September 1997 UILU-ENG-97-2226
DC-182

University of Illinois at Urbana-Champaign

On Supervisory Policies that Enforce Liveness in a Class
of Completely Controlled Petri News Obtained via
Refinement

Ramavarapu S. Sreenivas

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

NEF

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Fom; Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY QOF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG- 97-2226

DC- 182

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. QFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Laboratory (If applicable) National Science Foundation
University of Illinois N/A

6¢c. ADORESS (City, State, and ZIP Code)
1308 West Main Street

Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)
Washington, DC 20050

v

8b. OFFICE SYMBOL
(If applicable)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

National Science Foundation

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER '

8c. ADDRESS (City, State, and ZIP Code)
Washington, DC 20050

10. SOURCE OF FUNDING NUMBERS

WORK UNIT

PR M PROIECT TASK
v ACCESSION NO.

ELEMENT NO. NOQ. NO.

11. TITLE (Include Security Classification)

Petri Nets obtained via Refinement

On Supervisory Policies that Enforce Liveness in a Class of Completely Controlled

12. PERSONAL AUTHOR(S)
SREENIVAS, Ramavarapu S.

13a. TYPE OF REPCRT 13b. TIME COVERED
Technical FROM TO

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
September 1997 . 17

16. SUPPLEMENTARY NOTATION

17. COSATI COOES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identfy -by block number)

[§

Discrete Event Dynamic Systems; Petri Nets; Liveness; Supervisory Control

19. ABSTRACT (Centinue on reverse if nacessary and identify by biock number)

We consider Petri nets (PNs) [3, 5] where each transition can be prevented from firing by an external agent, the Supérvisor.
References [6, 7] contain necessary and sufficient conditions for the existence of a supervisory policy that enforces liveness in a -
PN that is not live. A PN is said to be live if it is possible to fire any transition from every reachable marking, although not
necessarily immediately. The procedure in references [6, 7] involves the construction of the coverability graph (cf. section 5.1,
[3]; section 4.2.1, [5]), which can be computationally expensive. Using the refinement/abstraction procedure of Suzuki and
Murata [8], we show that under the appropriate conditions ennuciated in this report, a significant cemputational savmos can be
achieved in the sythesis of supervisory polcies that enforce liveness in PNs. This is illustrated by example.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT
& uncLassiFieDuNLIMITED [SAME AS RPT.

{Z] oTiC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢c. QFFICE SYMBOL

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THlS PAGE
UNCLASSIFIED

On Supervisory Policies that Enforce Liveness in a Class of
Completely Controlled Petri Nets obtained via Refinement

A detailed version of a similar paper to appear in the IEEE Transactions on Automatic Control

Ramavarapu S. Sreenivas*
Coordinated Science Laboratory
and
Department of General Engineering
University of lllinois at Urbana-Champaign
Urbana, IL 61801
E-mail: sree@deds.csl.uiuc.edu
Keywords: DEDS, Petri nets, Liveness

September 16, 1997

Abstract

We consider Peiri nets (PNs) [3, 5] where each transition can be prevented from firing by
an external agent, the supervisor. References [6, 7] contain necessary and sufficient conditions
for the existence of a supervisory policy that enforces liveness in a PN that is not live. A PN
is said to be live if it is possible to fire any transition from every reachable marking, although
not necessarily immediately. The procedure in references [6, 7] involves the construction of the
coverability graph (cf. section 5.1, [3); section 4.2.1, [5]), which can be computationally expensive.
Using the refinement/abstraction procedure of Suzuki and Murata [8], where a single transition
in a abstracted PN N is replaced by a PN N to vield a larger refined PN N , we show that when-
N belongs to a class of marked-graph PNs (cf. section 6.1, [3]), there is a supervisory policy that
enforces liveness in the refined PN N if and only if there is a similar policy for the abstracted
PN N. Since the coverability graph of the PN N is smaller than that of the PN ¥ , it 1s possible
to achieve significant computational savings by using the process of abstraction on N. This is
illustrated by example.

*This work was supported in part by National Science Foundation under grant number ECS-9409691.

