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A Recursive Technique for Tracking Control
of Nonholonomic Systems in Chained Form

Zhong-Ping Jiang,Member, IEEE, and Henk Nijmeijer,Senior Member, IEEE

Abstract—In this paper the authors address the tracking prob-
lem for a class of nonholonomic chained form control systems. A
recursive technique is proposed which appears to be an extension
of the currently popular integrator backstepping idea to the
tracking of nonholonomic control systems. Conditions are given
under which the problems of semiglobal tracking and global path-
following are solved for a nonholonomic system in chained form
and its dynamic extension. Results on local exponential tracking
are also obtained. Two physical examples of an articulated vehicle
and a knife edge are provided to demonstrate the effectiveness of
our algorithm through simulations.

Index Terms—Chained form, integrator backstepping, non-
holonomic systems, time-varying feedback laws, tracking control.

I. INTRODUCTION

T HE CONTROL of nonholonomic dynamic systems has
received considerable attention during the last few years.

This particularly interesting class of nonlinear control systems
arises from control problems related to mechanical systems
with nonholonomic (or nonintegrable) constraints. See the
survey paper [18] and references therein for many introductory
examples.

The feedback stabilization problem has been investigated
for nonholonomic control systems by many authors. The major
obstruction to the asymptotic stabilization of some nonholo-
nomic control systems was the uncontrollability of their first
approximation and the nonexistence of a smooth (or even
continuous) state-feedback control law of the kind
(see [2]). Several novel nonlinear control feedback designs
have been proposed in the literature to achieve the asymptotic
stabilization for such nonholonomic control systems. These
methods include the use of smooth time-varying feedback
of the form discontinuous feedback techniques,
and nonsmooth time-varying homogenenous feedback (see, for
instance, [18], [5], and [31] for relevant references). Although
the stabilization problem for nonholonomic control systems
is now well understood, the tracking control problem has re-
ceived less attention. As a matter of fact, it is not clear that the
stabilization methodologies available now may be extended di-
rectly to tracking problems for nonholonomic systems. In [15],
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a linearization-based tracking control scheme was introduced
for a mobile robot with two degrees of freedom. The scheme
was recently extended in [8] to a simplified dynamic model of
the mobile robot. A similar idea was independently examined
by Murray et al. in [23] and Walshet al. in [35]. The idea of
input–output linearization was further explored by Oelen and
van Amerongen in [25] for a two-degrees-of-freedom mobile
robot. In [27] a nonholonomic model of a rolling disk is
considered and the feedback design issue was addressed via
a dynamic extension and input–output feedback linearization.
Fliesset al. [9] looked at the trajectory stabilization problem
via a differential flatness approach. All these papers solve
the local tracking problem for some classes of nonholonomic
systems. To our knowledge, the first global tracking control
law was proposed by Samson in [30] for a two-wheel driven
nonholonomic cart. Recently, Ortega and his coworkers [7]
introduced a field-oriented control approach to the global
tracking of the nonholonomic double integrator—the simplest
chained form system. In our recent paper [11], we propose a
backstepping-based tracking control method for the kinematic
model of a two-wheel mobile robot and the simplified dynamic
model of the two-wheel mobile robot. The local and global
tracking problems were solved while keeping local exponential
stability under suitable conditions. Notice that the terminology
of integrator backstepping was invented by Kokotović [20]
and the methodology turns out to be quite similar in several
independent papers [17], [3], [34]. In recent papers [10], [13],
[14], integrator backstepping was successfully exploited to
tackle the problems of global asymptotic stabilization and
adaptive control for some classes of nonholonomic systems.

