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Modeling and Control of Impact in Mechanical
Systems: Theory and Experimental Results

Antonio Tornamke

Abstract—This paper considers the equations of motion of study and the control of the impact phenomena is especially
mechanical systems subject to inequality constraints, which can jmportantin robotics, since all theighestand greatest stresses
be obtained by looking for the stationary value of the action s a5 consequence of impact, and many serious failures can

integral. Two different methods are used to take into account the b ted when i ¢ f t | ved
inequality constraints in the computation of the stationary value ©€ 9€Nnerated when impact forces are not properly recognize

of the action integral: the method of the Valentine variables and and taken under control; some useful short-duration effects,
the method of the penalty functions. The equations of motion such as high stresses, rapid dissipation of energy, and fast
resulting from the application of the method of the Valentine acceleration and deceleration, may be achieved from low-

variables, which introduces the concept of “nonsmooth” impacts, . . .
constitute the exact model of the constrained mechanical system; :??;83/ f?)?g;c;svt?li controlling the impact of robots operating

such a model is suitable to be employed when the impacting parts
of the actual mechanical system are very stiff. The equations of ~The mechanisms are usually designed so that the impact
motion resulting from the application of the method of the penalty effects are reduced, by minimizing the impact velocity and

constitute an approximate model of the constrained mechanical : . . . .
system: such a model is suitable to be employed when thethe mechanism so that a minimum stiffness is located in a

impacting parts of the actual mechanical system show some N€ighborhood of the point of impact, b_Ut these design factors
flexibility. Various feedback control laws from the natural outputs seem to be useful for reducing the impact effects, not for
and from their time derivatives are studied with reference to their precise control. As a matter of fact, a real control
both models of impact; the closed-loop systems resulting from (a5 for a mechanism implies in general several transitions

the application of the same control law to both models show " . .
pretty much the same global asymptotic stability properties. between the condition of free motion and the condition of

The proposed control laws are only concerned with regulation Constrained motion, and therefore it implies the generation
problems in the presence of possible contacts and impacts amongof undesired reaction forces at each sudden change from one
parts of the mechanical system or with the external environ- condition to the other one. As for robotics, practical situations
ment; the problem of controlling these mechanical systems along involving the generation of impacts are the walking robots
time-varying trajectories is not considered in this paper. The g : . . . '
4the manipulation with a robotic hand, and the cooperation of

effectiveness of the proposed control structure has been teste ) :
experimentally with reference to a single-link robot arm, showing Multiple robot arms. Numerous attempts have been made in

a valuable behavior. the recent years also to properly model the impact in robotics
Index Terms— Feedback stabilization, mechanical systems, (see, e:g., [_13]_[21])’ whereas the problem of controlling t-he
smooth and nonsmooth impacts, unilateral constraints. impact is still open, due to the sudden change of the equations

of motion that happens when the bodies involved in the
impact swish sharply from a condition of noncontact to a
condition of contact. The reader interested in the derivation
ODELLING and control of impact require the studyof the Hamilton principle for mechanical systems, subject to
of the basic physical phenomena that happen whenilateral constraints, can benefit from [22]-[24]. Interesting
bodies collide under the action of external forces (includingitial experiments have been recently found in the literature
the control forces) and/or due to nonzero relative velocity25]-[27], but no general theory is available because of the
Several books (see, e.g., [1]-[12]) consider in detail, witlfype of the equations to be used for adequately describing the
a rigorous and extensive treatment, the study of the basigpact of a robotic manipulator with the external environment,
physical phenomena that attend the collision of bodies.  which depends largely upon the geometry of the robot and
Often, the typical sources of impact, which include cleabf the external environment and upon the type of impact.
ance as between cams and followers, backlash or bearmgcomplementarity—slackness class of hybrid systems has
clearances in mechanisms undergoing force or motion revergsden analyzed in [28], under a certain dissipation impact
and mechanisms with components having large relative velogife. A complete robotic task has been formulated in [29] by
ties, are neglected in modeling and control of mechanisms. Tﬁ}@ans of some complementarity conditions in case of rigid
external environments and in [30] in case of compliant external
environments, under the assumption that the interaction force
is available for feedback during the transition phase (this will
not be required in this paper). The Lyapunov second method
has been extended in [31] to deal with mechanical systems

I. INTRODUCTION



subject to unilateral constraints; in particular, a control law héisnction ¢(¢) is not differentiable (i.e., those times such

been proposed for one degree-of-freedom mechanical systethatlim, - ¢(¢) # lim, _,+ ¢(¢), which correspond teorner

as well as for certain multidegree-of-freedom mechanicpbints) will be referred to as the times at which the impacts

systems. The collisions of robotic manipulators are modeledcur (briefly, theimpact times). The assumption that) is

and simulated in [32]. A more extensive bibliography abowmooth between two adjacent impact times is not necessary,

modeling and control of impact can be found in the recebut it is supposed for the sake of simplicity; such a vector

reference [1], where 620 references can be found about fhaction (only) needs to be twice differentiable between two

subject. adjacent impact times. To simplify the notation, the symbols
All the contributions about impact analysis and contrak(t;) and «(t) will be used to denote, respectively, the

(including this paper) suffer from several practical limitationsalues taken by the limitdim, ,- «(¢) and lim, _+ a(?),

that can limit their effectiveness. These limitations arise fromhen they are definite, for any functian().

the difficulty to a priori establish the approximation level to Assume that some constraints are imposed on the gener-

be used for the study of the various phenomena involved afized coordinates by the physical nature of the mechanical

the impact and to understand the manner in which the variosigstem under consideration; in particular, assume that (at each

parameters (masses, geometric dimensions, stiffness, duratiore ¢ € R) the vectorg(¢) must belong to the following

of the impact) affect the actual collision. Another practicaddmissible regiorof R™:

limitation is that powerful tools (such as strain gages, high-

speed photography, fast velocity, and motion transducers) are .-, e R™: f;(¢) <0, i=1,2 -, m} 1)

needed, e.g., for precise data storing. The limitations include

that the mathematics to be used for a rigorous model of th " )

impact may be excessively complex, whereas approximat ere fi(-): R™ = R, - 1,2,---,m, arem € Z,m = 1

models may omit one or more important characteristics of t gmoth functions of € R™. Also in this case, the assumption

impact phenomenon. In spite of these limitations, we hope {9t Fge md f;mct;?ns fi’((Q)’i ~ 1’|.2’.' -.-,m,ha]rce smooth ISI
the analysis that will be carried out in this paper will provide(,:OnSI ered for the sake of simplicity; such functions (only)

in view of its generality and simplicity, a useful guide to th(_peed fo be twice differentiable With. re_spect t(.) _aII the variables

design of models and controllers of impacting systems. at afg“me’.‘t- Assgme that the an|SS|bIe regios r_10ne_mpty .
The outline of the paper is as follows. Section Il is devote?ind that, in addition, there exists at IeasF an Interior point

to the writing of the equations of motion of mechanicaf® e A suqh that all the constraints are strictly satisfied, i.e.,

systems subject to inequality constraints. After some prelini{%0) <0.¢ = 1,2,---,m. .

inary notation and results, the equations of motion in caseThe vectoirp m_equallty flo < 0 with .f:: /1

of nonsmooth impacts are briefly introduced in Section II]-C2 . :f’_"] , will be u;ed to denote the entlre_set of the

A through the method of the Valentine variables, Where@'nequal.'t'esfi(Q) £0,6=12,,m. The manifolds of

those in case of smooth impacts are introduced in Section - "?'?”“f'eo' by fil) = 0,4 = 1,2,---,m, represent the

B through the method of the penalty functions; Section ”_éc_mdltlon of contactamong parts of the mechanlcal sy_ster_n

gives sufficient conditions for the approximated path of motio\f’fIth themselves_ or _W'th t.h(.:‘ external er_wwonment, which is

(obtained by means of the method of the penalty function@fsumed to be infinitely rigid and massive. .

to tend to the actual path of motion (obtained by means of €t /i(¢) :=0/i()/dq be the gradient vector ofi(q), i =

the method of the Valentine variables) as the penalizati n2 -, note that ifa(g) is a scalar funpﬂon ofy, then

tends to infinity. The control of the equations of motioff’®(4)/9¢ denotes the column vector having as entries the

thus obtained is analyzed in Section IIl in case of nonsmo rtial derivativesda(q)/9g;),e=1,2,---,n. Letq € A be
impacts and in Section IV in case of smooth impacts, Wit"f’{b'tr"]‘_ry and let(j, h, ---, k} denote the (possibly, empty) set
reference to the simple regulation problem. Section V repoﬁgthe indexes such thaf(¢) =0, fi(g) =0+, fila) =0,

some experimental results obtained by controlling the imp d fi(Q), 73 0 f]?rhall i ¢ {j’h""’k% forhsuch d"’.‘q; n
of a single-link robot arm against a rigid obstacle located e remainder of the paper, assume that the gradient vectors

: Ji(q), Jn(q),- -, Jr(q) are linearly independent for suchga
the working space. J
woring sp Let T'(q(t), ¢(¢)) andl/;(q(¢)) be the kinetic energy and the
total potential energy of the mechanical system at tingeRR,

Il. EQUATIONS OF MOTION OF MECHANICAL SYSTEMS respectively. Assume that the kinetic enetfify(?),¢(t)) can
SUBJECT TO SMOOTH AND NONSMOOTH IMPACTS be expressed as follows:

Consider a finite-dimensional mechanical system, or a finite- ) L. )
dimensional approximation of a continuous mechanical sys- T(q(t), 4(t)) = 5 ¢ ()B(q(t))d(?) )
tem. Letq(t) € R*, with n € Z,n > 1, be the vector of
the generalized coordinates(¢),s = 1,2,---,n, which are whereB(q) is the generalized inertia matrix, which is positive
assumed to represent uniquely the configuration at timd®  definite for all¢ € R™. For the sake of simplicity, the entries
of the mechanical system (in the whole); in the remaindef B(g) are assumed to be smooth (although it is necessary
of the paper, the generalized coordinates will be assumedotdy that they are twice differentiable) with respect to all the
be continuous functions of timeé € R, which, in addition, variables at argument.
are piecewise smooth. The timése R at which the vector  Consider the following assumption.



