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Adaptive Control of Stochastic Manufacturing Systems
with Hidden Markovian Demands and Small Noise

T. E. Duncan, B. Pasik-Duncan, and Q. Zhang

Abstract—The adaptive production planning of failure-prone manufac-
turing systems is considered in this paper. In real manufacturing systems,
the product demand is usually not known a priori. One of the major
tasks in production scheduling is to estimate and predict the demand. In
this paper, the authors consider the demand to be either the sum of an
unknown rate and a small white noise or the sum of a hidden Markov
chain and a small white noise. An algorithm is given to define a family
of estimates for the unknown demand processes. Based on this family
of estimates, adaptive controls are constructed, which are shown to be
nearly optimal.

Index Terms—Hidden Markov chain, nearly optimal control, parame-
ter identification, production planning.

I. INTRODUCTION

The study of flexible manufacturing systems has attracted much
attention in the recent years because of the capability of these
systems to describe today’s increasingly unpredictable market place.
One of the key factors that determines the production strategy of a
manufacturing firm is the market demand for its products. There are
various ways of formulating the demand processes. Typically, the
rate of demand is modeled as a finite-state Markov chain (see [7]).
In practice, the demand process is usually not directly observable by
the controller of the production. The presence of the unobservable
demand processes makes the problem very difficult to solve. It is the
purpose of this paper to investigate a class of production planning
problems with incomplete information of demand. In particular, the
demand process is described as a hidden Markov chain plus a small
noise perturbation. The problem is to find the rate of production that
minimizes the overall costs of inventory/shortage and production.

To solve the problem, the unobservable demand process has to be
estimated. In this paper, a family of estimates is given to identify the
unknown process. Using these estimates of the unknown parameters,
an adaptive control is constructed for the problem. The adaptive
control is shown to be asymptotically optimal as the noise tends
to zero.

Failure-prone manufacturing systems are considered in this paper.
The production availability (or the machine state) process is modeled
as a finite-state Markov chain; see [7] for discussions and more details
on these models.

There is a sizable amount of work on stochastic adaptive control.
However, the work on continuous time stochastic adaptive control
(e.g., [1], [3], [4], and [6]) is significantly less than the work on
discrete-time stochastic adaptive control. The use of hidden Markov
models is described in [5].

This paper is organized as follows. In Section II, the problem
of the adaptive production planning with unobservable constant
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demand rates is formulated. In Section III, we give an algorithm
for identifying the unknown parameters. An error estimate of the
algorithm is also given. In Section IV, an adaptive control based
on the identification algorithm is obtained. The adaptive control is
shown to be nearly optimal as the noise in the demand process tends
to zero. To emphasize the main idea in parameter identification and
to simplify the exposition, only the models with constant demand
rates are considered in these sections. In Section V, these results are
extended to models involving hidden Markov chains. Some related
technical lemmas are given in the Appendix.

II. PROBLEM FORMULATION

Consider a manufacturing system that producesn distinct part
types usingm identical machines that are subject to break down
and repair. Letu(t) 2 Rn denote the vector of production rates,
x(t) 2 Rn the vector of total inventories/backlogs, andz(t) 2 Rn

the vector of demands. These processes are related by the following
differential equation:

dx(t) = u(t)dt� dz(t); x(0) = x 2 R
n
: (1)

The demandz(�) is given by the following differential equation:

dz(t) = �z dt+
p
"� dw(t); z(0) = z0 (2)

where�z is a vector of unknown constants," > 0 is a small parameter,
� is a givenn�n matrix, and(w(t); t � 0) is a standardRn-valued
Brownian motion, defined on a complete probability space(
;F ; P ).
For simplicity of exposition, initially we consider the case where
�z 2 Z = fz1; z2; � � � ; zNg. An extension of the models involving
hidden Markov demand is considered in Section V.

Let M = f0; 1; � � � ;mg denote the set of machine total capacity
states and let the process(�(t); t � 0) where�(t) 2 M denote the
total capacity process for the manufacturing system.

Note that(x(�); �(�)) is observable up to timet. Sinceu(�) depends
on (x(�); �(�)) up to t; z(�) is also available up to timet. The cost
function J is defined by

J(u(�)) = E
1

0

e
��t

G(x(t); u(t))dt (3)

whereG is the running cost of inventory/backlog and production and
� > 0 is the discount rate. The problem is to find a controlu(�) that
minimizesJ(u(�)).

