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for ! � 3:4868. We conclude that the minimal volume isvmin �

8:45 and the relative volume is

vmin

v(r�)
� 11:2667:

VI. CONCLUSION

As an alternative to the classical robustness margin, in this paper
we introduced the notion of minimum destabilizing volume. We have
shown that this volume can be easily computed if the control system is
affected by interval and affine parametric uncertainties. A problem of
subsequent interest is the extension of these results to more general
uncertainty structures.
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Constrained Linear Quadratic Regulation

Pierre O. M. Scokaert and James B. Rawlings

Abstract—This paper is a contribution to the theory of the infinite-
horizon linear quadratic regulator (LQR) problem subject to inequality
constraints on the inputs and states, extending an approach first proposed
by Sznaier and Damborg [16]. A solution algorithm is presented, which
requires solving a finite number of finite-dimensional positive definite
quadratic programs. The constrained LQR outlined does not feature
the undesirable mismatch between open-loop and closed-loop nominal
system trajectories, which is present in the other popular forms of model
predictive control (MPC) that can be implemented with a finite quadratic
programming algorithm. The constrained LQR is shown to be both
optimal and stabilizing. The solution algorithm is guaranteed to terminate
in finite time with a computational cost that has a reasonable upper
bound compared to the minimal cost for computing the optimal solution.
Inherent to the approach is the removal of a tuning parameter, the
control horizon, which is present in other MPC approaches and for which
no reliable tuning guidelines are available. Two examples are presented
that compare constrained LQR and two other popular forms of MPC.
The examples demonstrate that constrained LQR achieves significantly
better performance than the other forms of MPC on some plants, and
the computational cost is not prohibitive for online implementation.

Index Terms—Constraints, infinite horizon, linear quadratic regulation,
model predictive control.

I. INTRODUCTION

In 1960, Kalman [4] showed that the Riccati equation associated
with the finite-horizon linear quadratic regulator (LQR) has a well-
defined limit and used that result to solve the infinite-horizon LQR
problem. To date, this remains one of the most influential discoveries
of the modern control era. In the late 1970’s, Richaletet al. [12]
and Cutler and Ramaker [3] emulated the finite-horizon LQR for
constrained processes, marking the beginning of the industrial imple-
mentation of what comes to be known as model predictive control
(MPC). In the 1980’s, the theoretical development of MPC with
constraints ran into serious difficulties, and it became increasingly
apparent that a return to an infinite-horizon formulation is required
to produce stabilizing control laws [1]. Various contributions are
made in the early 1990’s, introducing infinite horizons into the MPC
framework for constrained linear processes [11]. However, rather
than address the full infinite-horizon constrained LQR problem, all
emerging MPC variants, except the one by Sznaier and Damborg [16]
discussed below, rely on a finite and suboptimal parameterization of
the postulated control sequence. In this paper, the use of a finite-input
parameterization is relaxed, leading to the formulation of a control
scheme we call constrained LQR.

In their remarkably succinct paper, Sznaier and Damborg [16]
present the basics of the approach. They treat a more restricted
class of problems than the one considered here. In their problem
statement, the state and input are constrained to lie in bounded convex
polyhedrons. We make no restriction on boundedness of the constraint
region. A major concern in their work is the real-time implementation
limits on calculation time, which can cause early termination of their
algorithm prior to optimal solution. In this work we have found that
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for many examples, the cost of our algorithm is not much greater
and is sometimes less than the cost of the standard suboptimal MPC
algorithms already in use in industrial process control applications.
Therefore, many industrial applications exist for which this approach
can be implemented as an improvement over current practice. The
constrained LQR approach also removes what we consider in current
MPC approaches to be a nuisance tuning parameter, the control
horizonN , i.e., the number of future control moves considered in
the optimization.