1 | Introduction

Petri Nets (PNs) [5] are popular tools for the modeling, analysis, control and performance evaluation
of large-scale DEDS. In this paper we concern ourselves with the property of liveness, a stronger
version of the absence of deadlocks. A PN is said to be live (cf. section 4.1, [5]) if it is possible to fire
any transition from every reachable marking, although not necessarily immediately. PNs where each
transition ‘ca.n be individually controlled by an external agent, the supervisor, are called Completely
Controlled PNs (CCPNs) [6]. References [6, 7] present necessary and sufficient conditions for the
existence of supervisory policies that enforce liveness in an arbitrary CCPN. The test procedure
for these conditions involves the construction of the coverability graph (cf. section 5.1, [3]; section
4.2.1, [5]) of a PN. The size of the coverability graph of a PN can be exponentially related to the
number of places and transitions. Often this can be computationally burdensome. In this paper we
use the refinement/abstraction procedure of Suzuki and Murata [8] to alleviate this computational
burden. The refinement procedure of Suzuki and Murata involves replacing a single transition in
a PN N by a PN N , resulting in a PN N. The abstraction procedure is essentially the reversal of
this process. In this paper we show that when N is a live, marked-graph PN with some additional
restrictions, there exists a supervisory policy that enforces liveness in the refined PN N if and only
if there exists a policy that enforces liveness in the abstracted PN N. Since the coverability graph
of the abstracted PN N is smaller than that of the refined PN N, significant computational savings
can be obtained. The extent of savings is illustrated via an example.

The paper is organized as follows: section 2 introduces the notational preliminaries, section 3
presents the main results and finally in section 4 we present our conclusions along with recommen-

dations for future research.

2 Notational Preliminaries and Review of Prior Work

We assume familiarity with Petri nets (PNs). The reader is referred to Peterson’s book [5] or"
Murata’s review article [3] for a more thorough treatment. A PN N = (I, T, &, m°) is an ordered

4-tuple, where Il = {py, p3, ..., Pn} is a set of n places, T = {t1, ta, ..., tm} is a set of m transitions,

® C(II x T)U (T x W) is a set of ares’, m®%:Il — A is the initial-marking function (or the initial-

'In this paper we restrict our attention to ordinary PNs. This is implicitly assumed when we suppose & C (I x

T) U (T x II).

marking), and A is the set of nonnegative integers. The marking of a PN, m:II — A/, identifies
the number of tokens in each place. For a given marking m a transition ¢ € T' is said to be enabled
ifVpe€ ®, m(p) > 1, where *z := {y | (y,) € ®}. For a given marking m the set of enabled
transitions is denoted by the symbol T.(N, m). An enabled transition ¢t € Te(N, m) can fire, which

changes the marking m! to m? according to the equation

m?(p) = m*(p) — card(p* N {t}) + card(*pn {t}), (1)

where the symbol card(e) is used to denote the cardinality of the set argument, and z* := {y | (z,
y) € &}.
A string of transitions o = %15, ---¢;,, where ¢;, € T (2 € {1, 2, ..., k}) is said to be a valid

firing string at the marking m, if,
e the transition t; is enabled at the marking m, and

o for i € {1, 2, ..., k — 1} the firing of the transition t; produces a marking at which the

transition %;,, is enabled.

Given an initial—ma.ﬂ:ing m? the set of reachable markings for m® denoted by R(N, mO), is the
set of markings generated by all valid firing strings at the initial-marking m® in the PN N. At a
marking m?, if the ﬁﬂng of a valid firing string o results in a marking m?, we represent it as m?

— 0 — m?. A transition ¢ € T is live if
Vm! € (N, m°%,3 a m? € R(N, m') such that ¢ € To(N, m?).

The PN N is live if every transition ¢ € T is live. For any valid firing string o € T*, we use the
symbol #(0,t) to denote the number of occurrences of the transition ¢ € T' in o, and the symbol
|o| to denote the length of the string o.

APNN = (I, T, &, m°) is said to be a marked-graph PN (MGPN),ifV p € II, card(*p) =
card(p®) = 1. That is, in an MGPN every place has a unique input (output) transition. For a pair
of transitions ¢;, ¢; € T, a path P from ¢; to ¢; is a string of alternating transitions and places,
1Pk, tky Phytks * * - Piytj, such that {(t;,pl,;l), (Prysthy)y (ke s Pz)y - - > (Py» £5)} © @. The path P is said
to be a simple path if every path from t; to ¢; contains P as a suffix. There is a closed-path that
contains ¢; if (i) P is not the null-string, and (ii) t; = ¢;. The set of closed-paths in an MGPN is
defined accordingly.

An MGPN is live if and only if every closed-path is marked at the initial-marking (cf. theorem
6.5, [3]). That is, the set of places in each closed path has a non-zero token-load at the initial-
marking. In a live MGPN N = (II, T, &, m?), the firing of a transition ¢; is necessary for firing
transition t; if and only if there is a token-free path from ¢; to t; (cf. property 3, [4]).

A Completely Controlled Petri net (CCPN) [7, 6] is expressed as an ordered 6-tuple: M = (II,
T, ®, m® C, B), where Il = {py, p3, ..., Pn} is a set of n state-places, T = {t1, %2, ..., tm} is
a set of m transitions, ® C (Il x T) U (T x II) is a set of state-arcs; C = {c1, €2, ..+, Cm}? is
the set of control-places; B = {(ci, %) | 1 = 1, 2, ..., m}, is the set of control-arcs; m%:II — A is
the initial-marking function (or the initial-marking), and N is the set of nonnegative integers. The
CCPN M = (I, T, &, m° C, B) contains the underlying PN N = (I, T, &, m®). As there is
one control place assigned to each transition the underlying PN uniquely determines the CCPN.
Therefore, in graphical representations of CCPNs we do not explicitly represent the control-places.

