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A Recursive Technigue for Tracking Control
of Nonholonomic Systems in Chained Form

Zhong-Ping JiangMember, IEEE and Henk Nijmeijer,Senior Member, IEEE

Abstract—in this paper the authors address the tracking prob- a linearization-based tracking control scheme was introduced
lem for a class of nonholonomic chained form control systems. A for a mobile robot with two degrees of freedom. The scheme
recursive technique is proposed which appears to be an extension,y o« recently extended in [8] to a simplified dynamic model of

of the currently popular integrator backstepping idea to the ; Lo - .
tracking of nonholonomic control systems. Conditions are given the mobile robot. A similar idea was independently examined

under which the problems of semiglobal tracking and global path- Py Murray et al. in [23] and Walshet al. in [35]. The idea of
following are solved for a nonholonomic system in chained form input—output linearization was further explored by Oelen and
and its dynamic extension. Results on local exponential tracking yan Amerongen in [25] for a two-degrees-of-freedom mobile
are also c_)btalned. Two physmal examples of an artlculatt_ad vehicle robot. In [27] a nonholonomic model of a rolling disk is
and a knife edge are provided to demonstrate the effectiveness of idered and the feedback desian i dd d vi
our algorithm through simulations. considered an t.e eedback design issue was addressed via
a dynamic extension and input—output feedback linearization.
Fliesset al. [9] looked at the trajectory stabilization problem
via a differential flatness approach. All these papers solve
the local tracking problem for some classes of nonholonomic
|. INTRODUCTION systems. To our knowledge, the first global tracking control

HE CONTROL of nonholonomic dynamic systems haW was proposed by Samson in [30] for a two-wheel driven
T received considerable attention during the last few yeafnholonomic cart. Recently, Ortega and his coworkers [7]
This particularly interesting class of nonlinear control systenfigiroduced a field-oriented control approach to the global
arises from control problems related to mechanical systefh@cking of the nonholonomic double integrator—the simplest
with nonholonomic (or nonintegrable) constraints. See tif&ained form system. In our recent paper [11], we propose a
survey paper [18] and references therein for many introductc}pgcksteppmg-based tracking control method for the kinematic
examples. model of a two-wheel mobile robot and the simplified dynamic

The feedback stabilization problem has been investigatétpdel of the two-wheel mobile robot. The local and global
for nonholonomic control systems by many authors. The majégcking problems were solved while keeping local exponential
obstruction to the asymptotic stabilization of some nonhol&§tability under suitable conditions. Notice that the terminology
nomic control systems was the uncontrollability of their firs®f integrator backstepping was invented by Kokoto{20]
approximation and the nonexistence of a smooth (or ev@Rd the methodology turns out to be quite similar in several
continuous) state-feedback control law of the kime= ;(z) independent papers [17], [3], [34]. In recent papers [10], [13],
(see [2]). Several novel nonlinear control feedback desighdl, integrator backstepping was successfully exploited to
have been proposed in the literature to achieve the asymptd@iekle the problems of global asymptotic stabilization and
stabilization for such nonholonomic control systems. Thedé&laptive control for some classes of nonholonomic systems.
methods include the use of smooth time-varying feedbackThe purpose of this paper is to develop a backstepping-
of the formw = p(t, ), discontinuous feedback techniquespased tracking control procedure for nonholonomic systems in
and nonsmooth time-varying homogenenous feedback (see dagined form. The class of nonholonomic systems in chained
instance, [18], [5], and [31] for relevant references). Althougferm was introduced in Murray and Sastry [22] and has
the stabilization problem for nonholonomic control systemfgeen studied as a benchmark example by several authors
is now well understood, the tracking control problem has résee, e.g., [22], [26], [29], [32], [33], [4], and [1Q]). It is
ceived less attention. As a matter of fact, it is not clear that tMell known that many mechanical systems with nonholonomic
stabilization methodologies available now may be extended gPnstraints can be locally, or globally, converted to the chained
rectly to tracking problems for nonholonomic systems. In [15form under coordinate change and state feedback. Interesting

examples of such mechanical systems include tricycle-type
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feedback. In this paper, we show that the backstepping-baskiterential equations:
tracking algorithm in [11] can be extended to a broader class
of systems with nonholonomic constraints at the expense of
more involved analysis. Of course, stronger conditions on the
reference trajectory appear to be necessary. T3¢ =T2eUrg + T2(ur — ura)

The path-following problem was studied by several re-
searchers (see, for instance, [24], [28], [29], and [31]). In
[24], a local path-following control scheme was presented Tpe =T(n-1)et1d + Tn—1(U1 — U1a). 3)
for a front-wheel driven autonomous vehicle. In [28], a time- The following tracking control problems will be addressed
scale transformation together with feedback linearization Was this paper.
used to design an approximate path-tracking controller for Definition 1: The tracking control problemis said to be
a vehicle towing a single trailer. In [29], Samson addressgémigloballysolvable for system (1) if, given any compact
the path-following problem for a car pulling several trailersset S € R™ containing the origin, we can design appropriate

While smooth feedback laws were employed in [28] angdipschitz continuous time-varying state-feedback controllers
[29], discontinuous feedback techniques were exploited #1 the form

[31] to achieve path-following with an exponential rate of . .

convergence for a wheeled mobile robot. A hybrid logic-based w=galtz), =t ) )

tracking scheme is presented in [19] for a class of cascad@éfh that, for any initial tracking errar.(0) = z(0) — z4(0)

nonlinear systems including nonholonomic systems in chainédS; all the signals of the closed-loop system (3) and (4) are

form. We show in this paper that our approach can be alggiformly bounded ovef0, ~). Furthermore

extended to treat a global path-following problem. lim |z.(t)] = 0. (5)
The organization of this paper is as follows. Section Il con- ) Pt )

tains the system model and the problem statement. Sectionijie tracking control problenis said to beglobally solvable

describes the systematic tracking control scheme and presé@fssystem (1) if the above holds for any initial tracking error

the main semiglobal result. A global path-following probleng<(0) in R™. o _

is solved in Section IV based on the proposed recursivell Section V, we show that a similar tracking control

tracking algorithm. Section V shows how to develop thBroblem can be solved for a simple dynamic extension of

tracking control scheme for the dynamical extension of &Stem (1), which can be viewed as a “prototype” for a

chained form nonholonomic system. Section V1 illustrates o¥namic model of certain mechanical systems.

recursive technique with the aid of two benchmark examples!n our previous paper [11], we have addressed the

of a car towing a trailer and a knife edge. Some concludirggmiglobal and global tracking problems in the simplest

Tle =UL — Uld

Toe = U2 — U2d

remarks are offered in Section VII. case whenn = 3. Clearly the solvability of the global
tracking problem imposes stronger constraints on the reference
[l. STATEMENT OF THE PROBLEM trajectory than the semiglobal problem. In particular [11] deals
The class of chained form nonholonomic systems to Wdth the kinematic model of a two-wheeled mobile robot
studied in this paper is described by since that model is feedback equivalent—after coordinate and
feedback changes—to the model (1) with= 3. It turns out
T1 =UuL that the analysis in case larger than three becomes more
o =Us involved although the results are of a similar nature.
.j?g = T2U1

Ill. TRACKING CONTROL OF CHAINED SYSTEMS

Fn = Tp_1U1 (1) A. Control Design Scheme

We propose in this section a systematic controller design
procedure which yields a tracking controller that solves the
above problem under suitable conditions on the reference
trajectory. The stability analysis is given in Section IlI-B.
Before we present the constructive method, we first introduce

wherez = (x1,---,2,) is the state andi; and u, are two
control inputs.