Sznaier and Damborg do not provide a full discussion of the
conditions under which their algorithm is stabilizing nor prove that
it terminates in finite time. The stability of their controller is not
guaranteed if their algorithm terminates before the optimal solution
is calculated. In Sznaier’s thesis [15], a contraction constraint is
introduced, which, if feasible, does provide asymptotic stability;
however, this added constraint leads to suboptimal control, even when
ample computational time is available. We provide more complete
results on termination and stability and also highlight the benefits of
constrained LQR compared to other MPC variants in current use.

The paper is organized as follows. The constrained LQR law is
defined in Section II, and its stabilizing properties are established.
Section III outlines the details of a practical implementation of
constrained LQR, which is shown to require the solution of a finite
number of finite-dimensional positive definite quadratic programs. In
Section IV, we discuss the computational aspects of the constrained
LQR algorithm and show that the computational cost has a reasonable
upper bound, compared to the minimal cost for computing the optimal
solution. Finally, examples are presented in Section V, where it
is demonstrated that constrained LQR achieves significantly better
performance than other forms of MPC on some plants, and the
computational cost is not prohibitive for online implementation.
Concluding remarks are made in Section VI.

II. OVERVIEW OF THE PROBLEM STATEMENT

We consider time-invariant, linear, and discrete-time systems de-
scribed by the state-space equation

xt+1 = Axt +But (1)

in which xt 2 IRn and ut 2 IRm are the state and input vectors
at discrete timet and A and B are the state transition and input
distribution matrices, respectively. It is assumed throughout the paper
that (A; B) is stabilizable.

The control objective is to regulate the state of the system optimally
to the origin. Optimality is defined in terms of a quadratic objective
and a set of inequality constraints.

The objective is defined over an infinite horizon and is given by

�(xt; �) =

1

j=t

x
0
jjtQxjjt + u

0
jjtRujjt (2)

in whichQ � 0 andR > 0 are symmetric weighting matrices, such
that (Q1=2; A) is detectable, and

� = futjt; ut+1jt; � � �g (3)

xj+1jt =Axjjt +Bujjt; t � j (4)

with xtjt = xt. The constraints are also defined on an infinite horizon
and take the form

Hxj+1jt �h; t � j

Dujjt � d
(5)

whereh 2 IR
n
+ andd 2 IR

n
+ define the constraint levels, withnh

and nd denoting the number of state and input constraints respec-
tively, andH andD are the state and input constraint distribution
matrices.

We summarize the three relevant control problems of interest in
this paper.

Problem 0—LQR:

min
�

�(xt; �)

subject to:

xj+1jt = Axjjt +Bujjt; t � j: (6)

Problem 0 was formulated and solved by Kalman, and the solution
is the well-known linear feedback control law

ut = �Kxt (7)

in which the controller gainK can be calculated from the solution
of the discrete algebraic Riccati equation. The linear feedback law of
(7) is stabilizing under the above assumptions of stabilizability and
detectability.

Problem 1—Constrained LQR:

min
�

�(xt; �)

subject to:

xj+1jt =Axjjt +Bujjt

Hxj+1jt �h; t � j

Dujjt �d: (8)

Problem 1 is a natural extension of the infinite-horizon LQR (Problem
0) that includes constraints. The only difficulty is the infinite number
of decision variables in the optimization and the infinite number of
constraints.

Problem 2—An MPC Problem:

min
�

�(xt; �)

subject to:

xj+1jt =Axjjt +Bujjt; t � j

Hxj+1jt �h;

t � j � t+N � 1

Dujjt � d;

ujjt = �Kxjjt; t+N � j (9)

This form of MPC has a finite number of decision variables,N , and
a finite number of constraints,N(nd+nh); it can therefore be solved
with standard quadratic programming methods. The only interest in
this problem here is as an aid in solving Problem 1. The idea of
appending theu = �Kx unconstrained linear law to the finite set of
N decision variables is used in Michalska and Mayne’s dual-mode
controller for nonlinear systems [8]; see also [10] for a brief review.

