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Shape Signifiers for Control of
a Low-Order Compressor Model

Rodolphe Sepulchre and Petar Kokotovic

Abstract—Rotating stall and surge, two instability mechanisms lim-
iting the performance of aeroengines compressors, are studied on the
third-order Moore–Greitzer model. The skewnessof the compressor
characteristic, a single parameter shape signifier, is shown to determine
the key qualitative properties of feedback control.

Index Terms— Aeroengine instabilities, compressor characteristics,
Moore–Greitzer model.

I. INTRODUCTION

In recent years, jet engine compression systems have become a
subject of intensive nonlinear dynamics and control studies [1], [3],
[5], [7], [8], [11]. These studies were greatly helped by a low-order
Moore–Greitzer (MG) model [5], [10] which has served as a guide
for conceptualizing different strategies for compressor control [6], [7].
The feasibility of such a control approach was recently demonstrated
experimentally [3].

In its simplest form, the MG model consists of three nonlinear
differential equations which qualitatively describe the two main
compressor instabilities:rotating stall, characterized by a region of
reduced flow that rotates around the annulus of the compressor, and
surge, characterized by large axisymmetric oscillations. Surge can
damage the compression system and must be prevented. Rotating
stall, which causes a major loss of performance, must be either
prevented or rapidly removed.

Under manual control the stall-removal process exhibits a hys-
teresis loop, as shown on two experimental plots in Fig. 1(a) for
a single-stage(N = 1) and a three-stage(N = 3) compressor.
These plots are taken from Dayet al. [1]. The critical equilibrium
determining the severity of the stall-removal hysteresis is the stall
cessation point. In Fig. 1, on the single-stage compressor, this is point
A which is located to the left of the peak. In this case the hysteresis
is not severe. For the three-stage compressor, this is pointB, which
is located to the right of the peak and the hysteresis is severe. The
impact of this qualitative difference on feedback control properties
is the main theme of this paper. Within the MG model, our analysis
determines which aspects of the compressor’s qualitative behavior can
be changed when the throttle is used for feedback control. We show
that in the MG model the key difference between a mild hysteresis
and a severe hysteresis can be deduced from theskewnessof the
compressor characteristic, that is, the difference between the slopes
of the characteristic, as illustrated in Fig. 1(b).

In the low-order MG model, we replace the usual cubic param-
eterization of the compressor characteristic which exhibits only the
left-skewness and cannot be adjusted to model a severe hysteresis.
With a different form of the characteristic, we capture the critical
skewness with a single parameter signifier�. We show that the left-
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(a)

(b)

Fig. 1. (a) Mild and severe hysteresis in an experimental plot from [1] and
(b) left- and right-skewness of the compressor characteristics.

Fig. 2. Compressor and throttle characteristics.

skewness of the characteristic is the cause of a mild hysteresis and the
signifier� is negative. A severe hysteresis is due to the right-skewness
and the signifier� is positive.

We begin in Section II with a brief review of the MG model and
introduce two shape signifiers: theslopesignifier, for the control of
surge, and theskewnesssignifier, for the control of stall. A two-sine
parameterization of the compressor characteristic has resulted in the

simplest definitions of these two signifiers. The impact of skewness on
the uncontrolled model is analyzed in Section III where we show that
the skewness determines the severity of the stall-removal hysteresis:
the branch of the stalled equilibria continuously shifts to the right as
the skewness parameter� is increased from� < 0 to � > 0. For
� > 0, the compressor characteristic is right-skewed and the stall
cessation equilibrium is to the right of the peak.

The analysis in Section IV shows the impact of skewness on the
properties of a family of feedback controllers. This analysis reveals
that the minimal feedback information that is required for suppressing
the hysteresis changes with the skewness signifier. A specific result is
that the use of the stall amplitude as a signal for feedback is necessary
for stabilization when� is close to zero or positive, and that it can
be avoided when� is sufficiently negative.

II. SHAPE SIGNIFIERS FOR THEMOORE–GREITZER MODEL

The dynamics of rotating stall and surge in an axial flow compres-
sion system are described by the third-order MG model

_� =
1

lc
�	+

1

2�

2�

0

	c(� +WA sin �)d� (1)

_	 =
1

lc�2
�� F�1T (	) (2)

_A =�
1

2�

2�

0

	c(� +WA sin �) sin �d�: (3)

The meaning of the physical parameterslc; �, and� is discussed in
[3] and [8]. In the following, the integrals in (2) and (3) are denoted
by I1(�; A) and I2(�; A), respectively.

