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On the Nonlinear and Nonnormal Filter for t = 1,2,---, T, whereT denotes the sample size. Let
Using Rejection Sampling be the observed data and be the state vectorh.(-) and f.(-)

are vector functions. The error terms and n; are mutually in-

dependently distributed. Define information set up to timeas

_ _ o Y = {ys, ys—1, -+, v1}. Let py(ys|ar) and pa(a¢|az—1) be the

Abstract—n this paper, a nonlinear and/or nonnormal filter is proposed density functions obtained from (1) and (2). Under the above setup,

using rejection sampling. Generating random draws of the state-vector . e . .
directly from the filtering density, the filtering estimate is simply obtained the density-based filtering algorithm is known as (see, for example,

as the arithmetic average of the random draws. In the proposed filter, the Kitagawa [13] and Harvey [11])
random draws are recursively generated at each time. The Monte Carlo
experiments indicate that the proposed nonlinear and nonnormal filter

Hisashi Tanizaki

shows a good performance. Prediction Equation
_ Index Terms—Filtering, nonlinear, nonnormal, proposal density, rejec- play]¥ioy) = /pu(az|oa_1)p(m_1|YL_1)dou_l €)
tion sampling.

Updating Equation

- Py (Wela)p(a|Yiz1)

) = = 4
)= oy wlanp(adYier) da @

I. INTRODUCTION

Nonlinear filters have been investigated for a long time (e.g., pla
Alspach and Sorenson [1], Sorenson and Alspach [18], and Wigtiner
al. [23]) and we still have numerous density-based nonlinear filtering
algorithms. Kitagawa [13] and Kramer and Sorenson [16] propos&® ¢ = 1, 2, ---, T'. The initial condition is given by(ao[Yo) =
the numerical integration procedure. Tanizaki [20] and Tanizaki a#i®o) if ao is stochastic ang(a[Yo) = pa(ailao), otherwise
Mariano [22] utilized the Monte Carlo integration with importancéVherep(ao) denotes the initial density of the state variable. Based on
sampling for nonlinear and nonnormal state-space models. Moreover{®:|a:—1) andpy (y:|a:), prediction (3) yieldg(a:[Y; 1) given
Carlin et al. [3] and Carter and Kohn [4], [5] proposed a solution t@(c+—1[Y:—1) and updating (4) gives us(a:|Y) from p(a:|Yi—1).
state-space modeling in a Bayesian framework using Gibbs sampliHgs,p(a«|Y:) can be recursively obtained for=1, 2, - --, T
(see also Chib and Greenberg [6]). In addition, Goregoral. [9], ~ When the unknown parameters are in (1) and (2), the likeli-
Kitagawa [14], and Kitagawa and Gersch [15] proposed the Monf@od function to be maximized is(Yr) = IIi_, [ py (4 |ae)p
Carlo filter and smoother with the bootstrap method. (c¢|Yi—1) dea, which is obtained from the denominator of (4).

An alternative procedure which we propose in this paper alsoKitagawa [13] and Kramer and Sorenson [16] proposed a nonlinear
utilizes the Monte Carlo technique. Given random draws of the sta@d nonnormal filter using numerical integration to evaluate each
variable at previous time, those at present time are directly genera@iggration in (3) and (4). Tanizaki [20] and Tanizaki and Mariano
without evaluating any density function, where the random drald2] evaluated the integration using Monte Carlo integration with
from the filtering densities are recursively obtained. For randoffiPortance sampling, where a recursive algoritthm of the density
number generation, rejection sampling is adopted, which is a mettf@ctions is converted to that of the weight functions, defined as

of the random number generation from any distribution function. w(at|Ys) = p(a|Ys)/p.(as) for s =t — 1, t. The densityp. (a),
called the importance density, has to be appropriately specified by a

1. OVERVIEW OF NONLINEAR AND NONNORMAL FILTER researcher. The random draws ,, i = 1, 2, ---, n, are generated
We consider the following general nonlinear and nonnormal stafom p«(a:). A recursive filtering algorithm of:(a;,|Y?) is derived
space model: fort =1,2,.--,T.