The purpose of this paper is to develop a backstepping-
based tracking control procedure for nonholonomic systems in
chained form. The class of nonholonomic systems in chained
form was introduced in Murray and Sastry [22] and has
been studied as a benchmark example by several authors
(see, e.g., [22], [26], [29], [32], [33], [4], and [10]). It is
well known that many mechanical systems with nonholonomic
constraints can be locally, or globally, converted to the chained
form under coordinate change and state feedback. Interesting
examples of such mechanical systems include tricycle-type
mobile robots, cars towing several trailers, the knife edge, a
vertical rolling wheel and a rigid spacecraft with two torque
actuators (see, e.g., [22], [18], and [31]). As said above, we
solved in our previous paper [11] the semiglobal and global
tracking problems for a benchmark example of a mobile robot
under a nonholonomic constraint which can be transformed
into the simplest case of a third-order nonholonomic system
in chained form after an appropriate change of coordinates and
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feedback. In this paper, we show that the backstepping-based
tracking algorithm in [11] can be extended to a broader class
of systems with nonholonomic constraints at the expense of
more involved analysis. Of course, stronger conditions on the
reference trajectory appear to be necessary.

The path-following problem was studied by several re-
searchers (see, for instance, [24], [28], [29], and [31]). In
[24], a local path-following control scheme was presented
for a front-wheel driven autonomous vehicle. In [28], a time-
scale transformation together with feedback linearization was
used to design an approximate path-tracking controller for
a vehicle towing a single trailer. In [29], Samson addressed
the path-following problem for a car pulling several trailers.
While smooth feedback laws were employed in [28] and
[29], discontinuous feedback techniques were exploited in
[31] to achieve path-following with an exponential rate of
convergence for a wheeled mobile robot. A hybrid logic-based
tracking scheme is presented in [19] for a class of cascaded
nonlinear systems including nonholonomic systems in chained
form. We show in this paper that our approach can be also
extended to treat a global path-following problem.

The organization of this paper is as follows. Section II con-
tains the system model and the problem statement. Section III
describes the systematic tracking control scheme and presents
the main semiglobal result. A global path-following problem
is solved in Section IV based on the proposed recursive
tracking algorithm. Section V shows how to develop the
tracking control scheme for the dynamical extension of a
chained form nonholonomic system. Section VI illustrates our
recursive technique with the aid of two benchmark examples
of a car towing a trailer and a knife edge. Some concluding
remarks are offered in Section VII.

II. STATEMENT OF THE PROBLEM

The class of chained form nonholonomic systems to be
studied in this paper is described by

...

(1)

where is the state and and are two
control inputs.

Assume that the desired trajectory is
generated by the following equations:

...

(2)

where is the time-varying reference control.
For later use, denote the tracking error as It

is directly checked that the dynamics satisfy the following

differential equations:

...

(3)

The following tracking control problems will be addressed
in this paper.

Definition 1: The tracking control problemis said to be
semigloballysolvable for system (1) if, given any compact
set containing the origin, we can design appropriate
Lipschitz continuous time-varying state-feedback controllers
of the form

(4)

such that, for any initial tracking error
in all the signals of the closed-loop system (3) and (4) are
uniformly bounded over Furthermore

(5)

The tracking control problemis said to beglobally solvable
for system (1) if the above holds for any initial tracking error

in
In Section V, we show that a similar tracking control

problem can be solved for a simple dynamic extension of
system (1), which can be viewed as a “prototype” for a
dynamic model of certain mechanical systems.

In our previous paper [11], we have addressed the
semiglobal and global tracking problems in the simplest
case when Clearly the solvability of the global
tracking problem imposes stronger constraints on the reference
trajectory than the semiglobal problem. In particular [11] deals
with the kinematic model of a two-wheeled mobile robot
since that model is feedback equivalent—after coordinate and
feedback changes—to the model (1) with It turns out
that the analysis in case larger than three becomes more
involved although the results are of a similar nature.

III. T RACKING CONTROL OF CHAINED SYSTEMS

A. Control Design Scheme

We propose in this section a systematic controller design
procedure which yields a tracking controller that solves the
above problem under suitable conditions on the reference
trajectory. The stability analysis is given in Section III-B.
Before we present the constructive method, we first introduce
a change of coordinates and rearrange system (3) into a
triangular-like form so that the integrator backstepping can
be applied.

Denote and let
be the mapping defined by

(6)
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As it can be directly checked, is a global diffeo-
morphism for each and its inverse is
given by

(7)

In the new coordinates system (3) is
transformed into

...

(8)

Hereafter, we consider system (8) as our starting point and
formulate our backstepping design scheme for this new system
(8).