Assume that the desired trajectaty = (14, -+, Zpd) IS
generated by the following equations:

T1d = U1d a change of coordinates and rearrange system (3) into a
Fog =gy triangular-like form so that the integrator backstepping can
be applied.

T3d =TL2dU1d Denotezq:= (2, -, T(n_1)a) and let®; (;iq): R* —

R™ be the mapping defined by

Tnd =T (n—1)dU1d (2) Yi =T (n—itlle — (x(n—i)e + x(n—i)d)xlev

. . . 1<1<n—-2
wherew, = (w14, u2q) iS the time-varying reference control.

For later use, denote the tracking errorsas=x — z4. It Yn—1 = T2e
is directly checked that the. dynamics satisfy the following UYn = L1e- (6)
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As it can be directly checkedp,(-;z4) is a global diffeo- We wish to prove that the above-mentioned properties

morphism for eachiy € R*~2 and its inverseb; ' (y; #4) is also hold for the(y,, - - -, »:)-subsystem of (8) whep;,, is
given by considered as a virtual control input. Toward this end, consider
Tl =Un the positive definite and proper function

L2e =Yn—1

Vi(ylv"'vyi):Vi—l(ylv"'vyi—l)—’_%yz?' (16)
Tie = Zw(i—k)dyﬁ + Z Ykl 3<i<n.
= = Differentiating the functiorV; along the solutions of (8) yields

()
In the new coordinatey = (y1,---,u.), System (3) is i1 i—2
transformed into V= — Zyﬂ’"*i 1 - Z wn 1
1 =urd¥2 — Tn—2(U1 — U1d)Yn i=l1 j=lk=1 %
(ur — wia)yn +7;
Un—3 =UldYn—2 — T2(u1 — U1a)Yn | U1dl; 1 T U1dYit1
Yn—2 =UldYn—1 — U2ln
Yn—1 =U2 — Uq i1 — w1a)y Z Bgz 1
Yn =UL — ULd- (8) im1 Yk
Hereafter, we consider system (8) as our starting point and
formulate our backstepping design scheme for this new system (ura¥nt1 — Trog—1 (U1 — U1d)¥n) | - 17)

(8).
Step 1: Starting with they;-subsystem of (8)

Zh = U1dY2 — .’L’n_g(ul — uld)yn (9) We obtain

we consider the variablg, as a virtual control input and the i1 g
variablesu;4 andy, as time-varying functions. = _ x
Sety, = y;. Along the solutions of (8), the time derivative Zyl i 2 Zy”l ke
of the positive definite and proper function
Vi(ih) = 57 (10) .
. g i—1
satisfies Uio1 T Yit1 — Z Yr+1 |- (18)
V= U1dT1 Y2 — 1 Tn—2(11 — U1d)Yn. (11)
Observe thaty; (1) = 0 is a stabilizing function for system Setting

(9) whenevery,, = 0. We introduce a new variablg, as
follows:

j=1lk=1

. (m — Urd)Yn + mdy7

aaz 1

oy, 1) =T 1+Z

Yiv1 = Yit1 — ai(yb - '7yi)7 (20)

Ykt1 (19)
T = y2 — a1(y1)- 12)

Then, (11) yields
Vi = w1l Uy — Ty %n—2(U1 — U1a)Yn-
Stepi (2 < ¢ < n — 3): Assume that after thg—1)th step,
for the (y1,---,yi—1)-subsystem of (8) withy; viewed as ., _ _ _
virtual control input, we have designed smooth intermediate ¢ — "“1¢¥i¥i+1 nyx" i1 2;%“
control functionse; (1 < j < 4 — 1) such that the time ’
derivative of the positive definite and proper function A ( ) 21)
L, UL — U - 1
Via(@y, o Bim) =SB A+ 57, (14) 7 A
satisfies

(13) it follows from (18) that

J

) i—2 By construction, it is easy to see that the intermediate control
Vit =wid¥;_1¥; — Zijn—j—l - Z Zyﬂl function «; as defined in (19) is smooth.
j j=1k=1 Stepn — 2: By induction, the time derivative of the fol-

da; lowing function:
; a—xn k— 1)(“1 - uld)yn (15)
Yk _ _ _ _ 1-2
wherey; = y1 andy; = y; — a;_1(y1, -, y;-1) for each Va2 Uno2) = Va3l Un3) + 3 Un

257 = (22)
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satisfies ns g
+ Un—1 [UQ — Ugg — Z 8n< 2 (U1d¥it1
n—4 j =1 Yi 5
Va2 =wdln 3Un-2 — Z Yj®n—j—1— Z Z%H — Ty 1 (U1 — U1d)Yn) — 2
=1 i=l k=1 ayn—Q
Oaj (u — ag)
Lot ) (w1 — 1)y 1dYn—1 — U2¥n
Ay
a i 804 2
(8% = n— ‘
+ T, o | UraYn—1 — UsYn — Z n_3 =Up_1| U1d¥p_2 + U2 — U24 — By, Vit
ayk =1 i
<— aan 2)
Y -y U2y,
: (U,ldyk-l-l — Tn—k—1 (Ull — uld)yn)] . n—1 a n
n—3 1
3) (zwn I 55 > A r
=1 k=1

Then, we have

N Z Yn— 186(;n 2T i 1) (u1 — u1a)yn.
n—3 1@ =1 Yi
n 2 = <Z Yilp—i—1 — Z Z.%.H xn k— 1) (29)

=1 k=1

Uy = U1a)Yn — Ty oU2Un + UrdT,, o Applying the following control law:

~3
_ 8an,3 n— 2
. lyng T Yn—1— 2« "y, ykﬂ] . (24) Uz =U2d — Cp—1Yp_1 — U1dUp_2 + Z 8 21 a¥i1
Setii (30)
n
ett g = an—l(yla oy Yn—1, U’d) (31)
Oay— with ¢,_; > 0, we obtain
W2yt Yn—2) = ~Tp_3 + Z 3yk+1 (25) Cn-1 >
- ) _ 8an 2
Yp—1 =Yn—1— Oéan(ylv o '7yn72) (26) Va1 = ~Cn—1Yp_1 ~ \ YUn—2 —¥Un_1 a U2Yn
- Al(ylv v Un—1, -Td)(ul - uld)yn

from (24), it follows:

] where A; is a smooth function given by
Vn,—? :U’ldy'n 2?71 1 _y'n 2U2Yn

3 _
<Zyzxn 7— l_nz:zz:yz—l—l -Tn k— 1) y’xd z_: <yi$n,—i—1 ZyH’l .’L'n k—1

=1 k=1 Scv
(1 — wa)yn. @7 - "—an_i_l). (32)
Jy;
We remark that the intermediate control function_» as Recall thaty: =(y1, s yn) ANAEq = (T2a, -+, T(n_1)a)-
defined in (8) is smooth. Stepn: At this last step, we consider the following positive
Stepn — 1: Consider the(ys, - -+, yn—1)-subsystem of (8) gefinite and proper functioft;, which serves as a candidate
and the function Lyapunov function for the whole system (8)
Vet @1+ Y1) = Va2 (1o Tnea) + 5 Vo _ o A
1@ 2 o 20 SRR V(@) = Va1 (@1, Umr) + 500
1 —2
=S 12, (28) 1 1_ A
—~ 2 = 521% ot 521721,—1 + 5213, (33)
In view of (8) and (27)_, the time derivative &f, ; along the where) > 0 is a design parameter ago= (7, -+, F,,_1> Yn)-
solutions of (8) satisfies By virtue of (32), differentiatingV,, along the solutions of
(8) gives

Vit =ULdYp—2Yn—1 = Yn—2U2Yn — <Z YiTn—i-1 . L -
; Vi =—ca1¥p 1+ Yn | (A — A1y, Zq))(u1 — v14)
n—3 1

- ZZyH_l xn k— 1)(“1 _Ufld)yn — <yn >~ Yp_ 1%)1}@}. (34)

i=1 k=1
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By choosing the following control law: B. Stability Analysis
- In this section, we state and prove the main result for the
uy =urg + (A — Ay, £4)) semiglobal tracking control problem for system (1).
_ a2 Proposition 1: Assume that;4(2 < ¢ < n — 1),uy, and
[_C"y"Jr <y" 27 Un— Ly )W} (35) u14 are bounded ovef0,c0). Then, the tracking control
=, (y1, - - -,yn_l,yn,uQ,ud,xd) (36) problem is semiglobally solvable for system (1). In particular,

performing the coordinates transformation (6) and applying
the design procedure in the above section to system (8), given
any compact neighborhood of the origin in R™, we can

find a sufficiently largeX > 0 so that, for any initial tracking
conditions z.(0) in S, all the solutions of the closed-loop

system (3), (30), and (35) are uniformly bounded. Furthermore,
We will prove in the next section that, under appropriatg u14(t) does not converge to zero

conditions on the reference control functioms; andusg and

with ¢,, >0, we arrive at

Vn(y) = _cnflyr%fl - cnyr%- (37)

initial tracking errorsz.(0), with a good choice of), the tEglOO |z(t) — xq4(t)] = 0. (39)

control laww; in (35) is well-defined for every solution of the

closed-loop system (8), (30), and (35). Before proving Proposition 1, we introduce a technical lemma
For future use, leg = (,,---,%,_1,¥»)" and®, be the Wwhich was frequently used in [29].

mapping defined b, (y) = 7. As it can be easily proved;, L.emma 1 [21]: For any differentiable functi.orf; R+ -
is a global diffeomorphism fronR™ ontoR™ which preserves R, if f(t) converges to zero as— +oc and its derivative

the origin. satisfies
The resulting closed-loop system #coordinates is de- :
scribed by k P " f@) = fo(t) +n(t), Vtz0 (40)
) where fy is a uniformly continuous function angi(t) tends
U1 =U1d¥o — Tn—2(U1 — U1d)Yn to zero ast — +oo, then, f(¢) and fo(t) tend to zero as
Yo = —U1d¥, + %1a¥3 — Tr—3(81 — %14)Un t — +oo.

Proof of Proposition 1: Recall that, along the solutions
of the resulting system (38), the time derivative of the positive

U, = —Uiql;_q + U'ldyv‘-l—l definite and proper functiolr,, as defined in (33) satisfies
Aox;— /o (T) = —Co1To_1 — o2 41

_ <xn . Z o lxn_k_1> Va(y) = —ca1¥n_1 — aly, (41)

k=1 Note that the functiorV/,, () is only negative semidefinite.
(w1 — w1a)yn We first prove that for any given compact $ebf R™ whose

interior set contains the origin, there exists a sufficiently large
A such that for any initial conditior.(0) € S, the feedback

Yno :_U’ldyn 3 T UdYn—1 — U2Yn law (35) for u; is well defined on[0,7") and the maximal
8@,, 3 interval of definition of the corresponding solutien(¢).
+ Z -Tnfkfl(ul — Uid)Yn Define a finite real numbet* > 0 by
+ Z 8@,, Qa:,,,_k_l(ul — U1d)Yn where Z4(t) := (224(t), - - -, T(n—1)a(t)) and & is the com-
k=1 posed function betwee#; and ®,, i.e., ® = &5 o ®;.
aan_Q Pick a sufficiently large\ > 0 so that the following property
ayan olds:
- -~ —1
Gn = (A= Da(y, 2a)) , Q:i={z € R™ V,(B(z;2a(t)) < ¢ V2 0}
. [—cnyn + <§n o= Yo 1%)1@} (38) C{x e R™: Ag(z;24(1)) <A Vit >0} (43)

where Ay (7 (y; #4(1)) = AL(y, #4) and A, is defined as
Remark 1: The tracking technique presented above is quite (32).

general and can be appli@dutatis mutandiso other systems  From (41),V,,(%(¢)) is decreasing along the solution(t)
with a similar structure to (8). In particular, it was shown irof the closed-loop system and therefargt) remains in the
[12] that, under appropriate assumptions on the reference set{2. Then, the control law:,(¢) exists for eacht € [0,T).
putsug, the choice otime-varyingand/ornonlinearfunctions Moreover, sincé’, (7 (¢)) is bounded, by (33)(¢) is bounded
«; at the above design steps, instead of time-invariant linearer[0,7). As a result, from the definition @f andy in (12),
functionsc; in the variable(yy, - - -, ¥;), is useful to enhance (20), (26), and in (6), respectively, it follows thgft) and
stability properties for the closed-loop system. x.(t) are bounded ovel0, T). Thus,7 = +oo.