Now the production (or control) constraints are specified. For each
i 2 M = f0; 1; 2; � � � ;mg, let

U(i) = fu = (u1; � � � ; un) : uj � 0; j = 1; � � � ; n;
andp1u1 + � � �+ pnun � ig (4)

wherepj � 0; j = 1; � � � ; n, are given constants withpj representing
the amount of capacity needed to produce part typej at rate one. With
this definition, the production constraint at timet is u(t) 2 U(�(t)).

Assumptions:

A1) There exist constantsC andk 2 N = f1; 2; � � �g such that
for all x; x1; u andu1 2 Rn; 0 � G(x; u) � C(1 + jxj2k),
and jG(x; u) � G(x1; u1)j � C((1 + jxj2k + jx1j2k)jx �
x1j + ju � u1j).

A2) �(t) 2 M is a finite-state Markov process governed by the
(m+1)� (m+1) matrix generatorQ = (qij) with qij � 0
if i 6= j and qii = �

j 6=i
qij .

A3) The random variable�z and the processes(�(t); t � 0) and
(w(t); t � 0) are independent.
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Definition: A control u(�) = fu(t; �(t); x(t)) : t � 0g is
admissibleif: 1) u : R+ �M� Rn ! Rn is a Borel measurable
function such that (1) has a unique strong solution and 2)u(t) 2
U(�(t)) for all t � 0. The set of all admissible controls is denoted
by A.

The control problem can be expressed as follows:

P :
minJ(u(�)) = E

1

0
e��tG(x(t); u(t))dt

s.t.dx(t) = (u(t)� �z)dt�p"� dw(t); x(0) = x:
(5)

III. PARAMETER IDENTIFICATION

First of all, for a givenu(�) 2 A, we define aZ-valued family of
estimates(ẑ(t); t � 0) of the unknown parameter�z 2 Z and show
that it is strongly consistent. Let(ẑ(t); t � 0) be given by

ẑ(t) = arg min
i2f1;���;Ng

j�z(t)� zij (6)

�z(t) =
�1
t

x(t)� x(0)�
t

0

u(s)ds (7)

where(x(t); t � 0) satisfies (1) and�z(0) = 0.
Proposition 1: Let �z 2 Z in (2) be fixed. If (ẑ(t); t � 0) is the

family of estimates of�z given by (6) then

lim
t!1

ẑ(t) = �z a.s. (8)

Proof: It follows from (5) that fort > 0

�z =
�1
t

x(t)� x(0)�
t

0

u(s)ds+
t

0

p
"� dw(s) :

Apply the Strong Law of Large Numbers to the family of random
variablesf�t�1 t

0

p
"� dw(s); t > 0g to verify (8).

The verification of next proposition follows directly from the Law
of the Iterated Logarithm for Brownian motion (e.g., [8]).

Proposition 2: Let (ẑ(t); t > 0) be given by (6). For each~" > 0
there is at0 > 0 such that

P (jẑ(t)� zj j < jẑ(t)� zij for somej 6= i

and somet � t0 j �z = zi) < ~": (9)

Proposition 3: For each" > 0 the family of estimates(ẑ(t); t >
0) given by (6) satisfies, for someK

P lim sup
t!1

jẑ(t)� zij
t�1=2+"

� K �z = zi = 1: (10)

The verification of this proposition follows from the proof of [Th.
2.1, 2] that uses the Law of the Iterated Logarithm.

Lemma 1: For any t > 0; P (ẑ(t) 6= zi j �z = zi) � K"=t. In
particular, lett = �" = "j log "j. Then

P (ẑ(�") 6= zi j �z = zi) � K=j log "j ! 0; as"! 0:

Proof: Note that�z(t) = �z +
p
"�w(t)=t. We have, forj 6= i

fẑ(t) = zjg = fj�z(t)� zj j < j�z(t)� zig
= fjzi � zj +

p
"�w(t)=tj < jp"�w(t)=tjg

� fjp"�w(t)=tj � jzi � zj j=2g:
Thus, in view of the independence of�z andw(�) in A3)

P (ẑ(t) = zj j �z = zi)

� P (jp"�w(t)=tj � jzi � zj j=2 j �z = zi)

= P (jp"�w(t)=tj � jzi � zj j=2)
� 4E(

p
"�w(t)=t)2=jzi� zj j2 � K"=t:

IV. A SYMPTOTIC OPTIMAL CONTROLS

Recall thatZ = fz1; z2; � � � ; zNg. For i 2 � = f1; � � � ; Ng, let
u�(�; zi; x) denote the optimal control for

Pi :
minJ(u(�))
s.t. dx(t) = (u(t)� zi)dt; x(0) = x:

(11)

For eachi 2 �, it can be shown (cf. [7]) that the value function
vi(�; x), defined as the minimum cost overA with �(0) = �
and x(0) = x, is the unique viscosity solution to the following
Hamilton–Jacobi–Bellman (HJB) equation:

�vi(�; x) = min
u2U(�)

[(u� zi)rxv
i(�; zi; x) +G(x; u)]

+Qvi(�; x)(�) (12)

for any � 2 M, where Qvi(�; x)(�) = � 6=� q��(v
i(�; x) �

vi(�; x)). Let an optimal feedback controlu�(�; zi; x) be obtained
by minimizing the right-hand side of (12), i.e.,

u�(�; zi; x)rxv
i(�; x) + c(u�(�; zi; x))

= minfurxv
i(�; x) + c(u) : u 2 U(�)g: (13)

To obtain a Lipschitz optimal control, an additional assumption is
made.

A4) The functionG given in (3) can be expressed asG(x; u) =
h(x) + c(u) whereh(x) is differentiable andc(u) is twice
differentiable withcuu(u) � c0 > 0. Furthermore, there exist
a constantC and a integerk � 0 such that

jh(x+ y)� h(x)�rxh(x)yj � C(1 + jxj2k)jyj2:
A proof of the following lemma is given in [7].

Lemma 2: Assume A1)–A4). ForPi in (11) let u�(�; zi; x) be
an optimal feedback control determined from (13). Then there exist
constantsC andk � 0 such that forx; x1 2 Rn

ju�(�; zi; x)� u�(�; zi; x1)j � C(1 + jxj2k + jx1j2k)jx � x1j:
As in Lemma 1, let�" = "j log "j. Define the certainty equivalence

adaptive control(u"(t; �; x); t > 0) as

u"(t; �; x) =
u�(�; z1; x); if t < �"
u�(�; ẑ(�"); x); if t � �"

(14)

for the system given by (1) and (2). It is easy to see that such a
control is admissible.

Theorem 1: For the control of the manufacturing system given by
(1) and (2) with the cost functional (3) if A1)–A4) are satisfied,
then the adaptive control(u"(t; �; x); t > 0) given by (14) is
asymptotically optimal, i.e.,

lim
"!0

J(u"(�))� inf
u(�)2A

J(u(�)) = 0: (15)

Proof: Note thatJ(u"(�)) � infu(�)2A J(u(�)). It suffices to
show lim sup"!0(J(u

"(�)) � infu(�)2A J(u(�))) = 0. For each
i 2 �, given �z = zi, it is easy to show that

inf
u(�)2A

J(u(�))

= inf
u(�)2A

E
1

0

e��tG(x(t); u(t))dt �z = zi

� inf
�u(�)2A

E
1

0

e��tG(�x(t); �u(t))dt �z = zi +O(
p
")

= E
1

0

e��tG(�x�(t); �u�i (t))dt �z = zi +O(
p
") (16)

where d�x(t) = (�u(t) � zi)dt; �x(0) = x; d�x�(t) = (�u�i (t) �
zi)dt; �x�(0) = x, and �u�i (t) = u�(�(t); zi; �x

�(t)). Let �(T ) =
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supu(�)2AE
1

T
e��tG(x(t); u(t))dt. Then, Lemma A.1 (see the

Appendix) yields�(T ) � C
1

T
e��t(1+e�t=2)dt for some constant

C.
On the other hand, for eachT > 0

E
1

0

e��tG(x"(t); u"(t))dt

= E
T

0

e��tG(x"(t); u"(t))dt

+ E
1

T

e��tG(x"(t); u"(t))dt

� E
T

0

e��tG(x"(t); u"(t))dt+ �(T ):

By Lemma 1, it follows that

E
T

0

e��tG(x"(t); u"(t))dt

=

N

i=1

E
T

0

e��tG(x"(t); u"(t))dt �z = zi P (�z = zi):