Carlinet al. [3],'Carter and Kohn [4], [5], and Chib and Greenberg
[6] introduced the nonlinear and nonnormal state-space models with
Transition Equation oy = fi(cv—1. 7¢) ) _Glbbs sampling, wh_ere we do not have t_o evaluate each mtegrathn
in (3) and (4). They investigated the nonlinear state-space models in
Manuscript received September 27, 1996; revised August 20, 1997. Reite Bayesian framework, where the nuisance parameters in the state-
ommended by Associate Editor, J. C. Spall. o space model are assumed to be stochastic. The state-space models that
The author is with the Faculty of Economics, Kobe University, Kobe 65 th d it tricted b th tudied th ial stat
8501, Japan (e-mail: tanizaki@kobe-u.ac.jp). ey used are quite restricted because they studied the special state-
Publisher Item Identifier S 0018-9286(99)01278-7. space models such that it is easy to generate random draws from the
1For rejection sampling, note as follows. When we generate a random drewderlying assumptions. Their attempt is to generate random draws
from p(x), called the target density, we take another distribution functioffom the joint density ofv,, as, ---, ay givenYy, which does not
p«(2), called the proposal density, which is appropriately chosen by yeld a recursive algorithm.

researcher. Define the acceptance probability@s = p(x)/ap«(x), where . . .
the assumptiom = sup,, p(z)/p+(x) < oo is required. Rejection sampling In this paper, we consider generating random draws from the

is implemented as: 1) generate a random draw fyarfr) and 2) accept it filtering densityp(a,|Y;) without evaluating any integration, where
with probabilityw (). The accepted random draw is taken as a random drafve random draws ofv; given Y; are recursively obtained given
from p(x). In the case where boii(:x) andp« () are normally distributed as those ofa,_; givenY;_;.

N(p, o) andN(u«, 02), it is easily shown that we neet > o2 for the

conditiona < oo, which implies thatp«(x) has to be distributed with larger

variance thamp(x). Using rejection sampling, we can generate a random draw

from any distribution function under the condition that< oo is satisfied. Ill. REJECTION SAMPLING FILTER

However, the disadvantages of rejection sampling are: 1) we need to comput . .
a, which sometimes does not exist and 2) it takes a long time wHehis ?_et i, t]s be the ith ran’dom draw fromp(a¢|Ys). When the
close to zero; see, for example, Boswellal. [2], Geweke [8], and O'Hagan random drawsay i1, ¢ = 1,2,---. n, are available, we
[17] for rejection sampling. consider generating; ¢, ¢ = 1, 2, - - -, n. By substituting (3) into

Measurement Equationy; = h. (o, €;) (2)

0018-9286/99$10.00 1999 IEEE
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TABLE |
SimuLATIONS |-l (6 KNOWN)
T=20 T=40
§ n KF | RF (A) RF (B) KF | RF (A) RF (B)
y=4 =9 ~v=16 y=4 =9 ~4=16

Simulation I (Linear and Normal Model)

200 |j 0.7292 | 0.7317 | 0.7322 0.7328 0.7323 || 0.7334 | 0.7362 | 0.7365 0.7366 0.7366
0.5 ] 500 0.7309 | 0.7308 0.7306 0.7315 0.7351 | 0.7350 0.7352  0.7352
1000 _ 0.7307 | 0.7308 0.7308 0.7305 0.7347 | 0.7349 0.7349  0.7349

200 |f 0.7760 | 0.7837 | 0.7850 0.7835 0.7840 || 0.7793 | 0.7880 | 0.7873 0.7874 0.7872
0.9 | 500 0.7827 | 0.7836 0.7831 0.7834 0.7861 | 0.7862 0.7865 0.7866
1000 0.7826 | 0.7825 0.7828 0.7828 0.7862 | 0.7859 0.7861 0.7861

200 || 0.7897 | 0.7989 | 0.7989 0.7995 0.7995 !| 0.7928 | 0.8028 | 0.8029 0.8028  0.8029
1.0 | 500 0.7986 | 0.7973 0.7983 0.7976 0.8011 | 0.8012 0.8012 0.8013
1000 - 0.7977 | 0.7978 0.7976 0.7975 0.8012 | 0.8010 0.8008  0.8008

Simulation IT (Stochastic Volatility Model)

200 || 1.1487 | 0.9273 | 0.9270 0.9271 0.9262 || 1.1577 | 0.9391 | 0.9396 0.9389  0.9392
0.5 | 500 0.9257 | 0.9245 0.9246 0.9258 0.9378 | 0.9378 0.9370 0.9377
1000 0.9247 | 0.9249 0.9245 0.9250 0.9368 | 0.9368 0.9371  0.9369

