invariant, linear, and discrete-time systems de- Hzjpy <h,
scribed by the state-space equation t<j<t+N-1
Ti41 = Axy + Buy Q) Duj), <d,
in which 2, € R" andu, € IR are the state and input vectors uji = — Kaj,,  t+N<j 9)

at discrete timef and A and B are the state transition and input
distribution matrices, respectively. It is assumed throughout the papey.”. o )
P y 9 P % trlnlte number of constraint$y (nq +np); it can therefore be solved

that (A, B) is stabilizable. . i . . )
The control objective is to regulate the state of the system optima h}.th standard quadratic programming methods. The only interest in

to the origin. Optimality is defined in terms of a quadratic objective IS pro_blem here |s’yas an aid n solv_lng Problem 1. _The idea of
and a set of inequality constraints appending the: = — K« unconstrained linear law to the finite set of
The objective is defined over an infinite horizon and is given byA decision vanat_mles Is used in Ml.chalska and Mayne’s _dual-mode
- controller for nonlinear systems [8]; see also [10] for a brief review.
, ' ' Concentrating on Problem 1, the open-loop optimal control is
O(xy, ™) = r::Qxe +ui Ru . ) 2T Bl
s, m) Z e Q e+ e Ry @ obtained by minimization of the objective over all control pro-

This form of MPC has a finite number of decision variabl&s,and

—
in which© > 0 and B (; i iohi i files that satisfy the inequality constraints. The feedback law is
ItEV;/ '01/9 2 _and i >t blare sy:jmme fic weighting matrices, SUChthen defined by receding horizon implementation of the optimal
at(Q'*, 4) is detectable, an open-loop control. Given the open-loop optimal stratedyz,) =
T = {Uye, Uggr)es -} ) {uf); (o), iy (e), - -}, we therefore have the control law
wjpre = Awje + Bujyy, t<yg 4) u = g(xy) = u:“(;r,t) (10)

with z,), = z;. The constraints are also defined on an infinite horizon . " " .
and take the form in which g : R" — TR™ denotes the nonlinear map between state

I ; ) and control.
i1 Sh, t<y ) Remark 1: For notational simplicity, we drop the; argument in
Duj;, <d uj () in the sequel, i.eqj, = uj,(z¢). |

whereh € R}" andd € IR} define the constraint levels, with, . ]

andn, denoting the number of state and input constraints respd®- Stabilizing Properties

tively, and H and D are the state and input constraint distribution Not surprisingly, the constrained LQR law (10) benefits from
matrices. similar stabilizing properties as recent formulations of MPC.
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Theorem 1 (Nominal Stability) The origin is an exponentially  Problem 1—Constrained LQRGiven * € W, find a control
stable fixed point of the closed-loop systemy.; = Ax: + Bg(xz:), profile #*(x) for which
with a region of attraction equal to the domain pof

Proof: The proof proceeds by showing that, under the assump- ¢"(x) = min ¢(, m) (12)
tion thatx, belongs to the domain of [i.e., there exists a control . ined O
profile = that satisfies (4) and (5)], the optimal value of the 0bjectivé§ attained.

Remark 4: Existence ofr*(x) for all z € W is easy to establish

id follows from the results in the sequel. Uniqueness follows from
the uniqueness of the minimum of a positive definite quadratic
function on a convex set. O

A contribution of this paper is to show that under the usual
assumption that all elements bfandd are strictly positive (which
implies that no constraint passes through the origin sand 0—see

efinition 2), the solution to Problem 1 can be calculated in finite
computational time. We therefore show that suboptimality need not be
a property of implementable constrained predictive control schemes.

We start by considering the related MPC problem in which the
Jollowing finite input parameterization is employed:

¢*(x), is finite. This implies tha)'/?z;,, u,;; — 0, asj — oc.
Because nominal closed-loop performance is identical to the op
loop predictions, it follows than/?rt, uy — 0, ast — oo; as
(Q'?, A) is detectable, this implies that, — 0. Note that the
assumption of stabilizability ensures that the domaig afcludes at
least an open neighborhood of the origin.

Moreover, in view of [13], we also have a perturbed stabilit
guarantee.

Theorem 2 (Perturbed Stability)The origin is a locally asymptot-
ically stable fixed point of the perturbed closed-loop system =
Ay 4+ Bg(xe) + pe, if lime—oo pr = 0.