Note that

E
T

0

e��tG(x"(t); u"(t))dt �z = zi

= E
T

0

e��tG(x"(t); u"(t))dtIfẑ(� )=z g �z = zi

+ E
T

0

e��tG(x"(t); u"(t))dtIfẑ(� ) 6=z g �z = zi

whereIF is the indicator function of a setF . The first term above
is less than or equal to

E
T

0

e��tG(x"(t); u�i (t))dt �z = zi :

The second term is bounded above byKTP (ẑ(�") 6= zi j �z = zi) �
KT=j log "j ! 0 as " ! 0. For i 2 � let

Ri("; T ) = E
T

0

e��tG(x"(t); u�i (t))dt �z = zi

� E
T

0

e��tG(�x�(t); u�i (t))dt �z = zi :

Then, Lemma A.3 and (16) yield that, for each fixedT > 0;
Ri("; T )! 0 as"! 0. Moreover,J(u"(�)) � infu(�)2A J(u(�))+
supi2� Ri("; T ) + �(T ) +O("2). By this inequality, it follows that
lim sup"!0(J(u

"(�))�infu(�)2A J(u(�))) � �(T )! 0 asT !1.
This implies (15).

V. HIDDEN MARKOVIAN DEMAND

In this section the demand process is described as the sum of a
hidden Markov chain and a small white noise, that is, more precisely

dz(t) = zh(t)dt+
p
"� dw(t); z(0) = 0 (17)

where (zh(t); t � 0) is a Markov chain,Z-valued and generated
by Qh, that is hidden to the controller of the system. Moreover, we
assume as in A3) thatzh(�); �(�), andw(�) are independent.

Note that if" = 0, then the value ofzh(s) is observable fors � t.
The HJB equation for the problem is

�v(�; z; x) = min
0�u��

[(u� z)rxv(�; z; x)

+G(x; u)] +Qv(�; z; x)(�) +Qhv(�; �; x)(z)
(18)

for any� 2 M andz 2 Z. It can be shown that the value function
v(�; z; x) is the unique viscosity solution to (18). Using this and
Assumption A4), it can be shown the value function is continuously
differentiable (cf. [Ch. 5, 7]). An optimal controlu�(�; z; x) for this
problem can be obtained by minimizing the right-hand side of (18),
i.e.,

u�(�; z; x)rxv(�; z; x) + c(u�(�; z; x))

= minfurxv(�; z; x) + c(u) : 0 � u � �g: (19)

Let (Y (t); t � 0) be the process given byY (t) = x � x(t) +
t

0
u(s)ds and for � > 0 let ~zh(t; �) be given by ~zh(t; �) =

(Y (t) � Y (t � �))=�. Note that

~z(t; �) =
1

�

t

t��

zh(s)ds+
p
"�

w(t)� w(t� �)

�
:

For eachk = 1; 2; � � � and t = k�", defineẑh(k�") as ẑh(k�") =
zi if

min
j=f1;���;Ng

j~z(k�"; �")� zj j = j~z(k�"; �")� zij:

Define ẑ"h(t) = z1 for t 2 [0; �") and

ẑ"h(t) = ẑh(k�"); t 2 [k�"; (k + 1)�"); k = 1; 2; � � � : (20)

Since the estimatêz"h(t); t > 0 is required to estimate the process
(zh(t); t � 0), the performance measure for these estimates is weaker
than for (ẑ(t); t > 0) given by (6).

Lemma 3: For eachT > 0, we have

lim
"!0

E
T

0

ẑ"h(t)� zh(t) dt = 0: (21)

Proof: The verification of (21) follows from the expectation of
reflected Brownian motion and the fact that given� > 0 there is a
~� > 0 such that for each intervalI of length~� in [0; T ] the probability
that (zh(t); t 2 I) changes state is less than�.

Theorem 2: Consider the control problem (1) and (3) wherez(t)
is determined by (17). If A1)–A4) hold, then

u"(�) = u� �(t); ẑ"h(t)x
"(t)

is asymptotically optimal, that is

lim
"!0

J(u"(�))� inf
u(�)2A

J(u(�)) = 0: (22)

Proof: Let (�x"(t); t 2 [0; T ]) and(x"(t); t 2 [0; T ]) denote the
processes that satisfy, with�x�(0) = x andx"(0) = x

d�x�(t) = (u�(�(t); zh(t); �x
�(t))� zh(t))dt;

dx"(t) = (u�(�(t); ẑ"h(t); x
"(t))� zh(t))dt�

p
"� dw(t)

respectively, whereu� is determined from (19). Then it easily follows
that for n sufficiently large

