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On the Nonlinear and Nonnormal Filter
Using Rejection Sampling

Hisashi Tanizaki

Abstract—In this paper, a nonlinear and/or nonnormal filter is proposed
using rejection sampling. Generating random draws of the state-vector
directly from the filtering density, the filtering estimate is simply obtained
as the arithmetic average of the random draws. In the proposed filter, the
random draws are recursively generated at each time. The Monte Carlo
experiments indicate that the proposed nonlinear and nonnormal filter
shows a good performance.

Index Terms—Filtering, nonlinear, nonnormal, proposal density, rejec-
tion sampling.

I. INTRODUCTION

Nonlinear filters have been investigated for a long time (e.g.,
Alspach and Sorenson [1], Sorenson and Alspach [18], and Wishneret
al. [23]) and we still have numerous density-based nonlinear filtering
algorithms. Kitagawa [13] and Kramer and Sorenson [16] proposed
the numerical integration procedure. Tanizaki [20] and Tanizaki and
Mariano [22] utilized the Monte Carlo integration with importance
sampling for nonlinear and nonnormal state-space models. Moreover,
Carlin et al. [3] and Carter and Kohn [4], [5] proposed a solution to
state-space modeling in a Bayesian framework using Gibbs sampling
(see also Chib and Greenberg [6]). In addition, Gordonet al. [9],
Kitagawa [14], and Kitagawa and Gersch [15] proposed the Monte
Carlo filter and smoother with the bootstrap method.

An alternative procedure which we propose in this paper also
utilizes the Monte Carlo technique. Given random draws of the state-
variable at previous time, those at present time are directly generated
without evaluating any density function, where the random draws
from the filtering densities are recursively obtained. For random
number generation, rejection sampling is adopted, which is a method
of the random number generation from any distribution function.1

II. OVERVIEW OF NONLINEAR AND NONNORMAL FILTER

We consider the following general nonlinear and nonnormal state-
space model:

Measurement Equation

Transition Equation

yt =ht(�t; �t)

�t = ft(�t�1; �t)

(1)

(2)
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1For rejection sampling, note as follows. When we generate a random draw

from p(x), called the target density, we take another distribution function
p�(x), called the proposal density, which is appropriately chosen by a
researcher. Define the acceptance probability as!(x) = p(x)=ap�(x), where
the assumptiona � sup

x
p(x)=p�(x) <1 is required. Rejection sampling

is implemented as: 1) generate a random draw fromp�(x) and 2) accept it
with probability!(x). The accepted random draw is taken as a random draw
from p(x). In the case where bothp(x) andp�(x) are normally distributed as
N(�; �2) andN(��; �2�), it is easily shown that we need�2

�
> �2 for the

conditiona <1, which implies thatp�(x) has to be distributed with larger
variance thanp(x). Using rejection sampling, we can generate a random draw
from any distribution function under the condition thata < 1 is satisfied.
However, the disadvantages of rejection sampling are: 1) we need to compute
a, which sometimes does not exist and 2) it takes a long time when!(�) is
close to zero; see, for example, Boswell,et al. [2], Geweke [8], and O’Hagan
[17] for rejection sampling.

for t = 1; 2; � � � ; T , where T denotes the sample size. Letyt
be the observed data and�t be the state vector.ht(�) and ft(�)
are vector functions. The error terms�t and �t are mutually in-
dependently distributed. Define information set up to times as
Ys = fys; ys�1; � � � ; y1g. Let py(ytj�t) and p�(�tj�t�1) be the
density functions obtained from (1) and (2). Under the above setup,
the density-based filtering algorithm is known as (see, for example,
Kitagawa [13] and Harvey [11])

Prediction Equation

p(�tjYt�1) = p�(�tj�t�1)p(�t�1jYt�1)d�t�1 (3)

Updating Equation

p(�tjYt) =
py(ytj�t)p(�tjYt�1)

py(ytj�t)p(�tjYt�1) d�t

(4)

for t = 1; 2; � � � ; T . The initial condition is given byp(�0jY0) =
p(�0) if �0 is stochastic andp(�1jY0) = p�(�1j�0); otherwise
wherep(�0) denotes the initial density of the state variable. Based on
p�(�tj�t�1) andpy(ytj�t), prediction (3) yieldsp(�tjYt�1) given
p(�t�1jYt�1) and updating (4) gives usp(�tjYt) from p(�tjYt�1).
Thus,p(�tjYt) can be recursively obtained fort = 1; 2; � � � ; T .