Proof: Under the assumption of feasibility, Muske [9] show:

that g(=) is Lipschitz continuous. Ag/(x) is a nominally expo- wj = —Kujp, j>t+N (13)
nentially stabilizing control law, the perturbed stability result of the
theorem follows directly from [13]. m whereN € 1 is the finite control horizon.

Remark 2: The result of Theorem 2 is local; this means tpat In this setting, the open-loop optimal control is obtained by solution
must be small enough, for all, such that the trajectory of the of the familiar MPC optimization.
perturbed system remains in the domaingofi.e., the perturbation ~ Problem 2—An MPC ProblemGiven N € I, = € Wy, find
must not cause infeasibility. O the control profile an(x) = {ufj uthyye -» —Katynpe
Remark 3: Note also that, if the perturbatiop; converges to —K;KﬁNH‘t, ---} for which
zero exponentially, the result of Theorem 2 can be strengthened to , .
exponential stability. O on () = R o(x, ) (4)
This result is significant because it leads directly to a stability proof

for the cascade of a stable state observer and the constrained Li®gttained. S o _ =
This constrained minimization is aiVm-dimensional positive

law. definite quadratic program withV(n. + ng) constraints. For any
finite horizon N, efficient solutions for Problem 2 are therefore easily
I1l. | MPLEMENTATION
formulated.
i Remark 5: Existence ofrx () follows, by definition, for allz €
A. Notation W . Uniqueness results from positive definiteness of the Hessian,
As in [16], we make the following definition. which is guaranteed becaugeis positive definite. Note that in the
Definition 1: Xx C IR™ denotes the set of states for which the context of Problem 2, we have
unconstrained LQR lawy;; = —Kxj, (t < j), satisfies (4) and Nt
(5). | o) — o On. wh Rus 2 o Oz
It is immediately apparent that*(v;) = {—K=z,, —Kz, 11, ¢, m) ;(M“th el o Qreenye (19)

-+-}, for all z; € Xx. Under the assumption that all elements of
I andd are strictly positive X contains an open neighborhood ofwhere( is the solution of the matrix Lyapunov equation
the origin [16]. ~ I A
Definition 2: B, denotes a ball of radius > 0, centered on the Q=Q+KRK+(A-BK)Q(4- BEK). (16)
origin, such thatB, C Xy. O 0
Definition 3: Given N € | and the current value of the state,
P~ (x¢) denotes the set of control profilessuch that

Hrjpe<h,  t<j<t+N-1

C. Properties ofp*, én, 7*, andmy

The interesting relationship betweer(xz) and 7 (z) is the

Duj <d motivation for our interest in Problem 2. We have the following
wjie = — Kajipe t+N < (11) results.

Definition 5: We denote by:}, the state predictions that corre-

pond to the optimal open-loop control profité (x;) and by ="

Further, we defindP(z,) to be the set of control profiles that satisfys _
those that correspond toy ().

(4) and (5).IP(«:) thus may be thought of as the limit @ v (x:)

ilt
as V' = co. Remark 6: Note that?, and «%), are functions ofx,. That

Definition 4: W“ < R denoﬁe; the set of states for Whlch dependence is, however, left implicit for notational simplicity.d
Pny(z) # (. Similarly, W C IR" is the set of states for which

. . . Lemma 1: =7, € Xx <= up)y = — Kz, Yk > j.

. Jlt k|t klts f

IP(x) # 0. i.e., W is the domain ofy. = Proof: The control profile that is optimal with respect to the
constrained LQR objective is;|, = — K=, forall »;, € Xx—see

B. Related Problem Statements Definition 1. In view of Bellman’s principle of optimality, the

Using the notation defined above, the optimal open-loop cosequence of controls{uflf. uf+1|f, ---} is optimal over all time
strained control problems described in Section Il may be statedervals [k, o), k¥ > t. The forward implication of the lemma
concisely as follows. therefore follows from optimality.
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By definition, X is the set of states outside which= —K=x can therefore be warm-started from the solution at the previous cycle.
violates the constraints of (4) and (5). As the optimal control profilas the solution of Problem 2 approaches that of Problem 1 w¥en

{uf)e> wiy1)e> -+ -} satisfies these constraints, it follows that, = increases, the computational burden of the quadratic program with
—Kaj), only if 23, € Xx, which establishes the reverse implicatiorwarm-start should not rise dramatically as Algorithm 1 is cycled and
of the lemma. m N is increased.

