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AbstractAn algorithm is presented which computes a state feedback for astandard linear system which not only stabilizes, but also dampens theclosed{loop system dynamics. In other words, a feedback gain vectoris computed such that the eigenvalues of the closed{loop state matrixare within the region of the left half{plane where the magnitude ofthe real part of each eigenvalue is greater than the imaginary part.This may be accomplished by solving one periodic algebraic Riccatiequation and one degenerate Riccati equation. The solution to theseequations are computed using numerically robust algorithms.Finally, the periodic Riccati equation is unusual in that it producesone symmetric and one skew symmetric solution, and as a result twodi�erent state feedbacks. Both feedbacks dampen the system dynam-ics, but produce di�erent closed{loop eigenvalues, giving the controllerdesigner greater freedom in choosing a desired feedback.Keywordslinear quadratic controller, dampening feedback, damped dynamics,periodic systems, periodic Riccati equation.1 IntroductionObtaining a stabilizing controller for a standard linear time-invariant sys-tem is a rather straight{forward problem; all that is necessary to produce astabilizing controller is the stabilizing solution of an algebraic Riccati equa-tion, or in a simpli�ed case, a Lyapunov equation. In practice, however,such a stabilizing feedback is often undesirable for the simple reason thatstability may be too weak a constraint. Often what is desired is a controllerwhich guarantees that the closed{loop dynamics are damped. Simple so-lutions to this requirement have not previously existed. Increased relativeweighting of the input versus the state (or output) in the quadratic costfunction of the Linear Quadratic Regulator problem often has little e�ecton the damping factor of the optimal feedback; it tends to move the poles ofthe closed{loop system further away from both the real and the imaginaryaxis. Another method, devised by Anderson and Moore [1] introduces ashift into the algebraic Riccati equation. The e�ect of this is to move thepoles of the closed-loop system away from the imaginary axis, but does notnecessarily guarantee that the closed{loop dynamics are damped. The endresult is that often the control engineer is forced to place the poles of the2



closed{loop system to achieve the required damping. Unfortunately, pole{placement is usually an inherently ill-conditioned problem [7], and becomesimpractical for large{order systems [8].To circumvent these di�culties, we derive a new method which stabi-lizes a linear system such that the dynamics of the closed{loop system aredamped, i.e., that the real part of each of the eigenvalues of the closed{loop system matrix is greater in magnitude than the imaginary part. Thisis accomplished, in part, by computing the solution to a particular peri-odic algebraic Riccati equation which moves the poles from outside to insidethe union of the damped region and anti-damped regions of the complexplane. This is based on the observation that eigenvalues of a matrix in thesedamped regions are anti{stable when the matrix is squared. If a periodicsystem is used to describe the negative square of the closed{loop system,then the proposed periodic Riccati equation can be used to stabilize thissystem.This method has a number of interesting properties. First, the algo-rithm produces two di�erent Riccati solutions: one symmetric and one skewsymmetric. While both of these solutions produce a dampening feedback,they have di�erent properties. Second, the method described in this pa-per may be used in conjunction with the standard stabilization methodsvia the solution of Lyapunov or Riccati equations, such as those mentionedin [8], and Anderson and Moore's shifting method [1] to restrict the polesof the closed{loop system to a more complex region in the left half{plane.Third, all of the feedbacks mentioned may be computed using Schur meth-ods to compute invariant subspaces [10, 14]. For these methods numericalrobustness has been demonstrated. Fourth, by varying the periodicity ofthe aforementioned periodic Riccati equation, it is possible to restrict thepoles of the closed{loop system to ever narrower cones in the left half{plane.Finally, the dampening controller may be viewed as a controller that resultsfrom a particular choice of the state weighting matrix in the quadratic costfunction of the standard linear quadratic regulator problem. This stateweighting matrix provides valuable information about the states that needto be weighted more heavily in order to produce a dampening controller.In addition, the close connection of the method of this paper to the usualalgebraic Riccati equation avails it to standard techniques of the analysis ofmatrix quadratic equations [12, 13]. 3