200 || 2.0909 | 1.2209 | 1.2219 1.2224 1.2184 | 2.2135 | 1.2532 | 1.2548 1.2552  1.2581
0.9 | 500 1.2162 | 1.2160 1.2190 1.2181 1.2499 | 1.2499 1.2506  1.2502
1000 1.2152 | 1.2164 1.2164 1.2161 1.2490 | 1.2495 1.2493  1.2498

Simulation IIT (ARCH(1) Model)

200 || 0.7016 | 0.6909 | 0.6921 0.6931 0.6926 | 0.7039 | 0.6940 | 0.6963 0.6956  0.6958

0.5 | 500 0.6903 | 0.6912 0.6911 0.6915 0.6941 | 0.6950 0.6950 0.6951
1000 0.6902 | 0.6910 0.6911 0.6909 0.6938 | 0.6946 0.6948  0.6948
200 || 0.6748 | 0.5666 — — 0.5883 || 0.6503 | 0.5585 — — 0.5830
0.9 | 500 0.5679 —_ — 0.5892 0.5589 — — 0.5818
1000 0.5697 — — 0.5889 0.5601 — — 0.5806
(4), p(a+]Y?) is approximated as wherea; ¢,—1 is obtained froma; -1 = filog 111, M), t)-

1 Moreover,c;,, andé;,, are represented as

pla|Yy) = - /py('yzlaz)pu(azIau_l‘)p(m_llYl_l)daz_1
-t

~ i Gi,t <py(.7/t|0"t)pn'((‘“f|ai,1—1|L—1)>
‘ Ct

Cit

Cit = /py(yt|@f,)pnr(o‘f|o"i,tflltfl)d@f

| —

3

1 n
= o Zpy(ytbﬂji, tt—1) = Ci 1
=1

‘H—
S | m

Q

<Py (yf|0“'f)Pr» (04,‘|a'i7 t71|t71) )

Cit

[
&4
=

Thus, from (5), p(a:|Y:) is approximated as a mixture of
<py(y,|a'[)pu(al|o<,-.t,1|t,1)) distributions with probabilityg; +, i = 1, 2, ---, n. Let p.(2) be
die ¥ ; , )

®)  the proposal density. The acceptance probabhility) is defined as

Ci,t

Py(yel2)pa (2|, t,l‘t,l)/p*(:)

¢+ is defined asy;,« = é,+/né:, ande, andé, are given by w(z) = .
= sup, Py (Yi|2)pa(z|ag —1)e—1)/ps(2)
Cr = // py(yelan)pa(ad]a—)plai—i]Yiz1) daw—r da The estimation procedure is as follows: 1) pick ap,_;¢—1 for
1 2 ) i with probability ¢;, +; 2) generate a random drawfrom p..(-) and
R ZZpy(ytmﬁ,m,l) =a a uniform random draw: from the interval between zero and one;

p=1i=l 3) takez as o, 44 if v < w(z) and go back to 2) otherwise; 4)
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TABLE I
SiMULATION STupiES | AND 1l (6 UNKNOWN)

T=20 T=40
6 n | AVE RMSE 25% 50% 75% | AVE RMSE 2% 50% 75%

Simulation I (Linear and Normal Model)

KF 0359 0323 017 042 0610428 0228 030 047 061
0.5 | RF (A) 1200|0366 0326 018 043 0.62 (0437 0229 031 048 0.62
RF (A) 500 | 0.367 0327 018 044 0.62 | 0441 0229 031 048 0.62
RF (A) 1000 | 0.369 0330 020 044 063 | 0445 0229 033 049 0.62

KF 0.767 0236 067 084 093 (0845 0121 080 088 093
09| RF(A) 200|0773 0236 068 084 0940852 0120 081 089 093
RF (A) 5000775 0235 068 08 094082 0120 081 083 093
RF (A) 1000 | 0.777 0234 069 085 094085 0119 081 089 093

KF 0.885 0201 083 095 1.01| 0951 0.092 093 098 101
10| RF(A) 2000890 0201 083 096 1020956 0092 093 098 101
RF (A) 5000892 0199 084 096 102|095 0.091 093 098 1.01
RF (A) 1000 | 0.892 0198 084 096 1020957 0.090 093 098 101

Si

o

mulation II (Stochastic Volatility Model)

