
HAL Id: hal-01375341
https://hal.science/hal-01375341

Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modeling and control of impact in mechanical systems:
theory and experimental results

Antonio Tornambè

To cite this version:
Antonio Tornambè. Modeling and control of impact in mechanical systems: theory and experimental
results. IEEE Transactions on Automatic Control, 1999, 44 (2), pp.294 - 309. �10.1109/9.746255�.
�hal-01375341�

https://hal.science/hal-01375341
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Modeling and Control of Impact in Mechanical
Systems: Theory and Experimental Results

Antonio Tornamb̀e

Abstract—This paper considers the equations of motion of
mechanical systems subject to inequality constraints, which can
be obtained by looking for the stationary value of the action
integral. Two different methods are used to take into account the
inequality constraints in the computation of the stationary value
of the action integral: the method of the Valentine variables and
the method of the penalty functions. The equations of motion
resulting from the application of the method of the Valentine
variables, which introduces the concept of “nonsmooth” impacts,
constitute the exact model of the constrained mechanical system;
such a model is suitable to be employed when the impacting parts
of the actual mechanical system are very stiff. The equations of
motion resulting from the application of the method of the penalty
functions, which introduces the concept of “smooth impacts,”
constitute an approximate model of the constrained mechanical
system; such a model is suitable to be employed when the
impacting parts of the actual mechanical system show some
flexibility. Various feedback control laws from the natural outputs
and from their time derivatives are studied with reference to
both models of impact; the closed-loop systems resulting from
the application of the same control law to both models show
pretty much the same global asymptotic stability properties.
The proposed control laws are only concerned with regulation
problems in the presence of possible contacts and impacts among
parts of the mechanical system or with the external environ-
ment; the problem of controlling these mechanical systems along
time-varying trajectories is not considered in this paper. The
effectiveness of the proposed control structure has been tested
experimentally with reference to a single-link robot arm, showing
a valuable behavior.

Index Terms— Feedback stabilization, mechanical systems,
smooth and nonsmooth impacts, unilateral constraints.

I. INTRODUCTION

M ODELLING and control of impact require the study
of the basic physical phenomena that happen when

bodies collide under the action of external forces (including
the control forces) and/or due to nonzero relative velocity.
Several books (see, e.g., [1]–[12]) consider in detail, with
a rigorous and extensive treatment, the study of the basic
physical phenomena that attend the collision of bodies.

Often, the typical sources of impact, which include clear-
ance as between cams and followers, backlash or bearing
clearances in mechanisms undergoing force or motion reversal,
and mechanisms with components having large relative veloci-
ties, are neglected in modeling and control of mechanisms. The

study and the control of the impact phenomena is especially
importantin robotics, since all thehighestand greatest stresses
arise as consequence of impact, and many serious failures can
be generated when impact forces are not properly recognized
and taken under control; some useful short-duration effects,
such as high stresses, rapid dissipation of energy, and fast
acceleration and deceleration, may be achieved from low-
energy sources by controlling the impact of robots operating
at low force levels.

The mechanisms are usually designed so that the impact
effects are reduced, by minimizing the impact velocity and
the mass of the impacting bodies, and by suitably designing
the mechanism so that a minimum stiffness is located in a
neighborhood of the point of impact, but these design factors
seem to be useful for reducing the impact effects, not for
their precise control. As a matter of fact, a real control
task for a mechanism implies in general several transitions
between the condition of free motion and the condition of
constrained motion, and therefore it implies the generation
of undesired reaction forces at each sudden change from one
condition to the other one. As for robotics, practical situations
involving the generation of impacts are the walking robots,
the manipulation with a robotic hand, and the cooperation of
multiple robot arms. Numerous attempts have been made in
the recent years also to properly model the impact in robotics
(see, e.g., [13]–[21]), whereas the problem of controlling the
impact is still open, due to the sudden change of the equations
of motion that happens when the bodies involved in the
impact swish sharply from a condition of noncontact to a
condition of contact. The reader interested in the derivation
of the Hamilton principle for mechanical systems, subject to
unilateral constraints, can benefit from [22]–[24]. Interesting
initial experiments have been recently found in the literature
[25]–[27], but no general theory is available because of the
type of the equations to be used for adequately describing the
impact of a robotic manipulator with the external environment,
which depends largely upon the geometry of the robot and
of the external environment and upon the type of impact.
A complementarity–slackness class of hybrid systems has
been analyzed in [28], under a certain dissipation impact
rule. A complete robotic task has been formulated in [29] by
means of some complementarity conditions in case of rigid
external environments and in [30] in case of compliant external
environments, under the assumption that the interaction force
is available for feedback during the transition phase (this will
not be required in this paper). The Lyapunov second method
has been extended in [31] to deal with mechanical systems
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subject to unilateral constraints; in particular, a control law has
been proposed for one degree-of-freedom mechanical systems,
as well as for certain multidegree-of-freedom mechanical
systems. The collisions of robotic manipulators are modeled
and simulated in [32]. A more extensive bibliography about
modeling and control of impact can be found in the recent
reference [1], where 620 references can be found about the
subject.

All the contributions about impact analysis and control
(including this paper) suffer from several practical limitations
that can limit their effectiveness. These limitations arise from
the difficulty to a priori establish the approximation level to
be used for the study of the various phenomena involved in
the impact and to understand the manner in which the various
parameters (masses, geometric dimensions, stiffness, duration
of the impact) affect the actual collision. Another practical
limitation is that powerful tools (such as strain gages, high-
speed photography, fast velocity, and motion transducers) are
needed, e.g., for precise data storing. The limitations include
that the mathematics to be used for a rigorous model of the
impact may be excessively complex, whereas approximate
models may omit one or more important characteristics of the
impact phenomenon. In spite of these limitations, we hope that
the analysis that will be carried out in this paper will provide,
in view of its generality and simplicity, a useful guide to the
design of models and controllers of impacting systems.