Assumption 1:There exist two real numbers, b, with Taking the derivative with respect to time of both sides of
0<b < b<+o0o, such that the following inequalities hold(7), the following differential constraints are obtained:

in the whole (i.e., for ally € R™): T ) ) ‘
Ji (@(®)a@®) + 2vi(H)%() =0,  i=12,---,m. (8

l4ll*,  Y¢eR™ (3)
_ _ Starting from the initial conditions;(0) € A, ~;(0) =

where]|| - || is the_Euc_hdean norm _of the yectoat argument. /= F:(q(0)),i = 1,2,---,m, the differential constraints (8)

Assumption 1 implies that thiemit superioruponR™ of the 416 completely equivalent to the point constraints (7).
greatest eigenvalue d(q) is finite and that t.hd!mlt inferior Then, the actual path of motion can be found by looking
uponR™ of the smallest eigenvalue dB(q) is greater than for the stationary value of the action integral (5), under
zero. the differential constraints (8), where the Valentine variables

In addition, assume throughout the paper that the tot%l(t),i = 1,2,---,m, are to be considered as nonnegative
potential energy/;(q(t)) can be decomposed into two parts:yea|.valued continuous functions of time, which are piecewise

U(q(t),£) = U(g(t)) — ¢7 (1) Bul?) (4) smooth between two adjaqeljt impact time;. In particular, in-
troducing theLagrange multiplier§35] A;(¢),i = 1,2, --,m,

whereU(g(t)) is the potential energy due to the conservativihe actual path of motion can be determined by looking for
forces (e.g., gravitational and/or elastic forces, if amy}) € the stationary value of the following unconstrained functional:
R? is the vector of the control (generalized) forcess Z, with "
n > p =1, E e R"?is afull column-rank matrix constituted A= / Ldt 9)
by p linearly independent columns of tkedimensional iden- t
tity matrix, suitably chosen in order to identify the actuated R ) - )
generalized coordinates, andq” (¢)Eu(t) is the potential Where L:=Li(q(?),q(t).t) + XLy N(t)(J7 (a(®)a(t) +
energy due to the control forcegt). 2% ()% (8))- ] _

The equations describing the motion of the mechanicalBY Well-known results from functional analysis [36], the

system can be carried out by considering small variations gjptionary value of functional (9) corresponds to the continuous
the whole motion of the system between two timgsand piecewise smooth path of motion that is the solution (in each

to, With £, > #;. As all the forces acting on the mechanicaPP€n interval of time that does not contaip impact times) to
system have been assumed to derive from a scalar energy,fifefollowingn + 2m Euler-Lagrange equationglependence
Hamilton principle[33] can be used to obtain the equations dfPON time¢ is omitted):

motion in the closed intervdt, , ¢s]; the actual path of motion

)
s0lldl* < 3" B(w)g < 50

1

: ) ) ) L 0L K,
of the mechanical system under consideration from time dig— — Z— + Z)‘i‘]i(Q) = Fu, (10a)
to time ¢, is such that the followingaction integral has a tdq -
stationary value: 2v; \; =0, i=1,2,---,m,
a= [ a0 © (op)
= 5 t{q(t), q(t), JiT(q)q_i_erir‘yi:()’ i=1,2,---,m,
(10c)

whereL;(q(t), ¢(t),t) :=T(q(t), ¢(t)) — U(q(t), t) subject to
the following inequality constraints to be satisfied for aUNhereL(q(t) i)

t € [ty ta]: :=T(q(t),q(t))—U(q(t)), and the impacts

can occur only at the times. € R where the following
fi(q(t) <0, i=1,2,---,m. (6) Erdmann—Weierstrass corner conditions, which are necessary
at corner points, are satisfied:

Ld%(t7)Bla(t))a(t,)

. . . : . = 147N Bg(t))(tF 11
The Valentine variablesre introduced so that the inequality 3 @ (8) Blalte))a(t:) (112)

constraints (6) are transformed into the following equality g/t yyorp— - NtV (ol
ot (a(t)i(2) + 3 A ) alre)

A. Equations of Motion of Nonsmooth Impacts
Through the Valentine Variables

2 7 = e lids

fia(®) +~; (t) =0, 1 =1,2,---,m (7) _ B(q(tp))q(tj) + Z)w(tj)%(q(tp)) (11b)
with ~;(¢),4 = 1,2,---,m, being some auxiliary nonnegative ] i=1
real-valued variables, which were introduced by Valentine for — 2v;(tc)Ai(t.)
the solution of the problem of Lagrange with differential = 2y;(t) (), i=1,2,---,m. (11c)
inequalities [34]. Since the Valentine variables(t),: =
1,2,---,m, are taken real, the equality constraints (7) are It is pointed out that the Euler—Lagrange equations (10) can
completely equivalent to the inequality constraints (6). Sin@dso be obtained directly by balancing all the forces acting
¥2(t) = —fi(q(t)), all the Valentine variables are continuousn the mechanical system, taking into account the impulsive

functions of time, which are piecewise smooth, with corndorces due to the inequality constraints by means of some
points that can occur in correspondence of the impact timesomplementarity conditions such as (10b).



B. Equations of Motion of Smooth Impacts large (of the order of coefficients;,s = 1,2,---,m). Thus,
Through the Penalty Functions the condition number of the problem will be proportional

This method is based on the observation that if the mi® coefficientsk; i = 1,2,..-,m; as one increases such
chanical system under consideration is allowed to violaf@€fficients in order to obtain more accurate solutions to
constraints (6) and, in correspondence to such a violatidhe Original constrained problem, the rate of convergence of
the action functional (5) is strongly penalized, whereas it Y @lgorithm used to solve in a numeric way the equations
not when constraints (6) are satisfied, then the solution 8f motions thus obtained becomes extremely slow, and any
the problem thus modified is forced to tend to the actugpntrol law designed on the. basis of.these equations of motion
path of motion of the constrained mechanical system, as fH&Y strongly depend on this very high penalization.
penalization tends to infinity. It is stressed that, in this case, the! "€ stationary value of (5) withl, substituted byL.
generalized coordinategt) are no longer obliged to belong€0responds to the path of motion that is solution of the
to the admissible regiod. following vector Euler-Lagrange equation:

A possible choice of the penalty function, which takes the doL oL

zero value when all the constraints (6) are satisfied and high 395 0g + ZmJi(Q) =Lu (13)
positive values when some of the constraints (6) are violated, i=1
is the following: whereL = 7 — U and
il L Oa if fz(Q) S Oa
Ur(a(®) = > Us(a(®)) (12) = { kifi(@). it fila) >0, (14)
=1
The Erdmann—Weierstrass corner conditions are
where
o 307 () Ba(to)a(ts) = 5 4" (1) B(a(t)d(tt)  (15a)
U _fo, if f;(¢g)<0 : ]
D=\ Th ), i fi(g)>0 B(q(t.))q(t;) = B(a(te)i(th). (15b)

and#; is a sufficiently high positive number, having a suitabld€ Erdmann-Weierstrass corner condition (15b) can be
physical dimension so tha} k; f2(g) has the dimension of rewritten asB(q(t.))(4(tF) — ¢(i7)) = 0, which (by the

an energy. As one can see when ttfeconstraint is violated, Nonsingularity of B(q(t.))) implies that ¢(t7) = q(t.),

Uy (q(t)) plays the role of the elastic energy due to the conta@@Mely, when the method of the penalty functions is used,
relative to theith constraint, as though a linear elastic spring© JUmp is possible of the generalized velocities. The impacts
were located at the point of contact, with playing the role thus approximated are referred tosmooth, althouglj(?) is

of the corresponding elastic constant. It is stressed that mdR@uired to be only continuous by (15b).

other penalty functions can be chosen in place of (12), eachBY comparing (13) with (10a)y;(¢) can be thought of as a
one vyielding a different approximate model. continuous piecewise smooth approximation of the piecewise

Since, owing to this penalization, the total potential energMooth Ai(%).
of the mechanical system 8, + U/;, one can consider
the action integral (5) withL, substituted byl,:=L, — C. Properties of the Penalty Method
Uy; assume that the path of motion corresponding to theThe aim of this section is to give sufficient conditions under
unconstrained statipnary value of the action integral (5) withhich the path of motion obtained by means of the method
L, substituted byL, tends to the actual path of motionof the penalty functions tends to the actual path of motion of
of the constrained mechanical system, as all the constaiis constrained mechanical system, as the penalization tends
ki, i =1,2,---,m, go to infinity (some sufficient conditionsto infinity.
for this property to be satisfied will be given later in this For the sake of simplicity, consider the case of a
section). Then, once sufficiently high values of the constanigle inequality constraintf(q) < 0 (i.e., m = 1). Let
ki,i=1,2,---,m, have been chosen, an approximation of thg;,}, A = 1,2,---, be a sequence of real numbers such
actual path of motion of the constrained mechanical system a@at lim;,— ., k,, = +oo and, for eachh > 1, such that
be computed by looking for the unconstrained stationary valig > 0, k41 > k;,. Define the following functionals:
of (5) with L, substituted by.,. The advantage of this method,

t2
as compared with the method of the Valentine variables, is that Alg() == — / Li(q(t), 4(¢), 1) dt, (16a)
in this case no Lagrange multipliers are to be introduced, as t1
well as no other auxiliary variables. The main drawback of p _]o, if f(¢) <0, 16b
the method of the penalty functions is the choice of the values ()= % (), if f(q)>0, (16D)
of constantsk;,i = 1,2,---,m, which is often carried out . to
through repeated trials, by taking greater values:ofip to Alq(-); k) :==A(q()) + k/ Pr(q(t))dt,  (16c)
the situation in which the corresponding path of motion does f1
not change significantly. with L,(g(t), 4(t),t) being defined as in (5). Our aim is to

It should be pointed out that the addition of the penaltfind an approximation of the stationary point af subject to
function will cause the conditioning of the problem of comthe inequality constraint, by looking for the stationary point
puting the stationary value of the action integral to be vewf the penalized functionald. For eachh > 1, assume



that the stationary poing;(-) of A(q(-); %) corresponds to

a minimum, as well as the stationary poipit(-) of A(q(-))

subject to the inequality constraint. A sufficient condition for

A(q(-); kx) to have a minimum is thati(¢(-); k) — +oo

as||g(")||z — oo, with ||g(-)||= being a suitable norm of
function ¢(-) over [t1,2]; similar sufficient condition can be

given for A(q(-)).