Step 1: Starting with the -subsystem of (8)

(9)

we consider the variable as a virtual control input and the
variables and as time-varying functions.

Set Along the solutions of (8), the time derivative
of the positive definite and proper function

(10)

satisfies

(11)

Observe that is a stabilizing function for system
(9) whenever We introduce a new variable as
follows:

(12)

Then, (11) yields

(13)

Step Assume that after the th step,
for the -subsystem of (8) with viewed as
virtual control input, we have designed smooth intermediate
control functions such that the time
derivative of the positive definite and proper function

(14)

satisfies

(15)

where and for each

We wish to prove that the above-mentioned properties
also hold for the -subsystem of (8) when is
considered as a virtual control input. Toward this end, consider
the positive definite and proper function

(16)

Differentiating the function along the solutions of (8) yields

(17)

We obtain

(18)

Setting

(19)

(20)

it follows from (18) that

(21)

By construction, it is easy to see that the intermediate control
function as defined in (19) is smooth.

Step By induction, the time derivative of the fol-
lowing function:

(22)
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satisfies

(23)

Then, we have

(24)

Setting

(25)

(26)

from (24), it follows:

(27)

We remark that the intermediate control function as
defined in (8) is smooth.

Step Consider the -subsystem of (8)
and the function

(28)

In view of (8) and (27), the time derivative of along the
solutions of (8) satisfies

(29)

Applying the following control law:

(30)

(31)

with we obtain

where is a smooth function given by

(32)

Recall that and
Step At this last step, we consider the following positive

definite and proper function which serves as a candidate
Lyapunov function for the whole system (8)

(33)

where is a design parameter and
By virtue of (32), differentiating along the solutions of

(8) gives

(34)
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By choosing the following control law:

(35)

(36)

with we arrive at

(37)

We will prove in the next section that, under appropriate
conditions on the reference control functions and and
initial tracking errors with a good choice of the
control law in (35) is well-defined for every solution of the
closed-loop system (8), (30), and (35).

For future use, let and be the
mapping defined by As it can be easily proved,
is a global diffeomorphism from onto which preserves
the origin.

The resulting closed-loop system in-coordinates is de-
scribed by

...

...

(38)

Remark 1: The tracking technique presented above is quite
general and can be appliedmutatis mutandisto other systems
with a similar structure to (8). In particular, it was shown in
[12] that, under appropriate assumptions on the reference in-
puts the choice oftime-varyingand/ornonlinearfunctions

at the above design steps, instead of time-invariant linear
functions in the variable is useful to enhance
stability properties for the closed-loop system.

B. Stability Analysis

In this section, we state and prove the main result for the
semiglobal tracking control problem for system (1).

Proposition 1: Assume that and
are bounded over Then, the tracking control

problem is semiglobally solvable for system (1). In particular,
performing the coordinates transformation (6) and applying
the design procedure in the above section to system (8), given
any compact neighborhood of the origin in we can
find a sufficiently large so that, for any initial tracking
conditions in all the solutions of the closed-loop
system (3), (30), and (35) are uniformly bounded. Furthermore,
if does not converge to zero

(39)

Before proving Proposition 1, we introduce a technical lemma
which was frequently used in [29].

Lemma 1 [21]: For any differentiable function
if converges to zero as and its derivative

satisfies

(40)

where is a uniformly continuous function and tends
to zero as then, and tend to zero as

Proof of Proposition 1: Recall that, along the solutions
of the resulting system (38), the time derivative of the positive
definite and proper function as defined in (33) satisfies

(41)

Note that the function is only negative semidefinite.
We first prove that for any given compact setof whose

interior set contains the origin, there exists a sufficiently large
such that for any initial condition the feedback

law (35) for is well defined on and the maximal
interval of definition of the corresponding solution

Define a finite real number by

(42)

where and is the com-
posed function between and i.e.,

Pick a sufficiently large so that the following property
holds:

(43)

where and is defined as
in (32).