270 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 2, FEBRUARY 1999

It remains to prove the convergence property (39). By virtue Remark 3: If the lower limit of |u14| ast — oo is positive,
of Barkalat's lemma [16, Lemma 4.2], from (41), it followsi.e., liminf |u14(¢)| > 0, then the condition that;; has a
that%,_(¢) andy,(t) converge to zero as— co. Consider bounded derivative is not needed to conclude (39). Indeed,

the ,,_,-equation of (38) in closed loop from (45), we can prove that, _,(¢) tends to zero as — cc.
Back tracking to thew,,_,-equation in (38) and applying

N _ =2 dory_s Lemma 1, one sees that.(t)7,_3(t) converges to zero and

Yn—1 = 7Wdl¥n—2 7 | Cn—1¥p—1 — 2 Ty R thereforey,, 5(t) converges to zero. Repeating this procedure,

we finally prove thatj,(¢) tends to zero for all <¢ <n-—3,
(g = u1a)yn — a"‘"—?mn] (44) as desired.

Y2 The above tracking algorithm does not in general lead to
the convergence property (39):f, converges to zero. In the
following, we discuss some special situations where we can

(45) obtain a similar convergence result although goes to zero.
Particularly, in the case when = 3, our result recovers part
of the results in our previous paper [11].
Corollary 1: Under the conditions of Proposition 1,1 ;

As a direct application of Lemma 1, it follows:
tlim w1g(t)¥,,_o(t) = 0.

Next, consider the variable? ,,,_, which satisfies

d. ., 5 converges to zero but,, does not converge to zero and if
%(“m?nﬁ) = —U q¥n—3 T 61(t) (46) 1, = 3, we have
where e (t) — za(f)] = 0. (51)
. _ ) _ 2 Ha_s Proof: Sincen = 3, as shown in the above,, () =
61(t) = 2U1qu1d¥n—o + Uig | U1dYn—_1 — U2Un + Z E 7o(t) and y,,(t) = y3(t) tend to zero ag goes tooo. Now
k=1 7 consider theys-equation in (38), i.e.,
. - — n | ) o _ _ Oa
Tpp—1(ur — wra)y ) U3 = (A= A1 (y,24)) ! {—cgyg + <y1 - y28—71i>u2:|~
(47) (52)
Clearly, §1(t) tends to zero as — oo. Consequently, a direct From Lemma 1, it follows thag, (t)u»(t) tends to zero. That is
application of Lemma 1 yields t hgl waa(£),(£) = 0. (53)
tlim w14(t)y,,_5(t) = 0. (48)

Sincen = 3 andV3(y) = $ 1+ 73+3 v3, with (53), it holds

As in [29], by induction, we can prove that, for all< i < thatuza(t)Vs(y(t)) converges to zero @s— oc. Sinceusq(t)

n— 2 does not converge to zero ah@(7(t)) > 0 is nonincreasing,

V3(%(t)) converges to a finite number which must be zero. As

a result,y(¢t) = %(t) (in the present case of = 3) converges

to zero. By (7), the property (51) follows readily. O

Remark 4 (Point Stabilization)if w1y, = usq = 0, the

acking control problem is globally solvable for system (1).

Indeed, it is sufficient to notice that, in the present case,
the error system (3) can be transformed into another system

(50) in chained form

d _ _
%(U%d?h) =~ Uiy + Sn1—i(t) (49)
where 6,,_1_;(¢) is a bounded time-varying function thattr
converges to zero as— oc.

Using again Lemma 1, with (49), it follows:

tlim u1g(t)y,(t) =0, Vi<i<n-—3.

51 =Uu1
Hence, by definition ofV,,,u14(t)?V,.(t) goes to zero as 52 = Uy
t — oo. SinceV,,(t) is decreasing along the solutions of (38), :
V,.(t) converges to a nonnegative constant denoteid, aBue b8 =L
to the fact that:; ; does not converge to zertd, must be equal :
to zero. Therefore, alj; (1 < ¢ <n-—1) andy, tend to zero. £n o (54)

The property (39) follows readily. O
Remark 2: 1t is of interest to note that an estimate of th&ia the following state transformation:
region of attraction for the closed-loop system can be obtained

from (43). Obviously, the size of the domain is proportional & =71, ‘52 = T2,

to the value of\. On the other hand, from a practical point of =2 % .

view, to avoid poor performances due to the choice of large §i = Tie — Z L G—k)d e V3<isn.  (59)
k=1

A, we need to choose large design parametgrs andc, in
the tracking control laws (35) and (30). This can be justifie@hen either the backstepping-based stabilization method in
in virtue of (33), (37), and (56). [10] or any other smooth stabilization scheme in the literature
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(see, e.g., [26] and [29]) allows us to find a desired Lipschitz We are now ready to present our result on the exponential

continuous time-varying feedback law. stability of the equilibriumz, = 0 of the closed-loop system
(3), (30), and (35).
C. Exponential Stability Corollary 2: Under the conditions of Proposition 1, if As-
As a by-product of our systematic control design procedur%lfmpt'on 1 holds with
we give a corollary to Proposition 1 about the exponential . 1
stability of the closed-loop system (3), (30), and (35). Some ts;p [a(t)] < 2+ p2 (62)

earlier results for dynamic systems with nonholonomic con- » ] ]

straints along this line of thought were proposed in [15], [23)Vherép: andp. are positive constants given in (56), then the
and [35] via Taylor linearization. Unlike in [11] and [12] whergfiVial solution z. = 0 of the closed-loop system (3), (30),

exponential stability was proved by means of Lyapunov@d (35) is exponentially stable. _

direct method, the following result is based on Lyapunov’s Proof: We first prove that the linearized system (56) is
indirect method and the stability theory of slowly varying?XPonentially stable at the equilibrium point = 0. Notice

systems (cf. [16, Sec. 5.7)). hat (59) implies the uniform stability of the time-varying
We need the following additional assumption on the refefinear system (56) av = 0. In particular, every solutiom(#)

ence input signals:,. of system (56) satisfies

_ Assumption 1:There exist a finit¢* > 0 and two compact lw(t)] < [w(0)], Vvt > 0. (63)

intervalsZ;,7Z, C R such that0 ¢ 7Z; andw;4(t) € Z; for

t=1,2and allt > t*. Then, by Lemma 2, differentiating the Lyapunov function

To check if the equilibrium point. = 0 of the closed-loop candidate
system (3), (30), and (35) is exponentially stable, we consider