When the unknown parameters are in (1) and (2), the likeli-
hood function to be maximized isp(YT ) = T

t=1
py (yt j�t)p

(�tjYt�1) d�t, which is obtained from the denominator of (4).
Kitagawa [13] and Kramer and Sorenson [16] proposed a nonlinear

and nonnormal filter using numerical integration to evaluate each
integration in (3) and (4). Tanizaki [20] and Tanizaki and Mariano
[22] evaluated the integration using Monte Carlo integration with
importance sampling, where a recursive algorithm of the density
functions is converted to that of the weight functions, defined as
!(�tjYs) = p(�tjYs)=p�(�t) for s = t� 1; t. The densityp�(�t),
called the importance density, has to be appropriately specified by a
researcher. The random draws�i; t, i = 1; 2; � � � ; n, are generated
from p�(�t). A recursive filtering algorithm of!(�i; tjYt) is derived
for t = 1; 2; � � � ; T .

Carlinet al. [3], Carter and Kohn [4], [5], and Chib and Greenberg
[6] introduced the nonlinear and nonnormal state-space models with
Gibbs sampling, where we do not have to evaluate each integration
in (3) and (4). They investigated the nonlinear state-space models in
the Bayesian framework, where the nuisance parameters in the state-
space model are assumed to be stochastic. The state-space models that
they used are quite restricted because they studied the special state-
space models such that it is easy to generate random draws from the
underlying assumptions. Their attempt is to generate random draws
from the joint density of�1; �2; � � � ; �T givenYT , which does not
yield a recursive algorithm.

In this paper, we consider generating random draws from the
filtering densityp(�tjYt) without evaluating any integration, where
the random draws of�t given Yt are recursively obtained given
those of�t�1 given Yt�1.

III. REJECTION SAMPLING FILTER

Let �i; tjs be the ith random draw fromp(�tjYs). When the
random draws�i; t�1jt�1, i = 1; 2; � � � ; n, are available, we
consider generating�i; tjt, i = 1; 2; � � � ; n. By substituting (3) into
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TABLE I
SIMULATIONS I–III ( � KNOWN)

(4), p(�tjYt) is approximated as

p(�tjYt) =
1

ct
py(ytj�t)p�(�tj�t�1)p(�t�1jYt�1)d�t�1

�

n

i=1

ci; t
ct

1

n

py(ytj�t)p�(�tj�i; t�1jt�1)

ci; t

�

n

i=1

ĉi; t
ĉt

1

n

py(ytj�t)p�(�tj�i; t�1jt�1)

ci; t

�

n

i=1

qi; t
py(ytj�t)p�(�tj�i; t�1jt�1)

ci; t
: (5)

qi; t is defined asqi; t � ĉi; t=nĉt, andct and ĉt are given by

ct � py(ytj�t)p�(�tj�t�1)p(�t�1jYt�1)d�t�1 d�t

�
1

n2

n

j=1

n

i=1

py(ytj�ji; tjt�1) � ĉt

where�ji; tjt�1 is obtained from�ji; tjt�1 = ft(�i; t�1jt�1; �j; t).
Moreover,ci; t and ĉi; t are represented as

ci; t � py(ytj�t)p�(�tj�i; t�1jt�1)d�t

�
1

n

n

j=1

py(ytj�ji; tjt�1) � ĉi; t:

Thus, from (5), p(�tjYt) is approximated as a mixture ofn
distributions with probabilityqi; t, i = 1; 2; � � � ; n. Let p�(z) be
the proposal density. The acceptance probability!(z) is defined as

!(z) =
py(ytjz)p�(zj�i; t�1jt�1)=p�(z)

supz py(ytjz)p�(zj�i; t�1jt�1)=p�(z)
:

The estimation procedure is as follows: 1) pick up�i; t�1jt�1 for
i with probability qi; t; 2) generate a random drawz from p�(�) and
a uniform random drawu from the interval between zero and one;
3) take z as �j; tjt if u � !(z) and go back to 2) otherwise; 4)
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TABLE II
SIMULATION STUDIES I AND II (� UNKNOWN)

repeat 1)–3)n times for j = 1; 2; � � � ; n; and 5) repeat 1)–4)T
times fort = 1; 2; � � � ; T . Note that rejection sampling is utilized in
procedures 2) and 3). For a functiong(�), the expectation E(g(�t)jYs)
is approximated as(1=n) n

i=1
g(�i; tjs).