A control u:C — {0,1} assigns a token load of 0 or 1 to each control place. The control can
also be interpreted as a.n m-dimensional binary vector u € {0,1}™. It would help to view the
control u as follows: if the i-th component of u, or u(c;), is 0 (1) then transition ¢; is control-
disabled (control-enabled). For a given marking m (control u), a transition t; € T is said to be
state-enabled (control-enabled) if ¢; € T.(N, m) (if u{c;) = 1‘). A transition that is control-enabled
and state-enabled can fire resulting in the marking given by equation 1. A supervisory policy P:N™
— {0,1}™, is a partial map that assigns a control for each reachable marking, and is possibly
undefined for the unreachable markings.

For a given CCPN and supervisory policy P, a string of transitions o = ;,¢;, - - -t;, , where 2,

Jie ?

€T (i€ {L,2,...k})is said to be a valid firing string under supervision at the marking m?, if,
‘o the transition ¢; is state-enabled at the marking m?, P(m?'); = 1, and

e fori € {1,2,..., k— 1} the firing of the transition ¢; produces a marking m® at which the

transition ¢;;,, is state-enabled and P(m’);,,, = 1.

For a given supervisory policy P, the set of reachable markings under supervision for a CCPN M

with initial-marking m°, denoted by R(M, m°®, P), is the set of markings generated by all valid

firing strings under supervision at the marking m® in the CCPN M. For the CCPN M , & transition
*Note that card(C) = card(T) = m.

t;; € T is live under P if
VYm! € R(M, m°% P),3a m® € R(M, m?, P) such that t;, € Te(N,m?) and P(m?);, = 1.

A supervisory policy P enforces liveness in a CCPN M if all transitions in M are live under P.
References [6, 7| contain a test for the existence of a supervisory policy that enforces liveness in
a CCPN. The procedure involvés testing the non-emptiness of a real-valued feasible region defined
by linear inequalities. This procedure has a time complexity that is polynomially related to the
number of variables, which is equal to the number of vertices in the coverability graph (cf. section
5.1, [3]; section 4.2.1, [5]) of the underlying PN of the CCPN. However, the number of vertices
in the coverability graph of a PN can be exponentially related to its size. In the next section we
use the refinement/abstraction technique of Suzuki and Murata [8] to alleviate the computational

burden of this procedure.

3 Main Results

Let N = (I, T, 3, m°) be a PN and ¢, € T be a transition in N. Also, let N = (II, T, &, m°) be
a different (i.e. II N OI=7TnT= 0) PN where {Z;n,fout} C T are a pair of transitions in N. We
now describe the refinement/abstraction technique of Suzuki and Murata [8]. The refined PN N =
(ﬁ, T, 3, m?) is obtained by replacing the transition #g in the PN N by the PN N as follows,

I = mul
T = (TUT) - {to}
& = ((2U%) - ({to} x) = (W x {to})) U {(pFin) | (p,0) € B} U

{(‘{outsp) l (t01p) € Q}
0 . P
m(p) = { @mo(p) if 5 e IL.
Conversely, the PN N can be abstracted from N by reversing the process of refinement. That is, in
the refined PN N the subnet defined by the PN N is replaced by the transition ¢, which results in
the abstracted PN N. Throughout this paper we will use the symbol N (JV') to denote the abstracted
(refined) PN. Figure 1(iii) contains the PN N obtained by using the above construction on the PNs
N and N shown in figure 1(i) and 1(ii) respectively. Suzuki and Murata derive sufficient (but not

tin p6 tout

p3 pé pS

pl4

A
(iii) N

Figure 1: An illustration of the abstraction/refinement procedure of Suzuki and Murata (8].

neéessa.ry) conditions under which the liveness of N and N imply the liveness of N (cf. theorem
11, [8]).

In the remainder we concern ourselves with the existence of supervisory policies that enforce
liveness in the CCPN M that has N as its underlying PN. The PN N is assumed to be obtained
by refining a transition ¢ in a PN N by the subnet represented by a PN N. We show that when
N is a live MGPN, with an empty, simple path originating from #;, to f,u, there exists a policy
that enforces liveness in the CCPN M if and only if there is a policy that enforces liveness in
M. This yields an “divide-and-conquer” procedure to testing the existence of supervisory policies
that enforce liveness in large CCPNs. The benefit to this approach is that testing the existence
of a supervisory policy that enforces liveness in a CCPN M can be significantly easier than the
corresponding test for the CCPN M. Although the main result (cf. theorem 3.1) is stated in terms
of the PN N being obtained from the PNs N and N via the process of refinement, the applicability
of this result to the efficient synthesis of supervisory policies for an arbitrary CCPN M relies on
the abstraction of the (possibly simpler) PN N from (possibly complicated) PN N.