Ejx"(t)� �x�(t)j � E
t

0

u� �(s); ẑ"h(s); x
"(s)

� u� �(s); ẑ"h(s); �x
�(s) ds

+ E
t

0

u� �(s); ẑ"h(s); �x
�(s)

� u�(�(s); zh(s); �x
�(s)) ds+O(

p
"): (23)

Note that Ifẑ (t)6=z (t)g � Kjẑ"h(t) � zh(t)j, where K =

maxf1=jzi � zj j : i 6= jg. It follows from Lemma 3 that

E
t

0

u� �(s); ẑ"h(s); �x
�(s) � u�(�(s); zh(s); �x

�(s)) ds

� CE
t

0

ẑ"h(s)� zh(s) ds! 0 as"! 0: (24)
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In view of the Lipschitz property ofu�(�; z; x) with respect to
x, (23), (24), and the Gronwall’s inequality, it follows that for
each 0 � t � T; Ejx"(t) � �x�(t)j ! 0 as" ! 0. Thus, by
Lemma A.1, it follows thatJ(u"(�)) � J(�u�(�)) ! 0 as" ! 0,
where �u�(t) = u�(�(t); zh(t); �x

�(t)).
On the other hand, it is easy to see thatinfu(�)2A J(u(�)) �

infu(�)2A J(u�(�)), whereAz = fu(�) : u(t) is adapted to
�f(�(s); zh(s); x(s)) : s � tgg because the control inAz contains
more information. Following similar procedure as in the proof of
Theorem 1, we can showinfu(�)2A J(u(�)) � J(�u�(�)). Hence,
lim sup"!0(J(u

"(�))� infu(�)2A J(u(�)))! 0 asT !1.

APPENDIX

In this section we state and prove several technical lemmas.
Lemma A.1: Let (x(t); t � 0) satisfy (1), let u 2 A; and let

�z = zi. There exists a constantC such that

�(T ) := sup
i2�;u(�)2A

E
1

T

e��tG(x(t); u(t))dt

� C
1

T

e��t(1 + exp(�t=2))dt: (25)

Proof: For �z = zi and k � 1, we can show by using Ito’s
formula and Gronwall’s inequality that

Ejx(t)j2k � C exp(�t=2): (26)

By Assumption A1), it follows that

E
1

T

e��tG(x(t); u(t))dt

� C
1

T

e��t(1 + E[jx(t)j2k]) dt

� C
1

T

e��t(1 + exp(�t=2))dt:

Lemma A.2: Let (x(t); t � 0) satisfy (1), let u 2 A; and let
�z = zi. There is a constantC such that

sup
i2�;u(�)2A

E
1

0

e��tG(x(t); u(t))dt � C:

Proof: By (26), the following inequality is satisfied:

E
1

0

e��tG(x(t); u(t))dt

� C
1

0

e��t(1 +E[jx(t)j2k]) dt

� C
1

0

e��t 1 + exp
�t

2
dt =

3C

�
:

Lemma A.3: Let " > 0 be fixed,t" = c0"j log "j; and (x(t); t �
0) and (�x(t); t � 0) satisfy

dx(t) = (ui(t)� zi)dt�
p
"� dw(t); x(0) = x

where

ui(t) =
u0i (t); if 0 � t < t"
u�(�(t); zi; x(t)); if t" � t � T;

d�x(t) = (�u�i (t)� zi)dt; �x(0) = x

where

�u�i (t) =
�u0i (t); if 0 � t < t"
u�(�(t); zi; �x(t)); if t" � t � T

whereu0i and�u0i are arbitrary controls andu�(�; zi; x) is determined
by (13). Then, for someC and c > 0

Ejx(t)� �x(t)j � C("j log "j+p
"
p
T ) exp(cT ):

Proof: It is elementary that

Ejx(t")� �x(t")j � C(t" +
p
"Ejw(t")j) � C"j log "j:

Moreover, by the Lipschitz continuity ofu�(�; zi; x) in x, it follows
that, for 0 � t � T

Ejx(t)� �x(t)j � Ejx(t")� �x(t")j
+ C

t

t

Ejx(s)� �x(s)jds+ C
p
":

By Gronwall’s inequality, we have

Ejx(t)� �x(t)j � C("j log "j+p
"
p
T ) exp(cT ):
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