Theorem 3: For everyxz € W, there exists a finitéV. () € I, Although the setXx may be expensive to calculate, the check
such thatp™(z) = on(z), 7°(z) = wn(2), for all N > N (z). that IjﬁiA"\z € Xk, in Step 2), is inexpensive. In fact, the check

Proof: As X, contains an open neighborhood of the origin ané performed with no need for detailed information aboxik .
m*(x) drives the state predictions}, to the origin, there exists Predictions of the state and input are simply propagated until either a
a finite integerNoo(«) such thatz{ y_ .y € Xi. In view of constraint violation is detected or the predicted state etersNote
Lemma 1, we therefore have for aN > N..(x), #*(«) € Py, that this only requires prediction on a horizon that is guaranteed to
i.e., 7 (x) € PPy NIP. As wn(x) minimizes ¢(x, w) in Py, it be finite. The conclusion tha:tﬁrN“ € Xk is made if and only
follows thaté™(z) = ¢~ (), and consequently ™ (x) = wn(x) for if the state prediction enterB, with no prior constraint violation.

all N > Noo (). m The two operations, prediction and constraint violation check, can be
This result is key to our approach to solving Problem 1, a@mplemented efficiently. A simple method to determine the radius
explained below. of a ball B, C Xy is available but omitted for brevity.
The horizon increase made in Step 3) is worthy of a brief
D. The Control Algorithm discussion, as the heuristic used in increasigs closely linked

do the number of cycles of Algorithm 1 to termination. The simplest
guaranteed to identify the optimal control profite"(xz) in finite approach i_s to incremen’b" at egch if[e_rati_on of the alg(_)rit_hm, as
computational time is the following. suggesteq in [16]. This Igads to |dent.|f|cat|0nMJ;o(m) but is likely
Algorithm 1—Constrained LQR: to result in rather slow implementation of the control scheme. As
7*(x) = wn(x) for all N > N («), however, only an upper bound
on N () is required and values a¥ may therefore be skipped in
an effort to obtain a quicker solution.
Step 3) IncreaseV, go to Step 1) An interesting f'i_pproa(_:h is to increa$é geometrically, starting
Step 4) Terminate;:r*(:c) — rx(a) : O from a nonzero initial horizon. Assume that the current staie that
k ' ) we start withV = Ny > 1, and that we multiply the horizon by an
Sznaier and [16] Damborg discuss a similar algorithm, althoughegeri > 2 at each cycle of Algorithm 1. Then termination occurs
they do not show that termination occurs in a finite number Qfjth xv = ) v, after A\(z) + 1 cycles, where\ is an integer-
iterations. Finiteness aV..(x) in Theorem 3, however, ensures that,g),ed function of:. Let ¢(IV) be the computational price of solving
termination occurs after a finite number of cycles, regardless of theoplem 2 with horizonV, and further assume thatN) ~ O(N),
choice of initial horizon in Step 0) and of the heuristic used to increagg inat there exists a finite real> 0 such that:(N) < uN, which is
it in Step 3). a reasonable assumption with infeasible interior point methods [18].
The computational cost of Algorithm 1 is then

C(x) =c(No) + c(kNO) 4+t C[kMI)NO]

In view of the discussion in Section III-C, an algorithm that i

Step 0) Choose a finite horizaNy, setN = Np.
Step 1) Solve Problem 2.
Step 2) Ifa ¢ € Xi, go to Step 4).

IV. COMPUTATIONAL ISSUES

The spirit of optimal control, which lies at the root of MPC and i N
LQR, leaves no question that Problem 1 is a more natural formulation SuNoll +k+---+ 577
of the constrained predictive control law than other MPC formulations . EMEEE
in current use. The solution of Problem 1 can be computationally TN
taxing, however. It is thereforg necessary to assess Fhe computatichng{,0 > Noo(2), Mx) = 0, and C(x) < uNo. If No < Noo(a),
dem.ands of the method and it is d.eS|rabIe to minimize them. Int % get termination WithV < kNw(x) — k S0 thatk @ N, <
section, we discuss the computational aspects of Algorithm 1. V/\!e\, (x) — k. It then follows that
also propose a modification of Algorithm 1 that gives guaranteed ™ '

7

stability, even when there is not sufficient time for the algorithm to Clr) < 5 N 1 12 .