The results of references [6, 7] can be applied to the CCPN M and the supervisory policy that
enforces liveness in M can be used to synthesize a policy that enforces liveness in M. We now
state our main result, the proof of which follows from lemmas 3.5 and 3.6. Lemma 3.5 presents a
prescription for the synthesis of a supervisory policy that enforces liveness in the CCPN M from
a corresponding policy for the CCPN M. Lemma 3.6 establishes the fact that the existence of a
supervisory policy that enforces liveness in the CCPN I implies the existence of a similar policy
for the CCPN M.

Theorem 3.1 Let N = (ﬁ, T , &, mo) be a live MGPN such that for a pair of distinct transitions
{tin, tout } C T, there is a simple-path from t;, to 1oy that is empty at the initial-marking m°. For
an arbitrary PN N = (II, T, &, m®) with a distinct transition to € T, (INTI =T N T =),
let N = (ﬁ, T, 3, mO) be the PN obtained by refining the transition t, by the PN N as illustrated
above. If M (M) is a CCPN with the underlying PN N (N), then there is a supervisory policy
that enforces liveness in the CCPN M if and only if there ezists a supervisory policy that enforces
liveness in the CCPN M.

We note that the PN N in figure 1(il) is a live MGPN as all closed-paths are marked. Addi-
tionally, every path originating from %;,, to t,,; will have the path P = t;npetow: as a suffix. So, P

is a simple path from #;, to f,u¢, which is empty at the initial-marking. The PN N shown in figure
1(i) is not live, and neither is the PN N shown in figure 1(iii). Let M (M) be the CCPN that has
the PN shown in figure 1(iii) (figure 1(i)) as its underlying PN. According to theorem 3.1, there
is ;a supervisory policy that enforces liveness the CCPN M if and only if there is a supervisory
policy that enforces liveness in the CCPN M. As a part of the proof of lemma 3.5 we show that a
supervisory policy that enforces liveness in M can be readily converted into a policy that enforces
liveness in M. We now derive a collection of results that are critical to the proof of lemmas 3.5 and
3.6, which together establish theorem 3.1.

For the class of MGPNs defined above, lemma 3.1 establishes (i) the number of occurrences of
transition f.y never exceeds that of transition %, in any valid firing string at the initial-marking,
and (i) at any point in the evolution of the tokens in N, the number of occurrences of transition

tous can be made equal to that of %, without firing tin-

Lemma 3.1 Let ;,, tou be two distinct transitions in a live, MGPN N = (f[, f, ‘5, m°), such
that at the initial-marking T there is an empty, simple-path originating from tiy to toy:, then for

any valid firing siring & € T* at the initial-marking Ta°,
1. #(E,Z;n) Z #(aa{out);

2. if #(F,tin) > #(F,%out), then 351 € (T — {tin})* such that (i) 551 is a valid firing string at

the initial-marking M°, and (i) #(551,%m) (= #(5,tin)) = #(561, fout)-

Prbof: The simple path from %;,, t0 Zoys is empty at the initial-marking. Since the PN Nis an
MGPN, the every place in the simple path from #;, to f,u has a unique input (output)
transition. Let & € T* be a valid firing string at the initial-marking ™ such that #(5,%n)
= #(5,%out), then at the marking resulting from the firing of &, the simple path from %;, to
tout must be empty. Therefore the number of occurrences of %,,; in any valid firing string can

never exceed the corresponding number for %;,.

Let & € T* be a valid firing string at the initial-marking T° such that #(5,%n) > #(5, fou)-
The sum of the token-loads of the places in the simple path from %, to foy will equal #(7,tn)
- #(7, {wt). By the definition of a simple path, we note that any path from #;, to Z,,; contains

the simple path from %, to %, as a suffix. Therefore there can be no token-free directed

re,

paths from %, t0 Zoys. Since Nis live, we infer f,y: can fire without the firing of £ (property
3, [4]). Repeating this argument #(,%n) - #(5,%out) times, we establish the existence of
51 € (T - {tn})*, such that 55, is a valid firing string at the initial-marking m° in N and
#(551,tin) = #(5,1in) = #(51, tous). Hence the result.

&

‘Following Suzuki and Murata [8] we define functions f : T* — T* and f:7* — T* as follows,

fA) = A
A itfe F-{fal,
to %=t
t ifteT.
f(8)f(%), where & € T*, and T € T,

il

@
f(31)

and

) = A
i = {? iffeT,

A otherwise.

(8 = f(3)f(), where 5 € T*, and T € 7T,

where) is the null-string. The function f(e) (f(e)) converts a firing string in N to a firing string
in N (N).