Concentrating on Problem 1, the open-loop optimal control is
obtained by minimization of the objective over all control pro-
files that satisfy the inequality constraints. The feedback law is
then defined by receding horizon implementation of the optimal
open-loop control. Given the open-loop optimal strategy�?(xt) =
fu?tjt(xt); u

?
t+1jt(xt); � � �g, we therefore have the control law

ut = g(xt) � u
?
tjt(xt) (10)

in which g : IRn ! IRm denotes the nonlinear map between state
and control.

Remark 1: For notational simplicity, we drop thext argument in
u?jjt(xt) in the sequel, i.e.,u?jjt � u?jjt(xt).

A. Stabilizing Properties

Not surprisingly, the constrained LQR law (10) benefits from
similar stabilizing properties as recent formulations of MPC.
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Theorem 1 (Nominal Stability):The origin is an exponentially
stable fixed point of the closed-loop systemxt+1 = Axt + Bg(xt),
with a region of attraction equal to the domain ofg.

Proof: The proof proceeds by showing that, under the assump-
tion that xt belongs to the domain ofg [i.e., there exists a control
profile� that satisfies (4) and (5)], the optimal value of the objective,
�?(x), is finite. This implies thatQ1=2xjjt; ujjt ! 0, as j ! 1.
Because nominal closed-loop performance is identical to the open-
loop predictions, it follows thatQ1=2xt; ut ! 0, as t ! 1; as
(Q1=2; A) is detectable, this implies thatxt ! 0. Note that the
assumption of stabilizability ensures that the domain ofg includes at
least an open neighborhood of the origin.

Moreover, in view of [13], we also have a perturbed stability
guarantee.

Theorem 2 (Perturbed Stability):The origin is a locally asymptot-
ically stable fixed point of the perturbed closed-loop systemxt+1 =
Axt + Bg(xt) + pt, if limt!1 pt = 0.

Proof: Under the assumption of feasibility, Muske [9] shows
that g(x) is Lipschitz continuous. Asg(x) is a nominally expo-
nentially stabilizing control law, the perturbed stability result of the
theorem follows directly from [13].

Remark 2: The result of Theorem 2 is local; this means thatpt
must be small enough, for allt, such that the trajectory of the
perturbed system remains in the domain ofg, i.e., the perturbation
must not cause infeasibility.

Remark 3: Note also that, if the perturbationpt converges to
zero exponentially, the result of Theorem 2 can be strengthened to
exponential stability.

This result is significant because it leads directly to a stability proof
for the cascade of a stable state observer and the constrained LQR
law.

III. I MPLEMENTATION

A. Notation

As in [16], we make the following definition.
Definition 1: K � IRn denotes the set of statesxt for which the

unconstrained LQR law,ujjt = �Kxjjt (t � j), satisfies (4) and
(5).

It is immediately apparent that�?(xt) = f�Kxtjt; �Kxt+1jt;

� � �g, for all xt 2 K . Under the assumption that all elements of
h andd are strictly positive, K contains an open neighborhood of
the origin [16].

Definition 2: Br denotes a ball of radiusr > 0, centered on the
origin, such thatBr � K .

Definition 3: GivenN 2 and the current value of the statext,
IPN (xt) denotes the set of control profiles� such that

Hxj+1jt �h; t � j � t+N � 1

Dujjt � d

ujjt = �Kxjjt; t+N � j: (11)

Further, we defineIP(xt) to be the set of control profiles that satisfy
(4) and (5).IP(xt) thus may be thought of as the limit ofIPN(xt)
asN !1.

Definition 4: N � IRn denotes the set of statesx for which
IPN(x) 6= ;. Similarly, � IRn is the set of states for which
IP(x) 6= ;, i.e., is the domain ofg.

B. Related Problem Statements

Using the notation defined above, the optimal open-loop con-
strained control problems described in Section II may be stated
concisely as follows.