The outline of the paper is as follows. Section II is devoted
to the writing of the equations of motion of mechanical
systems subject to inequality constraints. After some prelim-
inary notation and results, the equations of motion in case
of nonsmooth impacts are briefly introduced in Section II-
A through the method of the Valentine variables, whereas
those in case of smooth impacts are introduced in Section II-
B through the method of the penalty functions; Section II-C
gives sufficient conditions for the approximated path of motion
(obtained by means of the method of the penalty functions)
to tend to the actual path of motion (obtained by means of
the method of the Valentine variables) as the penalization
tends to infinity. The control of the equations of motion
thus obtained is analyzed in Section III in case of nonsmooth
impacts and in Section IV in case of smooth impacts, with
reference to the simple regulation problem. Section V reports
some experimental results obtained by controlling the impact
of a single-link robot arm against a rigid obstacle located in
the working space.

II. EQUATIONS OF MOTION OF MECHANICAL SYSTEMS

SUBJECT TO SMOOTH AND NONSMOOTH IMPACTS

Consider a finite-dimensional mechanical system, or a finite-
dimensional approximation of a continuous mechanical sys-
tem. Let with be the vector of
the generalized coordinates which are
assumed to represent uniquely the configuration at time
of the mechanical system (in the whole); in the remainder
of the paper, the generalized coordinates will be assumed to
be continuous functions of time which, in addition,
are piecewise smooth. The times at which the vector

function is not differentiable (i.e., those times such
that which correspond tocorner
points) will be referred to as the times at which the impacts
occur (briefly, theimpact times). The assumption that is
smooth between two adjacent impact times is not necessary,
but it is supposed for the sake of simplicity; such a vector
function (only) needs to be twice differentiable between two
adjacent impact times. To simplify the notation, the symbols

and will be used to denote, respectively, the
values taken by the limits and
when they are definite, for any function

Assume that some constraints are imposed on the gener-
alized coordinates by the physical nature of the mechanical
system under consideration; in particular, assume that (at each
time ) the vector must belong to the following
admissible regionof

(1)

where are
smooth functions of Also in this case, the assumption
that the functions are smooth is
considered for the sake of simplicity; such functions (only)
need to be twice differentiable with respect to all the variables
at argument. Assume that the admissible regionis nonempty
and that, in addition, there exists at least an interior point

such that all the constraints are strictly satisfied, i.e.,

The vector inequality with
will be used to denote the entire set of the

inequalities The manifolds of
identified by represent the

condition of contact among parts of the mechanical system
with themselves or with the external environment, which is
assumed to be infinitely rigid and massive.

Let be the gradient vector of
; note that if is a scalar function of then
denotes the column vector having as entries the

partial derivatives Let be
arbitrary and let denote the (possibly, empty) set
of the indexes such that
and for all for such a in
the remainder of the paper, assume that the gradient vectors

are linearly independent for such a
Let and be the kinetic energy and the

total potential energy of the mechanical system at time
respectively. Assume that the kinetic energy can
be expressed as follows:

(2)

where is the generalized inertia matrix, which is positive
definite for all For the sake of simplicity, the entries
of are assumed to be smooth (although it is necessary
only that they are twice differentiable) with respect to all the
variables at argument.

Consider the following assumption.
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Assumption 1:There exist two real numbers with
such that the following inequalities hold

in the whole (i.e., for all

(3)

where is the Euclidean norm of the vectorat argument.
Assumption 1 implies that thelimit superiorupon of the

greatest eigenvalue of is finite and that thelimit inferior
upon of the smallest eigenvalue of is greater than
zero.

In addition, assume throughout the paper that the total
potential energy can be decomposed into two parts:

(4)

where is the potential energy due to the conservative
forces (e.g., gravitational and/or elastic forces, if any),

is the vector of the control (generalized) forces, with
is a full column-rank matrix constituted

by linearly independent columns of the-dimensional iden-
tity matrix, suitably chosen in order to identify the actuated
generalized coordinates, and is the potential
energy due to the control forces

The equations describing the motion of the mechanical
system can be carried out by considering small variations of
the whole motion of the system between two timesand

with As all the forces acting on the mechanical
system have been assumed to derive from a scalar energy, the
Hamilton principle[33] can be used to obtain the equations of
motion in the closed interval the actual path of motion
of the mechanical system under consideration from time
to time is such that the followingaction integral has a
stationary value:

(5)

where subject to
the following inequality constraints to be satisfied for all

(6)

A. Equations of Motion of Nonsmooth Impacts
Through the Valentine Variables

TheValentine variablesare introduced so that the inequality
constraints (6) are transformed into the following equality
constraints:

(7)

with being some auxiliary nonnegative
real-valued variables, which were introduced by Valentine for
the solution of the problem of Lagrange with differential
inequalities [34]. Since the Valentine variables

are taken real, the equality constraints (7) are
completely equivalent to the inequality constraints (6). Since

all the Valentine variables are continuous
functions of time, which are piecewise smooth, with corner
points that can occur in correspondence of the impact times.

Taking the derivative with respect to time of both sides of
(7), the following differential constraints are obtained:

(8)

Starting from the initial conditions
the differential constraints (8)

are completely equivalent to the point constraints (7).
Then, the actual path of motion can be found by looking

for the stationary value of the action integral (5), under
the differential constraints (8), where the Valentine variables

are to be considered as nonnegative
real-valued continuous functions of time, which are piecewise
smooth between two adjacent impact times. In particular, in-
troducing theLagrange multipliers[35]
the actual path of motion can be determined by looking for
the stationary value of the following unconstrained functional:

(9)

where

By well-known results from functional analysis [36], the
stationary value of functional (9) corresponds to the continuous
piecewise smooth path of motion that is the solution (in each
open interval of time that does not contain impact times) to
the following Euler–Lagrange equations(dependence
upon time is omitted):

(10a)

(10b)

(10c)

where and the impacts
can occur only at the times where the following
Erdmann–Weierstrass corner conditions, which are necessary
at corner points, are satisfied:

(11a)

(11b)

(11c)

It is pointed out that the Euler–Lagrange equations (10) can
also be obtained directly by balancing all the forces acting
on the mechanical system, taking into account the impulsive
forces due to the inequality constraints by means of some
complementarity conditions such as (10b).
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B. Equations of Motion of Smooth Impacts
Through the Penalty Functions