Let P : Neordl) _, [p 1}ead(T) be a supervisory policy for the CCPN M. We define a
supervisory policy P : A/ card(fl) _, {0, 1}‘“"1('?) for the CCPN M as follows

_ P(A(m)); iTeT,
P(M)p= ¢ P(A)) if T = Tim,

1 otherwise,

where A : Neord@) _, preard(D) 5 defined as follows: V pell,

A(ﬁ)(p) — T(p) + Z;GP(E",,Z;-.;*) ﬁ(ﬁ) if pE t(.J:
mi(p) otherwise,
and P(‘t}n, fwt) denotes the set of places in the simple path from %, to %,,;. Lemma 3.2 establishes

the relationship between the marking resulting from the firing of appropriate firing strings in M ,

M and N.

Lemma 3.2 Let G be a firing string that is valid under the supervision of P at the initial-marking
mo in M. Also, let f(@) be a firing string that is valid under the supervision of P at the initial-
marking m°® in M, and F(3) be a valid firing string in the PN N at the initial-marking ™°. If m°
-5 —-min M, m° - f(3) » min M, and @m° — f(ﬁ) — i N, then, YV p € II,

. 1i(p) otherwise,
andV 7 € 1i, m(p) = W(P), where P(tin,t.ut) denotes the set of places in the simple path from &,

to {out .

‘The details of the proof are skipped for brevity. The above result can be established by an
induction argument over | @ |, the length of . The base-case is established by letting & = A. For
the induction step we let & = 5%, where | 3, | = n, for some n € A. The induction step for
any p € II follows directly from the definition of f(o) and the fact that the subnet N is preserved
in-tact in the construction of N. The induction step for any p € II is easily established for 7 €
T — {tinstous}. Noting that f(#in) = to, we infer the firing of #;, in N corresponds to the firing
of 3o in N. Consequently, in N the token-load of the output places of f; would increase by unity.
On the other hand, in N the firing of tin will increase the token-load of the output places of #;,
by unity. Only one of these places belongs to P(En,fout) as P(%}n,fwt) is a simple path from %;,
t0 fous. Since the token load of this simple path is added to the output places of £y, the induction
step is established for the case when ¥ = %;y,. Finally, we note f(ﬁ,ut) = A, so the token load of the
places in N remain unchanged for this case, while in N the token load of the output places of Zpy:
would increase by unity, while the sum of the token-loads of the places in P(ﬁn,;‘;ﬂt) will decrease
by unity as P(t:-n , fwt) is a simple path from %y, t0 %,ys. This establishes the induction step for the
case when 7 = %,y¢, and the result is proven.

In lemma 3.3 we show that any firing string that is valid under the supervision of P in M
corresponds to (i) a firing string that is valid under the supervision of P in M, and (i) a valid:
firing string in the PN N.

Lemma 3.3 For any firing string € T* that is valid under the supervision of P at the initial-

marking ™° in M , the following observations hold

1. f(@) is valid under the supervision of P at the initial-marking m°® in M , and

10

2. f(3) is a valid firing string in the PN N at the initial-marking @O,

Proof: This is established by induction on | @ |, the length of &. The base-case is easily established
for the null-string. As the induction hypothesis we assume the above observations hold for
any G, such that | 3 | < n, where n € A. We now establish induction step for each of the
above observations. Let & = &% be a valid firing string under the supervision of P at the
initial-marking TP in M. Also, let | 3y | = 7.

KteT- {in}, f(81%) = f(31), is valid under the supervision of P at the initial-marking m?°
in M by the induction hypothesis. If 7 € (T — {t9}) U {fin}, and m° — &, — ' under the
supervision of P in M ,and m® — f(%;) — m! under the supervision of P in M. From lemma
3.2 we infer, V $ € I, m!(p) > wil(p). Since T € To(N,ml), we conclude Tis state-enabled in
M at the marking m!. From the definition of P and lemma 3.2 we infer T is control-enabled
by the policy P at the marking m!. Therefore f(&,%) is valid under the supervision of P at
the initial-marking m° in M.

1 ¢ T, then f(54%) = F(31) is a valid firing string in the PN N at the initial-marking m°
by the inductiém hypothesis. f# € T, and @° — &, — m? in M under the supervision of P,
and ®° — f(3;) —» @' in N. From lemma 3.2 we conclude ¥ 7 ¢ II, m@!(p) = m*(5). Since
tis sta.te-ena.bled in M, we infer f(&ﬁ) = f(al)fis a valid firing string in the PN N at the
initial-marking m®.

&

In lemma 3.4 we show that any firing string ¢ € T™* that is valid under the supervision of P at
the initial-marking m® can be effectively simulated by a firing string & € T* that is valid under the

supervision of P at the initial-marking .