Problem 1—Constrained LQR:Given x 2 , find a control
profile �?(x) for which

�
?(x) = min

�2IP
�(x; �) (12)

is attained.
Remark 4: Existence of�?(x) for all x 2 is easy to establish

and follows from the results in the sequel. Uniqueness follows from
the uniqueness of the minimum of a positive definite quadratic
function on a convex set.

A contribution of this paper is to show that under the usual
assumption that all elements ofh andd are strictly positive (which
implies that no constraint passes through the origin andr > 0—see
Definition 2), the solution to Problem 1 can be calculated in finite
computational time. We therefore show that suboptimality need not be
a property of implementable constrained predictive control schemes.

We start by considering the related MPC problem in which the
following finite input parameterization is employed:

ujjt = �Kxjjt; j � t+N (13)

whereN 2 is the finite control horizon.
In this setting, the open-loop optimal control is obtained by solution

of the familiar MPC optimization.
Problem 2—An MPC Problem:Given N 2 , x 2 N , find

the control profile �N(x) = fuNtjt; u
N
t+1jt; � � � ; �KxNt+Njt;

�KxNt+N+1jt; � � �g for which

�N(x) = min
�2IP

�(x; �) (14)

is attained.
This constrained minimization is anNm-dimensional positive

definite quadratic program withN(nc + nd) constraints. For any
finite horizonN , efficient solutions for Problem 2 are therefore easily
formulated.

Remark 5: Existence of�N(x) follows, by definition, for allx 2
N . Uniqueness results from positive definiteness of the Hessian,

which is guaranteed becauseR is positive definite. Note that in the
context of Problem 2, we have

�(x; �) =

N�1

j=t

(x0jjtQxjjt + u
0
jjtRujjt) + x

0
t+Njt

~Qxt+Njt (15)

where ~Q is the solution of the matrix Lyapunov equation

~Q = Q+K
0
RK + (A�BK)0 ~Q(A�BK): (16)

C. Properties of�?; �N ; �?, and�N

The interesting relationship between�?(x) and �N(x) is the
motivation for our interest in Problem 2. We have the following
results.

Definition 5: We denote byx?jjt the state predictions that corre-
spond to the optimal open-loop control profile�?(xt) and byxNjjt
those that correspond to�N(xt).

Remark 6: Note that x?jjt and xNjjt are functions ofxt. That
dependence is, however, left implicit for notational simplicity.

Lemma 1: x?jjt 2 K () u?kjt = �Kx?kjt; 8k � j:

Proof: The control profile that is optimal with respect to the
constrained LQR objective isujjt = �Kxjjt, for all xjjt 2 K—see
Definition 1. In view of Bellman’s principle of optimality, the
sequence of controlsfu?tjt; u

?
t+1jt; � � �g is optimal over all time

intervals [k; 1), k � t. The forward implication of the lemma
therefore follows from optimality.
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By definition, K is the set of states outside whichu = �Kx
violates the constraints of (4) and (5). As the optimal control profile
fu?tjt; u

?
t+1jt; � � �g satisfies these constraints, it follows thatu?jjt =

�Kx?jjt only if x?jjt 2 K , which establishes the reverse implication
of the lemma.

Theorem 3: For everyx 2 , there exists a finiteN1(x) 2 ,
such that�?(x) = �N (x); �

?(x) = �N(x), for all N � N1(x):
Proof: As K contains an open neighborhood of the origin and

�?(x) drives the state predictionsx?jjt to the origin, there exists
a finite integerN1(x) such thatx?t+N (x)jt 2 K . In view of
Lemma 1, we therefore have for allN � N1(x), �?(x) 2 IPN ,
i.e., �?(x) 2 IPN \ IP. As �N(x) minimizes �(x; �) in IPN , it
follows that�?(x) = �N(x), and consequently�?(x) = �N(x) for
all N � N1(x).

This result is key to our approach to solving Problem 1, as
explained below.

D. The Control Algorithm

In view of the discussion in Section III-C, an algorithm that is
guaranteed to identify the optimal control profile�?(x) in finite
computational time is the following.