KF 0509 0432 0.00 063 0960538 0434 000 068 098
0.5 | RF (A) 2000516 0425 0.02 0.63 096 | 0.543 0427 0.02 068 0.97
RF (A) 500 | 0516 0425 0.02 063 0950543 0426 002 0.68 097
RF (A) 1000 | 0.516 0425 0.02 063 0096|0543 0427 002 068 097

KF 0.785 0354 077 099 099 | 0.860 0.293 094 099 099
0.9 | RF(A) 200|078 0346 0.79 0.97 098 | 0.857 028 094 098 0.99
RF (A) 500|078 0346 078 097 098 | 0857 028 094 098 099
RF (A) 1000 | 0.785 0346 079 097 099 ] 0857 028 094 098 0.99

repeat 1)-3)» times forj = 1, 2, ---, n; and 5) repeat 1)-4)" denote the first- and second-moments obtained from the extended

times fort = 1, 2, ---, T. Note that rejection sampling is utilized in Kalman filter (KF)* For the proposal density (B}, = 4, 9, 16 is

procedures 2) and 3). For a functigfi), the expectation &(a+)|Y;) taken in Section IV. Note that should be greater than one because

is approximated agl/n) 3", g(i )2 the proposal density should have larger variance than the target
The proposed nonlinear and nonnormal filter gives us a genedansity.

solution to any nonlinear and nonnormal state-space model. When the unknown parameter is included in (1) and (2), we

For choice of the proposal densitytwo candidates are taken, maximize the likelihood function represented’r ) = M ce=
i.e., (A) one isp«(au) = palau|o; —1¢—1) and (B) another is Hf:l ¢¢, which comes from the definition af;.
pilae) = N(ojp,, vE7),), wherey is a constant and;|, and X,

2 . ) IV. NUMERICAL EXAMPLES: MONTE CARLO EXPERIMENTS
Consider an example of(a:) = oy. Let the estimate ofa,,

E(ov|Y?) be éy),, which is the filtering estimate computed b, We compare the extended KEnd the proposed nonlinear filter,
(1/n) 27y ;i 4)¢- Recall thate; 4, is a random draw generated from thewhich is called the rejection sampling filter (RF) in this paper. The
filtering densityp(a.|Y:). Let us assume that variance ®f |, is given by simulation procedure is as follows: 1) generating random numbers

T¢)¢. Then, by the central limit theoremy/n(dy|; — o) is asymptotically of ¢, and, for ¢t = 1, 2, ---, T, we obtain a set of data, and
normal distribution with mean zero and variancg,. Moreover, denote the at, t=1,2,---, T, from (1) and (2), wherd" = 20, 40 is taken;

estimate oft, |, by £, ,, which is defined a&;; = (1/n) 1 (o ¢¢ —
gf\f)'(“i‘flf__ dyp¢). It is known thaty,, is a consistent estimate of 47he extended KF is one of the traditional nonlinear filters, where the
¢ Accordingly, &, is normally distributed with mean, |, and variance nonlinear measurement and transition equations are linearized by the first-
(1/n)%y), for sufficiently largen. Thus, the confidence bound of the filteringorder Taylor series expansion and the linearized system is directly applied to
estimated, |, can be easily obtained. There is a great amount of literature ¢ine standard linear recursive KF algorithm; see, for example, Tanizaki [20].
the confidence bounds (see, for example, Spall [19]). 5In the case where the system is linear and normal, the extended KF reduces
3As in Footnote 1, the proposal density has to be more broadly distributerthe conventional KF. Accordingly, in Simulation |, KF implies the standard
than the target density, but the former is not too different from the latter. Kalman filter.
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TABLE 11l
SIMULATION IV: M ARKOV SWITCHING MODEL (k = 2)
T=20 T=40
P \ P22 0.2 0.5 0.8 0.2 0.5 0.8
n
KF 0.4383 0.4354 03710 | 0.4372 0.4359 0.3733
02 RF (A) 200 | 04326 0.4351 0.3683 | 0.4316 0.4352 0.3706
RF (A) 500 | 04318 04337 0.3673 | 0.4306 0.4344 0.3700
RF (A) 1000 | 0.4312 04337 0.3672 | 0.4301 0.4341 0.3700
KF 0.4349 0.4474 0.4080 | 0.4343 0.4471 0.4103
0.5 RF (A) 200 | 0.4341 0.4473 0.4055 | 0.4338 0.4473 0.4078
RF (A) 500 | 04330 0.4466 0.4051 | 0.4327 0.4464 0.4071
RF (A) 1000 | 04328 0.4465 0.4047 | 0.4325 0.4462 0.4071
KF 03713 0.4098 0.4323 | 0.3734 0.4128 0.4365
0.8 RF (A) 200 | 0.3688 0.4079 0.4276 | 0.3708 0.4113 0.4298
RF (A) 500 | 0.3683 0.4073 0.4259 | 0.3705 0.4107 0.4297
RF (A) 1000 | 0.3680 0.4072 0.4255 | 0.3702 0.4103 0.4291