. . . - AT N\l ) — — 4+ 7\/ . 18
terminate. Finally, we discuss upper boundshon (x) and how they (@) < E—1H () k— 1“( No) (18)
may be used to obtain one-shot solutions to Problem 1. For any choice ofVy, therefore, we have

A. Computational Aspects of Algorithm 1 C(z) < p max | N, kk“ 1N‘X’("I) — ﬁ(;ﬁ +No)|. (19)

The choice of the initial horizon), in Step 0), has an effect on
the efficiency of the algorithm, since an initial horizon that is close to Consequently, we find thaf'(z) ~ O[Nx(x)]. Also, it appears
or greater thanV., () leads to early termination. Howevel,.. (x) Wise to setk to its minimal value 2, leading to
vqr_ies With._fc,_ _and th_e efffsct of the initial horizon is generally not C(x) < p max[No, 4Noo(2) — 4 — No]- (20)
critical. An initial choice Ny = 0 can therefore be recommended as
the default, with the desirable side effect that no optimization neel®w, assumeV..(x) is known; then calculation of* () requires
to be performed close to steady state when the state belor)js to only the one-shot solution of Problem 2 witfi = N (), resulting
The solution of Problem 2, in Step 1), is the computationallin a minimal computational price[Nu(z)] < pNo(z). When
expensive part of Algorithm 1. Efficient quadratic program solution¥ .. (x) is large (i.e., when computational time is an issue), a good
should of course be implemented. Infeasible interior point methodpproximation is:[No ()] = N (2). In view of (18), we then find
appear to be well suited. On one hand, the computational pricetbét the price of Algorithm 1 is better than approximatefy (k — 1)
that solution isO(N) [18], c.f. active set methods for which it is times the minimal computational cost required to calcufatér).
O(N?). On the other hand, the starting point for the optimization can Another alternative is to use the time-index of the last constraint
be infeasible and the quadratic program on one cycle of Algorithmviolation detected at the previous cycle of the algorithm as the new
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Fig. 1. Constrained LQR for Van de Vusse reactor.

horizon N. This approach seems to make good control sense, anidth =; and x> representing the concentration df and B and «

simulations indicate that it is a reasonable heuristic. the dilution (feed) rate [17]. We assume thiat = 50, k2 = 100,
ks = 10. The control objective is to maintain, at a set-point of
B. A Modification of Algorithm 1 one. Consequently, the desired steady statescfoand « are 2.5

The stability guarantees of Theorems 1 and 2 apply only to tﬁlgd 55’ respect(ijvzl_y [14.]’ mr'] we Iinlear?zr:e (21) ar?und_this (ieosi(r;(e)(;
control law given by the exact solution of Problem 1. The stabilit teady state and discretize the result with a sampling time of 0.002.

results are therefore invalid if there is not sufficient time to cycl his gives
Algorithm 1 to termination. For cases when time restrictions do not
allow termination, Sznaier and Damborg suggest using the last control
sequence calculated by the algorithm. They, however, point out that

this approach may not lead to stabilizing control; furthermore, itis ) o )
likely to cause constraint violations. We implement the constrained LQR law on this linear system, with

A modification of Algorithm 1 can, however, be proposed, tha@" appropriate_ shift of the orjgin to account for the nonzero set-
leads to guaranteed stability, both nominally and under decayiRgint: The tuning we choose I9 = I, B = I and the constraint
perturbations, regardless of whether or not the algorithm terminats SPecified thate> should be no greater than 0.12. A simulation

Let MPGs denote a stabilizing (suboptimal) MPC scheme fols Performed that is started fromo = [0.5 0.1]" (in the shifted
the system under consideration. We may then modifgp 3) in coordma}es) and the results are presented in Fig. 1. In this example,
Algorithm 1, to the following. we obtainNe(z0) = 7 and¢”(xo) = ér(xo) = 143.8.