The following theorems can be easily stated and proven.
_Theorem 1:1f, for eachh > 1,q;(-) is a minimum of
A(q(-); k1), then the following inequalities are satisfied for

all h > 1:
A(gi(); k) < A(qh+1(-); k1) (17a)
/ Prge)dt> [ Prga@)de @7b)
AGO)) < Al () (17¢)

Proof: The following relations are obtained from the

definition of A(g(-); k), taking into account thatP;(q) >
0,vq € R™, and thatkh+1 >k,

A((];H ()i kny1)

to
= AGhar()) + ki / Pr(gins (1)) dt
t1

> Al () + En / PG (®)d (18)

Since

Algha () + Ea / Py (1)) dt

> Ag() + / " Prgi(t) dt

from (17b) we have

Algr41()) — Alan ()
ta t2
Zkh</t Pf(q;(t))dt_/t Pf(qzﬂ(t))dt)
>0
thus proving (17c). -
Theorem 2:

If ¢*(-) is @ minimum of A(¢(-)) subject to the inequality
constraintf(¢(t)) < 0,Vt € [t1,t0], and, for eacth > 1,4} ()
is a minimum of A(¢(-); k), then the following inequalities
are satisfied for alh > 1:

A" () = A(gi ()i k) = Algh()).

Proof: By the definition ofg*(-), we have f(¢*(¢)) <
0,Vt € [t1,t2], whence[{* P;(g*(t))dt = 0. This yields the
foIIowmg relations:

~ Alg* (- 3 Py(
Sinceg;(-) is a minimum of A(q(-); k1), one has (@"0) = )+ /1 sl
. . = A(q*( )i k)
Algn ()i kn) S A(gh 41 ()i k) R
> A(gi ()i k)
<A )+ b [ Py @) dr (09
2 AGO) + b [ Prtai) de
t1
Inequality (17a) is obtained by (18) and (19). > A(g ()
The following inequalities can be obtained taking into N '
account thatg:(-) is a minimum of A(q(-);ks) and that which complete the proof. O

q;41() is @ minimum of A(q(-); kn41):
i)+ | Pyla(t) it
SCMOLTY) " Prga(enar (20
Algias () +Fas [ 12 Py(gi (1)) dt
< Al () + b | PGy (200)
By adding (20a) and (20b), we obtain
(s =) | Py () dt
< (s — ) | UGy (@)

Inequality (17b) is obtained from (21) becausg.; —
ky, > 0.

The following theorem states the desired sufficient condi-
tions of convergence.

Theorem 3: Suppose, for eacth > 1, that ¢;(-) is a
minimum of A(q(-);k,) and thatg*(-) is a minimum of
A(q(")) subject to the inequality constraifi{q(t)) < 0,V¢ €
[t1,t2]. If A(g()) depends continuously aff-), then any limit
point of the sequencég;(-)},h =1,2,---, is a minimum of
A(g(+)) subject to the inequality constrairi{q(¢)) < 0,Vt €
[t1,ta].

Proof: Assume that the sequenge;(-)},h =1,2,---,
is convergent with limig(-) ash — +oc, otherwise consider

a convergent subsequence @f;(-)},~ = 1,2,---. By the
assumed continuity ofi(¢(-)), one has
lim A(q; () = Aa())- (22)

h—+

By Theorems 1 and 2, the sequen€d(qi(-);kn)},h =
1,2,---, is nondecreasing and bounded above Afy;*(-)),
whence

A*:= lim A(q, (); kn) < A(

Jlim o) @)



Subtracting (22) from (23), we obtain corner conditions (11) are satisfied biy(¢.),q(t.)) =
t (s1(te;pt, p?), s2(te; pt, p?)) for all the impact timeg,. € 7.
lim k‘h/ Pr(qi(t)) dt = A* — A(g(-)). (24) It is pointed out that, in general, the impact times depend on
limtoo t the initial condition, and the notation ; is only a shortening

1.2
H to * > > : — Of tC,i(p P )
Since J;; . Pf(q.h(t)) dt 2 tO’ Vh =, 1, andlimy, - yo0 kn Let C be the greatest subset gf x R™ such that for each
+o0, (24) yieldslim, .+ [;? Pr(gi(t)) dt = 0. Whence, by . .- . o N
g ! . initial condition (g(0),¢(07)) € C,X\(07) € R,%(0) =
the continuity of Py(g) and by the property’s(g) > 0,Vq € ~Fiq(0)),i = 1,2,--- system (26), under conditions
R™, we haveP;(g(t)) = 0,Vt € [t1,t2], which implies that W\\9),r = 5,870, SY '

: : . . o (11), has a unique solution upon the interj@)+oo). As
g;e;?sqﬂalété)constramf (a(#)) < O'is satisfied ovets, t] system (26), under conditions (11), is time-invariant, set

Since, by Theorem 2 Cis 'qonstltuted by half—.traje.ctoru.as of system (26), under
conditions (11), whence it is invariant.

A(q()) = ] lim A(g;(+) Assumption 2:Let C be nonempty and, in addition, for
e each initial condition(¢(0),§(07)) € C, X;(07) € R, v;(0) =
<A(q* (") —f:(q(0)),i = 1,2,---,m, the solution of system (26),

under conditions (11), is, in the variablég ¢), a continuous
function of the initial conditiongg(0), ¢(07)) € C at all times
different from the impact times.

with ¢*(-) being the minimum ofA(q(-)) subject to the
inequality constraintf(g(t)) < 0,Vt € [t1,t2], the limit point

g(-) is also a minimum ofA(q(-)) subject to the inequality ) ) - "
The following theorem gives sufficient conditions for the

constraintf(q(t)) < 0,Vt € [t1, t2].
Remark 1: Theorems 1-3 can be easily emended to de%qlutlon of system (26), under conditions (11), to exist, to be

with the case when, for eadh > 1,¢;(-) is a maximum of unique, and to be, in the variablég ¢), a continuous function
A(g(-); k1) andg*(+) is @ maximum ofA(q(-)) subject to the g:ntgs initial conditions at all times different from the impact
inequality constrainy(¢(#)) < 0,V¢ € 1, f2]. Theorem 4: Suppose thaB is the greatest subset gfx R™
such that (26), with\;,i = 1,2,---,m, being constant, has
a unique solution(g(¢), 4(¢)),t € [0, 4+o0), for all the initial
Assume that the generalized coordinates that are actuatedditions((0),3(07)) € B; in addition, suppose that such
by u(t) are the only coordinates available for feedback (they solution is a continuous function of the initial conditions
are the so-calledatural outputs), as well as their time deriva{q(0), ¢(07)) € B, at all timest € [0, +o0). Denoting byd.A
tives, y(t) := ETq(t) andy(t) := ET¢(t). First, consider the the boundary ofA, suppose that the Erdmann—Weierstrass

I1l. CONTROL OF NONSMOOTH IMPACTS

following “derivative” control law: corner conditions (11) admit a unique solutigift}) =
_ : a(q(te),q(tz)) for all (q(tc),q(t7)) € 9A x R™, with
u(t) = —K.u(t) (25 4(.,-) being a suitable function. Define sétas the union

where K, is a positive definite square matrix of dimension§f (4 — ‘9“4) x R") N B ‘:}Vith the set constiQtuted b31’ a|2| the
» x p. System (10), under the control law (25), becomes POINts (' P ?) € (0A x R") N B such thatp® = a(p!, p?).
Let (pt,p?) € C; if the impact timest.,;(p',p?) €
d BL _ T [0, +00),t.;(p",p )<tcj7;+1(p1,p2),i = 1,2,---, form a
Z)‘ Ji(e) = -EK.E"q, (26a) set of null measure andim; . i.ot.:(p*,p?) = +oo,
) then system (26), under the Erdmann—-Weierstrass corner
2%k =0, 0=1,2,--,m, conditions (11), has a unique solutiofy(t),q(t)) =
(26b)  (s1(t;pt, p?), s2(t;pr,p%)) over [0,4+00) from the initial
JE(q)q + 274 =0, i=1,2-,m. condition (¢(0), ¢(07)) = (p*, p?). In addition, if the impact
times ¢.;(pt,p?) € [0,4+o0),i = 1,2,---, are continuous
(26¢) > 76 U oo ; . )
functions of (p*,p*) in C and function«(-,-) is continuous
The Erdmann—Weierstrass corner conditions (11) remain uR-9.4 x R™, then (s1(t;p', p?), s2(t; p', p?)) are continuous

changed. functions of (p',p?) in C for all t € [0,+00),t # te;,i =
An integral curve for system (26), under conditiong,2, . _ _
(11), with initial condition (¢(0),4(07)) € A x R™,v;(0) Proof: By assumption, system (26) has a unique solu-