Algorithm 1—Constrained LQR:

Step 0) Choose a finite horizonN0, setN = N0.
Step 1) Solve Problem 2.
Step 2) IfxNt+Njt 2 K , go to Step 4).
Step 3) IncreaseN , go to Step 1).
Step 4) Terminate:�?(x) = �N(x):

Sznaier and [16] Damborg discuss a similar algorithm, although
they do not show that termination occurs in a finite number of
iterations. Finiteness ofN1(x) in Theorem 3, however, ensures that
termination occurs after a finite number of cycles, regardless of the
choice of initial horizon in Step 0) and of the heuristic used to increase
it in Step 3).

IV. COMPUTATIONAL ISSUES

The spirit of optimal control, which lies at the root of MPC and
LQR, leaves no question that Problem 1 is a more natural formulation
of the constrained predictive control law than other MPC formulations
in current use. The solution of Problem 1 can be computationally
taxing, however. It is therefore necessary to assess the computational
demands of the method and it is desirable to minimize them. In this
section, we discuss the computational aspects of Algorithm 1. We
also propose a modification of Algorithm 1 that gives guaranteed
stability, even when there is not sufficient time for the algorithm to
terminate. Finally, we discuss upper bounds onN1(x) and how they
may be used to obtain one-shot solutions to Problem 1.

A. Computational Aspects of Algorithm 1

The choice of the initial horizon,N0, in Step 0), has an effect on
the efficiency of the algorithm, since an initial horizon that is close to
or greater thanN1(x) leads to early termination. However,N1(x)
varies withx, and the effect of the initial horizon is generally not
critical. An initial choiceN0 = 0 can therefore be recommended as
the default, with the desirable side effect that no optimization needs
to be performed close to steady state when the state belongs toK .

The solution of Problem 2, in Step 1), is the computationally
expensive part of Algorithm 1. Efficient quadratic program solutions
should of course be implemented. Infeasible interior point methods
appear to be well suited. On one hand, the computational price of
that solution isO(N) [18], c.f. active set methods for which it is
O(N2). On the other hand, the starting point for the optimization can
be infeasible and the quadratic program on one cycle of Algorithm 1

can therefore be warm-started from the solution at the previous cycle.
As the solution of Problem 2 approaches that of Problem 1 whenN
increases, the computational burden of the quadratic program with
warm-start should not rise dramatically as Algorithm 1 is cycled and
N is increased.

Although the set K may be expensive to calculate, the check
that xNt+Njt 2 K , in Step 2), is inexpensive. In fact, the check
is performed with no need for detailed information aboutK .
Predictions of the state and input are simply propagated until either a
constraint violation is detected or the predicted state entersBr. Note
that this only requires prediction on a horizon that is guaranteed to
be finite. The conclusion thatxNt+Njt 2 K is made if and only
if the state prediction entersBr with no prior constraint violation.
The two operations, prediction and constraint violation check, can be
implemented efficiently. A simple method to determine the radiusr
of a ballBr � K is available but omitted for brevity.

The horizon increase made in Step 3) is worthy of a brief
discussion, as the heuristic used in increasingN is closely linked
to the number of cycles of Algorithm 1 to termination. The simplest
approach is to incrementN at each iteration of the algorithm, as
suggested in [16]. This leads to identification ofN1(x) but is likely
to result in rather slow implementation of the control scheme. As
�?(x) = �N(x) for all N � N1(x), however, only an upper bound
onN1(x) is required and values ofN may therefore be skipped in
an effort to obtain a quicker solution.