2) given Y7, perform KF and RF, where = 200, 500, 1000 is C. Simulation [I—ARCH Model

taken for RF; and 3) repeat 1) and @)times and compare the root Tpe system is given by: = a:+e; anday = (1—6+8a7_1)'?n,
mean square error (RMSE)_ for each estimator, which is defined @s < & < 1, wheres = 0.5, 0.9 is taken” Note that “~” in Table |
RMSE= (1/T) ¥, MSE%:Z: where the mean square error (MSE)mplies that the denominator of(z) does not exist.

is defined as MSE; = (1/G) Zf:l(d»ilgt) —al?)? anday, takes the

state-variable estimated by KF or RF while denotes the artificially p_ simulation IV—Markov Switching Model

simulated state-variabfeNote that the superscriffty) denotes the

gth simulation run, wher&z = 1000 is taken. (a1, st -+, ape), where we assume that one of the

In Tables I, lll, and IV, assuming that is known ¢ denotes the elerr;endtsj ofc; i; c,>ne and the others are zero. The model is
parameter of the model used in Simulations I-Ill), we compare the ... ! '
state estimates of KF and RF. In Table II, a comparison between t?joeeflfléfj a?“ = ’r’a; 3_ € tand o t: me_l + e Whe_rebl
true parameter and the estimateéofs shown for each procedure.’;tn d_P(‘Lit’ (;jf’ P’ ‘““ P’?’ncr)eesrezevrig ciLg treaxnosgi]t?cr:r?usrc\)/t?erlgiilites
Note thaté indicates the true value. AVE and RMSE represent the _ - ;vherel}’ 2 (pj I’; p a). Note that>™ ; o y
arithmetic average and the RMSE. Using 25, 50, and 75% give ys ' ’ Lo Bzt Pk ) i=1 £

. . ) ould be satisfied for alj. ¢; is assumed be a standard normal
the 0.25, 0.50, and 0.75 quantiles of thi estimates ofé. The distribution while 5: is distributed as ak-dimensional discrete

maximization of the likelihood function is performed by a s'mplerandom variable. The conditional density of given ¢ is

grid search, in which the function is maX|m|zed by changl_ng thﬁepresented by (ailar 1) = Hk_l(PiO’t—l)a“‘ which implies
parameter value of by 0.01. The univariate cases are examined in I . . =1 : .
. . S that the probability with which event occurs at timet is Pa;—1.
Simulations I-lIl (Tables | and Il) and the multivariate cases are B e inii L k o _
Simulation IV (Tables 11l and IV) he initial density is assumed to hdao) = T];_,(1/k)*"*. This
’ model is called the Markov switching model (see Hamilton [10]).
_ ) _ zip =i fori=1,2,.--, kis assumed in this simulation study.
A. Simulation I—Linear and Normal Model We consider the two cases, i.e.= 2, 3. The proposal density (A)
Consider the scalar systemd = a; + ¢; anda; = daz—1 + 1, IS examined in both cases. For= 2, p;1 andp.. are the parameters,
wheres = 0.5, 0.9, 1.0 is taken. The initial valuew, and the error wherepi1, pao = 0.2, 0.5, 0.8 are taken (see Table IIf)Fork = 3,
termse; andy,, t = 1, 2, ---, T, are assumed to be distributed a$o reduce number of parameters, we assumelfhiatsymmetric, i.e.,
follows: g ~ N(0, 1) and(ez, nt)" ~ N(0, Iz), wherel, denotesa pi1 = 1 — p21 — P31, P12 = D21, P22 = 1 — P21 — D32, P13 = Ds1,
2 x 2 identity matrix. Exactly the same initial conditions are utilized2as = ps2, andpss = 1 — p31 — pz2, wWherepai, ps1, andpso are
in Simulations 1l and III. the parameters (see Table I¥).