2 Damped Riccati EquationsThroughout this paper, we will be concerned with the computation of afeedback u(t) which stabilizes the standard linear time{invariant system_x = Ax + Bu (1)Here A 2 Rn;n, B 2 Rn;m, and we assume that the matrix pair hA;Bi isreachable, (i.e. Rank[�I � A;B] = n for all complex �). Furthermore, werequire the feedback to be proportional to the state x, i.e.,u(t) = Fx(t): (2)A wide range of stabilizing feedbacks of this form may be obtained by thesolution of an algebraic Riccati equation [11, 13]. Given any matrix C 2 Rp;nsuch that the matrix pair hA;Ci is observable, (i.e., hAT ; CTi is reachable),then a stabilizing feedback in (2) is obtained asu(t) = �BTWx(t); (3)where W is the symmetric positive semi-de�nite solution of the algebraicRiccati equation (ARE)0 = ATW +WA�WBBTW + CTC; (4)see [4, 8, 14, 20]. An integral part of methods which compute an (optimal)stabilizing controller is the computation of a basis for an appropriate invari-ant subspace of a related Hamiltonian system [4, 14, 18, 21]. If the columnsof the 2n� n matrix T = " T11T21 # ; (5)span the invariant subspace corresponding to the stable eigenvalues of the2n� 2n Hamiltonian matrixH = " A �BBT�CTC �AT # ; (6)and if T11 is invertible, then the symmetric positive semi-de�nite solutionW of the algebraic Riccati equation in (4) is given by W = T21T�111 , [14, 20].The computation of a dampening feedback can be carried out along thesame lines. First, we introduce a linear zero{sum non-cooperative dynamic4



game from which arise two Riccati equations, whose solutions provide therequired dampening feedback. As mentioned in the introduction, dampen-ing feedback requires, in a manner of speaking, stabilization of the squares ofthe state matrix. By de�ning the square of the state matrix as the state ma-trix of this linear dynamic game, and by appropriately choosing the inputand output matrices and the quadratic cost function, the resulting mini-max problem can be shown to be equivalent to a stable invariant subspaceidenti�cation problem for a periodic Hamiltonian system. The periodicityis essential in that it indirectly produces a stability region that is not theleft-half plane, but rather a pair of cones in the complex plane, as shown byFigure 1.
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ComplexFigure 1: Damped Stability RegionProceeding, we examine the following linear dynamic game. Considerlinear systems of the form_z = �(A� BBTCTC)2 z + (A� I)B u+ (A+ I)B v ; z(0) = z0y = C (A� I) zw = C (A+ I) z (7)with quadratic cost functionalminu maxv 12 Z 10 hyTy � wTw + uTu� vTvidt; (8)where the matrices A 2 Rn;n, B 2 Rn;m, C 2 Rp;n. The open{loop Nashequilibrium may be computed via the Hamilton{Jacobi{Bellman (or Issac's)5



equation [2], which gives rise to a two-point boundary problem and a lineardi�erential equation in the state z and costate q" _z_q # = " �(A�RS)2 AR+RATSA+ATS (A�RS)2T # " zq # (9)with z(0) = z0q(1) = 0;u = �BT (AT � I) q;v = BT (AT + I) q;R = BBT ;S = CTC: (10)The linear di�erential equation in (9) may be factored into a productform: " _z_q # = " �A RS AT # " A �RS AT # " zq #= H2 H1 " zq #= HX " zq # ; (11)where HX = " �(A2 �RS) AR+ RATSA+ ATS (A2 �RS)T # : (12)Since the matrix HX is Hamiltonian, a Riccati equation is associatedwith it. In addition, since HX may be written as the product H2H1, it ispossible to write a related Hamiltonian system withHY = " �(A2 + RS) AR�RATSA�ATS (A2 +RS)T # ; (13)which is the product H1H2. As with HX , this latter system will give riseto a di�erent but related Riccati equation. These two Riccati equations aredenoted as the Symmetric Damped Algebraic Riccati Equation (SDARE)and the Skew-Symmetric Damped Algebraic Riccati Equation (SSDARE),respectively, and are formally described in the following de�nition.6