= /= fi(q(0)),i = 1,2,---,m, is a mapping(sy(-; p!,p?), tion (¢L(t),(L(t)) e B starting from the initial condition
s2(5php2): [0,T) — A x R* (with T € R, T > 0, and, (4(0),4(07)) = (p*,p?) up to the first impact time. (p*, p*);
possibly, T = +400) such that(s;(t;p', p?), so(t;p',p?)) by assumption, such a solution is a continuous function of
is differentiable with respect to time almost everywher&',p®). Then, (¢*(t),¢*(t)) = (¢*(t),¢*(¢t)) is the unique
(51(075p%, p%), 52(07;04,p%) = (p*,p?), the impact solution of system (26), under the Erdmann—Weierstrass cor-
times t.; € [0,7),teiq1>teii = 1,2,---, at which ner conditions (11), over the intervdd,t. 1), with .1 =
(s1(t;p*,p%), s2(t; p*,p?)) is not differentiable with respect t.(p*, p*) and, for eacht € [0,t.,), itis a continuous function

to time form a sef/. of null measure, the differential equations@f (p*,p?). _

(26) are satisfied byg(t), 4(t)) = (s1(t:p", p), s2(t;p',p?)) By construction, (CH(te0), (1)) € (A x RY) NB

for all ¢ € [0,7) — 7., and the Erdmann-Weierstrasaand (¢'(t.1), @(¢'(t.1),¢ (t.1))) € C. By assumption,



system (26) has a unique solutioft2(t),¢2(t)) € B )\in being nonnegative, = 1,2, ---,m; assume, in addition,
starting from the initial condition (¢(t.1), q(¢t = thatgg is not an isolated point off and that(qg,0) € C.

; c,1
(Cl(tc,l),a(Cl(tc,l),él(tgl))) up to the first impact Remark 2:For arbitrarily fixed initial values of the La-
time  .((C(te1), aCL(te 1)751(%—1))); by assumption, grange multipliersA;(07),¢ = 1,2,---,m, Assumption 3
such a squtié)n is a éontinuohs function @f¢t(t. 1) implies that (26), under conditions (11), has a unique solution
(¢ (te,1), CH(t-1)))- Then, by the uniqueness of the solutiofVith ¢, A; and %;,< = 1,2,---,m, being constant. Unfortu-

of the Erdmann-Weierstrass corner conditions (11), ifpately, such solutions are not asymptotically stable, in the
function defined by usual sense, since different initial conditions for the Lagrange

multipliers \;(07),¢ = 1,2,.--,m, yield different solutions
(), P 1) = (€' (1), ¢'(®), tel0te), that do not converge toward each other (there exists a manifold
’ (C3(t), (1)), t€[tersteo), of fixed points). A possible solution to this problem could be

. . . o consider);(¢) as one of the state variables of system (26)
is the unique solution of system (26), under the Erg-

. it he | nstead of); (¢). With this position, Assumption 3 implies that
mann-Weierstrass corner conditions (11), over the mterv&};tem (26), under conditions (11), has a unique equilibrium

; _ 1 1 Lis— _ ) )
[O(;(tj?f?)’ V\gth tﬁc,Q _t_tc((c (t}zl),a(C (ti,l)éC (tcal)l))). tlr? PoINt ¢ = gr.d = O,h = Migw = V—filar)i =
addition, by the continuity o et On (p,p") and by the 3 5 " .\ Unfortunately, iff;(¢r) = O for at least one index
continuity of lfun2ct|on al-,-), (¢°(#),¢°(2)) is @ continuous ;11 9 ... 1 then such an equilibrium point cannot be
function of (p,p°) for all ¢ € [0,2.2),¢ # .1 (note that gaphie in the usual sense. As a matter of fact, for any real
if ¢ # 1.1, then there exists a neighborhood fothat does ,,mper.~ 0, consider the solution of (26), under conditions
not containt1). _ _ (11), starting from the initial conditiog(0~) = ¢g, ¢(0~) =
Proceeding by induction, by construction, one has thaf (07 = Nrov(07) = V/—filgr)yi = 1,2,---,m
(€ (fen), (1)) € (DAXR™NB and(C* (Fe,n), ¢ (fen):  \wherew € R™,v # 0, is a vector such thatiZ (gr)v >0
¢"(t7,))) € C; by assumption, system (26) has a uniqugyr at least one index € {1,2,---,m} for which f;(¢x) = 0
solution (¢"*1(¢),("+1(¢)) € B starting from the initial (such av can always be found). The choice ofimplies the
condition (q(te.n), §(t;,,)) = (¢"(ten), (¢ (ten), CH(t5,,)))  existence of a jumpj(0F) — ¢(07) # 0 of the generalized
up to the first impact time,.((¢" (t..1), (¢ (ten), C"(t,,,)));  Velocities, which implies a jump;(07) — A;(07) # 0 of at
by assumption, such a solution is a continuous function tfast theith Lagrange multiplier; this implies an impulse (in
((C"(tc,h),a(C"(tc,h),C"(t;h)))- Then, by the uniqueness ofthe dlstr!butlon sense)_(_m(_t), for _anys>0,_wh|ch prev_er}t_s
the solution of the Erdmann-Weierstrass corner conditiofte stability of the equilibrium point. Certainly, the definition

(11), the function defined by of stability could be properly modified to take into account the
- ot presence of impulses due #q(¢), but the following results
q g will be given with respect to the usual definitions of stability
("), " (1) Il b h h | def f stabil
I ECROREO)! t € 0,80, [37]. O
LML), ), t € [ten, tentl), Assumption 4:Under Assumption 3, there exist two real

numbersa, @, with 0 < a < @< 400, such that the following

is the wunique solution of system (26), under thf‘nequalities hold in the whole (i.e., for ajl € A):
Erdmann—-Weierstrass corner conditions (11), over the interval

[0, e prn)y With topss = to((C(ten), (P (ten), CH(EL,)))- salla—arll* U@ - Ulgr) < salle - arl®  (28)

Inaddition, by the continuity oft.;.i = 1,2.---.h \yhere||.|| is the Euclidean norm of the vectoat argument.

on (Plahpjl) ?QSI by ~the continuity of function  pemark 3: Assumption 4 implies thay = g¢x is a global
(), (" (1), g7 (1)) Is & continuous function  of minimum of U(¢) upon A. If gz is an interior point ofA,
(p*p7) forall € [0,fc i)t # teii = 1,2, h (N0 thon (977(q)/0g)|,—y, = O and, by (27a) and by taking
that if ¢ # ¢.,;, then there exists a neighborhood wthat into account that the gradient vectafs(q), J,(q), - - . Jx(q)

does not contairt..,;). o have been assumed to be linearly independent for the indexes
In this manner, by the assumptidilm; ;. t.; = 400, j hy -k such thatf;(q) = 0, fu(q) = 0, fi(q) = 0,

the solution can be extended to all [6f +o¢), also showing éne hashi g = 0,i = 1,2,---.m, whereas ifgr belongs
N 9 Pib} 9 9

i inui i 12
its continuity with respect tdp', p*) for all ¢ except for the to the boundaryd.A of A, then (9U(g)/dg)|y=g, May be

impact times. diff ‘ .
. . . . . erent from zero, as well as the correspondihgg,i =
Assumption 3:The following algebraic equations in the b y

) ) 1,2,---,m. It is stressed that Assumption 4 implies the
unknown variablesy, Ai, vi, i = 1,2, -, m: positive definiteness d(q) — U(qr) aboutgr upon A, but
oU . not necessarily upon the whol*; in particular, if the latter
a0 T > Aidilg) =0 (27a) property were true, thefdU(q)/0q)|q=q, Would be equal to
i=1 ) zero, with the corresponding r,¢ = 1,2, -- -, m, being zero,
’yi)\i =0, 1= 1,2,---,m, (27b) as well. O

v+ fi(q) =0, i=1,2,---.m, (27c) It is important to stress that the Lyapunov stability of a
] ] particular class of mechanical systems subject to inequality
have a unique solutiong = ¢gr,A; = M.r, 7 = constraints has been studied in [38] when the potential en-
virn=+v—filgr),i = 1,2,---,m, with gz € A and ergy has a minimum in correspondence of the equilibrium



point; sufficient conditions are given in [38, Th. 1] for thes®,¢ = 1,2, -- -, m, for which the solution exists and is unique.
mechanical systems to be Lyapunov stable in the simplifiéal the remainder of the proof, even though not explicitly
case of equilibrium points located upon the surface of contantentioned, it will be assumed that, for agy0) € A, the
with the relative reaction force being zero, under the additioniaitial conditions of the Valentine variables are taken such that

assumption that during an impact there is no loss of energy(0) = /—f:(¢(0)),i = 1,2,---,m
The assumption of zero exchanged force at the point of contacConsider
(which is not made in this paper, as well as the one regarding Vg, d):=T(q,d) + U(q) — Ulqn) (30)

the loss of energy at the impact times) renders difficult the
application of this result in any task involving exchange ofthich is a positive definite function ofg,§) € C about
forces among parts of the mechanical systems or with thgr,0), by Assumptions 1, 3, and 4 (note that is only
external environment. A technique for the verification of tha positive semidefinite function of,q, A;,i = 1,2,---,m,
sufficient conditions given in [38] for such mechanical systen@out gr,0. \; r,¢ = 1,2.---,m). It is stressed that the
to be Lyapunov stable has been proposed in [39]. Erdmann-Weierstrass corner condition (11a) implies that
Theorem 5:Under Assumptions 1-4, if the mechanical (¢(t), ¢(t)) is a continuous, piecewise smooth function:of
system under consideration is fully actuated (i.e.pi= n The total time derivative o}’ (¢(t),¢(¢)) along the solutions
and £ = I), then the following properties are satisfied. of (26), under conditions (11), is
1) For each real numbere>0, there exists a . .
real number §>0 such that for every initial V(2(t),d(t7)) =—¢" (¢ )Kuq(t™) + > Nt (a(t))
condition (¢(0),4(07)) € C,A(07) € R,%(0) = ‘