This method is based on the observation that if the me-
chanical system under consideration is allowed to violate
constraints (6) and, in correspondence to such a violation,
the action functional (5) is strongly penalized, whereas it is
not when constraints (6) are satisfied, then the solution of
the problem thus modified is forced to tend to the actual
path of motion of the constrained mechanical system, as the
penalization tends to infinity. It is stressed that, in this case, the
generalized coordinates are no longer obliged to belong
to the admissible region

A possible choice of the penalty function, which takes the
zero value when all the constraints (6) are satisfied and high
positive values when some of the constraints (6) are violated,
is the following:

(12)

where

if
if

and is a sufficiently high positive number, having a suitable
physical dimension so that has the dimension of
an energy. As one can see when theth constraint is violated,

plays the role of the elastic energy due to the contact
relative to the th constraint, as though a linear elastic spring
were located at the point of contact, with playing the role
of the corresponding elastic constant. It is stressed that many
other penalty functions can be chosen in place of (12), each
one yielding a different approximate model.

Since, owing to this penalization, the total potential energy
of the mechanical system is one can consider
the action integral (5) with substituted by

assume that the path of motion corresponding to the
unconstrained stationary value of the action integral (5) with

substituted by tends to the actual path of motion
of the constrained mechanical system, as all the constants

go to infinity (some sufficient conditions
for this property to be satisfied will be given later in this
section). Then, once sufficiently high values of the constants

have been chosen, an approximation of the
actual path of motion of the constrained mechanical system can
be computed by looking for the unconstrained stationary value
of (5) with substituted by The advantage of this method,
as compared with the method of the Valentine variables, is that
in this case no Lagrange multipliers are to be introduced, as
well as no other auxiliary variables. The main drawback of
the method of the penalty functions is the choice of the values
of constants which is often carried out
through repeated trials, by taking greater values ofup to
the situation in which the corresponding path of motion does
not change significantly.

It should be pointed out that the addition of the penalty
function will cause the conditioning of the problem of com-
puting the stationary value of the action integral to be very

large (of the order of coefficients ). Thus,
the condition number of the problem will be proportional
to coefficients ; as one increases such
coefficients in order to obtain more accurate solutions to
the original constrained problem, the rate of convergence of
any algorithm used to solve in a numeric way the equations
of motions thus obtained becomes extremely slow, and any
control law designed on the basis of these equations of motion
may strongly depend on this very high penalization.

The stationary value of (5) with substituted by
corresponds to the path of motion that is solution of the
following vector Euler–Lagrange equation:

(13)

where and

if
if

(14)

The Erdmann–Weierstrass corner conditions are

(15a)

(15b)

The Erdmann–Weierstrass corner condition (15b) can be
rewritten as which (by the
nonsingularity of ) implies that ,
namely, when the method of the penalty functions is used,
no jump is possible of the generalized velocities. The impacts
thus approximated are referred to assmooth, although is
required to be only continuous by (15b).

By comparing (13) with (10a), can be thought of as a
continuous piecewise smooth approximation of the piecewise
smooth

C. Properties of the Penalty Method

The aim of this section is to give sufficient conditions under
which the path of motion obtained by means of the method
of the penalty functions tends to the actual path of motion of
the constrained mechanical system, as the penalization tends
to infinity.

For the sake of simplicity, consider the case of a
single inequality constraint (i.e., ). Let

be a sequence of real numbers such
that and, for each such that

Define the following functionals:

(16a)

if
if (16b)

(16c)

with being defined as in (5). Our aim is to
find an approximation of the stationary point of subject to
the inequality constraint, by looking for the stationary point
of the penalized functional For each assume
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that the stationary point of corresponds to
a minimum, as well as the stationary point of
subject to the inequality constraint. A sufficient condition for

to have a minimum is that
as with being a suitable norm of
function over similar sufficient condition can be
given for

The following theorems can be easily stated and proven.
Theorem 1: If, for each is a minimum of

then the following inequalities are satisfied for
all

(17a)

(17b)

(17c)

Proof: The following relations are obtained from the
definition of taking into account that

and that

(18)

Since is a minimum of one has

(19)

Inequality (17a) is obtained by (18) and (19).
The following inequalities can be obtained taking into

account that is a minimum of and that
is a minimum of

(20a)

(20b)

By adding (20a) and (20b), we obtain

(21)

Inequality (17b) is obtained from (21) because

Since

from (17b) we have

thus proving (17c).

Theorem 2:

If is a minimum of subject to the inequality
constraint and, for each
is a minimum of then the following inequalities
are satisfied for all

Proof: By the definition of we have
whence This yields the

following relations:

which complete the proof.
The following theorem states the desired sufficient condi-

tions of convergence.
Theorem 3: Suppose, for each that is a

minimum of and that is a minimum of
subject to the inequality constraint
If depends continuously on then any limit

point of the sequence is a minimum of
subject to the inequality constraint

Proof: Assume that the sequence
is convergent with limit as otherwise consider
a convergent subsequence of By the
assumed continuity of one has

(22)

By Theorems 1 and 2, the sequence
is nondecreasing and bounded above by

whence

(23)
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Subtracting (22) from (23), we obtain

(24)

Since and
(24) yields Whence, by

the continuity of and by the property
we have which implies that

the inequality constraint is satisfied over
by

Since, by Theorem 2

with being the minimum of subject to the
inequality constraint the limit point

is also a minimum of subject to the inequality
constraint

Remark 1: Theorems 1–3 can be easily emended to deal
with the case when, for each is a maximum of

and is a maximum of subject to the
inequality constraint

III. CONTROL OF NONSMOOTH IMPACTS

Assume that the generalized coordinates that are actuated
by are the only coordinates available for feedback (they
are the so-callednatural outputs), as well as their time deriva-
tives, and First, consider the
following “derivative” control law:

(25)

where is a positive definite square matrix of dimensions
System (10), under the control law (25), becomes

(26a)

(26b)

(26c)

The Erdmann–Weierstrass corner conditions (11) remain un-
changed.