2

The proposed nonlinear and nonnormal filter gives us a general
solution to any nonlinear and nonnormal state-space model.

For choice of the proposal density,3 two candidates are taken,
i.e., (A) one isp�(�t) = p�(�tj�i; t�1jt�1) and (B) another is
p�(�t) = N(��

tjt; 
�
�
tjt), where
 is a constant and��

tjt and��
tjt

2Consider an example ofg(�t) = �t. Let the estimate of�tjt �
E(�tjYt) be �̂tjt, which is the filtering estimate computed bŷ�tjt =
(1=n) n

i=1 �i; tjt. Recall that�i; tjt is a random draw generated from the
filtering densityp(�tjYt). Let us assume that variance of�i; tjt is given by
�tjt. Then, by the central limit theorem,

p
n(�̂tjt � �tjt) is asymptotically

normal distribution with mean zero and variance�tjt. Moreover, denote the
estimate of�tjt by �̂tjt, which is defined aŝ�tjt = (1=n) n

i=1 (�i; tjt �
�̂tjt)

0(�i; tjt � �̂tjt). It is known that �̂tjt is a consistent estimate of
�tjt. Accordingly, �̂tjt is normally distributed with mean�tjt and variance
(1=n)�̂tjt for sufficiently largen. Thus, the confidence bound of the filtering
estimate�̂tjt can be easily obtained. There is a great amount of literature on
the confidence bounds (see, for example, Spall [19]).

3As in Footnote 1, the proposal density has to be more broadly distributed
than the target density, but the former is not too different from the latter.

denote the first- and second-moments obtained from the extended
Kalman filter (KF).4 For the proposal density (B),
 = 4; 9; 16 is
taken in Section IV. Note that
 should be greater than one because
the proposal density should have larger variance than the target
density.

When the unknown parameter is included in (1) and (2), we
maximize the likelihood function represented byp(YT ) =

T

t=1
ct �

T

t=1
ĉt, which comes from the definition ofct.

IV. NUMERICAL EXAMPLES: MONTE CARLO EXPERIMENTS

We compare the extended KF5 and the proposed nonlinear filter,
which is called the rejection sampling filter (RF) in this paper. The
simulation procedure is as follows: 1) generating random numbers
of �t and �t for t = 1; 2; � � � ; T , we obtain a set of datayt and
�t, t = 1; 2; � � � ; T , from (1) and (2), whereT = 20; 40 is taken;

4The extended KF is one of the traditional nonlinear filters, where the
nonlinear measurement and transition equations are linearized by the first-
order Taylor series expansion and the linearized system is directly applied to
the standard linear recursive KF algorithm; see, for example, Tanizaki [20].

5In the case where the system is linear and normal, the extended KF reduces
to the conventional KF. Accordingly, in Simulation I, KF implies the standard
Kalman filter.
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TABLE III
SIMULATION IV: M ARKOV SWITCHING MODEL (k = 2)

2) given YT , perform KF and RF, wheren = 200; 500; 1000 is
taken for RF; and 3) repeat 1) and 2)G times and compare the root
mean square error (RMSE) for each estimator, which is defined as
RMSE= (1=T ) T

t=1 MSE1=2tjt , where the mean square error (MSE)

is defined as MSEtjt � (1=G) G
g=1(�̂

(g)
tjt ��

(g)
t )2 and�̂tjt takes the

state-variable estimated by KF or RF while�t denotes the artificially
simulated state-variable.6 Note that the superscript(g) denotes the
gth simulation run, whereG = 1000 is taken.

In Tables I, III, and IV, assuming that� is known (� denotes the
parameter of the model used in Simulations I–III), we compare the
state estimates of KF and RF. In Table II, a comparison between the
true parameter and the estimate of� is shown for each procedure.
Note that� indicates the true value. AVE and RMSE represent the
arithmetic average and the RMSE. Using 25, 50, and 75% give us
the 0.25, 0.50, and 0.75 quantiles of theG estimates of�. The
maximization of the likelihood function is performed by a simple
grid search, in which the function is maximized by changing the
parameter value of� by 0.01. The univariate cases are examined in
Simulations I–III (Tables I and II) and the multivariate cases are in
Simulation IV (Tables III and IV).