—fi(q(0)),i = 1,2,---,m, satisfying||q(0)—qrl| < () (31a)
and ||g(07)|| < 6, the corresponding solutiog(t), §(t) . ) ) ) LA,
of (26a), under conditions (11), is such that V(a(t),d(t")) =—¢" (") K.q(t") +Z)‘i(t+)JiT(q(t))
la(t) — arll<e and ||g(t7)l| <& [|(tT)l|<e for . =
all times¢ > 0. q(tT). (31b)

2) For each real numbef >0, with 6 being ‘artiitrarily Multiplying both sides of (26c), rewritten with = 7, by
large, and for any initial conditior(¢(0),4(07)) € X,(7) and taking the limit of the resulting expression for

C.2(07) € R,%i(0) = /= fi(q(0)),¢ = 1,2,---.m, + 4= andr — t+, respectively, by (26b) and (11c), it is

safisfying|[(0) — ¢r|| <é and||¢(0™)|| < é, the corre- easy to see thak,(t)JF (¢(t))d(t~) = 0 (and, respectively,

sponding solutlon]( ) 4(8), A1), vi(t) = V=fia(®)), X, () JF (g(2))d(¢+) = 0), for all timest (p055|bly coincident

i =1,2,---,m, of (26), under conditions (11), is SuchW|th the impact times) and for afl € {1,2,---,m}, whence

that that (31) can be recast as follows for all times

Jimlg(t) — gzl =0 (29a) Vig(t),q(t7)) = =7 (t ) Kui(t™) (32a)
im {lg(7)]| =0 (29b) V(g(®),q(t")) = —¢" (7)) K.q(t™) (32b)
lim ||g(tH)|| =0 (29c) Which are semidefinite negative functions @f(t), (7)),

oo (q(t),4(t*)) € C about(gg,0).

Jim IN(t7) = Xgrl|=0, i=1,2,---,m, (29d)  For each real number> 0, defines(§) as thelimit superior

i Coy . of V(g,q¢) for (¢,¢) € C such that|lg — ¢qr|| < 6 and
Jim (AT = Aigll =0, 0=1,2,---,m. (29€) 14| < 5, which is finite by the continuity of’(g,q) with
respect to(q, ¢) € C and by the compactness of the domain
‘chosen inC. For each real numbefr> 0, there exists a real
number § >0 such thats(6) < 3 mln(a b)e?. This § can
always be found becausgmin (a, b)e? is posmve and3(6)
tends to zero a8 goes to zero. Suppose th@t0),¢(07)) €
C,119(0) —qrl| < éand|[¢(07)]] < é; then,V(¢(0), 4(07)) <
B(8) < 5 min (a,b)e?. But, by (32), sinceV(q(t),(t™)) <
0,V (g(t),¢(tT)) < 0 for all timest > 0, by the continuity of
(¢(t), ¢(t)) with respect to time, it follows that

Proof: First of all, note that all the solutions of (26),
under conditions (11), in the variableg¢) and q‘(t) are
independent of the initial conditions;(0~),¢ = 1,2, -
chosen for the Lagrange multipliers. In the foIIowmg
denote by (s1(t;p!,p?), s2(¢;pt, p?)) the solution of (26),
under conditions (11), in the variablds, ¢), starting from
the initial conditions (q(O),q‘(O—)) = (p ,p%),7(0) =

—filph),i = 1,2,---,m, with (p',p*) € C; some-
times, the shortening(q() 4(t)) will be used mstead of V
(s1(£(0),4(07)), >(t: ¢(0), 4(07))). It is pointed out that — V(g(t),()) < V(¢(0),d(07))
at the impact timesthQ(_t) = s2(t;4(0),¢(07)) is not <1 min (g, b)e?, Vt e R,t> 0. (33)
defined, and only the limitg(¢_) and ¢(¢}) have meaning.

By Assumption 2, at each time different from an impact ~ Now, taking into account Assumptions 1, 3, and 4

time, s1(¢;pt, p?) and so(t;p*,p?) are continuous functions Vig(®),d(t)) > L allg(®) — gl + L bllat )| 2

of (p',p?) € C. It is stressed again that, by (26c) and ’ - VicR >0 2 7 34
Assumption 2, ifg(0) € A and v;(0) = /—f:(q(0)),i = s €k et 2( 3)
1,2,---,m, thenq(t) € A for all timest > 0, for all the Via(®),4(t™) = 5 alla(®) — grll” + 3 llaEII%,

values of the other initial conditiong(0~) € R™, \,(07) € YVt eR,t > 0. (34b)



Inequalities (33) and (34) together imply that Such an index exists becaugg, p?) tends to(p*, p?) as index
llg(®) — g2 < VEeR.t> 0 1 goes to infinity. Secondly, choose a time 7" such that
— 4R = ’ y U

gt )P <&, VteR,t>0

L_ )< = 2 _ a7)|| < £ 37
(D2 <22, VEER.E> 0 llp; — a(®)]] 5 lp; — (™)l 2 (37)

which, taking the square root, prove item 1) of the theorem

. . 5 o )
For each real number> 0, consider the set Such atime exists becauge, p;) € A(¢(0), ¢(07)). Inequal

ities (36) and (37) together yield (35), namely the closure of
Qv(e):={(g,9) €C: V(g;9) < ¢} A(q(0),4(07)).

_ Now, define the distancel((r,r?), A(q(0),3(07))) be-
and define thdevel setly-(c) as the connected component ofeen a point(rt,72) € C and the nonempty, closed, and

Qy(c) containing the poin{qr,0) of C. By Assumptions 1, pounded setr(g(0), ¢(07)) as follows:

3, and 4,V(q, ¢) is a radially unbounded function df, ¢),

whence sety (¢) is bounded, as well ady(c), for any L o o

real numberc > 0. Since the time behavior dfg(t), ¢(t)) is d((r”,77), A(¢(0),4(07)))

independent of the initial conditions chosen for the Lagrange = min (maX(HTl —p1||7 ||7‘2 —P2||))
. . L (*,p*)CA(q(0),4(07))

multipliers, by a reasoning similar to the one used for the 38

proof of item 1) of the theorem, it is easy to see that if (38)

(4(0),4(07)) € Ly(c), then (q(t).q(+7)), (a(t),i(th)) € | ,

Ly(c) for all timest > 0. For each(q(0),4(07)) € Ly(c), a where|| - || is the Euclidean norm of the vectoat argument;

point (p*, p?) € C is alimit point of (g(t), ¢(t)) if there exists such a minimum exists (whenek(r*, %), A(g(0), g(07))) is

a sequence{t tien Of timest; (possibly coincident with the well defined) becaus&(g(0), ¢(07)) i |s nonempty, closed, and

impact times) such that bounded, by the continuity of the Euclidean norm.
. _ For each(g(0),¢(0~)) € Ly (c), taking into account that
(dm =00 (¢(t),4(t)) is bounded, then
Jim g(ts) =p*
hgl q(t ) :p2. tllgloo d(( ( ) Q(t ))7A((J(0)7(J(0 ))) =0. (39)

For each(¢(0),4(07)) € Lyv(c), the set constituted by all As a matter of fact, if (39) is false, then there exists a real
the limit points of (¢(¢),4(t)) is called the limit set of numbere >0 and a sequencét;};en Of timest; (possibly
(q(t),4(t)) and is denoted hereafter By(q(0), ¢(07)). Now, coincident with the impact times) approaching infinity as index
some properties oA(g(0),¢(0)) are stated and proven. 4 goes to infinity, such that

Since, for each¢(0),4(0™)) € Ly (c), the corresponding
solution (¢(t), ¢(t)) belongs toLy (¢) (whence it is bounded) N i - .
for all t(in(1e)s t( ))2 0, then thé )corresponding limit set dalts) 4(t)), Ma(0),4(07) z e, VieN.  (40)
A(g(0),4(07)) is: 1) nonempty; 2) bounded; and 3) closed,
as shown in the following. However, since the sequencé(q(ti),q(t;))}ien IS

As for 1), since(q(t),4(t)) is bounded, then for any se-bounded, it contains a convergent subsequence, whose
quence{t; }ien of timest; (possibly coincident with the impact limit must belong to A(¢(0), ¢(07)) by definition, which
times) approaching-oo asi goes to infinity, the correspondingis contradiction of (40). As a consequence, (39) holds.
sequence (q(#;), 4(7)) }ien is bounded, whence it contains a Finally, for each (q(0),¢(07)) € Ly(c), taking
convergent subsequence. By the definitiom\¢§(0), ¢(0~)), into account that (q(¢),q(t)) is bounded, for any
the limit of this convergent subsequence must belong (6(0),d(07)) € A(q(0),4(07)), then the corresponding
A(q(0), 4(07)), which is, therefore, nonempty. solution (4(t), 4()) = (s1(#;4(0),4(07)), 52(#; G(0), 4(07)))

t

As for 2), the boundedness af(¢(0), 4(0~)) follows triv- satisfies (4(t),4(t7)), (a(®),qa(t*)) €  A(g(0),4(07))
ially by the boundedness df(t), §(t)). for all times ¢ > 0. As a matter of fact, since