An integral curve for system (26), under conditions
(11), with initial condition

is a mapping
(with and,

possibly, ) such that
is differentiable with respect to time almost everywhere

the impact
times at which

is not differentiable with respect
to time form a set of null measure, the differential equations
(26) are satisfied by
for all and the Erdmann–Weierstrass

corner conditions (11) are satisfied by
for all the impact times

It is pointed out that, in general, the impact times depend on
the initial condition, and the notation is only a shortening
of

Let be the greatest subset of such that for each
initial condition

system (26), under conditions
(11), has a unique solution upon the interval As
system (26), under conditions (11), is time-invariant, set

is constituted by half-trajectories of system (26), under
conditions (11), whence it is invariant.

Assumption 2:Let be nonempty and, in addition, for
each initial condition

the solution of system (26),
under conditions (11), is, in the variables a continuous
function of the initial conditions at all times
different from the impact times.

The following theorem gives sufficient conditions for the
solution of system (26), under conditions (11), to exist, to be
unique, and to be, in the variables a continuous function
of the initial conditions at all times different from the impact
times.

Theorem 4: Suppose that is the greatest subset of
such that (26), with being constant, has
a unique solution for all the initial
conditions in addition, suppose that such
a solution is a continuous function of the initial conditions

at all times Denoting by
the boundary of suppose that the Erdmann–Weierstrass
corner conditions (11) admit a unique solution

for all with
being a suitable function. Define set as the union

of with the set constituted by all the
points such that
Let if the impact times

form a
set of null measure and
then system (26), under the Erdmann–Weierstrass corner
conditions (11), has a unique solution

over from the initial
condition In addition, if the impact
times are continuous
functions of in and function is continuous
in then are continuous
functions of in for all

Proof: By assumption, system (26) has a unique solu-
tion starting from the initial condition

up to the first impact time
by assumption, such a solution is a continuous function of

Then, is the unique
solution of system (26), under the Erdmann–Weierstrass cor-
ner conditions (11), over the interval with

and, for each it is a continuous function
of

By construction,
and By assumption,
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system (26) has a unique solution
starting from the initial condition

up to the first impact
time by assumption,
such a solution is a continuous function of

Then, by the uniqueness of the solution
of the Erdmann–Weierstrass corner conditions (11), the
function defined by

is the unique solution of system (26), under the Erd-
mann–Weierstrass corner conditions (11), over the interval

with In
addition, by the continuity of on and by the
continuity of function is a continuous
function of for all (note that
if then there exists a neighborhood ofthat does
not contain ).

Proceeding by induction, by construction, one has that
and

by assumption, system (26) has a unique

solution starting from the initial
condition

up to the first impact time
by assumption, such a solution is a continuous function of

Then, by the uniqueness of
the solution of the Erdmann–Weierstrass corner conditions
(11), the function defined by

is the unique solution of system (26), under the
Erdmann–Weierstrass corner conditions (11), over the interval

with
In addition, by the continuity of
on and by the continuity of function

is a continuous function of
for all (note

that if then there exists a neighborhood ofthat
does not contain ).

In this manner, by the assumption
the solution can be extended to all of also showing
its continuity with respect to for all except for the
impact times.

Assumption 3:The following algebraic equations in the
unknown variables

(27a)

(27b)

(27c)

have a unique solution
with and

being nonnegative, assume, in addition,
that is not an isolated point of and that

Remark 2: For arbitrarily fixed initial values of the La-
grange multipliers Assumption 3
implies that (26), under conditions (11), has a unique solution
with and being constant. Unfortu-
nately, such solutions are not asymptotically stable, in the
usual sense, since different initial conditions for the Lagrange
multipliers yield different solutions
that do not converge toward each other (there exists a manifold
of fixed points). A possible solution to this problem could be
to consider as one of the state variables of system (26)
instead of With this position, Assumption 3 implies that
system (26), under conditions (11), has a unique equilibrium
point

Unfortunately, if for at least one index
then such an equilibrium point cannot be

stable, in the usual sense. As a matter of fact, for any real
number consider the solution of (26), under conditions
(11), starting from the initial condition

where is a vector such that
for at least one index for which
(such a can always be found). The choice ofimplies the
existence of a jump of the generalized
velocities, which implies a jump of at
least the th Lagrange multiplier; this implies an impulse (in
the distribution sense) of for any which prevents
the stability of the equilibrium point. Certainly, the definition
of stability could be properly modified to take into account the
presence of impulses due to but the following results
will be given with respect to the usual definitions of stability
[37].

Assumption 4:Under Assumption 3, there exist two real
numbers with such that the following
inequalities hold in the whole (i.e., for all )

(28)

where is the Euclidean norm of the vectorat argument.
Remark 3: Assumption 4 implies that is a global

minimum of upon If is an interior point of
then and, by (27a) and by taking
into account that the gradient vectors
have been assumed to be linearly independent for the indexes

such that
one has whereas if belongs
to the boundary of then may be
different from zero, as well as the corresponding

It is stressed that Assumption 4 implies the
positive definiteness of about upon but
not necessarily upon the whole in particular, if the latter
property were true, then would be equal to
zero, with the corresponding being zero,
as well.

It is important to stress that the Lyapunov stability of a
particular class of mechanical systems subject to inequality
constraints has been studied in [38] when the potential en-
ergy has a minimum in correspondence of the equilibrium
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point; sufficient conditions are given in [38, Th. 1] for these
mechanical systems to be Lyapunov stable in the simplified
case of equilibrium points located upon the surface of contact,
with the relative reaction force being zero, under the additional
assumption that during an impact there is no loss of energy.
The assumption of zero exchanged force at the point of contact
(which is not made in this paper, as well as the one regarding
the loss of energy at the impact times) renders difficult the
application of this result in any task involving exchange of
forces among parts of the mechanical systems or with the
external environment. A technique for the verification of the
sufficient conditions given in [38] for such mechanical systems
to be Lyapunov stable has been proposed in [39].

Theorem 5: Under Assumptions 1–4, if the mechanical
system under consideration is fully actuated (i.e., if
and ), then the following properties are satisfied.