A. Simulation I—Linear and Normal Model

Consider the scalar systemyt = �t + �t and�t = ��t�1 + �t,
where� = 0:5; 0:9; 1:0 is taken. The initial value�0 and the error
terms�t and�t, t = 1; 2; � � � ; T , are assumed to be distributed as
follows:�0 � N(0; 1) and(�t; �t)0 � N(0; I2), whereI2 denotes a
2 � 2 identity matrix. Exactly the same initial conditions are utilized
in Simulations II and III.

B. Simulation II—Stochastic Volatility Model

Suppose that the system is represented asyt = exp (0:5�t)�t and
�t = ��t�1+�t, which is called the stochastic volatility model (see
Harvey and Streibel [12]). We take� = 0:5; 0:9.

6Note that MSEtjt goes to�tjt in Footnote 2, as number of random draws
(i.e.,n) is large.

C. Simulation III—ARCH Model

The system is given byyt = �t+�t and�t = (1��+��2
t�1)

1=2�t
for 0 � � < 1, where� = 0:5; 0:9 is taken.7 Note that “–” in Table I
implies that the denominator of!(z) does not exist.

D. Simulation IV—Markov Switching Model

Consider the higher dimensional state-variable, i.e.,�t =
(�1t; �2t; � � � ; �kt)

0, where we assume that one of thek
elements of�t is one and the others are zero. The model is
specified asyt = xt�t + �t and �t = P�t�1 + �t, where
xt = (x1t; x2t; � � � ; xkt) denotes a vector of exogenous variables
and P = (P 0

1; P
0
2; � � � ; P

0
k)

0 represents the transition probability
matrix, wherePi = (pi1; pi2; � � � ; pik). Note that k

i=1 pij = 1
should be satisfied for allj. �t is assumed be a standard normal
distribution while �t is distributed as ak-dimensional discrete
random variable. The conditional density of�t given �t�1 is
represented byp�(�tj�t�1) = k

i=1(Pi�t�1)
� , which implies

that the probability with which eventi occurs at timet is Pi�t�1.
The initial density is assumed to bep(�0) = k

i=1(1=k)
� . This

model is called the Markov switching model (see Hamilton [10]).
xit = i for i = 1; 2; � � � ; k is assumed in this simulation study.

We consider the two cases, i.e.,k = 2; 3. The proposal density (A)
is examined in both cases. Fork = 2, p11 andp22 are the parameters,
wherep11; p22 = 0:2; 0:5; 0:8 are taken (see Table III).8 For k = 3,
to reduce number of parameters, we assume thatP is symmetric, i.e.,
p11 = 1� p21 � p31, p12 = p21, p22 = 1 � p21 � p32, p13 = p31,
p23 = p32, andp33 = 1 � p31 � p32, wherep21, p31, andp32 are
the parameters (see Table IV).9

7The transition equation follows the ARCH(1) model (see Engle [7], Harvey
[11], and Harvey and Streibel [12]). In this Monte Carlo simulation study the
unconditional variance of�t is assumed to be one.

8In the case ofk = 2, note that E(�1tjYt) = 1 � E(�2tjYt) and
Var (�1tjYt) = Var (�2tjYt) because of k

i=1 �it = 1. Therefore, RMSE
of �1t is equal to that of�2t. In Table III, RMSE’s of�1t are reported.

9In this case, note that the conditions0 � p21+p31 � 1, 0 � p21+p32 �
1, and0 � p31 + p32 � 1 have to be satisfied.
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TABLE IV
SIMULATION IV: M ARKOV SWITCHING MODEL (k = 3)

E. Results

In Simulation I, it is expected that KF is better than any other esti-
mator, because RF is the simulation-based estimator, which includes
the simulation errors.10 In Table I, for all the simulation studies,
n = 200; 500; 1000 are very close to each other. We sometimes
have the case where RF (B) is not feasible (see the case� = 0:9 in
Simulation III). In such a case, RF (A) is recommended.