From (41), is decreasing along the solution
of the closed-loop system and therefore remains in the
set Then, the control law exists for each
Moreover, since is bounded, by (33), is bounded
over As a result, from the definition of and in (12),
(20), (26), and in (6), respectively, it follows that and

are bounded over Thus,
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It remains to prove the convergence property (39). By virtue
of Barb̆alat’s lemma [16, Lemma 4.2], from (41), it follows
that and converge to zero as Consider
the -equation of (38) in closed loop

(44)

As a direct application of Lemma 1, it follows:

(45)

Next, consider the variable which satisfies

(46)

where

(47)

Clearly, tends to zero as Consequently, a direct
application of Lemma 1 yields

(48)

As in [29], by induction, we can prove that, for all

(49)

where is a bounded time-varying function that
converges to zero as

Using again Lemma 1, with (49), it follows:

(50)

Hence, by definition of goes to zero as
Since is decreasing along the solutions of (38),

converges to a nonnegative constant denoted asDue
to the fact that does not converge to zero, must be equal
to zero. Therefore, all and tend to zero.
The property (39) follows readily.

Remark 2: It is of interest to note that an estimate of the
region of attraction for the closed-loop system can be obtained
from (43). Obviously, the size of the domain is proportional
to the value of On the other hand, from a practical point of
view, to avoid poor performances due to the choice of large

we need to choose large design parameters and in
the tracking control laws (35) and (30). This can be justified
in virtue of (33), (37), and (56).

Remark 3: If the lower limit of as is positive,
i.e., then the condition that has a
bounded derivative is not needed to conclude (39). Indeed,
from (45), we can prove that tends to zero as
Back tracking to the -equation in (38) and applying
Lemma 1, one sees that converges to zero and
therefore converges to zero. Repeating this procedure,
we finally prove that tends to zero for all
as desired.

The above tracking algorithm does not in general lead to
the convergence property (39) if converges to zero. In the
following, we discuss some special situations where we can
obtain a similar convergence result although goes to zero.
Particularly, in the case when our result recovers part
of the results in our previous paper [11].

Corollary 1: Under the conditions of Proposition 1, if
converges to zero but does not converge to zero and if

we have

(51)

Proof: Since as shown in the above,
and tend to zero as goes to Now

consider the -equation in (38), i.e.,

(52)

From Lemma 1, it follows that tends to zero. That is

(53)

Since and with (53), it holds
that converges to zero as Since
does not converge to zero and is nonincreasing,

converges to a finite number which must be zero. As
a result, (in the present case of ) converges
to zero. By (7), the property (51) follows readily.

Remark 4 (Point Stabilization):If the
tracking control problem is globally solvable for system (1).

Indeed, it is sufficient to notice that, in the present case,
the error system (3) can be transformed into another system
in chained form

...

(54)

via the following state transformation:

(55)

Then either the backstepping-based stabilization method in
[10] or any other smooth stabilization scheme in the literature
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(see, e.g., [26] and [29]) allows us to find a desired Lipschitz
continuous time-varying feedback law.

C. Exponential Stability

As a by-product of our systematic control design procedure,
we give a corollary to Proposition 1 about the exponential
stability of the closed-loop system (3), (30), and (35). Some
earlier results for dynamic systems with nonholonomic con-
straints along this line of thought were proposed in [15], [23],
and [35] via Taylor linearization. Unlike in [11] and [12] where
exponential stability was proved by means of Lyapunov’s
direct method, the following result is based on Lyapunov’s
indirect method and the stability theory of slowly varying
systems (cf. [16, Sec. 5.7]).

We need the following additional assumption on the refer-
ence input signals

Assumption 1:There exist a finite and two compact
intervals such that and for

and all
To check if the equilibrium point of the closed-loop

system (3), (30), and (35) is exponentially stable, we consider
the linearization of system (38) around

(56)

where we used the property
In more compact form, system (56) is rewritten as

(57)

Under the Assumption 1, it is easy to prove that is
Hurwitz for eachfrozen One way of doing
this is to establish the exponential stability of the equilibrium

of (56) by means of the quadratic storage function

(58)

whose time derivative satisfies

(59)

Consequently, a direct application of [16, Lemma 5.12] gives
the following.