An interesting approach is to increaseN geometrically, starting
from a nonzero initial horizon. Assume that the current state isx, that
we start withN = N0 � 1, and that we multiply the horizon by an
integerk � 2 at each cycle of Algorithm 1. Then termination occurs
with N = k�(x)N0 after �(x) + 1 cycles, where� is an integer-
valued function ofx. Let c(N) be the computational price of solving
Problem 2 with horizonN , and further assume thatc(N) � O(N),
so that there exists a finite real� > 0 such thatc(N) � �N , which is
a reasonable assumption with infeasible interior point methods [18].
The computational cost of Algorithm 1 is then

C(x) = c(N0) + c(kN0) + � � �+ c[k�(x)N0]

��N0[1 + k + � � �+ k�(x)]

=�N0
k�(x)+1 � 1

k � 1
: (17)

If N0 � N1(x), �(x) = 0, andC(x) � �N0. If N0 < N1(x),
we get termination withN � kN1(x) � k so thatk�(x)N0 �
kN1(x) � k. It then follows that

C(x) �
k2

k � 1
�N1(x)�

1

k � 1
�(k2 +N0): (18)

For any choice ofN0, therefore, we have

C(x) � � max N0;
k2

k � 1
N1(x)�

1

k � 1
(k2 +N0) : (19)

Consequently, we find thatC(x) � O[N1(x)]. Also, it appears
wise to setk to its minimal value 2, leading to

C(x) � � max[N0; 4N1(x)� 4�N0]: (20)

Now, assumeN1(x) is known; then calculation of�?(x) requires
only the one-shot solution of Problem 2 withN = N1(x), resulting
in a minimal computational pricec[N1(x)] � �N1(x). When
N1(x) is large (i.e., when computational time is an issue), a good
approximation isc[N1(x)] � �N1(x). In view of (18), we then find
that the price of Algorithm 1 is better than approximatelyk2=(k�1)
times the minimal computational cost required to calculate�?(x).

Another alternative is to use the time-index of the last constraint
violation detected at the previous cycle of the algorithm as the new
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Fig. 1. Constrained LQR for Van de Vusse reactor.

horizonN . This approach seems to make good control sense, and
simulations indicate that it is a reasonable heuristic.

B. A Modification of Algorithm 1

The stability guarantees of Theorems 1 and 2 apply only to the
control law given by the exact solution of Problem 1. The stability
results are therefore invalid if there is not sufficient time to cycle
Algorithm 1 to termination. For cases when time restrictions do not
allow termination, Sznaier and Damborg suggest using the last control
sequence calculated by the algorithm. They, however, point out that
this approach may not lead to stabilizing control; furthermore, it is
likely to cause constraint violations.

A modification of Algorithm 1 can, however, be proposed, that
leads to guaranteed stability, both nominally and under decaying
perturbations, regardless of whether or not the algorithm terminates.

Let MPCs denote a stabilizing (suboptimal) MPC scheme for
the system under consideration. We may then modifyStep 3), in
Algorithm 1, to the following.

Modified Step 3)—Algorithm 1:

Step 3(a): IncreaseN
Step 3(b): IfN � Nmax, go to Step 1).
Step 3(c): Terminate and implement MPCs:

Implementation of Algorithm 1, with the above modification of
Step 3), is guaranteed to lead to stabilizing control, even if the
algorithm does not terminate in Step 4); of course, when there is
sufficient computation time, the algorithm does terminate in Step 4),
and this leads to optimal constrained LQR performance.

The stabilizing scheme, MPCs, may, for instance, be the subop-
timal, infinite horizon, stabilizing controller of Rawlings and Muske
[11], or a finite-horizon MPC scheme, similar to that discussed in
[5]. These control laws provide feasible points for Problem 1 that are
suboptimal for any horizonN ; therefore, a by-product of Modified
Step 3) is also to give an upper bound for the optimal cost, which
may be used to derive an upper bound forN1.