1) For each real number there exists a
real number such that for every initial
condition

satisfying
and the corresponding solution
of (26a), under conditions (11), is such that

and for
all times

2) For each real number with being arbitrarily
large, and for any initial condition

satisfying and the corre-
sponding solution

of (26), under conditions (11), is such
that

(29a)

(29b)

(29c)

(29d)

(29e)

Proof: First of all, note that all the solutions of (26),
under conditions (11), in the variables and are
independent of the initial conditions
chosen for the Lagrange multipliers. In the following,
denote by the solution of (26),
under conditions (11), in the variables starting from
the initial conditions

with some-
times, the shortening will be used instead of

It is pointed out that
at the impact times is not
defined, and only the limits and have meaning.
By Assumption 2, at each time different from an impact
time, and are continuous functions
of It is stressed again that, by (26c) and
Assumption 2, if and

then for all times for all the
values of the other initial conditions

for which the solution exists and is unique.
In the remainder of the proof, even though not explicitly
mentioned, it will be assumed that, for any the
initial conditions of the Valentine variables are taken such that

Consider

(30)

which is a positive definite function of about
by Assumptions 1, 3, and 4 (note that is only

a positive semidefinite function of
about It is stressed that the
Erdmann–Weierstrass corner condition (11a) implies that

is a continuous, piecewise smooth function of
The total time derivative of along the solutions
of (26), under conditions (11), is

(31a)

(31b)

Multiplying both sides of (26c), rewritten with by
and taking the limit of the resulting expression for

and respectively, by (26b) and (11c), it is
easy to see that (and, respectively,

), for all times (possibly coincident
with the impact times) and for all whence
that (31) can be recast as follows for all times

(32a)

(32b)

which are semidefinite negative functions of
about

For each real number define as thelimit superior
of for such that and

which is finite by the continuity of with
respect to and by the compactness of the domain
chosen in For each real number there exists a real
number such that This can
always be found because is positive and
tends to zero as goes to zero. Suppose that

and then,
But, by (32), since

for all times by the continuity of
with respect to time it follows that

(33)

Now, taking into account Assumptions 1, 3, and 4

(34a)

(34b)
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Inequalities (33) and (34) together imply that

which, taking the square root, prove item 1) of the theorem.
For each real number consider the set

and define thelevel set as the connected component of
containing the point of By Assumptions 1,

3, and 4, is a radially unbounded function of
whence set is bounded, as well as for any
real number Since the time behavior of is
independent of the initial conditions chosen for the Lagrange
multipliers, by a reasoning similar to the one used for the
proof of item 1) of the theorem, it is easy to see that if

then
for all times For each a

point is a limit point of if there exists
a sequence of times (possibly coincident with the
impact times) such that

For each the set constituted by all
the limit points of is called the limit set of

and is denoted hereafter by Now,
some properties of are stated and proven.

Since, for each the corresponding
solution belongs to (whence it is bounded)
for all times then the corresponding limit set

is: 1) nonempty; 2) bounded; and 3) closed,
as shown in the following.

As for 1), since is bounded, then for any se-
quence of times (possibly coincident with the impact
times) approaching as goes to infinity, the corresponding
sequence is bounded, whence it contains a
convergent subsequence. By the definition of
the limit of this convergent subsequence must belong to

which is, therefore, nonempty.
As for 2), the boundedness of follows triv-

ially by the boundedness of
As for 3), let be a sequence of points of

converging to for
to be closed, it must be shown that
Let the real numbers and be arbitrary; a time

(possibly coincident with an impact time) must be found
such that the following relations hold for such a

(35)

First, choose an index such that

(36)

Such an index exists because tends to as index
goes to infinity. Secondly, choose a time such that

(37)

Such a time exists because Inequal-
ities (36) and (37) together yield (35), namely the closure of

Now, define the distance be-
tween a point and the nonempty, closed, and
bounded set as follows:

(38)

where is the Euclidean norm of the vectorat argument;
such a minimum exists (whence is
well defined) because is nonempty, closed, and
bounded, by the continuity of the Euclidean norm.

For each taking into account that
is bounded, then

(39)

As a matter of fact, if (39) is false, then there exists a real
number and a sequence of times (possibly
coincident with the impact times) approaching infinity as index

goes to infinity, such that

(40)

However, since the sequence is
bounded, it contains a convergent subsequence, whose
limit must belong to by definition, which
is contradiction of (40). As a consequence, (39) holds.

Finally, for each taking
into account that is bounded, for any

then the corresponding
solution
satisfies
for all times As a matter of fact, since

there exists a sequence
of times (possibly coincident with the impact

times) approaching infinity as indexgoes to infinity, such
that

Then, by the continuity of with re-
spect to for an arbitrary time (different

9



from an impact time)

Since are independent of the initial time and of the
initial conditions chosen for the Lagrange multipliers, one has
(by taking the limit for )

Such relationships show the existence of a sequence
of times (possibly coincident with the impact times)
approaching infinity as indexgoes to infinity, such that

which show that for all
times since the prop-
erty and the fact that

is closed imply
as to be proven.

Consider now what happens to function Since
and for all times

(i.e., since and have con-
stant nonpositive sign for all times), the nonnegative function

is monotonic and has a definite limit as time
goes to infinity; in addition, and
tend to zero as time goes to infinity, at least almost every-
where. For each let be a point
of Then, by definition, there exists a sequence

of times (possibly coincident with the impact times)
approaching infinity as indexgoes to infinity, such that

By the continuity of with respect to
one has the arbitrariness of

shows that along
Since, by Assumptions 1–4,

are (for arbitrary ) the
only solutions of (26), under conditions (11), for which

identically, then for any and for
any the corresponding solution

of (26), under conditions (11), is, by the previous
reasoning and by (11a), such that (29) holds. The proof
of item 2) of the theorem is completed by observing that

and imply
if one takes

With a little abuse of terminology, property 1) of Theorem 5
states the “stability” of the solution of (26), under conditions
(11), with reference only to the components and
whereas property 2) of Theorem 5 states the “global attractiv-
ity” of such a solution as expressed by (29) (note that (29d)
and (29e) do not imply that as ).