Lemma 2: The parameterized Lyapunov equation

(60)

has a unique positive definite solution for every
fixed So, there exist four positive constants

such that

(61)

We are now ready to present our result on the exponential
stability of the equilibrium of the closed-loop system
(3), (30), and (35).

Corollary 2: Under the conditions of Proposition 1, if As-
sumption 1 holds with

(62)

where and are positive constants given in (56), then the
trivial solution of the closed-loop system (3), (30),
and (35) is exponentially stable.

Proof: We first prove that the linearized system (56) is
exponentially stable at the equilibrium point Notice
that (59) implies the uniform stability of the time-varying
linear system (56) at In particular, every solution
of system (56) satisfies

(63)

Then, by Lemma 2, differentiating the Lyapunov function
candidate

(64)

yields

(65)

Letting which is a positive
constant, it follows from Lemma 2 and (65) that

(66)

Applying the Gronwall–Bellman inequality [16, Lemma 2.1],
we obtain

(67)

which implies

(68)
Combining (63) and (68), we establish

(69)

Thus, the equilibrium of the linearized system (56)
is exponentially stable. By [16, Th. 3.11], the time-varying
nonlinear system (38) is also exponentially stable at the
equilibrium that is, there exist positive constants

such that all solutions of (38) starting from a small
neighborhood of satisfy

(70)
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Finally, since the mappings and as introduced
in Section III-A are global diffeomorphisms from onto
the exponential stability of the equilibrium of the
original system (3), (30), and (35) follows readily.

IV. GLOBAL PATH FOLLOWING

In the previous section, we solved the semiglobal tracking
problem for a nonholonomic chained system of the form (1). In
this section, we will discuss some particular situations where
we can treat the global tracking control problem, that is, we
want to construct a tracking controller so that all the tracking
errors asymptotically converge to zero forarbitrary
initial tracking errors

The desired trajectory is now a straight line. Without loss
of generality, assume that and
Then, the tracking error satisfies

...

(71)

As in Section III, we first introduce an appropriate trans-
formation of coordinates which brings system (71) into a
triangular-like form so that the integrator backstepping can
be applied.

For this purpose, we consider the following change of
coordinates, instead of (6):

(72)

so that system (71) is transformed into

(73)

Remark 5: Note that, when system (73) is akin to
the so-calledpower formsystem introduced in [33]. As it can
be directly verified, the inverse of the global diffeomorphism

as defined in (72) is given by
and

In the sequel, we show how the control design procedure
presented in Section III-A can be applied to system (73) and
builds up a desired global tracking controller for

By applying the systematic control design scheme in
Section III-A to the -subsystem of (73) with

considered as control input and terms related to
as time-varying disturbances, we obtain

a new change of coordinates defined by and
together with

a quadratic function In particular,
when we apply the control law
as given by (31), the time derivative of along the
solutions of (73) satisfies

(74)

where and is defined by

(75)

Then, consider the Lyapunov function candidate
for the overall system (73). With

(74), differentiating along the solutions of system (73)
gives

(76)

By choosing the following control law for :

(77)

with we establish

(78)

We are in a position to state the global tracking result.
Proposition 2: Assume that and its derivative are

bounded over Then all the solutions of the resulting
closed-loop system are uniformly bounded. Furthermore, if

does not converge to zero

(79)

Proof: The proof follows from Barb̆alat’s lemma and a
similar reasoning as in the proof of Proposition 1.

Remark 6: Of course, as in Corollary 2, under Assump-
tion 1, we can deduce the exponential convergence of the
tracking errors after a considerable period of time.