_ 7T
the linearization of system (38) arougd= 0 U(t,w) = w” Plug)w (64)
Ay =1ty gtwg yields
Wi = —ULdWi—1 + U1dWit1, 2<i<n-3 Ut w) =w” (P(ug)A + AT P(ug))w
o _ oP . aP ,
Wn—2 U1dWn—3 + U1dWn—1 — U2dWn + T <a (g )it1a + > (ud)qu>w
Wp—1 = —ULWp—2 — Cp—1Wn_1 U1d U2d
hy, = —%"wn + ;quwn_Q (56) < —(1 = \/p? + p3laa(t)])|w]*. (65)
where we used the propery,_o/8y,_2 = 0. Letting §:=1— \/p{ + p3 sup;>. [tia(t)| which is a positive
In more compact form, system (56) is rewritten as constant, it follows from Lemma 2 and (65) that
: 6
1w = Alug)w. (57) U(t,w) < ——U(t,w), vt > tr. (66)

P4
Under the Assumption 1, it is easy to prove thétus) IS applying the Gronwall-Bellman inequality [16, Lemma 2.1],
Hurwitz for eachfrozenw, € 7, x Z,. One way of doing \ye gbtain
this is to establish the exponential stability of the equilibrium
w = 0 of (56) by means of the quadratic storage function ~ U(t,w(t)) < e~ /Pt U(1, aw(ty)), Vt =t =2 t"
(67)
Vi(w) = %w% +o %w;i_l + %wi (58)

whose time derivative satisfies

which implies

()] < ,/§—4e—<5/2‘m><t—f°>|w<to>|, Vi >t > 1
3

V = —Cp— w2_ — an2. 59
L 1Wn_1 n ( ) (68)
Consequently, a direct application of [16, Lemma 5.12] givésombining (63) and (68), we establish
the following. 7
Lemma 2: The parameterized Lyapunov equation lw(t)| <, /])—4@(5/21“4” e~/ 0=10) 1y (14,
3
PA(ug) + AT (ug)P = -1 (60) Vt > to > 0. (69)

has a unique positive definit€?! solution P(uy) for every Thus, the equilibriumw = 0 of the linearized system (56)
fixed uqg € I; x I». So, there exist four positive constantds exponentially stable. By [16, Th. 3.11], the time-varying

p; (1 <4 < 4) such that nonlinear system (38) is also exponentially stable at the
) T ) equilibrium 7 = 0, that is, there exist positive constants
pslwl” < w” Plug)w < pafw k1, ko such that all solutiong(¢) of (38) starting from a small
‘au (uq)| < ps, 1=1,2 neighborhood ofy = 0 satisfy
id

V(w,ug) € R* x Iy x Ty, (61) ()] < kre = 5(t0)],  VE>te2>0.  (70)
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Finally, since the mappings. — y andy — % as introduced a new change of coordinates defined by = »; and
in Section IlI-A are global diffeomorphisms froR* ontoR™, z; = z; — o;—1(21, -, %-1) (2 < ¢ < n — 1) together with
the exponential stability of the equilibrium, = 0 of the a quadratic function,_; = E?;ll (1/2)Z3. In particular,
original system (3), (30), and (35) follows readily. O when we apply the control laws = «,,—1 (21, -, 2n—1,Ua)
as given by (31), the time derivative d¥,_; along the

IV. GLOBAL PATH FOLLOWING solutions of (73) satisfies
In the previous section, we solved the semiglobal tracking vy, = _¢ 122 | 4+ Ag(21, -+, 20, ta) 20 (74)

problem for a nonholonomic chained system of the form (1). In
this section, we will discuss some particular situations whewherec,,_; >0, and Az is defined by
we can treat the global tracking control problem, that is, we

want to construct a tracking controller so that all the tracking = _ (=it i
errors z.(t) asymptotically converge to zero farbitrary 3= Z == 1)!“22"
initial tracking errorsz.(0). =
The desired trajectory, is now a straight line. Without loss _ Z dog (=1)n~k-t n—k—2 (75)
of generality, assume thaty = --- = x4 = 0 anduyy = 0. Tt Oz, (n—k — 1) '

Then, the tracking errat. = (x1.,22 - - -, z,) satisfies
Then, consider the Lyapunov function candiddié, =

Tle =up — Uid Wi—1(Z1,- -+, Zn—1) + 1 22 for the overall system (73). With
To =y (74), differentiatingW,, along the solutions of system (73)
&3 =ToUrg + T2(UL — Urq) gives

. W'n, = _cn,—lzi,_l + Z’n,[A3(zla Ty Zn, U’d) +u — U’ld]-

Ty =Tp_1U1d + Tno1(u1 — u14). (71) (76)

As in Section Ill, we first introduce an appropriate tranBy choosing the following control law fot;:
formation of coordinates which brings system (71) into a
triangular-like form so that the integrator backstepping can Uy = trd = Cnn — D21, Zn; Ua) (77)

be applied. . .
For this purpose, we consider the following change (W'th en >0, we establish

coordinates, instead of (6): Wi = —cpn 172, — cn2?. (78)
n—i— 1
% =Tn_iy1 + Z xn i1 wa We are i_n a position to state the gIc_»baI trf_:lcki_ng result.
Proposition 2: Assume that:;4 and its derivative:;, are
1< 5 n—2 bounded ovel0, o). Then all the solutions of the resulting
. — closed-loop system are uniformly bounded. Furthermore, if
el T2 u14(t) does not converge to zero
Zn = T1e (72)
. . | - t 4 2(t)]) =0.
so that system (71) is transformed into tJInm(|xl( )~ 2@+ 220 + -+ o))
—im1 (79)
. _1)n n—i—1
Zi SUldZit1 + U2y, ) ,
(n—i—1)! Proof: The proof follows from BarBlat's lemma and a
1<i<n-2 similar reasoning as in the proof of Proposition 1. |
Zn1 = Remark 6: Of course, as in Corollary 2, under Assump-
. tion 1, we can deduce the exponential convergence of the
P =1 — Ul (73)

tracking errors after a considerable period of time.
Remark 5: Note that, wheni; 4, = 0, system (73) is akinto  Remark 7: It should be noted that a local (global when the
the so-callechower formsystem introduced in [33]. As it canreference trajectory is a straight line) path-following result was
be directly verified, the inverse of the global diffeomorphisrastablished in [29] for a car with multiple trailers, and the latter

U: z. — z as defined in (72) is given by,. = z,,z> = can be put into a form of (1). Nonetheless, the construction
Zn—1, andx; = zp_iy1 + E” 2 1 (1/4D 20— Z+1+171 (3 <4 < of our tracking controller is based on an inverse design spirit.
n). Specifically, thanks to the use of integrator backstepping, the

In the sequel, we show how the control design procedudesigns of the control inputs; and . are totally separated
presented in Section IlI-A can be applied to system (73) aiathd rely on a recursive procedure. A Lyapunov function is
builds up a desired global tracking controller fer obtained after the control design procedure is completed. In