De�nition 1Let A;R; S and I 2 Rn;n with R = BBT , S = CTC, I be the identitymatrix, and � 2 R. Thena) the Algebraic Riccati Equation (ARE) is de�ned asWA+ ATW �WRW + S = 0; (14)b) the Shifted Algebraic Riccati Equation (SHARE) is de�ned asZ(A+ �I) + (AT + �I)Z � ZRZ + S = 0; (15)c) the Symmetric Damped Algebraic Riccati Equation (SDARE) is de�nedasX(A2�RS)+(A2T�SR)X�X(AR+RAT)X+(ATS+SA) = 0; (16)andd) the Skew-Symmetric Damped Algebraic Riccati Equation (SSDARE)is de�ned asY (A2+RS)+(A2T+SR)Y �Y (AR�RAT )Y +(ATS�SA) = 0: (17)The solutions to the Symmetric Damped Algebraic Riccati Equationand the Skew-Symmetric Damped Algebraic Riccati Equation are intimatelyconnected with the Riccati solution of the standard Algebraic Riccati Equa-tion and optimal stabilizing feedback, as we demonstrate in the followinglemmas and theorems.Theorem 1a) Suppose that the matrix pair h�A2+RS;AR+RAT i is reachable andthat AR+RAT is negative semi-de�nite. Then the following are equiv-alent:i) There exists a Hermitian matrix X such that (16) holds.ii) There exists an Hermitian solution X1 of (16) such that theclosed{loop matrix �A2 + RS + (AR + RAT )X1 is semi-stable,i.e., all eigenvalues are in the closed left half{plane.7



iii) The partial multiplicities of all purely imaginary eigenvalues (ifany) of the Hamiltonian matrix HX are all even.b) Suppose that the matrix pair h�A2�RS;AR�RAT i is reachable andthat {(AR � RAT ) ({ = p�1) is Hermitian negative semi-de�nite.Then the following are equivalent:i) There exists a skew-Hermitian matrix Y such that (17) holds.ii) There exists a skew-Hermitian solution Y1 of (17) such that theclosed{loop matrix �A2 � RS + (AR � RAT )Y1 is semi-stable,i.e., all eigenvalues are in the closed left half{plane.iii) The partial multiplicities of all purely imaginary eigenvalues (ifany) of the matrix HY are all even.Proof. Part a) is Theorem 1 in [15]. Part b) follows directly from a),since HY is similar to the complex Hamiltonian matrix~HY = " �(A2 +RS) {(AR� RAT ){(SA� ATS) (A2 + RS)T # : (18)Note that this existence result yields only the existence of Hermitiansolutions, which may be complex. The existence of real symmetric solutionsis closely related to the existence of Hermitian solutions, see [16]. We re-frain here from discussing this relationship in detail. For our purpose it isimportant to discuss the symmetric stabilizing solution, which is indeed real.Corollary 2a) Suppose that the matrix pair h�A2+RS;AR+RAT i is reachable andthat AR + RAT is negative semi-de�nite. Then there exists a realsymmetric matrix solution X of (16) such that the closed{loop matrix�A2 + RS + (AR + RAT )X is stable, i.e., all eigenvalues are in theopen left half plane if and only if the partial multiplicities of all purelyimaginary eigenvalues (if any) of the Hamiltonian matrix HX are two.b) Suppose that the matrix pair h�A2�RS;AR�RAT i is reachable andthat {(AR � RAT ) is Hermitian positive semi-de�nite. Then thereexists a real skew{symmetric matrix solution Y of (17) such that the8



closed{loop matrix A2+RS�(AR�RAT )Y is stable, i.e., all eigenval-ues are in the open left half plane if and only if the partial multiplicitiesof all purely imaginary eigenvalues (if any) of the matrix HY are two.Proof. See [15].Note that if A, R, S are real then the stabilizing solutions of (16) and (17)are also real. The �rst is shown in [15], while the second follows in the sameway using the similarity transformation in (18).In Theorem 1 and Corollary 2, the existence of the solutions of the Riccatiequations in X are contingent upon the negative de�niteness of AR+RAT .If AR + RAT is inde�nite, the existence of the solution to the SDARE isnot guaranteed, due to the existence of a conjugate point in the associateddi�erential (game) Riccati equation [3]. Nevertheless, if the solution X tothe SDARE exists with AR+RAT inde�nite, then it will also be inde�nite[16]. A related result holds analogously for Y . Continuing, the relationshipbetween X and Y is explicitly derived in the following lemma.Lemma 3 Suppose there exist a stabilizing solution X to the SDARE andY to the SSDARE. Then the following equations hold:S + ATY +X(A�RY ) = 0S + ATX � Y (A� RX) = 0: (19)Proof. Since the matrix h I X iT spans the stable invariant subspaceof HX and HXH2 = H2HYthen the matrix " Y1Y2 # = " �A RS AT # " IX #spans the stable invariant subspace of HY . Thus, the stabilizing solution Yto the SSDARE may be writtenY = Y2Y �11= �(S + ATX)(A�RX)�1:The analogous result for HY completes the proof.9