Remark 7: It should be noted that a local (global when the
reference trajectory is a straight line) path-following result was
established in [29] for a car with multiple trailers, and the latter
can be put into a form of (1). Nonetheless, the construction
of our tracking controller is based on an inverse design spirit.
Specifically, thanks to the use of integrator backstepping, the
designs of the control inputs and are totally separated
and rely on a recursive procedure. A Lyapunov function is
obtained after the control design procedure is completed. In
earlier tracking work, we first find a Lyapunov function and
then design a tracking control law to make the derivative
of this function nonpositive (see, e.g., [15], [30], and [35]),
whereas in [29] the designs of and are mixed.
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V. EXTENSION TO DYNAMIC MODELS

The tracking problems were addressed in previous sections
using a chained system of form (1) which reflects the kinematic
model of a mechanical control system such as wheeled mobile
robot and cars with trailers. The purpose of this section is
to propose a dynamical extension of system (1) so that the
tracking control problem can also be solved using mechanical
torques. It also demonstrates that the recursive design extends
to a class of systems which contain a nonzero drift term.

More precisely, we consider system (1) with the dynamic
extension

(80)

where and are the control inputs of the dynamic model.
The control task is now to design Lipschitz continuous

time-varying state-feedback controllers of the form

(81)

such that tracks the desired trajectory of the
reference system (2).

Using the same notations as in Section III, it is easily seen
that the tracking error dynamics are described by
(8) and (80). Then, in order to design time-varying feedback
laws and to force and to zero (which in
turn implies that tends to zero), we invoke integrator
backstepping and Proposition 1.

Indeed, as shown in Section III-A, under the action of the
control laws (31) and (36), the time derivative of the function

as defined in (33) satisfies

(82)

However, since and are not the true control inputs for
the dynamic model (1)–(80) under study, the control laws (31)
and (36) cannot be used. We introduce the new variables
and as

(83)

(84)

Then, by (29) and (34), it is direct to see that the time
derivative of along the solutions of (8)–(80) satisfies,
instead of (82)

(85)

Let and consider the Lyapunov function
candidate

(86)

which is positive definite and proper. From (85), it follows:

Therefore, choosing the following control laws:

(87)

(88)

with we establish

(89)

We are now ready to state our solution to the tracking control
problem for the dynamic system (1)–(80).

Proposition 3: Assume that
and are bounded over the time interval

Then, the tracking control problem is semiglobally solvable for
system (80). Specifically, given any compact neighborhood
of the origin in we can find a sufficiently large
so that, for any initial tracking conditions in
all the solutions of the resulting closed-loop system (8), (80),
(87), and (88) are uniformly bounded. Furthermore, if
does not converge to zero

(90)

Proof: The proof follows from (89) and Barbălat’s
lemma along similar lines of the proof of Proposition 1.

Corollary 3: Under the conditions of Proposition 3 and
Corollary 2, the equilibrium of system (8),
(80), (87), and (88) is exponentially stable if and are
sufficiently large.

Proof: The resulting closed-loop system can be rewritten
in more compact form

(91)

where and readily follow from (8), (80), (87), and
(88).

In the light of the proof of Corollary 2, we know that the
equilibrium of is exponentially stable. By
the Converse Lyapunov Theorem [16, Th. 3.12], there is a
function satisfying the inequalities

(92)

for some positive constants and all
being a bounded neighborhood of

Consider the function

(93)

Then, the time derivative of along the solutions of system
(91) satisfies

(94)

Noticing that and there are positive
constants and such that

(95)

for all with
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Fig. 1. Kinematic model of a car with a single trailer [22] where the control
inputs are the forward velocity� and the steering velocity! of the tow car.

Hence

where

(96)

Obviously, is a positive definite matrix if and are
chosen sufficiently large. Therefore, the proof is completed
with the help of [16, Corollary 3.4] together with the fact that

as defined in (93) satisfies a property similar to (92).
Remark 8: Analogously, the global path-following problem

as addressed in Section IV can be solved for the dynamic
model (1), (80); see Section VI-B for an illustration.

VI. A PPLICATION TO MECHANICAL SYSTEMS

In this section, we illustrate our recursive tracking method-
ology with the help of two benchmark mechanical systems
under nonholonomic constraints: an articulated vehicle and a
knife edge.

A. Articulated Vehicles

An articulated vehicle, which is a car pulling a single semi-
trailer as depicted in Fig. 1, has been served as a benchmark
nonholonomic example in several studies [22], [29], [31], [28].