Lemma 3.4 For any firing string o € T* that is valid in M under the supervision of P at the
instial-marking m®, 3 & € T* that is valid in M under the supervision of P at the nitial-marking

m°, such that f(G) = o.

Proof: Let 0 = 01t903to - - - OnloOnt1, where #(oi, %) = 0, Vi € {1,2,...,n + 1}. Using an
~ induction argument we show that the i-th occurrence of #y in ¢ can be replaced by a string of

transitions &a;_1,; € T* such that #(Fzi-1,tin) = #(Faiy tous) = 1, #(F2i-1, tous) = #(Fai, tin)

11

= 0, and the resulting string of transitions, 01610202 ** - OnOan—102n0n+1 Will be permitted
under the supervision of P at the initial-marking m° in M. The result follows from the fact
tha.t f(0‘151520‘2 e Ungzn_lagndn_{_l) =J0.

We now establish the base case. From the construction of N , the definition of 1’5’ and the

0 1

fact that oy is permitted under P at the initial-marking m° in M, we infer m® — oy — ™
in M under the supervision of P. Let m® — f(oy) (=01) — m! under the supervision of P
in M. Since tg is enabled at the marking m?!, from the construction of N we infer that V 5 €
%in N II, T (P) > 1. Since oy € T contains no transitions in T the token load of places 5 €
Il in M after the firing of oy will be identical to token load of the corresponding places in N.
under its initial-marking ™°. The liveness of N guarantees the existence of a string &, € T*
such that #(F1,%in) = 1. Since the simple path from i, to fou: is empty at TP, and the PN
Nis live, if there is a path from Z,u to %in, it cannot be empty. Consequently with out loss
in generality we can assume #(G1,%ou:) = O (cf. property 3, [4]). Since V 5 € *%;, N1I, m'(5)
> 1, from the construction of N and the definition of P we conclude 01 is valid under the
supervision of P at the marking T'. Let TA° — 015 — ™2 in M under the supervision of
P, m° - f(015,) (=01to) — m? in M under the supervision of P, and m° — f(aﬁl) (=01)
— 2 in the PN N. In the PN N , from property 2 of lemma 3.1, we infer the existence of
G2 € T* such that #(Eg,fwt) =1, #(Ez,ﬁn) = 0, and the firing string &, is valid in the PN
N at the marking 2. From the definition of P and the construction of N we infer the firing
string &, is valid under the supervision of P in M at the marking m?2. Let m° — 0,616 —
i in M under the supervision of 73, and m°® — f(015152) (= o1tp) — m? (= m?)in M
under the supervision of P. Since #(0151 32,?,-") = #(015152,{01;15) = 1, and since the simple
path from %, to T,y is empty under the initial-marking, we infer s P(Em;m)ﬁ?’(ﬁ) = 0,
where P(f,-n, fwt) denotes the set of places in the simple path from %;,, to Z,y:. This is because
in M the places in P(%;,,%ou¢) have an unique input (output) transition. So, V 7 € II, m3(5)
= ™>(p). This, together with the definition of P and the fact that o, is valid under the
supervision of P in M at the marking m3, implies the firing string 01615507 is valid under

the supervision of P at the initial-marking m° in M. This establishes the base case.

As the induction hypothesis we assume 01552026354 - - *Or02k—102k0k+1 is permitted un-

der the supervision of D at the initial-marking m° in M , where each of the g; € T* (5 €

12

{1,2,...,2k — 1,2k}) satisfy the appropriate requirements. In particular we note,

#(0161520253G4 « + - Ok O2k—102k0k+1, tin) = F#(015102025304 + + - OkO2k—102k0k+15 Lout) -

From lemma 3.3 we note that f(aﬁl?rz “+OpT2k-102k02k+1) (= G102 - - - Fog—102k) is a valid
firing string in the PN N at the initial-marking 7°. From lemma 3.2 we conclude the token
load of places p € Il in M after the firing of 016163 - - - 0 Far_109% Will be identical to token
load of the corresponding places in N after the firing of 1G5 + - - O2g—1F2k. Using an argument
similar to the base-case, from the liveness of N and property 2 lemma 3.3 we infer the
existence of Togy1,02k4+2 € T* such that #(Ezk_*_l,fg,,) = #(52k+2,fwt) =1, #(52k+1,{out) =
#(Gakt2,tin) = 0, and 515 - - - G2k-15202k+1 52842 i5 a valid firing string in the PN IV at the
initial-marking Ti°. From the definition of P and using an argument similar to the one used
in establishing the base case the fact that 016163020354 - * Ok02k—102k0k+102k+10 2k+20k+2
is valid under the supervision of P at the initial-marking T° in M can be established. Hence

the result.

&

Lemma 3.5 establishes the sufficiency of theorem 3.1, and lemma 3.6 establishes its necessity.