V. EXAMPLES

A. Van de Vusse Reactor

We consider the isothermal continuous stirred-tank reactor (CSTR)
using dilution rate as the manipulated variable. The reactor has
constant volume and its dynamics are described by

_x1 = � k1x1 � k3x
2

1 � x1u

_x2 = k1x1 � k2x2 � x2u (21)

which models the Van de Vusse series of reactions

A
k
�! B

k
�! C; 2A

k
�! D

with x1 and x2 representing the concentration ofA andB and u
the dilution (feed) rate [17]. We assume thatk1 = 50, k2 = 100,
k3 = 10. The control objective is to maintainx2 at a set-point of
one. Consequently, the desired steady states forx1 and u are 2.5
and 25, respectively [14], [7]. We linearize (21) around this desired
steady state and discretize the result with a sampling time of 0.002.
This gives

A =
0:95123 0
0:088 33 0:81873

; B =
�0:0048771
�0:0020429

:

We implement the constrained LQR law on this linear system, with
an appropriate shift of the origin to account for the nonzero set-
point. The tuning we choose isQ = I, R = I and the constraint
is specified thatx2 should be no greater than 0.12. A simulation
is performed that is started fromx0 = [0:5 0:1]0 (in the shifted
coordinates) and the results are presented in Fig. 1. In this example,
we obtainN1(x0) = 7 and�?(x0) = �7(x0) = 143:8.

For comparison, we also present simulation results with two other
stabilizing MPC laws. First, we consider an MPC scheme with
end–point constraint [5], in which the input parameterization is such
thatu = 0 andx = 0 after a finite horizonN . For this control law,
if a small horizonN is used, the end–point constraint on the state
can become incompatible with the constraint thatx2 � 0:12. The
minimum horizon required for feasibility is, of course, a function of
the state. For instance, withx0 = [1 0:1]0, N must be no smaller
than eight and withx0 = [2 0:1]0, no smaller than 11.

Returning to the initial conditionx0 = [0:5 0:1]0, the minimum
horizon required for feasibility isN = 5. The open and closed-
loop costs of the control strategy obtained with different horizons,
from this initial condition are plotted in Fig. 2. (The open-loop cost
is the cost associated with the control profile postulated at the first
sample, i.e., 1

j=0
x0jj0Qxjj0 + u0jj0Rujj0; the closed-loop cost is

the cost associated with the actual controls that are implemented in
the receding-horizon implementation, i.e.,1

t=0
x0tQxt + u0tRut.)

Considering these results, we find for the end–point constrained
MPC that we have a difficult problem with the design ofN , for
which the minimum value depends on the system state, and we also
obtain a cost that can be an order of magnitude worse, both in open
and closed loop, than with constrained LQR.

We now consider an MPC scheme with infinite costing [11], in
which the input parameterization is simplyu = 0 after a finite horizon
N , and there is no end–point state constraint. For this control law,
with a horizonN = 1, the optimal cost (163.92) is approximately
14% worse than with constrained LQR. With largerN , performance
becomes similar to constrained LQR. However, it must be noted
that implementation of a stabilizing control law of this type requires
enforcement of the state constraint over an infinite horizon, which
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Fig. 2. Cost comparison of constrained LQR and MPC with end–point constraint for Van de Vusse reactor.

Fig. 3. Constrained LQR for double integrator,x0 = [0:2 0:2]0.

Fig. 4. MPC for double integrator,x0 = [0:2 0:2]0.

leads to solving a finite sequence of quadratic programs just as in the
constrained LQR case [6].

We conclude for this example that constrained LQR not only leads
to improved performance over alternative MPC formulations, it also
releases the user from the design ofN . Finally, we point out that the
observations made in this example are not specific to the process we
use; they would apply to many stable systems.

B. Double Integrator

We consider a double integrator system sampled at a frequency of
10 Hertz, for which

A =
1 0
0:1 1

; B =
0:1

0:005
:

The constraint is specified that the input should not exceed amplitude
ten. The constrained LQR law is implemented withQ = I, R = I.