We compare KF and RF (A) in Tables II–IV. In Table II, except
for the case� = 0:5, RMSE’s of RF are smaller than those of KF.
For almost all the cases, AVE goes to the true parameter value asn

is large. Similarly, in Tables III and IV, RMSE is small asn is large.
In any case, we can conclude that 1) RF performs better than KF in
nonlinear cases (RF is very close to KF even in the linear case) and
2) n = 500 is not too different fromn = 1000.11

V. SUMMARY

A nonlinear and nonnormal filtering algorithm is proposed in this
paper. Given random draws of the state-vector which are directly
generated fromp(�tjYt), the filtering estimate is recursively obtained.
In the proposed filter, we do not evaluate any integration. The
proposed filter can be applied to any nonlinear and non-Gaussian
state-space model. To implement rejection sampling, the proposal
density is utilized to generate random draws from the target density.
Two types of candidates are examined for the proposal density, where
we obtain the result that RF (A) is recommended in practice, rather
than RF (B).

10In Table I, KF does not depend onn.
11The result 2) implies thatn = 500; 1000 is enough large when we want

to have the point estimate of�t. However, note thatn = 500; 1000 might be
too small in the case where we want to obtain a functional form ofp(�tjYt)
by the random numbers. Since RMSE is taken as a measure of precision of
the state estimates, we can conclude in this paper thatn = 500; 1000 is large
enough.

Thus, in this paper, a Monte Carlo procedure of filtering algo-
rithm using the simulation technique is proposed, where we utilize
the random draws only. The procedure improves over the other
nonlinear filters developed in the past from simplicity of computer
programming.

Finally, note as follows. In the proposed nonlinear and nonnormal
filter, when the acceptance probability!(z) is very small, we need
a huge sampling, and accordingly it takes a long time computation-
ally. For example, when we have outlines or structural changes in
the system [i.e., whenp(�tjYt) is away fromp(�t�1jYt�1)], the
computational burden increases in the rejection sampling procedure.
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Steady-State Performance Analysis of Serial Transfer
Lines Subject to Machine and Buffer Failure

Robert Lipset, Robert P. Van Til, and Sankar Sengupta

Abstract—In modern automated production lines, it is common to
connect adjacent machines with buffers. Since these buffers are me-
chanical devices, they are prone to failure. Previous research concerning
the steady-state analytical modeling of serial transfer lines assumed that
buffers are completely reliable. This paper considers the unreliable buffer
and presents a model of the serial transfer line incorporating this concept.
A decomposition technique is developed for the general serial transfer line
with unreliable buffers, and an algorithm for computing the solution of
the model is presented.

Index Terms—Discrete-event systems, manufacturing systems, perfor-
mance modeling, unreliable buffer.

I. INTRODUCTION

It is common to connect adjacent machines in serial transfer
lines with accumulating conveyors to provide storage and buffering
between processing stations. Since conveyors are mechanical devices,
they are prone to failure. In the experience of the authors, the failure
of accumulating conveyors accounts for a significant portion of lost
production in automobile assembly plants.

This paper develops a steady-state analytical model of a serial
transfer line that accounts for the failure of both machines and buffers.
Previous research concerning the steady-state analytical modeling of
serial transfer lines containing more than two machines assumes that
buffers are completely reliable [1], [3]–[18], [22]–[26]. An analytical
model for a two-machine line where both the machines and the buffer
are subject to failure is presented in [20] and [21]. Buffer unreliability
has also been discussed in [2].

Zimmern [26] is credited by several authors with first proposing
a continuousmodel of the serial transfer line. The results of [26]
assumed that machines are unreliable and characterized machine
failures as operation-, not time-, dependent. A continuous model in
which machine failures are time-dependent was formulated in [22].
Discretemodels of the serial transfer line characterize the system as a
Markovian birth–death process mapping transition probabilities into
transition rates [4]. A discrete model that compared various buffering
strategies was proposed in [18], but the model assumed that both
machines and buffers were reliable. A discrete model that considered
machine unreliability was presented in [3].

The simplest serial transfer line is composed of two machines with
a single intermediate reliable buffer of finite capacity. Solutions for
the continuous model of a two-machine line with a reliable buffer
are given in [10] and [15]. In [14], a discrete approach depending on
a Markov process model is used to produce closed form expressions
for the performance measures.

An exact solution using a discrete model of a serial transfer line
with three machines and two intermediate buffers is derived in [16].
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