Lemma 4a) Suppose X is a real symmetric solution to (16) which stabilizes A2 �RS. Then a similarity transformation withTX = " I 0X I # (20)block triangularizes the matrix HX in (12) with the eigenvalues of theleading n � n block of the matrix T�1X HXTX stable.b) Suppose Y is a real skew{symmetric solution of (17) which stabilizesA2 +RS. Then a similarity transformation withTY = " I 0Y I # (21)block triangularizes the matrix HY in (13) with the eigenvalues of theleading n � n block of the matrix T�1Y HY TY stable.Proof. The proof follows by direct substitution, and is given here forlater reference.T�1X HXTX == " I 0�X I # " �(A2 �RS) AR+ RATSA+ ATS (A2 � RS)T # " I 0X I #= " I 0�X I #" �A2 +RS + (AR+RAT )X AR+RATSA+ ATS + (A2T � SR)X A2T � SR #= " �A2 +RS + (AR+ RAT )X AR+ RAT0 (A2 �RS � (AR+ RAT )X)T # :(22)The proof of b) is analogous.Lemma 5 Suppose X is a real symmetric solution of (16) which stabilizes�A2 +RS and Y is a real skew{symmetric solution of (17) which stabilizes�A2 � RS. Then the following expressions hold:�A2 � RS + (AR� RAT )Y = �(A�RX)(A� RY ) (23)�A2 + RS + (AR+RAT )X = �(A�RY )(A� RX) (24)10



Proof. HX = H2H1 and HY = H1H2 where H1 and H2 are de�ned asin (11).The product T�1X HXTX is formed, where HX is expressed as the productH2TY T�1Y H1, and we obtainT�1X HXTX = (T�1X H2TY )(T�1Y H1TX)= " I 0�X I # " �A RS AT # " I 0Y I #�" I 0�Y I # " A �RS AT # " I 0X I #= " �A +RY RS +ATY +X(A�RY ) XR+AT #�" A�RX �RS +ATX � Y (A� RX) Y R+ AT # : (25)By Lemma 3, S + ATY +X(A�RY ) = 0S + ATX � Y (A� RX) = 0: (26)Therefore,T�1X HXTX == " �A+ RY �R0 XR�AT # " A�RX �R0 AT � Y R #= " �(A �RY )(A�RX) �(A�RY )R� R(A�RY )T0 (A�RX)T (A� RY )T # : (27)Analogously it follows thatT�1Y HY TY = " �(A�RX)(A� RY ) �(A� RX)R+R(A�RX)T0 (A�RY )T (A�RX)T # :(28)The previous lemma illustrates that the product �(A � RX)(A� RY )is stable. We need, however, that the products �(A � RX)(A� RX) and�(A�RY )(A�RY ) are stable. This is equivalent to the statement that all11



the eigenvalues of (A� RX) and (A� RY ), respectively, lie in the interiorof the union of the damped and anti-damped regions of the complex plane.Theorem 6 Suppose that X is a real symmetric dampening solution of (16)and Y is the real skew{symmetric dampening solution of (17). Then theclosed{loop matrices A�RX and A�RY have eigenvalues within the closureof the union of the damped and anti-damped regions of the complex plane(excluding the point 0).Proof. The proof employs a standard result from Lyapunov stabilitytheory [17], namely that:Â is stable if and only if there existsM =MT > 0 such that ÂTM +MÂ < 0:De�ne S� = S + �I . Then, since we have assumed that S � 0, we have thatS� > 0. We �rst prove the result for the case that we use the weightingmatrix S�.Let a candidate for M beM = XRX � ATX �XA� S�: (29)If �(A � RX)2 is stable then the spectrum of A � RX is in the requiredregion, so it su�ces to show thatP = �(A�RX)2TM �M(A�RX)2 < 0M > 0: (30)By Lemma 3 we have ATX + S� = Y (A� RX); (31)and thus M = �ATX �X(A�RX)� S�= �(X + Y )(A�RX):Further, by noting that X = XT , Y = �Y T , and M =MT , and thereforeM = �(A�RX)T (X � Y );it follows thatP = (A�RX)T((A�RX)T (X + Y ) + (X � Y )(A� RX))(A�RX)12