Lemma 3.5 If the supervisory policy P enforces liveness in the CCPN M, then the policy P
enforces liveness in the CCPN M.

Proof: Let & € T* be any firing string such that m° — & — ™' under the supervision of P in M.

We show that any 7 € T can be fired after the valid firing string &.

Case 1: (t € T —{to}) From lemma 3.3 we know m® — f(5) — m! in M under the supervision
of P. Since P enforces liveness, 3 oy € T* such that f(&)o11 is valid under the supervision of
P at the initial-marking m® in M. By lemma 3.4 we know 3 & € T* such that f(31%) = o
and 55, is valid under the supervision of P at the initial-marking M in M. Hence every

transition in T — {to} is live under the supervision of P in M.

Case 2: (T = En) Using the same argument as in case 1, we establish the existence of a firing
string f(G)o1to that is valid under the supervision of P at the initial-marking m® in M. By

lemma 3.4, we infer the firing string f(5)o1to can be simulated by a firing string 5, € T*

13

in M , where f(G1) = o1to. From the definition of f(e) we infer 3 75, 73 € T* such that &,
= G3tin03, and f(F3) = A. This implies tin is live under the supervision of Pin M.

Case 3: (f € T — {f;n}) From lemma 3.3 we know @° — f(&) — T’ in the PN N. Since N
is live, it is possible to fire %, although not necessarily immediately, starting at the marking

m!. We consider two sub-cases.

Case 3a: If there is no token-free path from #;, to 7 at T® in N , then since N is alive MGPN,
35, € T* such that 547 is a valid firing string in the PN N at the marking T’ and #(51,%n)
= 0 (cf. property 3, [3]). From the construction of N and the definition of P we infer the
firing string 647 is valid in M under the supervision of P at the initial-marking °.

Case 8b: If there is a token-free path from %;, to 7 at ™! in N , T cannot fire till ¢, has fired
once in N (cf. property 3, [4]). Since %, in live under the supervision of P in M (cf. case
2),356, € T* such that #(El,%}n) = 1 and m° — 8, — ™? under the supervision of P in
M. From lemma 3.3 we infer m° — f(33,) — ™2 in the PN N. Since #(f(561),%m) = 1,
all paths from %, to ¥ in the PN N will be non-empty at the marking m2. Since Nis live,
we infer 3 &3 € T* such that #(Fa,%m) = 0 and #(53,7) = 1 and 53 is a valid firing string
at the marking m? in N (cf. property 3, [4]). From the construction of N and the definition
of P, we infer 3 is a valid firing string under the supervision of P at the marking m? in M.

Hence 7 is live under the supervision of P in M.

&

Theorem 3.2 [6, 7] For a given CCPN M = (1I, T, ®, m°, C, B), with an underlying PN N =
(11, T, ®, mP), there ezists a supervisory policy P: N™ — {0,1}™ that enforces liveness, if and

only if 3 a valid firing string o = o10,, in N, starting from m°, such that

1. m? > m?, and

2. all transitions in T appear at least once in the string o,

0

where m® — o0y - m! — 0y — m? in the PN N.

The conditions of theorem 3.2 can be tested by investigating the existence of specific paths (cf.
[6, 7] for details) in the coverability graph (cf. section 4.2.1, [5]) of the PN N. The time-complexity

of this procedure is polynomially related to the number of vertices in the coverability graph of the

14

PN N, which in turn can be exponentially related to the size, maz{card(Il), card(T)}, of the PN
N.

Lemma 3.6 If there ezists a supervisory policy that enforces liveness in M then there ezists a

supervisory policy that enforces liveness in M.

Proof: If there is a supervisory policy that enforces liveness in M , from theorem 3.2 we infer 3 74,
&3 € T* such that in the PN N (i) @° — &, — m! — 8, — m?, (i) @2 > m?, and (iii) all
transitions in T appear at least once in &.

Let Pyriviar : NorHD) — {13007 d(T) (P iar : N card(fl) _, {l}c""d(’?)) be the trivial supervisory
policy of permanently control-enabling all transitions in T (T) It is easy to see that if P =
Phrivial, then P = ’ﬁt,.,',,,-az. Applying lemma 3.3 to the case when P = Pipipia;, We infer that
in the PN N, m® — f(31) - m! — f(3;) — m?. Since every transition in 7 appears at
least once in &; we conclude every transition in T appears at least once in f(@2) also. From
the fact that ¥V 5 € I, @2(p) > m’(5), and lemma, 3.2 when P = Pirivial, We conclude V p €
I, m?*(p) > m'(p). From theorem 3.2 we conclude there is a supervisory policy that enforces

liveness in M.