The variableA � 0 characterizes the amplitude of the first mode of
a nonaxisymmetric disturbance of the flow through the compressor.
Under normal operating conditions, the flow is axisymmetric, that
is, A � 0, and the operating point is located at the intersection of
the two static characteristics (Fig. 2): thecompressor characteristic
	 = 	c(�), relating the pressure rise	 to the mass flow�, and the
throttle characteristic	 = FT (�), relating the pressure loss across
the throttle to the mass flow.

The throttle characteristic in Fig. 2 is typically parabolicFT =
(1=
2)�2

T where
 is proportional to the throttle area. In this paper,

 will be the control variable. Typically control actuators are bleed
valves and a more realistic choice would be to replace
 by 
+u and
to defineu as the control variable. However, this would not alter the
conclusions of this paper. By decreasing
, the mass flow is reduced
and the pressure rise is increased until a maximum, hereafter called
the “peak.” Beyond this peak, the equilibrium is unstable. Moore and
Greitzer postulated anS shape characteristic as on Fig. 2, which is
somewhat hypothetical because the part with positive slope cannot
be measured experimentally.

The most commonly used parameterization of theS-shape com-
pressor characteristic	c(�) has been the cubic

	c(�) = 	0 +H 1 +
3

2

��W

W
�

1

2

��W

W

3

(4)

whereW andH are, respectively, the semi-width and the semi-height
of the characteristic.

This characteristic, shown in Fig. 3 (dashed, left-hand side), served
for the bifurcation analysis in [8] and the bifurcation-softening
control in [7]. More general parameterizations were employed in
[9], including a concatenation of four polynomials, shown in Fig. 3
(dashed, right-hand side), which was able to reproduce experimentally
observed rapid transitions from nonstalled equilibria close to the
peak to fully developed stall equilibria. A significant contribution of
[9] is the link it established between the shape of the compressor
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Fig. 3. Dashed: Two examples of characteristics from the literature. Solid: fitting using one-sine curve.

characteristic and compressor qualitative behaviors not captured
by the cubic parameterization. In this paper, we will see that a
cubic parameterization is indeed insufficient to model a severe
hysteresis within the third-order model. For our qualitative analysis
the concatenated parameterization is impractical because of a large
number of parameters.

In our search for one or two simple “signifiers” which will
characterize the qualitative behavior of the MG-model under throttle
feedback, we started with another simpleS-shape curve:

	c(�) = 	0 +H sin
�

2

��W

W
: (5)

This “one-sine” parameterization makes use of the same parameters
as the cubic (4). For surge studies an important shape signifier is the
maximum slopeof the characteristic,�H=2W for the one-sine curve
and 3H=2W for the cubic curve.

This shape signifier is actually the only information needed for pure
“surge control,” that is, under the assumption of an axisymmetric flow
(A � 0). The second-order surge model can be stabilized by adding
damping, that is, by employing feedback of the form

u =
1p
	

(
nom � 
D _�): (6)

The resulting closed-loop system

lc �� +
1

4lc�2

D � d	c

d�
(�) _� +

1

4lc�2
(�� 
nom) = 0 (7)

clearly shows that the maximal slope of the characteristic is the only
shape signifier needed in this analysis. It is easily verified that the
condition


D > �2lc
d	c

d�
max (8)

implies global asymptotic stability of the equilibrium� = 
nom.
When both surge and stall have to be controlled, the shape of the

compressor characteristic in the neighborhood of the peak becomes
important. In Fig. 3(a) and (b), the one-sine curve (solid) is symmetric
with respect to the peak. The cubic characteristic (4) in Fig. 3(a)
(dashed) is “skewed to the left,” while the concatenated polynomial in
Fig. 3(b) (dashed) is “skewed to the right.” To capture this difference
in shape, that is, theskewness of the characteristic with respect to the
peak axis� = �p, we need a second shape signifier.

The simplest way to introduce skewness is with the two-sine
parameterization

	c(�) = 	0 + C sin !
��W

W
+ � sin

!

k

��W

W
(9)

where � = 0 corresponds to the unskewed case. With the choice
k � 2sign � and ! chosen to adjust the frequency, the skewness
signifier is parameter�: a negative� indicates left-skewness while a
positive � indicates right-skewness.

The skewness signifier� will play a key role in determining the
effectiveness of the throttle (or bleed valve) control in counteracting
stall and surge. When� is negative andj�j is not small (left-
skewness), the throttle control can be effective. This is not so in
the case of right-skewness, that is, when� is positive.