By using (31), it is possible to further simplify P :P = (A� RX)T((A�RX)T(X + Y ) + (X � Y )(A� RX))(A�RX)= (A� RX)T((A�RX)TX +X(A� RX):::�XA�ATX � 2S�)(A�RX)= �2(A� RX)T(XRX + S�)(A�RX) < 0:Here we have made use of the fact that (A � RX)(A� RY ) stable impliesin particular that A�RX is non-singular.Proceeding to the second proposition in (30), we note thatQ = �(A �RX)T((A�RY )TM �M(A�RY ))(A�RX)= (A� RX)T((A�RY )T (X + Y ) + (X � Y )(A� RY ))(A� RX)= �2(A� RX)T(Y RY T + S�)(A�RX) < 0:Since Q is negative de�nite and �(A�RY )(A�RX) is stable, M mustbe positive de�nite [6]. Thus, it follows that �(A � RX)2 is stable andhence all eigenvalues of A � RX are in the union of the damped and theanti-damped regions of the complex plane for all � � 0. Letting � tend tozero, we obtain by continuity that all eigenvalues of A � RX are in theclosure of the damped and the anti-damped regions of the complex plane,and from the fact that A � RX is non-singular also in the limit, we haveguaranteed that A �RX is as required.By applying the same techniques for the closed{loop matrix A � RY ,and letting M = Y RY + ATY � Y A� S, the proof is complete.Note that we obtain that all the eigenvalues are in the closure of the dampedand anti-damped regions excluding the point zero. If we want to guaranteethat all eigenvalues are in the interior of these regions, we can achieve thiseither by choosing S > 0 or by providing an appropriate stabilizabilityand detectability assumption. This is well known for standard stabilizationproblems and carries over in a canonical way.Remark 1 In practice, the solutions X and Y of (16) and (17) are com-puted by simultaneously computing a basis for the stable invariant subspacesof H2H1 and H1H2 via the periodic Schur algorithm [5, 9, 10], which is anumerically robust method. Note that in general the computation of the pe-riodic Schur decomposition will yield eigenvalues of the closed{loop systemin the union of damped and anti{damped regions. To move the poles from13



the anti{damped region into the damped region one may solve a degenerateRiccati equation, (see e.g. [8]). This is well{known to re
ect the eigenvaluesat the imaginary axis. If we compute the symmetric, stabilizing solution of(A�RX)TU + U(A�RX)� URU = 0 (32)or the skew-symmetric stabilizing solution of(A� RY )TV + V (A�RY )� Y RY = 0; (33)then those eigenvalues of A�RX and A�RY in the anti-damped region ofthe complex plane will be re
ected back across the imaginary axis into thedamped region, becoming the eigenvalues of A�R(X+U) and A�R(Y +V )respectively.Remark 2 Taking the sum of the symmetric solutions X and U of (16) and(32), one obtains the residual equationSXU := (X + U)R(X + U)� AT (X + U)� (X + U)A: (34)Once SXU has been formed, one can use (14) to compute WXU = (X + U)directly. This provides a means of checking the sensitivity of the feedbackvia existing theorems concerning eigenvalue sensitivity of standard Riccatiequations [12]. It also provides valuable information concerning the requiredstate weighting to achieve a dampening controller.Although the symmetric dampening solution seems to be more attrac-tive theoretically, numerical experiments seem to indicate that the non-symmetric feedback Y + V from (17) and (33) sometimes, but not always,produces less sensitive feedbacks. One heuristic for determining the leastsensitive feedback is to compute the norms of the two feedbacks kR(X+U)kand kR(Y + V )k. The feedback of smaller norm tends to be less sensitive.3 Algorithmic DetailsWe now describe the details of the numerical algorithm to compute thesymmetric dampening controllers.Algorithm 1INPUT(A, B, C, �, �) 14