As for 3), let {(p},p?)}icny be a sequence of points of(4(0),4(07)) € A(g(0),¢(07)), there exists a sequence
A(q(0),4(07)) converging topt, p?) € C; for A(g(0),¢(07)) {t;}ien Of times ¢; (possibly coincident with the impact
to be closed, it must be shown that , p?) € A(g(0),§(07)). times) approaching infinity as indexgoes to infinity, such
Let the real numbers >0 and 7’ < +co be arbitrary; a time that

t > T (possibly coincident with an impact time) must be found

such that the following relations hold for such:a  Lim s1(ti3(0),4(07)) = ¢(0)
lp" —a@®ll<e,  Ip* =)l <e. (35) Jim sx(ti;4(0),4(07)) =¢(07)

First, choose an index such that

Then, by the continuity o (¢;p',p?), s1(¢;p', p?) with re-

1 1 € 2 2 €
—pill <=, —-pill<=. 36 . . .
" = pill 2 [lp” = pill 2 (36) spect to(pt,p?) € C, for an arbitrary timer > 0 (different
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from an impact time) 0 identically, then for any(¢(0),4(07)) € Ly (c) and for
. ) . L . L any \;,(07) € R,é = 1,2,---,m, the corresponding solution
A s (r st (0), 6(07), 52(t:3.9(0), 4(07)) 9(0), 45, (B, 3i(t) = /= Fla®)i = 1,2, m,t €
— sl(r;@(o),é(o—)) R,¢t > 0, of (26), under conditions (11), is, by the previous
Y reasoning and by (1l1a), such that (29) holds. The proof
- B o of item 2) of the theorem is completed by observing that
Jms2(73 8183 (0), 4(07)), 52(%:3 4(0), 4(07)) (4(0),4(07)) € C,1[a(0) — grl| < § and|[¢(0~)|| < & imply
B e i (¢(0),4(07)) € Ly(c), if one takesc > 1 (@ + b)62. O
o ‘jQ(T’ 4(0),4(07)) With a little abuse of terminology, property 1) of Theorem 5
= q(m). states the “stability” of the solution of (26), under conditions

Since s;, s, are independent of the initial time and of thd11). With reference only to the componen§) and q(t),
initial conditions chosen for the Lagrange multipliers, one hé{ghereas property 2) of Theorem 5 states the “global attractiv-

(by taking the limit forr — ¢7) ity” of such a solution as expressed by (29) (note that (29d)
and (29e) do not imply thdfA;(t) — \; grt|| — 0 ast — +o0).
s1(t; s1(t:59(0),4(07)), s2(t:34(0), ¢(07))) Remark 4: Assumptions 3 and 4 can be weakened by
= s1(t +t;;¢(0),4(07)) requiring that the algebraic equations (27) have an isolated
= q(t+1)), (instead of unique) solutiory = gr,A\i = A gr,v =
_ Lo L —filgr),t = 1,2,---,m, with gg € A and \; g being
s2(t7;51(:5¢(0),4(07)), s2(ti5 ¢(0), 4(07))) nonnegative; = 1,2,---,m, and that inequalities (28) hold
= s2((t +¢:) 54(0),4(07)) forall g € £ c A with & = Dn A andD c R™ being
=q((t+t)7). a sufficiently small neighborhood af = ¢ (instead of the

. ] . whole 4); Assumption 4 can be weakened further by using
Such relationships show the existence of a sequéndécn  some other comparison functions(r) instead ofr2. Then,
of timesT; :=t+1, (possibly coincident with the impact times)Theorem 5 still holds under the Assumptions 3 and 4 thus

approaching infinity as indexgoes to infinity, such that  \eakened if, in item 1) of the theorem, the phrase “for each

lim g(r) =§(t) real numbers > 0, with 6 being arbitrarily large,” is replaced
1o ] by the phrase “there exists a sufficiently small real number
11:31 q(m,) =q(t™) 8> 0.” The proof of the theorem thus modified is pretty much
e the same as the proof of Theorem 5, and is omitted for the
which show that(g(t),4(t™)) € A(q(0),¢(07)) for all sake of brevity. O
times ¢ > 0; since lim,_.+ g(v—) = ¢(*), the prop- Remark 5: The mechanical system so far considered has

erty (4(t),4(t7)) € A(q(0),4(07)) and the fact that been assumed to be subject to conservative forces (the forces
A(g(0),¢(07)) is closed imply(§(t), G(t)) € A(g(0),¢(0~)) that can be derived from a potential energy), control forces,
as to be proven. and reaction forces due to the inequality constraints. In reality,
_ Consider now what happens to functibifq(t), 4(t)). Since all the mechanical systems have always inherent damping.
Vig(t),q(t™)) < 0 and V(g(t), ¢(tt)) < 0 for all times Nevertheless, all the previous analysis is still valid. As a matter
t >0 (i.e., sinceV (q(t),(t ")) andV(q(t), ¢(t7)) have con- of fact, the presence of internal damping will, in general,
stant nonpositive sign for all times), the nonnegative functigmprove the performance of the derivative control law (25),
V(q(t),4(t)) is monotonic and has a definite limit as time with respect to stability. In all the cases in which the damping
goes to infinity; in additiony (¢(¢), ¢(t7)) andV (g(t), ¢(t*)) is to be considered, it is possible to add to the Euler-Lagrange
tend to zero as time goes to infinity, at least almost every-equation (10a) a dissipation teréif2(¢)/9¢, obtaining

where. For eackig(0),4¢(07)) € Ly (c), let (p*, p?) be a point .

of A(q(0),4(07)). Then, by definition, there exists a sequence d oL aL Z)‘ Ji(g aR( ) _ gy,

{t: }:cry OF timest; (possibly coincident with the impact times) dt 8q 94

approaching infinity as index goes to infinity, such that

lim g(t;) =p" where R(q) is the Rayleigh dissipation functiof833], which
i—too T is a positive semidefinite function of. The corresponding
lim g(t7) =p? (26a) becomes (for fully actuated mechanical systems, i.e., for
| imteo p=nandE = I)
Jim Vig(t:).i(t;) =0. "
4L _OL S gy = - 2D e ()

By the continuity ofV(q, g) with respect to(q,q) € C, dt 3¢  Jq ~ aq
one hasV(p',p?) = 0; the arbitrariness of(p',p?) €
A(q(0),¢(07)) shows thati’(g,¢) = 0 along A(q(0), §(07)). If the dissipation tern®R(q)/dq is proportional to the gener-

alized velocityq (i.e., if (3R(q)/3q) = Dq, with D being a
n-dimensional positive semidefinite square matrix), then (41)
is equal to (26a) with the positive definite square mafkix
substituted by the positive definite square matix + D.

Since, by Assumptions 1-4(t) = qr,q(t) = 0, \i(t)
)‘i,Rt + )‘i(o_)77i(t) = _fi(q}?)vi = 12, ,mt
R,¢ > 0, are (for arbitrary);(07) € R, = 1,2,---,m) the
only solutions of (26), under conditions (11), for whigtit)

hgml
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Whence, Theorem 5 still holds in case of such an internahere K, is a positive definite square matrix andis the
dissipation. O vector of the new control forces. Also in this case, (10a), under
Remark 6: Theorem 5 gives a tool for the control ofcontrol law (44), can be rewritten as in (43) with=7"— U
nonsmooth impacts in mechanical systems, by the derivatiaed U7 := U/ + %qTEKpETq. Since E # I when p<n,
control law (25), provided that such mechanical systems atee square matri? K, X is only semidefinite positive, and
fully actuated (i.e., wherp = n and £ = I). Such an Assumptions 3 and 4 are not necessarily true, Witly) being
assumption is sufficient to show tha(t) = g¢r,§(t) = replaced byU(q). However, if they hold and Remark 6 can be
0, }\i(t) = }\@R,%(t) = /—filgr),i = 1,2,---,m, is the applied, then a properly modified version of Theorem 5 can be
only solution of system (26), under conditions (11), such thapplied also in this case to prove the “stability” @f(¢), ¢(¢))
¢ (t)EK,ET§(t) = 0 identically, but of course it is not nec- as stated at item 1), and the “global attractivity” of the solution
essary. Theorem 5 still holds for the general casen if the ¢(t) = qr,¢(t) = 0, \(t) = A\ g, v:(t) = /—filgr),¢ =
phrase “if the mechanical system under consideration is fully2,---,m, as stated at item 2), when the further derivative
actuated (i.e., ip = n» and E = I),” is replaced by the phrasefeedback control lawi = — K, E* ¢(t), with K, being definite
“if system (26), under conditions (11), ha&) = gr,¢(t) = positive, is used. O
0, \i(t) = Nir,vi(t) = V/—filar),i = 1,2,---,m, as the ~ Remark 8:In the simplest case of two bodies colliding
only solution such thag? (t)FK,E*§(t) = 0 identically.” along the common line connecting their centers of mass, the
The proof of the theorem thus modified is exactly the same egefficient of restitutiorwas defined by Newton as the ratio

the proof of Theorem 5. O between the relative velocity of the two impacting bodies after
Remark 7: 1t is stressed that Assumption 4 requires thahe impact time and the relative velocity of the two impacting
g = qgr is a minimum (at least local, in its weakenedodies just prior the impact time. However, for more general