Remark 4: Assumptions 3 and 4 can be weakened by
requiring that the algebraic equations (27) have an isolated
(instead of unique) solution

with and being
nonnegative, and that inequalities (28) hold
for all with and being
a sufficiently small neighborhood of (instead of the
whole ); Assumption 4 can be weakened further by using
some other comparison functions instead of Then,
Theorem 5 still holds under the Assumptions 3 and 4 thus
weakened if, in item 1) of the theorem, the phrase “for each
real number with being arbitrarily large,” is replaced
by the phrase “there exists a sufficiently small real number

” The proof of the theorem thus modified is pretty much
the same as the proof of Theorem 5, and is omitted for the
sake of brevity.

Remark 5: The mechanical system so far considered has
been assumed to be subject to conservative forces (the forces
that can be derived from a potential energy), control forces,
and reaction forces due to the inequality constraints. In reality,
all the mechanical systems have always inherent damping.
Nevertheless, all the previous analysis is still valid. As a matter
of fact, the presence of internal damping will, in general,
improve the performance of the derivative control law (25),
with respect to stability. In all the cases in which the damping
is to be considered, it is possible to add to the Euler–Lagrange
equation (10a) a dissipation term obtaining

where is the Rayleigh dissipation function[33], which
is a positive semidefinite function of The corresponding
(26a) becomes (for fully actuated mechanical systems, i.e., for

and )

(41)

If the dissipation term is proportional to the gener-
alized velocity (i.e., if with being a

-dimensional positive semidefinite square matrix), then (41)
is equal to (26a) with the positive definite square matrix
substituted by the positive definite square matrix

10



Whence, Theorem 5 still holds in case of such an internal
dissipation.

Remark 6: Theorem 5 gives a tool for the control of
nonsmooth impacts in mechanical systems, by the derivative
control law (25), provided that such mechanical systems are
fully actuated (i.e., when and ). Such an
assumption is sufficient to show that

is the
only solution of system (26), under conditions (11), such that

identically, but of course it is not nec-
essary. Theorem 5 still holds for the general case if the
phrase “if the mechanical system under consideration is fully
actuated (i.e., if and ),” is replaced by the phrase
“if system (26), under conditions (11), has

as the
only solution such that identically.”
The proof of the theorem thus modified is exactly the same as
the proof of Theorem 5.

Remark 7: It is stressed that Assumption 4 requires that
is a minimum (at least local, in its weakened

version) of upon which, in general, may not be true.
Nevertheless, Theorem 5 can be applied for the control of
nonsmooth impacts in general mechanical systems, provided
that a preliminary feedback control law from the natural out-
puts is applied to the mechanical system under consideration.
Suppose that in such a case, the natural outputs
coincide with the generalized coordinatesLet be a
function such that Assumptions 2–4 hold with replaced
by Then, consider the following preliminary feedback
control law:

(42)

where is the vector of the new control forces. Taking into
account that (10a), under control law (42), can
be rewritten as follows (remember that the assumption
implies ):

(43)

where whereas (10b) and (10c) remain unchanged.
Equations (43), (10b), and (10c), under conditions (11), can be
regarded as the Euler–Lagrange equations of a new mechanical
system having as kinetic energy, as potential energy,
and as the vector of the control forces, subject to the
inequality constraints Since Assumption 1–4 hold
for such a mechanical system, Theorem 5 can be applied to
prove the “stability” of as stated in item 1), and
the “global attractivity” of the solution

as stated
in item 2), when the further derivative feedback control law

with being definite positive, is used.
If the mechanical system is not fully actuated (i.e., if

and then the term cannot be exactly
compensated by feedback as in (42). In such a case, instead
of (42), consider a linear feedback from the natural outputs

(44)

where is a positive definite square matrix andis the
vector of the new control forces. Also in this case, (10a), under
control law (44), can be rewritten as in (43) with
and Since when
the square matrix is only semidefinite positive, and
Assumptions 3 and 4 are not necessarily true, with being
replaced by However, if they hold and Remark 6 can be
applied, then a properly modified version of Theorem 5 can be
applied also in this case to prove the “stability” of
as stated at item 1), and the “global attractivity” of the solution

as stated at item 2), when the further derivative
feedback control law with being definite
positive, is used.

Remark 8: In the simplest case of two bodies colliding
along the common line connecting their centers of mass, the
coefficient of restitutionwas defined by Newton as the ratio
between the relative velocity of the two impacting bodies after
the impact time and the relative velocity of the two impacting
bodies just prior the impact time. However, for more general
mechanical systems subject to (possible, multiple) impacts, it
is most convenient to regard the coefficients of restitution (each
one for each possible type of impact) as energy-loss func-
tions, since all the impacts are basically processes involving
energy exchange and energy transformation. In particular, if

and with
and are the kinetic energies
immediately before and after the impact time due to the
sole th constraint, the coefficient of restitution can be
defined as follows:

By its definition, each coefficient of restitution is nonnegative
and less than or equal to one. When there is a collision between
parts of a mechanical system, a portion of the original kinetic
energy is converted in strain energy within the impacting
parts. Subsequently, some fraction of the strain energy is
reconverted back into the kinetic energy of the impacting parts,
whereas the remainder of the energy is trapped within the
mechanical system in the form of exciting various modes of
vibration and/or is dissipated as energy of plastic deformation.
The coefficient of restitution is commonly assumed to be
constant and equal to one (as in the previous part of this
paper), although its magnitude is dependent upon the geometry
of the bodies involved in the impact, upon the presence or
absence of slip at the point of contact, upon the duration of
the impact, as well as upon some basic material properties
of the bodies, such as Young modulus, mass density, elastic
limits, etc. For instance, as for compact bodies such as spheres,
the portion of kinetic energy lost because of excitation of
various modes of vibration is quite small; for such bodies the
coefficient of restitution is primarily controlled by the plastic
deformation about the point of contact and by the friction
within the impacting bodies. As both such phenomena are, in
first approximation, linearly dependent on the impact relative
velocity, the coefficient of restitution corresponding to theth
constraint can be taken as follows (for sufficiently small values
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of ) for all times (possibly coincident with the impact
times):

if
if and

if and
(45)

where is a nonnegative real number. Then, the Erd-
mann–Weierstrass corner condition (11a) must be modified
properly to take into account the coefficients of restitution

(46)

Although (46) does not imply any longer the continuity of
with respect to all times since

by (45) for small values of the condition
[owing to (45) and

(46)], together with (32), implies that inequalities (33)
are satisfied, whence Theorem 5 still holds locally if the
Erdmann–Weierstrass corner condition (11a) is substituted
by (46), i.e., if the coefficients of restitution are taken into
account. Coefficients of restitution more general than (45) are
to be used to deal with the global version of Theorem 5.