%% A: system matrix% B: input matrix% C: output matrix% �: shift from imaginary axis% �: small shift in preprocessing step%Compute � = maxfj�j; �2 �(A) i.e., the spectrum of Ag.Scale A A=�, B  B=p�, C  C=p�.Form R = BBT .%% Preprocessing Step% This step is a heuristic which lowers the norm of X% (See Example 1 in the Numerical Examples section for details)%Compute the stabilizing solution of (15), where S = CTC and p� < �� 1,with � the machine epsilon.%% End Preprocessing Step%Form H1 and H2 as in (11) with A = AZ = A� RZ and S = 0.Compute real orthogonal matrices QX , and QY , using theperiodic Schur decomposition, with inputs H1 and H2, suchthat QTXH2H1QX = �X and QTYH1H2QY = �Y are block uppertriangular with stable blocks in the upper left corner.Partition QX = " Q11 Q12Q21 Q22 # and QY = " ~Q11 ~Q12~Q21 ~Q22 # :Compute X = Q21Q�111 and Y = ~Q21 ~Q�111 .15



Form AZX = A�R(Z +X) and AZY = A�R(Z + Y ).Compute the stabilizing solutions U and V to the Riccati equations:U(AZX � �I) + (ATZX � �I)U � URU = 0 andV (AZY � �I) + (ATZY � �I)V � V RV = 0.Form AZXU = A� R(Z +X + U) and AZY V = A� R(Z + Y + V ).Scale AZXU  �AZXU , AZY V  �AZY V ,OUTPUT(AZXU, AZY V , U , V , X, Y , Z).4 Numerical ExamplesIn this section we give some numerical examples to illustrate the resultsdiscussed in the previous sections.Example 1 In this example, we demonstrate Algorithm 1 performed undercomplex arithmetic for scalar inputs. LetA = a+ {�B = b+ {�:In complex arithmetic, we replace the transposition operation in (16) and(17) with the complex{conjugation operation, and we seek to �nd the com-plex scalars X and Y which form the optimal closed{loop scalars~AX = A �BBHX= a+ {�� (b2 + �2)Xand ~AY = A�BBHY= a+ {�� (b2 + �2)Y:It may be easily con�rmed, with S = 0 thatX = (a2��2)a(b2+�2) ; Y = �{(a2��2)�(b2+�2) ;~AX = �a (�+ {a) ; ~AY = a�(�+ {a):16