The values of!, C, and � which fit a particular compressor
characteristic can be obtained from the formulas

� =
k cos (!)

cos
!

k

; C =
H

sin (!) + � sin
!

k

: (10)

The two constraints express the matching conditions	c(�p) =
	0 + H and (d	c=d�)(�p) = 0.

As an example, the two-sine parameterization is used to match the
same dashed curves shown in Fig. 3. The result with� � �1 is
shown in Fig. 4(a) and with� � +0:1 in Fig. 4(b). In both cases,
the skewness of the characteristic is captured.

The fact that the two-sine parameterization of the cubic curve (4)
results in a negative� is not accidental. It is because the skewness
around the peak is governed by the change of curvature, that is, by
the the third derivative of	c. For the cubic parameterization (4),
the third derivative is a negative constant, which necessarily yields a
left-skewness, and therefore a shape signifier� < 0.

A convenience of polynomial parameterizations is that the integrals
I1 andI2 can be analytically evaluated. Fortunately, this convenience
is not lost with one- and two-sine parameterizations. For the one-sine
approximation, we obtain

I1(�; A)

= 	0 + sin !
��W

W

1

2�

2�

0

cos (!A sin �) d�
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d	c
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whereJ0(s) andJ1(s) are the two first Bessel functions of the first
kind (in particular,J 0

0 = �J1). For the two-sine parameterization,
one can use the same formulas for each term.
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Fig. 4. (a) Left-skewed and (b) right-skewed characteristics. Dashed: polynomials. Solid: two-sine curve with (a)� < 0 and (b)� > 0.

(a) (b)

Fig. 5. (a) (A; �) bifurcation diagram and (b)(	; �) equilibria diagram (unskewed case).

III. I MPACT OF SKEWNESS ON THEUNCONTROLLED MODEL

We now study how the steady-state behavior of the uncontrolled
MG model (2) and (3) depends on the skewness. Because (3) does not
depend on	, we can first study the equilibria of_A = F1(A; �) = 0

treating� as a parameter. In Fig. 5(a), the stable and the unstable
equilibria are, respectively, the solid and the dashed sections of the
curves. A bifurcation occurs atA = 0,� = �p, which is supercritical
for � < 0 and subcritical for� > 0. In all three cases, the no-stall
equilibria A = 0, � < �p are unstable.

Although� is not a parameter but a state, the bifurcation diagram
in Fig 5(a) is important from a control point of view: suppose that a
given controller succeeds in tracking a set value�. Then if� > �p,
the corresponding no-stall equilibriumA = 0 is stable, while for�
below�p, a stable stall equilibrium (A > 0) will appear. If � < 0,
the stall amplitude of the stable equilibrium will increase smoothly
as a function of�. However, when� > 0, a “jump” will occur from
a no stall situation (A = 0) to a fully developed stall (A = Amax).

We now turn our attention to the equilibria of the whole MG model.
For a given solution(�; A) of F1(A; �) = 0, the corresponding
pressure rise	 is obtained by solving the equation_� = 0, which
yields 	 = F2(A; �). The corresponding throttle value is
 =

�=
p
	.

For the no-stall caseA = 0, J0(0) = 1. Hence _� = 0 reduces
to 	 = 	c(�), i.e., the no-stall equilibria are on the compressor
characteristic. These equilibria are unstable left of the peak. For the
stall case (A > 0), the projection of the stall equilibria to the plane
(	; �) is a curve shown in Fig. 5(b) for the symmetric case (� = 0).

The vertical segmentPP 0 in Fig. 5(b) corresponds to the vertical
segment in Fig. 5(a). The arcSP 0 in Fig. 5(b) corresponds to the
horizontal stall branch in Fig. 5(a).

A. Skewness and Hysteresis

To the right of the peakP , that is, for � > �p, the no-
stall equilibria are stable. As the throttle slowly closes beyondP ,
the occurrence of stall is represented by the jump fromP to S.
In Fig. 5(a), this corresponds to a jump from the lower segment
A = 0 to the higher segment. If the throttle is slowly reopened
in order to recover the no-stall regime, the stable stall equilibrium
moves along the arcSP 0 toward P 0. At P 0, the stall is suddenly
extinguished and the operating point jumps to the stable no-stall
equilibriumH. This operating condition is still undesirable because
of the reduced pressure rise. When the throttle begins to close to
recover a desired operating point on the compressor characteristics,
an attempt to increase the pressure rise beyond the peak would cause
a new jump toS. This completes the cycleS ! P 0 ! H !
P ! S which is the stall-removal hysteresis. Its reduction was one
of the main accomplishments of the feedback control described and
experimentally validated in [3].