Remark 9: It is stressed that Theorem 4 (which gives
sufficient conditions for the solution of system (26), under
the Erdmann–Weierstrass corner conditions (11), to exist and
to be continuously dependent on the initial conditions) cannot
be applied when some of the coefficients of restitution are less
than one. In particular, it seems that Theorem 4 cannot be
easily amended to cover this case, for two different reasons:
1) the presence of one or more coefficients of restitution less
than one could imply a finite accumulation point of the impact
times (i.e., ) and 2) even if the
modified Erdmann–Weierstrass corner conditions (46), (11b),
and (11c) admit a unique solution
for all function could be not
continuous in For these reasons, when there is a loss
of kinetic energy at the impact times, other results guaranteeing
existence and continuity of the solution of (26), under the
modified Erdmann–Weierstrass corner conditions (46), (11b),
and (11c), should be considered; the reader can benefit from
the results given in [40]–[43].

IV. CONTROL OF SMOOTH IMPACTS

Assume again that the natural outputs are the only coordi-
nates available for feedback, as well as their time derivatives,
and consider, first, the “derivative” control law (25). System
(13), under the control law (25), becomes

(47)

with given by (14).

Assumption 5:For each initial condition
system (47) has a unique solution upon the interval

which is a continuous function of
Reference [44, Ths. 2.4.25 and 2.4.57] can be used for

checking if Assumption 5 holds.
Assumption 6:The following algebraic equation in the un-

known variable

(48)

with given by (14), has a unique solution
Assumption 7:Under Assumption 6, there exist two real

numbers with such that the following
inequalities hold in the whole (i.e., for all

(49)

where is the Euclidean norm of the vectorat argument.
Remark 10: Assumption 7 implies that is a global

minimum of upon If is such that
then and is a global minimum

of the sole upon whence this,
by (14) and (48), implies that the given by (14), with
being substituted by is equal to zero
whereas if is such that for at least one index
then may be different from zero, as well as
the corresponding

Theorem 6: Under Assumptions 1, 5, 6, and 7, if the
mechanical system under consideration is fully actuated (i.e.,
if and ), then the solution
of (47) is globally asymptotically stable.

Proof: Consider

(50)

which is a positive definite, radially unbounded, function of
about by Assumptions 1, 6, and

7. The total time derivative of along the solutions of
(47) is (remember that )

(51)

Define then, by (51), it is
easy to see that does not contain any half-trajectory of (47)
other than the trivial trajectory Then,
by [44, Th. 5.3.79], the theorem is proven.

Remark 11: Assumptions 6 and 7 can be weakened by
requiring that the algebraic equation (48) has an isolated
(instead of unique) solution with and that
inequalities (49) hold for all with being a sufficiently
small neighborhood of (instead of the whole );
Assumption 7 can be weakened further, by using some other
comparison functions instead of Then, Theorem 6
still holds under Assumptions 6 and 7 thus weakened, but
stating only the local asymptotic stability of the trivial solution

The proof of the theorem thus modified
can be done by applying [44, Th. 5.3.77].
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Remark 12: A remark similar to Remark 5 can be stated
to deal with damping terms, when the method of the penalty
functions is used. Also in this case, the presence of inter-
nal damping will, in general, improve the performance of
the derivative control law (25), with respect to stability. In
particular, as for linear damping terms, since the dissipation
in the contact period will be different from the dissipation in
the noncontact period, the Rayleigh dissipation function can
be taken as where

if
if

with being positive semidefinite
matrices. The dissipation matrices relative
to the contact period, can be used to characterize the loss
of kinetic energy during the impact (the same role as the
coefficients of restitution).

Remark 13: Theorem 6 can be applied to fully actuated
mechanical systems as and imply that

is the only solution of (47) such
that identically. Theorem 6 still holds
for the general case if the phrase “if the mechanical
system under consideration is fully actuated (i.e., if
and ),” is replaced by the phrase “if system (47)
has as the only solution such that

identically.” The proof of the theorem
thus modified is exactly the same as the proof of Theorem 6.

Remark 14: Theorem 6 can be used for the control of
smooth impacts in mechanical systems, by the derivative
control law (25). However, it is stressed that Assumption 7
requires that is a minimum (at least local, in its weak-
ened version) of upon which, in general,
may not be true. Nevertheless, Theorem 6 can be applied for
the control of smooth impacts in general mechanical systems,
provided that a preliminary feedback control law from the
natural outputs is applied to the mechanical system under
consideration. Suppose that in such a case, the natural
outputs coincide with the generalized coordinates Let

be a function such that Assumptions 5–7 hold with
replaced by Then, consider the following preliminary
feedback control law:

(52)

where is the vector of the new control forces. Taking into
account that (13), under control law (52), can
be rewritten as follows (remember that the assumption
implies

(53)

where is given by (14) and Equation (53)
can be regarded as the Euler–Lagrange equation of a new
unconstrained mechanical system havingas kinetic energy,

as potential energy, andas the vector of the control
forces. Since Assumption 1, 5, 6, and 7 hold for such a
mechanical system, Theorem 6 can be applied to prove the

global asymptotic stability of when the
further derivative feedback control law with

being definite positive, is used.
If the mechanical system is not fully actuated (i.e., if

and then the term cannot be exactly
compensated by feedback as in (52). In such a case, instead
of (52), consider a linear feedback from the natural outputs

(54)

where is a positive definite square matrix andis the
vector of the new control forces. Also in this case, (13), under
control law (54), can be rewritten as in (53) with
and Since when
the square matrix is only semidefinite positive, and
Assumptions 6 and 7 are not necessarily true, with being
replaced by However, if they hold and Remark 13 can
be applied, then a properly modified version of Theorem 6
can be applied also in this case to prove the global asymptotic
stability of when the further derivative
feedback control law with being definite
positive, is used.