By applying the systematic control design scheme #arlier tracking work, we first find a Lyapunov function and
Section lll-A to the (21, -, 2,_1)-subsystem of (73) with then design a tracking control law to make the derivative
uo considered as control input and terms related4e’ (1 < of this function nonpositive (see, e.g., [15], [30], and [35]),
j < n — 2) as time-varying disturbances, we obtairwhereas in [29] the designs af andu, are mixed.
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V. EXTENSION TO DYNAMIC MODELS with ¢,,, ¢, >0, we establish

'_I'he track_ing problems were addre§sed in previous_ sectio_ns Vidl = —Cno1T2_ | — o2 — Co T — Cuy Tl (89)
using a chained system of form (1) which reflects the kinematic
model of a mechanical control system such as wheeled mol{¢ are now ready to state our solution to the tracking control
robot and cars with trailers. The purpose of this section REoblem for the dynamic system (1)-(80).
to propose a dynamical extension of system (1) so that theProposition 3: Assume thatr;y(t) (2 <4 <n — 1), ua(t),
tracking control problem can also be solved using mechaniéad(t), andiiq(t) are bounded over the time interval, o).
torques. It also demonstrates that the recursive design extehBgn. the tracking control problem is semiglobally solvable for
to a class of systems which contain a nonzero drift term. System (80). Specifically, given any compact neighborh§od

More precisely, we consider system (1) with the dynam®@f the origin inR"*2, we can find a sufficiently larga >0
extension so that, for any initial tracking conditions:.(0),%(0)) in S,

) ) all the solutions of the resulting closed-loop system (8), (80),
up =w, o Uy =2 (80) (87), and (88) are uniformly bounded. Furthermoreyif,(¢)

wherewv; andw, are the control inputs of the dynamic modelf]IOes hot converge to zero

The control task is now to design Lipschitz continuous lim (Jz(t) — za(t)] + Jur(t) — wra(?)]
time-varying state-feedback controllers of the form oo
+ |U,2(t) - U/Qd(t)D =0. (90)
vy = 11(¢, X), va = 1a(t, X) (81)

Proof: The proof follows from (89) and Badtat's

such thatz(t) tracks the desired trajectory,(t) of the lemma along similar lines of the proof of Proposition 1]
reference system (2). Corollary 3: Under the conditions of Proposition 3 and

Using the same notations as in Section Ill, it is easily se&orollary 2, the equilibrium(y, %) = (0,0) of system (8),
that the tracking error dynamics.,« — uq) are described by (80), (87), and (88) is exponentially stablecif, andc,, are
(8) and (80). Then, in order to design time-varying feedbadkfficiently large.
laws v; and v, to force y and v — uy to zero (which in Proof: The resulting closed-loop system can be rewritten
turn implies thatz.(¢) tends to zero), we invoke integratorin more compact form
backstepping and Proposition 1.

Indeed, as shown in Section IlI-A, under the action of the ;yzi(_t’ y)_+ 9(t.y.7)
control laws (31) and (36), the time derivative of the function u=Au+h(t,y) (91)
V. as defined in (33) satisfies where 7,9, A, andT: readily follow from (8), (80), (87), and
v, = —cn,lyi,l — cnyfl. (82) (88).

_ _ In the light of the proof of Corollary 2, we know that the
However, sinceu; andu, are not the true control inputs forequilibrium y = 0 of § = J(t,y) is exponentially stable. By

the dynamic model (1)—(80) under study, the control laws (3fe Converse Lyapunov Theorem [16, Th. 3.12], there is a
and (36) cannot be used. We introduce the new variaiies function V, satisfying the inequalities

and u, as ) )
elyl” < Vel(t,y) <ealyl

Uy =up — an(yla o 'ayn—laynaU'?auda'%d) (83) a‘/c a‘/c— 2

e o + 2Tt y) < —eslyl

Uy =2 — Cn—1(Y1, ", Yn—1, Ud)- (84) at 9y
Then, by (29) and (34), it is direct to see that the time ‘8Vc < eqly| (92)
derivative of V,, along the solutions of (8)—(80) satisfies, 9y
instead of (82) for some positive constants (1 < ¢ < 4) and all(¢,y) €

[0,00) x Do, Do being a bounded neighborhood gf= 0.

Vi = —Ca1la 1 — cnlp + Un_1l2 + yn(A — A1 (y, Fa) U1 Consider the function

(85) _
_ _ Velt,y,m) = Volt,y) + 5 [0, (93)
Let w = (u1,u2)” and consider the Lyapunov function o
candidate Then, the time derivative df . along the solutions of system
Lo 1o (91) satisfies
Vo1 (1) = Vo(9) + 5307 + 503 (86) .

Vc S _€3|y|2 + €4|y| : |§(t7y7 E)| — Cyy |a1|2 — Cuy |E2|2

which is positive definite and proper. From (85), it follows: + [l R ). (94)

y _ —2 _ 2 — (= A _
Vi1 = ci—lyn_l Cnlpn Jf W2 (T -1 +‘U2 Gn-1) Noticing thatg(t,y,0) = 0 andh(t,0) = 0, there are positive
+ 1 [yn (A — A1(y, Zq)) + v1 — G- constantse; and ¢g such that
Therefore, choosing the following control laws: 19t y.w)| < es]al, |h(t,y)| < sl (95)
v1 = —Yn(A = A1y, Za)) + & — o1 (87) for all (t,y,m) € [0,00) x Dy x R2, with Dy :=Dy N {y €

T (88) R™: Ai(y.aa(t)) < 0.5\ V¢ > 0}



274 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 2, FEBRUARY 1999

y where! is the wheelbase of the tow caf; is the distance
from the wheels of the trailer to the wheels of the car, and
andw represent the driving velocity and the steering velocity
of the tow car respectively.

Although system (97) is not in chained form, it can be
transformed into (1) via a change of coordinates and state
feedback. A general algorithm for (locally) converting the
kinematics of a car pullingnultiple trailers into a chained
system was proposed by Sgrdalen [31]. However, in the
present case of a car towing a single trailer, we invoke the
simpler conversion algorithm due to Murray and Sastry [22].