As usual, we assume that the wheels of the articulated
vehicle are allowed to roll and spin but not slip. Under this
assumption, the kinematic motion of the articulated vehicle is
described by [22]

(97)

where is the wheelbase of the tow car, is the distance
from the wheels of the trailer to the wheels of the car, and
and represent the driving velocity and the steering velocity
of the tow car respectively.

Although system (97) is not in chained form, it can be
transformed into (1) via a change of coordinates and state
feedback. A general algorithm for (locally) converting the
kinematics of a car pullingmultiple trailers into a chained
system was proposed by Sørdalen [31]. However, in the
present case of a car towing a single trailer, we invoke the
simpler conversion algorithm due to Murray and Sastry [22].

According to [22, Proposition 7], introduce the following
local change of coordinates and feedback:

(98)

where

(99)

(100)

Now, the transformed version of system (97) is in chained
form, i.e.,

(101)
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Fig. 2. Kinematic model of the articulated vehicle. Time histories of the vehicle motionxc andyc “-.” Plot of the norm of the tracking errorsxe versus
time “-” and control performance with the tracking control lawsu1 (103) “- -” and u2 (102) “- �:”

Using the same notations as in Section III, as a direct ap-
plication of the recursive synthesis procedure presented in
Section III-A, a semiglobal tracking control law for (101) [but
local for the original model (97)] is given by

(102)

(103)

where and are design parameters.
For simulation use, we consider the reference signal of the

form (2) characterized by

(104)
Fig. 2 demonstrates the evolution of the norm of the tracking
errors as well as the controller performance based on the
following choice of design parameters and initial conditions:

(105)

With the choice of (104), the reference trajectory to be
tracked is a straight line since and for all

In the original coordinates the
reference trajectory is the -axis because and

In this case, using the
same notations in Section IV, a direct application of the design
procedure in Section IV yields a global tracking controller for
the transformed system (101) [but local for the original model

(97)]
(106)

(107)

In Fig. 3 where the top picture is drawn with the coordinates
of the tow car, we see that the articulated car even-

tually approaches the desired-axis, the reference trajectory
in our case.

With (102) and (103) as the tracking controllers for the
kinematic model (101), applying the design procedure in
Section V yields a semiglobal tracking control law for the
dynamic extension of system (101)

(108)

(109)

where and are design parameters.
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Fig. 3. Kinematic model of the articulated vehicle. Time histories of the vehicle motionxc andyc “-.” Graph of the vertical positionyc versus the horizontal
position xc “-” and control performance with the tracking control lawsu1 (107) “- -” and u2 (106) “- �:”

For simulation use, we pick and the initial
conditions (105) and Fig. 4 plots the
norm of the tracking errors versus time and the
control performance of the tracking controllers (109) and

(108).
We observe in Figs. 2–4 that the articulated vehicle exhibits

some awkward motion. This is mainly because after the highly
nonlinear transformations (98)–(100), the new states except
have lost any physical meaning. This should initiate the search
of other more structure-based tracking methods.

It should be noted that because of the local nature of the
state and feedback transformations (98) the tracking feedback
laws designed for the transformed system do not guarantee
semiglobal or global stability properties for the original model
of the articulated vehicle. Indeed, since the coordinate trans-
formation and state feedback are well defined within a domain
where the original coordinates are such that
belong to
we have that only within such a domain can we obtain
(semi-) “global” stability. On the other hand, it follows from
Corollary 2 that the proposed controller (106) and (107) is
locally exponentially stable.

In our second example of a knife edge moving on the plane,
we show that certain global feedback transformation exists to
bring the knife-edge system into a dynamic chained form so
that semiglobal or global properties hold for both systems.

B. A Knife Edge

The simple nonholonomic example of a knife edge moving
on the plane was introduced in [1] and has recently been used

to illustrate the hybrid stabilization and tracking methods in
[19]. The motion of the knife-edge dynamics is described by
the following differential equations [19]:

(110)

where denotes the coordinates of the center of mass
of the knife edge, denotes the heading angle measured from
the -axis, and is the pushing force in the direction of
the heading angle, is the steering torque about the vertical
axis through the center of mass. The constants are the
mass and the moment of inertia of the knife edge, respectively,
and is the scalar constrain multiplier. Note that the fourth
equation in (110) represents the nonholonomic constraint on
the knife-edge system.