V. EXPERIMENTAL RESULTS ABOUT THE IMPACT

CONTROL OF A SINGLE-LINK ROBOT ARM

The mechanical system under consideration is constituted
by a beam, which is situated in a plane, where an inertial
frame is defined and is constrained by a hinge to
rotate about one of its extremities, whereas the other extremity
is completely free: the frame is defined so that its
origin (0, 0) coincides with the hinge. The control input is an
external torque exerted at the hinge (the system is fully
actuated); the angular position of the hinge is the natural
output of this mechanical system. For the sake of simplicity,
the vector of gravity is assumed to be perpendicular to the
motion plane, so that the effects of the gravity force can be
neglected. An infinitely rigid and massive obstacle is located
in the plane of motion at a point so that the beam is
constrained to satisfy the inequalities with

for all times assume, without loss
of generality, that The admissible region is then

which is nonempty. The two constraints cannot be simulta-
neously satisfied with the equality signs, and their gradient
vectors and are constant and equal to 1 and1,
respectively. The kinetic energy is given by
where is the inertia of the beam: Assumption 1 holds with

By the assumptions, the potential energy due to
the conservative forces is equal to zero; then, the total potential
energy is given by The Euler–Lagrange
equation (10a) becomes

(55)

where are the Lagrange multipliers; similarly, the
Euler–Lagrange equation (13) becomes

(56)
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Fig. 1. Measured angular positions.

where

(57)

and are real numbers. Consider the following
control law for both systems (55) and (56):

(58)

with systems (55) and (56), under control law
(58), can be recast as in (43) and (53), respectively, with

(59a)

(59b)

It is easy to see that Assumption 2 holds for system (59a),
under the relevant Erdmann–Weierstrass corner conditions,
whereas Assumption 5 holds for system (59b). As for system
(59a), the algebraic equations (27), withbeing replaced by

are

which have the unique solutions
with and

being nonnegative; Assumption 3 holds for system (59a). Note
that the positive value of can be arbitrarily fixed

by choosing properly the value of As for system (59b),
the algebraic equation (48), with being replaced by is

with given by (57), which has the unique solution

(it is easy to see that and
as ); Assumption 6 holds for system (59b). Finally,
as for system (59a), it is easy to see that is
a global positive definite function about upon (a
different comparison function must be used in this case
instead of ), whereas as for system (59b), it is easy to see
that
with given by

is a global positive definite function about
(a different comparison function must be used also in
this case instead of ). Therefore, Theorems 5 and 6 can be
applied, showing the desired stability property.

The effectiveness of the control law (58) has been tested
experimentally. The mechanical system used for the exper-
iments has been developed at the Robotics and Industrial
Automation Laboratory of the University of Rome and consists
of a link made of hardened steel (having dimensions of 600

40 2 mm), clamped on an aluminum flange secured to
the rotor of a direct drive dc motor. The measuring device
consists of a set of local bending sensors, electrical strain-
gauges located along the link at suitable positions, which are
used for monitoring the possible deformations and forces due
to impacts and contacts, and of an incremental optical encoder,
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Fig. 2. Measured deformations.

which is used to measure the joint displacement and velocity,
as needed by the controller. The measurement and control
system is completed with signal transducers, signal amplifiers,
and an I/O board installed in a PC computer, equipped with
signal processing and numerical computation software. The
local deformation is measured at two points: in each of the
two curvature measuring points, four strain-gauges have been
located, connected in a Wheatstone bridge configuration. The
forces due to impacts and contacts are measured at the tip of
the beam, by the local deformation measured by additional
strain-gauges. Because of the light intrinsic damping of the
experimental system that has been used (direct drive motors
have very light intrinsic damping), the assumption of absence
of friction is well reproduced by the experimental environment.
Two different experiments have been carried out. In Case a,
the motion plane has been kept free of obstacles (i.e., the beam
is completely free to rotate), whereas in Case b, an obstacle
has been located in the motion plane at a certain position

such that Fig. 1 reports the time
histories of the angular position of the motor in both Cases a
and b in the closed interval [0, 2]. As can be seen, in Case a
(the unconstrained one), the angular position of the motor
asymptotically goes to zero, where in Case b (the constrained
one), the first impact between the beam and the obstacle occurs
at a time s and, after a sequence of other impacts one
close to the other, the beam reaches the steady-state configu-
ration in contact with the obstacle; the first impact has been
sufficiently strong so to produce a certain deformation of the
beam, and the motor has been able to overtake its steady-state
limit. Fig. 2 shows the deformations recorded by strain-gauges,
connected in a Wheatstone bridge configuration, at distances
of 9.5 and 25.5 cm from the motor; in Case a, the deformations
asymptotically go to zero, whereas, in Case b, the deformations
asymptotically reach some steady-state values, due to the
steady-state contact between the beam and the obstacle.

VI. CONCLUSION

The main contribution of this paper is to have shown that
the classical feedback control laws used for unconstrained
mechanical systems can be used effectively for mechanical
systems subject to inequality constraints, thus obtaining pretty
much the same results, independently of the fact that smooth or
nonsmooth impacts are considered. Experimental results have
shown the effectiveness of these control laws. Future work will
regard the tracking problem for mechanical systems subject to
inequality constraints, as well as the regulation problem with
a deadbeat transient response.
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Roma. He is the Editor ofModeling and Control of Mehanisms and Robots
(Singapore, World Scientific, 1996) andModeling and Control of Mechanical
Systems(London, U.K.: Imperial College Press, 1997) and the author of
Discrete-Event System Theory: An Introduction” (Singapore, World Scientific
Publishing, 1995),Mathematical Methods for System Theory(Singapore,
World Scientific Publishing, 1998), andModeling and Control of Mechanical
Systems Subject to Constraints(Boston, MA: Birkhauser, 1998). He is also the
author of about 200 papers, published in international journals and presented at
international conferences. His research interests include robotics and control
theory.

Dr. Tornamb̀e was the General Chairman of the 6th IEEE Mediterranean
Conference, Alghero, Italy, June 1998. He has been an Associate Editor of the
Conference Editorial Board of the IEEE Control System Society since 1995.

16