[)

Theorem 3.1 follows directly from lemmas 3.5 and 3.6. According to theorem 3.1 the existence
of a supervisor that enforces liveness in M is equivalent to the existence of a supervisor that enforces
liveness in M, provided the PN N is a live MGPN, with a simple path from %;,, to ., that is empty
at the initial-marking. Significant computational savings can be gained if the coverability graph of
the underlying PN of the CCPN M is smaller than that of the CCPN M.

‘We illustrate the utility of the results of this paper by an example. Let M be the CCPN with
an underlying PN N as shown in figure 1(iii). The PN N is obtained by refining the transition ¢, in
the PN N shown in figure 1(i) by the PN N shown in figure 1(ii). The PN N is a live MGPN with
a simple path P = tnPetous from Ly to tout that is empty at the initial-marking. It is worthwhile
to note that the time-complexity of testing if a given PN ¥ = (T, T, ¥, m°) is an MGPN is
O(card(TT) x card(T)). When presented with the refined PN N, a candidate for N can be identified
in at least O(k®) time, where k = maz(card(ﬁ),card(ff’)). Also, there are efficient procedures

that test the liveness of an MGPN (cf. section 1.3 and table 1, [2]). Essentially, the process of

15

abstraction as suggested by the conditions of this paper is not computationally expensive. For any
given refined PN N there might be many possible candidates for the abstracted PN N and the live,
MGPN N that satisfies the requirements of this paper. However, finding a candidate abstracted
PN N with the smallest coverability graph can be computationally expensive.

The coverability graph of the PN N shown in figure 1(iii) has eighty vertices, while that of the
PN N has only four vertices. Clearly, testing the existence of a supervisory policy that enforces
liveness in the CCPN M is easier than the corresponding test for the CCPN M. There exists a
supervisory policy that enforces liveness in the CCPN M. This can be inferred by theorem 3.2 and
the fact that in the PN N, m® — #¢5t3tot; — mP and all transitions in T appear once in the string
tatatot;. The supervisory policy P of preventing the firing of transition #; when there is a token
in py enforces liveness in M. From the proof of lemma 3.5 we infer the supervisory policy P of

preventing the firing of #; when there is a token in p, also enforces liveness in M.

4 Conclusions

References [6, 7] introduce a necessary and sufficient condition for the existence of a supervisory
policy that enforces liveness in a Completely Controlled Petri net (CCPN). This procedure has a
time-complexity that is polynomially related to the number of vertices in the coverability graph of
the underlying Petri net (PN) of the CCPN. However, the number of vertices in the coverability
graph of a PN can be exponentially related to the number of places and transitions. Using the
refinement/abstraction procedure of Suzuki and Murata [8] we presented a procedure of reducing
the computational burden of this test. The refinement procedure of Suzuki and Murata involves the
substitution of a single transition in a PN N by another PN N. The abstraction procedure involves
reversal of this process. We showed that if the underlying PN N of the original CCPN ¥ is obtained
by ;eﬁnjng a transition in a PN N by a live, marked-graph PN N with some additional restrictions,
then testing the existence of a supervisory policy that enforces liveness in M is equivalent to the
corresponding test for the CCPN M whose underlying PN is the abstracted PN N. Using an
example we illustrated the computational savings of this procedure. As a future research direction
we suggest investigations into weakening the restrictions on the PN N that yields a similar result.
Towards this end, it might be worthwhile to investigate the application of the transformations

that preserve liveness such as those listed in reference [1] to the synthesis of supervisory policies in

16

complex, non-live CCPNs from similar policies for a simpler, abstracted CCPN that is also non-live,

References

[1]

[7]

G. Berthelot. Checking properties of nets using transformations. In Advances in Peiri Nets,

pages 19-40, Germany, 1985. Lecture Notes in Computer Science, Vol. 222, Springer-Verlag.

N.D. Jones, L.H. Landweber, and Y.E. Lien. Complexity of some problems in Petri nets.
Theoretical Computer Science, 4:277-299, 1977.

T. Murata. Petri nets: properties, analysis and applications. Proc. of the IEEE, 77(4):541-580

?

-April 1989.

T. Murata, V.B. Le, and D.J. Leu. A method for realizing the synchronic distance matrix as
a marked graph. In IEEE International Conference on Circuits and Systems, pages 609-612,
May 1982. Rome, Italy.

J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

R.S. Sreenivas. Enforcing liveness via supervisory control in discrete event dynamic systems
modeled by completely controlled Petri nets. In WODES-96: International Workshop on Dis-
crete Event Systems, pages 296-301, August 1996. University of Edinburgh, UK (IEE Press).

R.S. Sreenivas. On the existence of supervisory policies that enforce liveness in discrete event dy-
namic systems modeled by controlled Petri nets. IEEE Trans. on Automatic Control, 42(7):928—
945, July 1996.

I. Suzuki and T. Murata. A method for stepwise refinement and abstraction of Petri nets.

Journal of Computer and System Sciences, 27:51-76, 1983.

17