The desire to model the hysteresis in the form in which it has
been observed experimentally motivated us to introduce the two-sine
parameterization (9). This parameterization can describe a crucial
aspect of the stall-removal hysteresis which cannot be modeled by
the cubic parameterization (4). The two-sine parameterization exhibits
the stable stall equilibria to the right of the peak, that is for� > �p.
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Fig. 6. (	; �) equilibria diagrams with left- and right-skewness.

Fig. 7. Closed-loop equilibria with left- and right-skewness.

It is the experimentally observed existence of these equilibria that
dramatically increases the severity of the compressor hysteresis. The
two-sine parameterization reveals that these equilibria are caused by
the right-skewness, that is, when the signifier� is positive. The
characteristics	c with � < 0 and� > 0 shown in Fig. 6 give rise
to the two fundamentally different arcs of the stable stall equilibria.
Repeating our discussion for the two situations depicted in Fig. 6, we
can easily see that in the case� > 0 the hysteresis is much larger
and the stall persists over a wider range of the throttle openings.
It is of major practical importance that this crucial phenomenon is
determined by a single skewness signifier�.

Within the three-dimensional MG model, the skewness of the
compressor characteristic is thus the shape signifier which determines
if the stall cessation pointP 0 is to the left or to the right of the
peak. As a consequence, different types of hysteresis are obtained
just by varying the parameter�. In ahigher-orderMG model a cubic
characteristic may be able to model different types of hysteresis.
However, the skewness captures this important compressor feature in
a low-order model.

IV. I MPACT OF SKEWNESS ONFEEDBACK CONTROL

A. Structural Limitations of Throttle Control

Our task is now to investigate to what extent the undesirable
steady-state behavior of the uncontrolled compression system can be
altered by throttle control using state feedback. The first and foremost
limitation is that throttle control cannot create new equilibria. In other
words, a desired operating point has to be selected at an equilibrium
of the uncontrolled system taking into account that the throttle control

variable
 can only determine the steady-state value of�=
p
	. The

corresponding equilibria are then imposed by the equations_A = 0
and _� = 0 which are independent of
.

Among the equilibria of the uncontrolled model, the most desirable
operating point is at the peak because it corresponds to the maximum
pressure rise and to a no-stall situation (A = 0). We will therefore
examine if this equilibrium can be stabilized by a control law of the
form

u =
1p
	
(�c � 
P (�� �c)� 
D _� + 
AA): (13)

The set-point�c determines the location of the closed-loop equi-
librium (A; �; _�) = (0;�c; 0), which corresponds to the peak by
selecting�c = �p. The roots of


AAe � (1 + 
P )(�e � �c) = 0 (14)

determine whether this is the only closed-loop equilibrium or not.
With the help of Fig. 7, these roots are easily visualized as the
intersections of the lineD � Ae = [(1 + 
P )=
A](�e��c) with the
equilibria curves from Fig. 5. In the case of left-skewness, the choice
�c = �p results in the unique equilibrium(0; �p; 0) because the
slope ofD is positive. This unique equilibrium is already achieved
even with
A = 
P = 0, that is, without any feedback of the mass
flow or of the stall amplitude. (Note that for
A = 0, the lineD is
vertical. In the case of right-skewness, the closed-loop equilibrium is
unique only if the slope ofD is not too large, that is if
A � 
P .)

Because of modeling imperfections, the peak location is uncertain
and the set-point�c will never be equal to�p. Instead we will have
�c = �p+�, where� represents uncertainty. For the determination
of the closed-loop equilibrium, a constant� causes a horizontal shift
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of the lineD. For� > 0, the closed-loop equilibrium will be shifted
to the right and will be a stable operating point on the compressor
characteristic. However, for� < 0, the lineD creates at least two
new equilibria. The two equilibria near the peak are unstable for the
uncontrolled compressor. The main task of feedback control is to
stabilize one of the two equilibria. Then a small uncertainty� < 0
will cause only a small shift of the closed-loop equilibrium, rather
than a large jump observed without control. This explains why it is
crucial not only to examine the stabilization of the peak with (13)
and�c = �p, but also to analyze whether the same control law will
result in stable equilibria near the peak when�c = �p +�.