Modified Step 3)—Algorithm 1: qu_ comparison, we als_o present swn_ulann results with two other
stabilizing MPC laws. First, we consider an MPC scheme with
Step 3(b): N < Nyas, g0 to Step 1). end-point constraint [5], in w_hi_ch the_inqu param(_aterization is such

Step 3(c): Termi_nate eind implement MEC 0O _thatu =0 anq;z: =0 _after a finite horlzon_W'. For thls_control law,

) ) } L if a small horizon N is used, the end—point constraint on the state

Implementation of Algorithm 1, with the above modification Ofy,, pecome incompatible with the constraint that< 0.12. The
Step 3), is guaranteed to lead to stabilizing control, even if theinimm horizon required for feasibility is, of course, a function of
algorithm does not terminate in Step 4); of course, when there s, giate. For instance, with, = [1 0.1, N must be no smaller
sufficient computation time, the algorithm does terminate in Step 4),,, eight and witheo = [2 0.1]', no smaller than 11.
and this leads to optimal constrained LQR performance. Returning to the initial condition:; = [0.5 0.1]’, the minimum
_ The stabilizing scheme, MRCmay, for instance, be the subop-y;6 required for feasibility isV = 3. The open and closed-
timal, |nf|n|t_e_hor|zo_n, stabilizing controlle_r qf Rawlings qnd Muske]oop costs of the control strategy obtained with different horizons,
[11], or a finite-horizon MPC scheme, similar to that discussed ¥, this initial condition are plotted in Fig. 2. (The open-loop cost
[5]. These control laws provide feasible points for Problem 1 that &j€ 1 ¢ost associated with the control profile postulated at the first
suboptlmal for any honzodv; therefore, a by-produt_:t of Modlfled_ sample, i.e. % a',Qx;j0 + o Rujpo; the closed-loop cost is
Step 3) is also to give an upper bound for the optimal cost, whighe cost associated with the actual controls that are implemented in
may be used to derive an upper bound oL the receding-horizon implementation, i.85;2, =, Q¢ + uj Rus.)

Considering these results, we find for the end—point constrained

4= 0.95123 0 B— —0.0048771
7 10.08833 0.81873 | T |—0.0020429 |°

Step 3(a): Increasé&y

V. EXAMPLES MPC that we have a difficult problem with the design &F for
which the minimum value depends on the system state, and we also
A. Van de Vusse Reactor obtain a cost that can be an order of magnitude worse, both in open

We consider the isothermal continuous stirred-tank reactor (CSTR)d closed loop, than with constrained LQR. _ _
using dilution rate as the manipulated variable. The reactor hasMe now consider an MPC scheme with infinite costing [11], in

constant volume and its dynamics are described by which the input parameterization is simply= 0 after a finite horizon
) 9 N, and there is no end—point state constraint. For this control law,
i = =k = ksey —aiu with a horizon N = 1, the optimal cost (163.92) is approximately
o =kiay — koxa — 20 (21) 14% worse than with constrained LQR. With larg€r performance

becomes similar to constrained LQR. However, it must be noted
A . . that implementation of a stabilizing control law of this type requires
AL B2, 24 =2 enforcement of the state constraint over an infinite horizon, which

which models the Van de Vusse series of reactions
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Initial open—loop cost Closed-loop cost
2500
—— MPC cost 1200 ~— MPC cost
2000 Constr. LQR cost 1000 Constr. LQR cost
800
600
400
200;
0 20 40 60 80 0 20 40 60 80
Horizon N Horizon N

Fig. 2. Cost comparison of constrained LQR and MPC with end—point constraint for Van de Vusse reactor.

states inputs
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
0 2 4 6 0 2 4 6
time (s) time (s)
Fig. 3. Constrained LQR for double integratary = [0.2 0.2]".
states inputs
L 2
0.2~ state 1
of - 0
-2
-0.2
-4
-0.4
-6
-0.6 -8
0 05 1 15 2 0 05 1 1.5
time (s) time (s)

Fig. 4. MPC for double integratorrg = [0.2 0.2]".

leads to solving a finite sequence of quadratic programs just as in the= [0.2 0.2]', we getN..(z¢) = 0 and ¢*(zo) = 2.23; with
constrained LQR case [6]. 20 = [20 20]', Noo(z0) = 33, and o™ (x0) = 60056. We compare