According to [22, Proposition 7], introduce the following
local change of coordinates and feedback:

. X1 =T¢
0 % X 1 3 I oo, .
x2 = +— sec” fg sec 01 tan ¢ + — sec” g sin b
Fig. 1. Kinematic model of a car with a single trailer [22] where the control ld, dy

inputs are the forward velocity and the steering velocity of the tow car. . 1
-sec® 0y sin? (fp — 61) — 7 Sec 6o sec® 6,
1

Hence -sin (fg — 61)
Ve < —(ly] |U|)M<||%||> Ty = 4 sin (fp — 0;) sec? 6 sec by
where xy = tan by
€, ——6465 * < Ty =Ye — dl 10g —1 +sin 91
= 3 cos 6
M = €465 + €6 2 . (96)
—OT min {cy, , ¢y, v = sec (6p)uy

Obviously, M is a positive definite matrix if.,, andec,, are w = (9,60, 61)ur + (@, bo, b1 Juz (%8)

chosen sufficiently large. Therefore, the proof is completgghere
with the help of [16, Corollary 3.4] together with the fact that
V. as defined in (93) satisfies a property similar to (92} By = _3 sec? 6 sin 0 sin? ¢

Remark 8: Analogously, the global path-following problem l
as addressed in Section IV can be solved for the dynamic - <1 + isinHO sec B sin (A — 91)>
model (1), (80); see Section VI-B for an illustration. 2 d

- sec Op tan @1 sin (6 — 61) sin (2¢)
.VI. A.PPLICATI.ON TO MECHANICAL .S\(STEMS. B <L sin (26) — LQSin(GO _ 6,) cos? d))

In this section, we illustrate our recursive tracking method- 2dy di
ology with the help of two benchmark mechanical systems
under nonholonomic constraints: an articulated vehicle and a

knife edge.

- sin 6, sec? Ay sin (260 — 26,) — % <Sin (B0 — 61)
1

+ 3sin (6o — 61) tan? 67 — 3 cos Oy tan 6, sec 91>
A. Articulated Vehicles

1
-2 2 2
An articulated vehicle, which is a car pulling a single semi- ~secy sin” (6o — 61) cos™ ¢ + o, Sec” O1cos 01)

dq

trailer as depicted in Fig. 1, has been served as a benchmark ] l 0, )
nonholonomic example in several studies [22], [29], [31], [28]. - sin (2¢) — 242 cos g sec” 6y sin (260 — 261) cos™ ¢
As usual, we assume that the wheels of the articulated (99)

vehicle are allowed to roll and spin but not slip. Under this 3
assumption, the kinematic motion of the articulated vehicle is[
described by [22]

5 = ldy cos® 6 cos 6 cos?® ¢. (100)

Now, the transformed version of system (97) is in chained

T, =vcosby form, i.e.,

Ye =V sin B i =

o =w Ty = U2

. 1

90 = 71/ tan¢ T3 = Tol
. 1 L

b = Tvsin (6o — 61) (97) T4 =

1 j};, = T4U1- (101)
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Fig. 2. Kinematic model of the articulated vehicle. Time histories of the vehicle matioand y.. “-.” Plot of the norm of the tracking errors. versus
time “-” and control performance with the tracking control laws (103) “--" and uy (102) “--."
Using the same notations as in Section lll, as a direct af®7)]
plication of the recursive synthesis procedure presented in Uy = —CaZy — 2042 — u14(323 + 21) (106)
Section 1lI-A, a_sgmiglobal tracking cqntrol law for (101) [but up =upg — cszs + ug(z1 + 23 — 32225 — Za2s
local for the original model (97)] is given by + %leg + ézngg’). (107)

Uz =Ugg — Cas — 242 — u1a(3yzs +11) =y (102) In Fig. 3 where the top picture is drawn with the coordinates
1 (z¢,y.) of the tow car, we see that the articulated car even-
U = td F A — (ys + 2y1 )3 — (2u4 + S22 tually approaches the desiredaxis, the reference trajectory
(=esys + (g1 +yz)uz) :=as (103) N our case.

With (102) and (103) as the tracking controllers for the
whereX > 0,¢4 >0, andc; > 0 are design parameters. kinematic model (101), applying the design procedure in
For simulation use, we consider the reference signal of tiection V yields a semiglobal tracking control law for the
form (2) characterized by dynamic extension of system (101)
Vg = —cypa(U — vg) — 2y — Y1 — Cauz — 2C4U14Y3Y5
(104) + 2cawo (U1 — u1a)ys — 3“%(194 + 3urquoys
Fig. 2 demonstrates the evolution of the norm of the tracking  — w3 gy + w3uya(ur — u1a)ys
errorsz.(t) as well as the controller performance based on thg = —c,;(u; — a5) — ys(A — (y3 + 2y1) w3
following choice of design parameters and initial conditions: . 1
— (2ya + Sy2)w2 + \ -
A=35, l=d, =1 — (y3 + 2y1)ws — (2ya + Sy2) 2
2(0) =(1,0.5,0.5,0.5,0.5). [mes(un = waa) + (g2 + (v = wia)ys + wrapa
— u2ys)u2 + (y1 + y3)v2]

Urg = ].7 U2 = 0, l’id(()) = 0, \V/]. S 1 S 5.

(108)

0420522,

(105)

With the choice of (104), the reference trajectary(¢) to be
tracked is a straight line since 4(t) = ¢t andx;4 = 0 for all
2 < ¢ £ 5. In the original coordinate$z., y., ¢, 6o, 61), the
reference trajectory, is the z-axis becauser.(t) = t and

(y:(t), (), Bo(t), 61(t)) = (0,0,0,0). In this case, using the

same notations in Section IV, a direct application of the design
procedure in Section IV yields a global tracking controller for
the transformed system (101) [but local for the original modetherec,, >0 andc,, >0 are design parameters.

1
(A= (y3 + 2y1)z3 — (2ya + 5y2)x2)?
(—esys +yr1uz + yauo) X [3(u1ays — u2ys
+ 2urqye — 223(u1 — u1a)ys) + (y3 + 2y1)T2u11
+ x2(2ug + Sugys — Sx2(ur — u1a)Ys)
+ (2ya + Sy2)us]

+

(109)
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Fig. 3. Kinematic model of the articulated vehicle. Time histories of the vehicle metieandy. “-.” Graph of the vertical positiony. versus the horizontal
position 2. “-” and control performance with the tracking control laws (107) “--" and uy (106) “--.”