A simple calculation not presented here shows that for the unstable
no-stall equilibria (A = 0; � < �p), one of the unstable eigenvalues
of the linearized system is uncontrollable and, hence, none of
these equilibria can be stabilized by smooth feedback. We therefore
concentrate on the stabilization of the stall equilibria.

B. Local Stabilization

With the understanding that the uncertainty� will determine the
actual location of the stall equilibrium (Ae; �e	e), we rewrite the
control law (13) in the form

u =
1p
	

(�e � 
P (�� �e)� 
D _� + 
A(A� Ae): (15)

Introducing the error coordinates(a; �; _�) := (A � Ae; � �
�e; _�), the linearized model of the compression system (3) under
the feedback control (15) can be written in the form

_a =�(I2aa+ I2��)

�� =

A

4l2c�2
+ �I2�I2a a+ I22� � 1 + 
P

4l2c�2
�

+ I1� � 
D
4l2c�2

_�: (16)

The constantsI1�; I2a; andI2� are the partial derivatives ofI1 and
I2 evaluated at the equilibrium. We simplify the expressions below
by neglecting0(A4)-terms. Evaluating the constantsI1a; I2a; and
I1� for the parameterization (9), we obtain the expressions

I2� = I1a =
d2	c

d�2
(�e)

Ae
2

+ 0(A3)

I1� = I2a =
1

8

d3	c

d�3
(�e) = c �A2

e (17)

wherec = c(�e) = (C=8k)!3 cos [(!=W )�e](�1 + 1=k2). While
I2� = I1a, the error inI1� = I2a is 0(A4).

The stability conditions for the linearized system (16) are strongly
affected by the skewness signifier�. A first condition yields

�c1 + 
P
l2c

�A2 + 
A
d2	c

d�2
(�e) A > 0: (18)

If � < 0, each term of (18) is positive and the inequality holds even
for 
A = 
P = 0, that is, without any feedback of the mass flow or of
the stall amplitude. If� � 0, the first term becomes negative. In this
case, a feedback of the stall amplitude isnecessaryfor stabilization
and its gain must satisfy
A > fc�=[j (d2	=d�2)(�e) j]gA.

A second stability condition yields

1 + 
P � �cA2
D > �2
d2	c

d�2
(�e)A

2

: (19)

For large values of the parameter� and asA increases, the right-
hand side rapidly becomes larger than one. As a consequence, it is not
possible to stabilize equilibria on the entire stall branch with a stall
amplitude feedback alone (
P = 
D = 0). This has been previously

observed by Evekeret al. [3] who proposed to incorporate in the
feedback law a_�-term, that is,
D > 0. However, it is apparent
from (19) that with
D > 0 and
P = 0, stabilization can be achieved
only if � < 0. If � � 0, a feedback of the mass flow is necessary for
stabilization of the whole branch of unstable stall equilibria.

The third stability condition is


D
�2

1 + 
P
�2

�c�A2 1 + 
P
�2

+

2D
�4

� d2	c

d�2


D
�2

A2 � d2	c

d�2

AA: (20)

When
D = 0, the right-hand side is positive and of orderA, while
the left-hand side is of orderA2. This shows the need for a nonzero
gain 
D for A small, that is, near the peak.

The minimal requirements for feedback stabilization of the unstable
stall equilibria of the MG model can be summarized as follows: In the
case of left-skewness(� < 0), the minimal requirement for feedback
stabilization is a term�
D _� which provides damping. In the case
of right-skewness (� > 0), a full state feedback isnecessaryto
achieve stabilization, while
A > fc�=[j (d2	=d�2)(�e) j]gA and
(20) further constrain the gains
D; 
A; and
P .

V. CONCLUSIONS

This paper has addressed the throttle control of rotating stall
and surge in a low-order compressor model. We have shown that
the skewnessof the compressor characteristic, captured by a single
parameter�, is a key shape signifier for throttle control. The use of
other types of actuations [2], [4], such as air injection, may be less
sensitive to this shape signifier. A cubic characteristic inherently leads
to left-skewness (� < 0), while real compressors might exhibit right-
skewness (� > 0). We have shown that a variation of� has important
consequences on the open-loop hysteresis observed without control
and on its potential suppression by feedback control. In the case of
left-skewness, the open-loop hysteresis can be suppressed by a_�-
feedback. In the case of right-skewness, the open-loop hysteresis is
larger and the control requires full state feedback.
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