We consider two different initial conditions,x0 = [0:2 0:2]0 and
x0 = [20 20]0; a representative simulation is shown in Fig. 3. With

x0 = [0:2 0:2]0, we getN1(x0) = 0 and �?(x0) = 2:23; with
x0 = [20 20]0, N1(x0) = 33; and�?(x0) = 60056. We compare
with the two stabilizing MPC laws used in Example 1. Because both
modes of the system are unstable, the two MPC formulations are
equivalent. From initial conditionx0 = [0:2 0:2]0, N = 4 provides
a feasible problem. The open and closed-loop MPC costs (70, 118)
are 30 to 50 times worse than with constrained LQR. Simulation
results are displayed in Fig. 4. From initial conditionx0 = [20 20]0,
the minimum horizon, after which the state can be forced to zero, is
N = 60. We implement the control law with this horizon and get
performance that compares favorably with constrained LQR; open
and closed-loop MPC costs are about 2% larger than the constrained
LQR cost. However, the dimension of the optimization problem
required to obtain this control law is almost twice as large as that
needed in constrained LQR.

To summarize this example we have the following.

1) For operation close to the steady state, constrained LQR uses
control that is not even close to the constraints. With MPC, a
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smallN can be used for online efficiency, but that choice leads
to large inputs which are unnecessary and undesirable when
compared to those obtained with constrained LQR. Moreover,
the computational cost of implementing MPC is higher than
constrained LQR.

2) For operation away from steady state, a larger number of
decision variables (almost twice as many) is needed for MPC
compared to constrained LQR. Although MPC can be imple-
mented in this case by solving a single quadratic program
(QP), the dimension of that QP is much larger than any of
the QP’s solved in the constrained LQR approach. Again, the
computational cost for MPC is higher and the performance is
worse.

VI. CONCLUSIONS

In this paper, we further developed the constrained LQR problem
proposed by Sznaier and Damborg. In addition to being optimal, the
constrained LQR removes the mismatch between open and closed-
loop nominal behavior, which is an undesirable side effect of current
MPC approaches that are based on finite-input parameterizations.
The main practical advantage of the constrained LQR compared
to currently available stabilizing MPC approaches, however, is not
optimality but simplicity. The constrained LQR removes the tuning
parameterN , for which no reliable tuning guidelines are available.
Our recommendation is that current industrial practice in which
control engineers purposefully use a suboptimal and small value of
N in order to decide the performance robustness tradeoff should be
reconsidered. The performance robustness tradeoff can be decided,
as in the classic unconstrained LQR case, by choosing appropriate
Q and R.

We presented the outline of an algorithm that allows practical
implementation of the constrained LQR; the computational cost of
this algorithm is reasonable compared to the minimal cost required
for calculation of the optimal solution. However, examples exist
for which this minimal cost is large, which may preclude real-time
implementation of the constrained LQR in some situations. It is not
clear if these cases arise often enough in practice to warrant serious
attention, but the algorithm is easily modified so that termination
occurs for such cases automatically with a stabilizing MPC solution,
and without user intervention or online tuning.

It has been assumed throughout this paper that the state and input
constraints are compatible, i.e.,IP 6= ;. Even though the assumption
that h 2 IR

n

+ andd 2 IR
n

+ ensures that steady state at the origin
is feasible, the problem of transient infeasibility remains. Relevant
contributions have been made in the context of MPC and constraint
relaxation techniques have been proposed that do not endanger
closed-loop stability. These are readily transportable to constrained
LQR.

After this paper was submitted, the authors obtained a recent
report of related work by Chmielewski and Manousiouthakis [2].
The main differences are as follows. As in [16], Chmielewski and
Manousiouthakis assume the state and input constraint sets are
compact, convex polyhedrons. In this paper we do not assume
these constraint sets are bounded. In many applications there are
no constraints specified on some states or inputs and the con-
straint regions are therefore unbounded. Because the constrained
LQR problems differ, the algorithms for computing solutions also
differ. The compact state constraint set enables Chmielewski and
Manousiouthakis to compute an upper bound onN1 and solve a
single QP. In this paper, becausex0 is not in a compact set,N is
increased in a series of QP’s until termination. For cases with compact
constraint regions, further research is required to make a quantitative
comparison between the efficiencies of these two approaches.
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