version) ofU(q) upon A, which, in general, may not be true.mechanical systems subject to (possible, multiple) impacts, it
Nevertheless, Theorem 5 can be applied for the control isfmost convenient to regard the coefficients of restitution (each
nonsmooth impacts in general mechanical systems, providete for each possible type of impact) as energy-loss func-
that a preliminary feedback control law from the natural outions, since all the impacts are basically processes involving
puts is applied to the mechanical system under consideratienergy exchange and energy transformation. In particular, if
Suppose thap = n; in such a case, the natural outputs T(q(t.),q(t;)) andT(q(t.), ¢(tT)), with T(q(t.), ¢(t>)) # 0
coincide with the generalized coordinatgsLet U/(q) be a andT'(q(t.),¢(t})) < T(q(t.),4(t7)), are the kinetic energies
function such that Assumptions 2—4 hold with(¢) replaced immediately before and after the impact timedue to the

by f](q). Then, consider the following preliminary feedbacksoleith constraint, the coefficient of restitution(¢.) can be
control law: defined as follows:

w2V _ U 42) (k) = T(q(t.), 4(t1))

g dq T(q(te), 4(tz))

where is the vector of the new control forces. Taking intdgy jts definition, each coefficient of restitution is nonnegative
account thatl, = 1" — U, (10a), under control law (42), canand less than or equal to one. When there is a collision between
be rewritten as follows (remember that the assumpfiean  parts of a mechanical system, a portion of the original kinetic

implies £ = I): energy is converted in strain energy within the impacting
dol ol I ) parts. Subsequently, some fraction of the strain energy is
— = — 7+ Z Xidi(q) = Eu (43) reconverted back into the kinetic energy of the impacting parts,
dt 8¢ Jq 4 . - L
i=1 whereas the remainder of the energy is trapped within the

wherel, := T— {7, whereas (10b) and (10c) remain unCh(,j“,]gegpechanical system in the form of exciting various modes of
) ; ibration and/or is dissipated as energy of plastic deformation.

Equations (43), (10b), and (10c), under conditions (11), can% ficient of Gitution | I dto b
regarded as the Euler-Lagrange equations of a new mechan coeflicient of restitution 1S-commonly assumed 1o be

system havindgl’ as kinetic energy[/ as potential energy, constant and eq.ual o one (gs in the previous part of this
and @ as the vector of the control forces, subject to th@aper), although Its magmtude IS dependent upon the geometry
inequality constraints'(g) < 0. Since Assumption 14 hold of the bodles_lnvolved m_the impact, upon the presence or
for such a mechanical system, Theorem 5 can be applied%sence of slip at the point of contact, upon the duration of

prove the “stability” of (¢(¢), 4(¢)) as stated in item 1), and the |mpact_, as well as upon some basic material |_oropert|e_s
the “global attractivity” of the solutiong(t) = qr,q(t) = of the bodies, such as Young modulus, mass density, elastic

0, M) = A o 7s(t) = /—Filqr)si = 1,2, -, m, as stated limits, etc. For instance, as for compact bodies such as spheres,
in item 2), when the further derivative feedback control Ia\xpe. portion of kll’le.tIC energy IO.St because of ex0|tat.|on of
i = —K,q(#), with K, being definite positive, is used various modes of vibration is quite small; for such bodies the

If the ’rbﬁecr;anical sglstem is not fully actuat'ed (e kfn coefficient of restitution is primarily controlled by the plastic
and E # I), then the term(dU(q)/dq) cannot bé gxactly deformation about the point of contact and by the friction
compensated by feedback as in (42). In such a case, inst ét(tjm the |r_npa§:t|ng .bOd'eS' As both such phe_nomena are, in
of (42), consider a linear feedback from the natural outputs'rSt approximation, linearly dependent on the impact relative

' velocity, the coefficient of restitution corresponding to ke

u=—-K,ET q+1u (44) constraint can be taken as follows (for sufficiently small values
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of ||g(¢7)|]) for all timest (possibly coincident with the impact  Assumption 5:For each initial conditiory(0) € R™, ¢(0) €

times): R™, system (47) has a unique solution upon the interval
. [0,4+00), which is a continuous function dfy(0), ¢(0)).
1, !f Jila(t)) < - 3 Reference [44, Ths. 2.4.25 and 2.4.57] can be used for
e(t) = 1, i f}(q(t)) = 0 and J; (g(1))q(t7) < 0, checking if Assumption 5 holds.
1- _ci'] (a(®))a(t), - Assumption 6:The following algebraic equation in the un-
if fi(q(t)) =0 and Ji (q(t))d(t")>0, known variableg:
(45)
aU -
where ¢; is a nonnegative real number. Then, the Erd- Zm i(q) =0 (48)

mann—Weierstrass corner condition (11a) must be modified

properly to take into account the coefficients of restitution With 7; given by (14), has a unique solutign= gr.
Assumption 7:Under Assumption 6, there exist two real

numbersa, @, with 0 < a < @< 400, such that the following

m

34" (1) B(q(t))a(ts) [[leg(tc) inequalities hold in the whole (i.e., for al € R™):
= 5¢" (tD)B(q(t.)q(th). (46) 5 allg — qrl|* <U(q) — Ulqr) + Us(q) — Us(qr)
<iallq— gl (49)

Although (46) does not imply any longer the continuity of

V(q(t),q(t)) with respect to all times, sincell’™, ¢?(t.) < where||-|| is the Euclidean norm of the vectoat argument.

1 by (45) for small values of||q( |l, the condition Remark 10: Assumption 7 implies thag = gr is a global

Vig(t.),qth)) < Vi(q(t.),q(ts)) [owing to (45) and minimum of U(q) + Us(gq) upon R™. If ¢g is such that

(46)], together with (32), implies that inequalities (33)(gr) < 0, thenU;(gr) = 0 andg = gg is a global minimum

are satisfied, whence Theorem 5 still holds locally if thefthe solel/(¢) uponR™, whence(al/(q)/9q)|,=q,, = 0; this,

Erdmann—Weierstrass corner condition (11a) is substituteyg (14) and (48), implies that the; z given by (14), withg

by (46), i.e., if the coefficients of restitution are taken intbeing substituted byg, is equal to zero: = 1,2,---,m),

account. Coefficients of restitution more general than (45) amhereas ifgr is such thatf;(qr) > 0 for at least one index,

to be used to deal with the global version of Theorem Bl  then(dU(q)/3q)|,=,, May be different from zero, as well as
Remark 9: It is stressed that Theorem 4 (which giveshe corresponding; g, =1,2,---,m. O

sufficient conditions for the solution of system (26), under Theorem 6: Under Assumptions 1, 5, 6, and 7, if the

the Erdmann—Weierstrass corner conditions (11), to exist amgchanical system under consideration is fully actuated (i.e.,

to be continuously dependent on the initial conditions) cannibtp = » and E = I), then the solutior{q(¢) = gqr, ¢(t) = 0)

be applied when some of the coefficients of restitution are lesk(47) is globally asymptotically stable.

than one. In particular, it seems that Theorem 4 cannot be Proof: Consider

easily amended to cover this case, for two different reasons: . .

1) the presence of one or more coefficients of restitution less Vig,d):=T(q,d) +Ulq) = Ular) + Us(a) — Us(ar)

than one could imply a finite accumulation point of the impact (50)

times (i.e.,lim; 400 t.;(p*,p?) # +00) and 2) even if the

modified Erdmann—\Weierstrass corner conditions (46), (11

and (11c) admit a unique solutiof(t]) = «a(q(t.), 4(t7))

(el

hich is a positive definite, radially unbounded, function of
7,4) € R™ x R™ about(gg,0), by Assumptions 1, 6, and

for all (¢(t.), 4(t. )) € A x R™, functiona(-, -) could be not 7. The total time derivative o¥ (g, ¢) along the solutions of

continuous id.A x R™. For these reasons, when there is a Io§é7) is (remember that = I)
of kinetic energy at the impact times, other results guaranteeing f/(q’ Q) = —¢"K,q. (51)
existence and continuity of the solution of (26), under the ]
modified Erdmann—Weierstrass corner conditions (46), (11Befine R :={(g,¢) € R® x R*: V = 0}; then, by (51), it is
and (11c), should be considered; the reader can benefit freasy to see thak does not contain any half-trajectory of (47)
the results given in [40]-[43]. O other than the trivial trajectoryq(¢) = gr, ¢(¢t) = 0). Then,
by [44, Th. 5.3.79], the theorem is proven. O
Remark 11: Assumptions 6 and 7 can be weakened by
requiring that the algebraic equation (48) has an isolated
Assume again that the natural outputs are the only coordinstead of unique) solution = gz, with gz € R", and that
nates available for feedback, as well as their time derivativésequalities (49) hold for alf € &, with £ being a sufficiently
and consider, first, the “derivative” control law (25). Systersmall neighborhood of; = gr (instead of the wholeR™);
(13), under the control law (25), becomes Assumption 7 can be weakened further, by using some other
. comparison functions(r) instead ofr2. Then, Theorem 6
ia_L oL + S nidi(q) = —BKLETq (a7) Still holds under Assumptions 6 and 7 thus weakened, but
dt 8¢  9q stating only the local asymptotic stability of the trivial solution
(¢(t) = qr, ¢(t) = 0). The proof of the theorem thus modified
with 7; given by (14). can be done by applying [44, Th. 5.3.77]. O

IV. CONTROL OF SMOOTH IMPACTS

i=1
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Remark 12: A remark similar to Remark 5 can be state@lobal asymptotic stability ofq(t) = gr, ¢(t) = 0), when the
to deal with damping terms, when the method of the penaltyrther derivative feedback control law = —K,,4(¢), with
functions is used. Also in this case, the presence of inteks, being definite positive, is used.
nal damping will, in general, improve the performance of If the mechanical system is not fully actuated (i.ep & n
the derivative control law (25), with respect to stability. Irand £ # I), then the term(dl/(q)/8¢) cannot be exactly
particular, as for linear damping terms, since the dissipaticompensated by feedback as in (52). In such a case, instead
in the contact period will be different from the dissipation irof (52), consider a linear feedback from the natural outputs
the noncontact period, the Rayleigh dissipation function can