Consider the higher dimensional state-variable, i€, =

B. Simulation Il—Stochastic Volatility Model . . )
The transition equation follows the ARCH(1) model (see Engle [7], Harvey
Suppose that the system is representeg; as exp (0.5a4)e; and  [11], and Harvey and Streibel [12]). In this Monte Carlo simulation study the
oy = bay—1 + 1, Which is called the stochastic volatility model (seeinconditional variance af: is assumed to be one.
Harvey and Streibel [12]). We tak&é = 0.5, 0.9. 8n the case oft = 2, note that Hay(|Yi) = 1 — E(ag(Y:) and
Var (or¢[Yz) = Var (a2|Y:) because of%_, «;; = 1. Therefore, RMSE
of a1+ is equal to that ofxo¢. In Table Ill, RMSE’s ofa i, are reported.

6Note that MSE,; goes toX, in Footnote 2, as number of random draws 9In this case, note that the conditiohs< pa1+p31 < 1,0 < pat+p32 <
(i.e., n) is large. 1, and0 < p31 + p32 < 1 have to be satisfied.
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TABLE IV
SIMULATION IV: M ARKOV SWITCHING MODEL (K = 3)
T=20 T =40
P21 P31 P32 n Q1¢ (¢ Q3¢ 230 Qr2g Q3q
KF 0.3845 0.4659 0.3925 | 0.3850 0.4652 0.3953

01 02 04 RF(A) 20003707 04499 0.3864 | 0.3687 0.4490 0.3897
RF (A) 500 | 0.3699 0.4491 0.3860 | 0.3679 0.4481 0.3892
RF (A) 1000 | 0.3697 0.4488 0.3858 | 0.3677 0.4478 0.3890

KF 0.3860 0.4523 0.3905 | 0.3882 0.4524 0.3902
0.1 03 06 RF(A) 20003777 0.4407 0.3822 | 0.3787 0.4403 0.3814
RF (A) 500 | 0.3769 0.4402 0.3814 | 0.3786 0.4399 0.3811
RF (A) 1000 { 0.3769 0.4395 0.3811 | 0.3781 0.4394 0.3807

KF 0.3893 0.4596 0.3917 | 0.3918 0.4592 0.3906
02 03 06|RF(A) 20003830 04464 0.3828 | 0.3853 0.4470 0.3819
RF (A) 500 | 0.3820 0.4458 0.3820 | 0.3845 0.4459 0.3812
RF (A) 1000 | 0.3818 0.4456 0.3819 { 0.3846 0.4461 0.3811

KF 0.3934 0.4682 0.3902 | 0.3961 0.4675 0.3887
03 04 05 |RF(A) 20003875 04559 0.3834 | 0.3906 0.4562 0.3816
RF (A) 500 | 0.3870 0.4550 0.3830 | 0.3904 0.4560 0.3814
RF (A) 1000 | 0.3865 0.4549 0.3829 | 0.3901 0.4554 0.3809

E. Results Thus, in this paper, a Monte Carlo procedure of filtering algo-
In Simulation 1, it is expected that KF is better than any other esfiithm using the simulation technique is proposed, where we utilize

mator, because RF is the simulation-based estimator, which includfé® random draws only. The procedure improves over the other
the simulation error® In Table I, for all the simulation studies, Nonlinear fllters developed in the past from simplicity of computer
n = 200, 500, 1000 are very close to each other. We sometimeBrogramming.

have the case where RF (B) is not feasible (see the £as®.9 in Finally, note as follows. In the proposed nonlinear and nonnormal
Simulation 111). In such a case, RF (A) is recommended. filter, when thg acceptance probab_il'tt;(z) is very small, we need_
We compare KF and RF (A) in Tables II-IV. In Table I, excep® huge sampling, and accordingly it takes a long time computation-
for the case’ = 0.5, RMSE'’s of RF are smaller than those of KF.ally. For example, when we have outlines or structural changes in
For almost all the cases, AVE goes to the true parameter value al’e system [i.e., whem(a.[Y;) is away fromp(a;—1[Yi—1)], the
is large. Similarly, in Tables Il and IV, RMSE is small asis large. COmputational burden increases in the rejection sampling procedure.
In any case, we can conclude that 1) RF performs better than KF in
nonlinear cases (RF is very close to KF even in the linear case) and
: . ACKNOWLEDGMENT
2) n = 500 is not too different fromn = 1000.1*
This paper is a substantial extension of Tanizaki [21, pp. 94-99].
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