As expected �( ~AX ~AY ) = �(�A2H). It is interesting to note that with anexception of a real scaling the closed{loop eigenvalues of ~AX and ~AY aremerely re
ected across the (1�{)! axis, i.e., the diagonal axes in the complexplane. Further, note that the real scaling �a is unbounded as A approachesthe imaginary axis, which in turn produces an unbounded damped Riccatisolution X . Performing this same experiment in real arithmetic on matricesA = " a ��� a #B = " b ��� b #produces the exact analogous result, which motivates the use of the SHAREin the \preprocessing" step of Algorithm 1.Example 2 In this example, it is demonstrated how Algorithm 1 may beused to restrict the poles of a closed{loop system to a damped and well stabi-lized convex region within the left{hand plane. A total of 256 reachable andobservable linear time-invariant systems [A;B;C] are randomly generatedwith state dimension n = 12, input dimension m = 2 and output dimensionp = 2. The matrices along with � = 0:05 and � = 0:5 are the inputs toAlgorithm 1. The eigenvalues of the closed{loop matrices AZXU and AZY Vfrom the output of Algorithm 1 are plotted in Figure 2.Example 3 In this example, we dampened a system of springs, dashpots,and masses with two inputs, as shown by Figure 3. The system is modeledby the following time{invariant linear systemA = " 0 IM�1K �M�1D # ; B = " 0~B #C = " I 00 I # ; (35)
17
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Figure 2: Closed{Loop Eigenvalues for Randomly Generated Systems18
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f f1 Figure 3: Coupled Spring Experimentwhere M = �I , D = �I ,K = �266666666664 �1 1 0 � � � 0 0 01 �2 1 � � � 0 0 00 1 �2 � � � 0 0 0... ... . . . . . . . . . ... ...0 0 0 � � � �2 1 00 0 0 � � � 1 �2 10 0 0 � � � 0 1 �1 377777777775 ; ~B = 266666666664 1 00 00 0... ...0 00 00 �1 377777777775 :(36)In this experiment, we demonstrate the e�ciency of Algorithm 1 in pro-ducing dampening controllers for systems of large dimension. In this case,n = 60 (thirty springs), � = 4, � = 1, and � = 4. The eigenvalues of theclosed{loop system are shown in Figure 4.Example 4 In this example, we show how the eigenvalues of the closed{loop system may be restricted to a tighter region of the left half{plane. Thisis accomplished in part by replacing the Hamiltonian system HX;2 = HX =H2H1 in (12) with systems of higher periodicity. Two such Hamiltoniansystems are examined: HX;3 = H2H1H1 (37)and HX;4 = H2H1H1H1; (38)with H1 and H2 given by (11), respectively. Although we focus in thisexample on periodic Hamiltonian systems of period three and four, ourintent is to motivate the general observation that Hamiltonian systems ofperiod p may be used to produce feedbacks by which the eigenvalues of theattendant closed{loop system are contained within regions bounded by thestability cones that subtend the angle 180=p degrees, as shown by Figure 5.19
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Figure 5: Stability Regions versus Hamiltonian PeriodicityAs with the case for period two, the Hamiltonian matrices HX;p will giverise to symmetric matrices Xp, which are symmetric solutions to Riccatiequations similar to (16). For the sake of brevity, only the feedbacks whichuse the symmetric solutions Xp are examined in this example, but thereexist other solutions associated with di�erent permutations of the order ofH1 and H2 in (37) and (38). For example, the three Hamiltonian systemsof period three produce three Riccati solutions: one symmetric and twonon-symmetric, while the four Hamiltonian systems of period four producefour Riccati solutions: one symmetric, one skew symmetric and two non-symmetric.The procedure for computing dampening feedbacks follows along thesame line as that in Algorithm 1, namely that �rst a stabilizing feedback Zis produced with S = CTC and � small. The matrix X3 is computed fromthe periodic Schur decomposition of the implicit periodic map HX;3 withA = AZ and S = 0, in complete analogy to Algorithm 1. In the case withHamiltonian periodicity p = 4, an extra step is required. With p = 4, aneigenvalue � = �i� of the closed{loop matrix AZX;4 = A�BBT (Z+X4) maybe contained in the regions where ��8 � � � �8 , 3�8 � � � 5�8 , 7�8 � � � 9�8 ,and �5�8 � � � �3�8 . If the periodic step of Algorithm 1 is repeatedwith Hamiltonian periodicity p = 2, however, the resulting feedback (usingRiccati solutionX2) re
ects the eigenvalues in the regions near the imaginaryaxis across the (1 + {)! and the (1� {)! axes, thus placing them the regionindicated by Figure 5. 21
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Figure 6: Closed{Loop Eigenvalues for Randomly Generated Systems22



As in Example 1, a total of 256 reachable and observable linear time-invariant systems [A;B;C] are randomly generated, however, with statedimension n = 7, input dimension m = 4 and output dimension p = 3,and shift � = 0. The eigenvalues of the closed{loop matrices AZX3U =A�BBT (Z+X3+U) and AZX4X2U = A�BBT (Z+X4+X2+U) plottedin Figure 6.5 ConclusionIn this paper we have proposed a new method to produce a dampeningcontroller. It promises to be an e�cient and numerically reliable method torestrict the eigenvalues of a closed{loop state matrix to relatively elaborateregions in the left half-plane, without resorting to pole{placement.Still, many issues remain open, and are presently being investigated.Among these are standard analyses of the sensitivity of the eigenvalues ofthe closed{loop state matrix, scalings of the Hamiltonian to produce opti-mal results. Also, we are aware of di�erent parameterized formulations ofthe periodic Hamiltonian system in complex arithmetic which also produceexcellent dampening controllers. We have also observed experimentally thatconvex{combinations of the feedbacks discussed in this paper remain stable.These results have not been reported in this paper for the sake of brevity;they will be given in another manuscript. Nevertheless, the results con-tained herein provide the control engineer with a great deal more 
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