- T4
be taken ask(q) = £, Ri(q), where u=-KE q+a (54)
) 14T Dig, if fi(g) <0, where K, is a positive definite square matrix andis the
Ri(q):= { 14TDg, if filg) >0 vector of the new control forces. Also in this case, (13), under
2 (A 8§ T - 2

control law (54), can be rewritten as in (53) with=7T - U
with D;,D;,i = 1,2,---,m, being positive semidefinite and U:=U + 1 ¢"EK,ETq. Since E # I when p<n,
matrices. The dissipation matricés,i = 1,2, ---,m, relative the square matri?K,E” is only semidefinite positive, and
to the contact period, can be used to characterize the Idssumptions 6 and 7 are not necessarily true, Witly) being
of kinetic energy during the impact (the same role as tiieplaced byl/(g). However, if they hold and Remark 13 can
coefficients of restitution). O be applied, then a properly modified version of Theorem 6
Remark 13: Theorem 6 can be applied to fully actuatedan be applied also in this case to prove the global asymptotic
mechanical systems ag = n and £ = I imply that stability of (¢(t) = qr,¢(t) = 0), when the further derivative
(q(t) = qr,q(t) = 0) is the only solution of (47) such feedback control lawi = —K, E*§(t), with K, being definite

that ¢T (t)EK, ET §(t) = 0 identically. Theorem 6 still holds positive, is used. U
for the general casg < n if the phrase “if the mechanical

system under consideration is fully actuated (i.e.p it n V. EXPERIMENTAL RESULTS ABOUT THE IMPACT

and E = I),” is replaced by the phrase “if system (47) CONTROL OF A SINGLE-LINK ROBOT ARM

has (¢(t) = q¢r,q(t) = 0) as the only solution such that

T (DEK,ET(t) = 0 identically.” The proof of the theorem The mechanical system under consideration is constituted

ok by a beam, which is situated in a plane, where an inertial
thus modified is exactly the same as the proof of Theorémh 6;rame (z,y) is defined and is constrained by a hinge to

sm%?)rtrrllaril:nlic-[:(aiarenr?ecfsh;rﬁgalbi sztseergsfo[) thteheco dnet:i?/la'fi)\r/%tate about one of its extremities, whereas the other extremity
P y » DY completely free: the framéx,y) is defined so that its

N C
contr_ol law (25). H_oweve_r,_ it is stressed that Ass_umptlon (?rigin (0, 0) coincides with the hinge. The control input is an
requires thaty = qg is a minimum (at least local, in its weak-

: S external torqueu(t) exerted at the hinge (the system is fully
ened version) of/(q) + Us(g) upon R™, which, in general, ) " ; ;
may not be true. Nevertheless, Theorem 6 can be applied ctuated); the angular positiat) of the hinge is the natural

. . . tput of this mechanical system. For the sake of simplicity,
the control of smooth impacts in general mechanical systerﬂ?e vector of gravity is assumed to be perpendicular to the

provided that a preliminary feedback control law from th{iﬂotion plane, so that the effects of the gravity force can be

natur_al ou_tputs is applied to th_e mechanical system un eéglected. An infinitely rigid and massive obstacle is located
consideration. Suppose that= »; in such a case, the natural

s ; . ] in the plane of motion at a poirtzo, 40) So that the beam is
outputs y coincide with the generalized coordinates Let . . . - .
- ) . . constrained to satisfy the inequalitizs > q(t) > qo, With
U(q) be a function such that Assumptions 5-7 hold viitfy) 4 g a0 = a(t) 2 q,

~ ) . o qo := arctan (yo /x0), for all timest > 0; assume, without loss
replaced byl/(g). Then, consider the following preliminary o(; generality( toh/at;o)>0 The admissible region is then
feedback control law: ' )

L U@ a0 (q) +d ©2) A={qeR: filg)=q—q —27 <0, f2(q):=q0 — ¢ < 0}

dq dq which is nonempty. The two constraints cannot be simulta-

where is the vector of the new control forces. Taking intd'eously satisfied with the equality signs, and their gradient
account thatZ = 7" — U, (13), under control law (52), can Vectors./i(g) and.J>(¢) are constant and equal to 1 ard,
be rewritten as follows (remember that the assumptienn  respectively. The kinetic energy is given by = § I.¢%(¢),

implies E = I): wherel, is the inertia of the beam: Assumption 1 holds with
. . b = b = I,.. By the assumptions, the potential energy due to
doL 9L & ' ' . '
4ok L Z nidilq) = Ea (53) the conservative forces is equal to zero; then, the total potential
dt 8q 9q = energy is given byl = —q(t)u(t). The Euler-Lagrange

. . equation (10a) becomes
where 5, is given by (14) andL:=7 — U. Equation (53) I 5 5 _ EE
can be regarded as the Euler-Lagrange equation of a new rG(8) + Au(t) = A2(t) = u(t) (55)
unconstrained mechanical system havings kinetic energy, \ nare\ (1), A,(¢) are the Lagrange multipliers: similarly, the
U+ Uy as potential energy, andas the vector of the control Euler—Lagrange equation (13) becomes
forces. Since Assumption 1, 5, 6, and 7 hold for such a
mechanical system, Theorem 6 can be applied to prove the L.g(t) + m(t) — ma(t) = u(t) (56)
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Fig. 1. Measured angular positions.
where by choosing properly the value df,,. As for system (59b),
[0, g—qo—2m <0, the algebraic equation (48), wifli being replaced by/, is
T\ k(g =0 — 27), q—qo—27>0, m—n+Kyq=0
0 —q¢g<0
n2i=1q ;) fo—a=" (57) with 7,7, given by (57), which has the unique solution
kQ(QO_Q)v QO—Q>07 ’ !

qr = (k/(k + K;))q0,nr,1 = 0,mr2 = (KK /(k + Kp))q0

and ki, ks > 0 are real numbers. Consider the followindit is easy to see thdt/(k + K;,))go — go andng 2 — Ar2

control law for both systems (55) and (56): ask — +o0); Assumption 6 holds for system (59b). Finally,
‘ as for system (59a), it is easy to see th&ly) — U(qo) is
u(t) = —Kpq(t) — Kuq(t) (58) a global positive definite function abogt= g, upon A (a

. different comparison functiop(r) must be used in this case
with K, K, > 0; systems (55) and (56), under control Ia"_‘(nstegd ofr?), whereas as for system (59b), it is easy to see
(58), can be recast as in (43) and (53), respectively, quatU(q)_U((,f/(kJer))qo)JrUf(q)_Uf((k/(k+Kp))q0)

Ulg) = 5 Kpg? with Uy(q) = Uy, () + Uy, (g) given by
L(t) + Ai(t) — Aa(t) + Kpa(t) = —K,q(t) (59a) 05 (q) = { 0, q—qo—21<0
Lg() + m(t) — ma() + Kpq(t) = —Kug(t).  (59b) MU=\ S klg—qo—2m)%, q—qo—27>0

- —a<
It is easy to see that Assumption 2 holds for system (59a), Up(a) = { %kQ(qO —q)? gg _ g;(;)
under the relevant Erdmann—Weierstrass corner conditions, ?
whereas Assumption 5 holds for system (59b). As for systema global positive definite function abogt= (k/(k+K,))q0
(59a), the algebraic equations (27), withbeing replaced by (a different comparison functiop(r) must be used also in

U, are this case instead of?). Therefore, Theorems 5 and 6 can be
. . applied, showing the desired stability property.

AL — A2+ Kpg =0 The effectiveness of the control law (58) has been tested
v =0 experimentally. The mechanical system used for the exper-
yaha =0 iments has been developed at the Robotics and Industrial

y Automation Laboratory of the University of Rome and consists

Y1 +4q—q — 27 =0 of a link made of hardened steel (having dimensions of 600

Y34 qo—q=0 x 40 x 2 mm), clamped on an aluminum flange secured to

] ] the rotor of a direct drive dc motor. The measuring device
which have the unique solutiong: = g0, Ar1 = 0,Ar2 = consists of a set of local bending sensors, electrical strain-

Kpgo,vr1 = V27,vr2 = 0, with ¢qr € A and Ar1,Ar2 Qauges located along the link at suitable positions, which are
being nonnegative; Assumption 3 holds for system (59a). Naised for monitoring the possible deformations and forces due
that the positive value okg » = Ko can be arbitrarily fixed to impacts and contacts, and of an incremental optical encoder,
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Fig. 2. Measured deformations.
which is used to measure the joint displacement and velocity, VI. CONCLUSION

as needed by the controller. The measurement and CONtrofhe main contribution of this paper is to have shown that

system is completed with signal transducers, signal amplifief§e cjassical feedback control laws used for unconstrained
and an /O board installed in a PC computer, equipped Willochanical systems can be used effectively for mechanical
signal processing and numerical computation software. tems subject to inequality constraints, thus obtaining pretty
local deformation is measured at two points: in each of th&,,c the same results, independently of the fact that smooth or
two curvature measuring points, four strain-gauges have bggfhsmooth impacts are considered. Experimental results have
located, connected in a Wheatstone bridge configuration. Tdj¢,n the effectiveness of these control laws. Future work will

forces due to impacts and contacts are measured at the tipfarq the tracking problem for mechanical systems subject to

the beam, by the local deformation measured by additionghqajity constraints, as well as the regulation problem with
strain-gauges. Because of the light intrinsic damping of the yeadpeat transient response.

experimental system that has been used (direct drive motors
have very light intrinsic damping), the assumption of absence
of friction is well reproduced by the experimental environment. REFERENCES
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