A slight modification of the state and feedback transfor-
mations in [19] leads to a global change of coordinates and
feedback
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Fig. 4. Dynamic model of the articulated vehicle. Time histories of the vehicle motionxc andyc “-.” Plot of the norm of the tracking errors(xe; u� ud)
versus time “-” and control performance with the tracking control lawsv1 (109) “- -” and v2 (108) “- �:”

(111)

In the new coordinates, the dynamic model of the knife edge
(110) is put in extended chained form (80), that is

(112)

In other words, the transformed model of the knife edge can be
seen as a cascaded interconnection of a system in chained form

(113)

and two integrators

(114)

As in [19], consider the following reference trajectory:

(115)

which corresponds to the center of mass of the knife edge
moving along the circle centered at the origin of unit radius
with uniform angular rate.

In the transformed -coordinates, the desired trajectory is

(116)

It is interesting to note that the desired circular path (115) in
the original coordinates now becomes a straight line in the
transformed coordinates. Also note that the tracking errors
satisfy

(117)

where and
A combined use of the tracking methods in Sections IV and

V gives a global tracking control law for both the transformed
system (112) and the original model (110)

(118)

(119)
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Fig. 5. The knife edge. Plot of the tracking errors(xc(t) � sin t) “-,” (yc(t) + cos t) “- -,” (�(t) � t) “ � � �” versus time and control performance with
the global tracking control laws�1 (119)–(111) “- -” and�2 (118)–(111) “-�:”

where and

For simulation use, take Under the following
choice of initial conditions:

Fig. 5 illustrates the time histories of the tracking errors
as well as the control

performance for the torques required for the knife edge.
Note that the tracking errors quickly converge to zero in a
few seconds.

For the desired trajectory in (115), both ourLipschitz contin-
uoustracking feedback laws and the hybrid stabilizing laws of
[19] achieve the global asymptotic stability with exponential
convergence for the resulting error system. However, our
tracking strategy brings an additional property ofexponential
stability (in the sense of Lyapunov) for the closed-loop error
system (see Corollary 3). Comparing Fig. 5 with [19, Fig. 4],
it turns out that our controller (118) and (119) yields better
performance than the hybrid controller of [19].

VII. CONCLUSION

A recursive technique was proposed for the tracking control
of a class of nonholonomic chained systems. On the one hand,
we have broadened the domain of applicability of integrator
backstepping to nonholonomic control systems. On the other

hand, a semiglobal tracking control law was derived on the
basis of a stepwise controller design procedure. It is important
to note that the proposed tracking technique is analytically
simple and produces continuous tracking feedbacks. Under
additional conditions on the reference inputs, the convergence
rate is guaranteed to be exponential after a (considerable)
period of time. We have also discussed some special cases
where the tracking problem can be globally solved. More
interestingly, we showed that our tracking design procedure
can be extended directly to a dynamical extension of the
chained form system, i.e., the chained system appended with
two integrators. The recursive design for tracking is illustrated
in two benchmark examples of chained form nonholonomic
systems, the pulling car and the knife edge.

Last but not the least the design strategy described in this
paper is different to earlier tracking methods in [8], [15],
[19], [23], [28]–[30], and [35]. A linearization, or feedback
linearization viewpoint, was adopted in [15], [23], [35], [8],
and [28] to design tracking control laws for nonholonomic
mobile robots without or with one trailer. In [30], a Lyapunov
function was found to construct a global tracking controller for
a nonholonomic wheeled cart without trailer. This Lyapunov
direct method was extended in [29] to derive a (generally local)
tracking solution for a nonholonomic car towing multiple
trailers. Our aim was not only to give a (first) semiglobal
tracking solution for general nonholonomic dynamical systems
in chained form but to build up an inverse design method,
that is, the desired control law is designed via recursive steps
and a Lyapunov function is found after the control design is
completed. It seems therefore very challenging to compare the
controllers proposed here on an experimental setup with those
given in, e.g., [19], [23], [29], and [35].
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