We conclude for this example that constrained LQR not only leadsth the two stabilizing MPC laws used in Example 1. Because both
to improved performance over alternative MPC formulations, it alsnodes of the system are unstable, the two MPC formulations are
releases the user from the designf Finally, we point out that the equivalent. From initial conditiom:s = [0.2 0.2]', N = 4 provides
observations made in this example are not specific to the processameasible problem. The open and closed-loop MPC costs (70, 118)

use; they would apply to many stable systems. are 30 to 50 times worse than with constrained LQR. Simulation
results are displayed in Fig. 4. From initial condition = [20 20]',

B. Double Integrator the minimum horizon, after which the state can be forced to zero, is
We consider a double integrator system sampled at a frequenC)/N(Y)f: 60. We implement the control law W'th this hF’”ZO” and get
10 Hertz, for which performance that compares favorably with constrained LQR; open

and closed-loop MPC costs are about 2% larger than the constrained
A= [1 0} B= { 0.1 } LQR cost. However, the dimension of the optimization problem
01 1] 0.005 required to obtain this control law is almost twice as large as that

The constraint is specified that the input should not exceed amplitutReded in constrained LQR.
ten. The constrained LQR law is implemented wigh= I, R = I. To summarize this example we have the following.

We consider two different initial conditions;, = [0.2 0.2]" and 1) For operation close to the steady state, constrained LQR uses
xo = [20 20]'; a representative simulation is shown in Fig. 3. With control that is not even close to the constraints. With MPC, a
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2)

small N can be used for online efficiency, but that choice leads
to large inputs which are unnecessary and undesirable when
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constrained LQR.
For operation away from steady state, a larger number of
decision variables (almost twice as many) is needed for MPC
compared to constrained LQR. Although MPC can be imple-
mented in this case by solving a single quadratic prograngy)
(QP), the dimension of that QP is much larger than any of
the QP’s solved in the constrained LQR approach. Again, thé?]
computational cost for MPC is higher and the performance is
worse. [3]
[4]

VI. CONCLUSIONS

In this paper, we further developed the constrained LQR problerns]
proposed by Sznaier and Damborg. In addition to being optimal, the
constrained LQR removes the mismatch between open and closed-
loop nominal behavior, which is an undesirable side effect of curre

MPC

approaches that are based on finite-input parameterizations.

The main practical advantage of the constrained LQR compared
to currently available stabilizing MPC approaches, however, is nolt’]
optimality but simplicity. The constrained LQR removes the tuning

parameterN, for which no reliable tuning guidelines are available. 8

Our recommendation is that current industrial practice in which
control engineers purposefully use a suboptimal and small value of
N in order to decide the performance robustness tradeoff should )
reconsidered. The performance robustness tradeoff can be deci

as in

the classic unconstrained LQR case, by choosing appropriate

@ and R.
We presented the outline of an algorithm that allows practic}1]
implementation of the constrained LQR; the computational cost of

this algorithm is reasonable compared to the minimal cost requir

for calculation of the optimal solution. However, examples exist
for which this minimal cost is large, which may preclude real-time
implementation of the constrained LQR in some situations. It is nbt3l

clear

if these cases arise often enough in practice to warrant serious

attention, but the algorithm is easily modified so that terminatiop4)
occurs for such cases automatically with a stabilizing MPC solution,
and without user intervention or online tuning.

It has been assumed throughout this paper that the state and Hﬁa
constraints are compatible, i.&, # (. Even though the assumption [16

thath € R}* andd € IR"¢ ensures that steady state at the origin
is feasible, the problem of transient infeasibility remains. Relevant
contributions have been made in the context of MPC and constraihf!

relaxation techniques have been proposed that do not enda

closed-loop stability. These are readily transportable to constrained

LQR.

After this paper was submitted, the authors obtained a recent
report of related work by Chmielewski and Manousiouthakis [2].
The main differences are as follows. As in [16], Chmielewski and
Manousiouthakis assume the state and input constraint sets are
compact, convex polyhedrons. In this paper we do not assume
these constraint sets are bounded. In many applications there are
no constraints specified on some states or inputs and the con-
straint regions are therefore unbounded. Because the constrained

LQR

differ.

problems differ, the algorithms for computing solutions also
The compact state constraint set enables Chmielewski and

Manousiouthakis to compute an upper bound/®f and solve a
single QP. In this paper, because is not in a compact sety is
increased in a series of QP’s until termination. For cases with compact
constraint regions, further research is required to make a quantitative
comparison between the efficiencies of these two approaches.

point methods.
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