For simulation use, we pick,, = ¢,, = 2 and the initial to illustrate the hybrid stabilization and tracking methods in
conditions (105) and:;(0) = u2(0) = 0.5. Fig. 4 plots the [19]. The motion of the knife-edge dynamics is described by
norm of the tracking erroréz., w — uy) versus time and the the following differential equations [19]:

control performance of the tracking controllers (109) and . Y gin é+ L cos é
m m

vo (108).
We observe in Figs. 2—4_ that th(_a articulated vehicle exhibits o = _ 7 cos ¢+ ﬂ sin ¢
some awkward motion. This is mainly because after the highly oo m m
nonlinear transformations (98)—(100), the new states except b= 2
have lost any physical meaning. This should initiate the search Lo trc
T sin¢p =1, cos ¢ (110)

of other more structure-based tracking methods.
It should be noted that because of the local nature of tiere(x.,y.) denotes the coordinates of the center of mass
state and feedback transformations (98) the tracking feedbaxtkhe knife edge¢ denotes the heading angle measured from
laws designed for the transformed system do not guarantbe z-axis, andr; is the pushing force in the direction of
semiglobal or global stability properties for the original modehe heading angles; is the steering torque about the vertical
of the articulated vehicle. Indeed, since the coordinate trargsds through the center of mass. The consténtsi,.) are the
formation and state feedback are well defined within a domaimass and the moment of inertia of the knife edge, respectively,
where the original coordinates are such thatfo, 1, z.,4.) and~ is the scalar constrain multiplier. Note that the fourth
belong to(—n/2,7/2) x (=7 /2,7/2) x (=7 /2,7/2) xRxR, equation in (110) represents the nonholonomic constraint on
we have that only within such a domain can we obtaifhe knife-edge system.
(semi-) “global” stability. On the other hand, it follows from A slight modification of the state and feedback transfor-
Corollary 2 that the proposed controller (106) and (107) isations in [19] leads to a global change of coordinates and
locally exponentially stable. feedback
In our second example of a knife edge moving on the plane,

we show that certain global feedback transformation exists to T =9 _
bring the knife-edge system into a dynamic chained form so T2 =X 08P+ ycsing
that semiglobal or global properties hold for both systems. X3 =T, SN ¢ — 1Y, cOS P
B. A Knife Edge Ty=¢

The simple nonholonomic example of a knife edge moving L5 =T COS ¢ + Yo Sin ¢

on the plane was introduced in [1] and has recently been used + d)(—a:c sin ¢ + y.. cos ¢)
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Fig. 4. Dynamic model of the articulated vehicle. Time histories of the vehicle metiomndy. “-.” Plot of the norm of the tracking errorsre, u — ugq)

versus time “-” and control performance with the tracking control laws(109) “--" and v, (108) “-..”
" =2 which corresponds to the center of mass of the knife edge
% ™ moving along the circle centered at the origin of unit radius
vy = — + I—(—a:c sin ¢ + y. cos ¢) with uniform angular rate.
m c

— ¢? (x. o8 ¢ + yesin ).

(110) is put in extended chained form (80), that is

T1 =T
jﬁg =5
.j?g =T2X4
T4 =1
.Z";) =V2.

T1 = U1

T2 =up

T3 = ToUq
and two integrators

UL =v1

Ug = Vs.
As in [19], consider the following reference trajectory:

oei(t) =¢t,  af(t) =sint

C
yi(t) = —cost V>0

(111)
In the new coordinates, the dynamic model of the knife edge

(112)

In other words, the transformed model of the knife edge can be
seen as a cascaded interconnection of a system in chained form

(113)

(114)

(115)

In the transformed:-coordinates, the desired trajectory is

a:ld(t) =1, xgd(t) =0,
$4d(t) :uld(t) = 1,

ajgd(t) =1
z5a(t) = uza(t) = 0. (116)

It is interesting to note that the desired circular path (115) in
the original coordinates now becomes a straight line in the
transformed coordinates. Also note that the tracking errors
satisfy

Tie = U — Uid

jﬁQ = U9

E3e =wou1g + T2(U1 — ULd)
iLl =111

1),2 =V

(117)
wherez.(t) = z1(¢t) — t andx3.(t) = z3(¢) — 1.
A combined use of the tracking methods in Sections IV and

V gives a global tracking control law for both the transformed
system (112) and the original model (110)

vy = —2@2 - 222 - 2]}5 + 23%5 (118)
vy = =20y — 23 + 2ox5 — 212373 + 212
- 2(.’L’4 - 1) (119)
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(xc(t)—sin(t), yc(t)+cos(t), phi(t)-t)
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Fig. 5. The knife edge. Plot of the tracking errdrs.(t) — sint) “-,” (yc(t) + cost) “--” (o(t) —¢) “---" versus time and control performance with

the global tracking control laws (119)—(111) “--" and72 (118)—(111) “-.

wherez = x3. — Ta1e, 22 = X2, 73 = T1. and hand, a semiglobal tracking control law was derived on the
basis of a stepwise controller design procedure. It is important
Ty =74 — 1 — 2115 + 223, Ty = 5 4 229 + 21. to note that the proposed tracking technique is analytically

simple and produces continuous tracking feedbacks. Under
For simulation use, takex = I, — 1. Under the following additional conditions on the reference inputs, the convergence

choice of initial conditions: rate is guaranteed to be exponential after a (considerable)
' period of time. We have also discussed some special cases

. . . where the tracking problem can be globally solved. More

(#(0), ¢(0), c(0), (0), Ze(0), e (0)) interestingly, we showed that our tracking design procedure
=(1,1,1,0.5,0.5,0.5). can be extended directly to a dynamical extension of the

chained form system, i.e., the chained system appended with

Fig. 5 illustrates the time histories of the tracking errorsvo integrators. The recursive design for tracking is illustrated
(x.(t) — sint,y.(t) + cost, o(t) — t) as well as the control in two benchmark examples of chained form nonholonomic
performance for the torques, 7= required for the knife edge. systems, the pulling car and the knife edge.
Note that the tracking errors quickly converge to zero in a Last but not the least the design strategy described in this
few seconds. paper is different to earlier tracking methods in [8], [15],

For the desired trajectory in (115), both dupschitz contin- [19], [23], [28]-[30], and [35]. A linearization, or feedback
uoustracking feedback laws and the hybrid stabilizing laws dinearization viewpoint, was adopted in [15], [23], [35], [8],
[19] achieve the global asymptotic stability with exponentiadnd [28] to design tracking control laws for nonholonomic
convergence for the resulting error system. However, outobile robots without or with one trailer. In [30], a Lyapunov
tracking strategy brings an additional propertyesoonential function was found to construct a global tracking controller for
stability (in the sense of Lyapunov) for the closed-loop erra nonholonomic wheeled cart without trailer. This Lyapunov
system (see Corollary 3). Comparing Fig. 5 with [19, Fig. 4Hirect method was extended in [29] to derive a (generally local)
it turns out that our controller (118) and (119) yields betteracking solution for a nonholonomic car towing multiple
performance than the hybrid controller of [19]. trailers. Our aim was not only to give a (first) semiglobal
tracking solution for general nonholonomic dynamical systems
in chained form but to build up an inverse design method,
that is, the desired control law is designed via recursive steps

A recursive technique was proposed for the tracking contrahd a Lyapunov function is found after the control design is
of a class of nonholonomic chained systems. On the one hacdmpleted. It seems therefore very challenging to compare the
we have broadened the domain of applicability of integrataontrollers proposed here on an experimental setup with those
backstepping to nonholonomic control systems. On the otlgiven in, e.g., [19], [23], [29], and [35].

VII. CONCLUSION
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