442 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 3, MARCH 1999

A Kiefer—\Wolfowitz Algorithm
with Randomized Differences

H. F. Chen,Fellow, IEEE T. E. DuncanFellow, IEEE,and B. Pasik-DuncarSenior Member, IEEE

Abstract—A Kiefer—Wolfowitz or simultaneous perturbation L. If £ is large, for example, the optimization of weights in a
algorithm that uses either one-sided or two-sided randomized neural network, then this KW algorithm can be rather slow.
qifﬂg”C:Se‘;"”gt”e‘;“c%aﬂg:‘:ﬂgtnr‘;??k?emgl’ \é)e:irtﬂrr;gobr?lur:\(/jvso izgsi‘éfn To reduce the number of measurements that are required, a
n . - . . .
vationspar% required in contrast to 2 obsgervations, v)\//heref is the rqndom difference method can be gsed.. Th.ere Is.a fairly Ion.g
dimension, in the classical algorithm. The algorithm given here is history of random search or approximation ideas in stochastic
shown to be convergent under only some mild conditions. A rate approximation (e.g., Fabian [7]). Koronacki [10] introduced
of convergence and an asymptotic normality of the algorithm are  a random version of the KW algorithm using a sequence of
also established. random unit vectors that are independent and uniformly dis-

Index Terms—Kiefer—Wolfowitz algorithm, perturbation algo-  tributed on the unit sphere or unit cube, and he gave sufficient
rithm, simultaneous stochastic approximation, stochastic approx- conditions for the convergence of the algorithm. Koronacki
imation with randomized differences. [10], [11] noted that the random direction methods have a
better reduction of bias effects caused by the use of finite
differences for the derivatives than the nonrandom direction
] ) ) ] ] methods and that these methods reduce the required number

Kiefer-Wolfowitz (KW) algorithm [8] is used to find the ¢ ohservations or measurements. Spall [14] reintroduced a

extrema of an unknown functiod: IR” — IR which 5n4om direction version of the KW algorithm and called it
may be observed with some additive noise. If the gradiegtsimyitaneous perturbation stochastic approximation (SPSA)
of L can be observed, then the problem can be solved by,@qrithm. Using the ordinary differential equation (ODE)
Robbins-Monro (RM) algorithm. method [12] Spall showed the convergence and the asymptotic

Let z,, be the estimate of the unique extremumio&t the normality of this modified KW or simultaneous perturbation
nth iteration. One approach to a KW algorithm is to obsergqorithm though the conditions that he required are restrictive.
L at the following values: Initially Spall’'s KW or simultaneous perturbation algorithm

I. INTRODUCTION

$i+:[$1 T AN LS xé]T and the conditions that he uses are described. (&%,

» [ A i =1,---,4 k = 1,2, --.) be a sequence of mutually
i— _[ .. i—1 i i+1 Z]T X . . - . .
n T Ty s T 5 T T Oy By T,y Ty independent and identically distributed random variables with

fori—=1,2 -, ¢ wherec, € R\ {0} zero mean. Letd, be given by

Consider noisy observations df so that the processes Ay =[AL, -, AL (2)
(yihi,m e N, i e {1, £})and (y)5,, n € N, i €
{1, ---, £}) satisfy At each iteration, two measurements are taken:
ynt =L@ + &34, v = Lon+ enli) + 614, (3)
and Yoy = L@ — b)) + 6,1 (4)
Yy =L(27) + 60 Then the vector symmetric difference
where (£54,, n € N) and (¢,,,, n € N) are observation (Ui = Yip1) 9k
noise processes. The ratio 2¢;, (5)
Yt — v where
T2, @ r
Ar A ©
can be used as an estimate for tttecomponent oW L. Using k= Ay T AL

these estimates a KW algorithm requiresm@easurements of . .
9 d is used as an estimate f&FL(xy,).
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For the convergence of the algorithm (5) Spall [14] required

the following conditions. Initially the algorithm is precisely described. Len:, i =
Al) The random variableg¢,, — &, k € N)is a 1 ... 4 ke IN)be asequence of independent and identically

martingale difference sequence (mds) with uniformlyistributed random variables whefAl| < a, |1/AL| < b,

bounded second moments. E(1/AY) =0forallie {1, -, ¢} andk € IN and somex,

The integrability condition b € Ry. Furthermore, let\; be independent of = o(¢;,
0,¢&7,41€{0, ---, k}) for k € N. Defineyx41 andéx41 by

the following equations:

Il. THE ALGORITHM AND ITS CONVERGENCE

A2)

sup E(L*(xh + cplp)) < 00

keIN
+ _.0
is satisfied. iy = et = Vit )9 (10)
A3) The sequencézy, & € IN) is assumed priori to be Ck
uniformly bounded, that is, (Ui 1 — Vg1 9k J
g = S (10)
s:ﬂg [|lzx|| <n < oo as. Eern :gl-;_l B £2+1 (11)
wheren € R.. Ert1 251—;_1 - 5}:4_1- (11/)
A4) The third derivative off is bounded. It follows that
A5) The pointz® € R’ is an asymptotically stable point Yort = (L{zr + exAr) — L{xp))gn 4 v 10k (12)
for the differential equationlz/dt = — f(z(t)) where Ck Ck
f = VL. _ (Lxg + cxDy) — L{xg — cxAr))gr n Ert+19x
A6) The sequenc€zi, k£ € IN) is infinitely often in Yrt1 = 2cs 2
a compact set that is contained in the domain of (12)

attraction ofz® given in A5).
The sequence&u, k£ € IN) and (¢, k € IN) satisfy
ar > 0,c,>0forall k€N, ax — 0ande, — 0 as
k— oo, > il ar =00 and ro(ar/ck)? < oo.

nce

Furthermore, some conditions are imposed on the sequemeaning Ofysys is determined by whether the one-sided or

(&k, k€ IN) in [14], but this sequence can be arbltranl){ng two-sided algorithm is used. Choase € IR* and fix it.

chosen by the user of the a!g(_)rlthm so these conditions shoBefine the following KW algorithm with randomly varying
not be considered as restrictions.

In this paper, both a one-sided randomized difference anérgncatlons and randomized differences:

Equations (10), (20, (11), (1), (12), and (12 represent
some abuse of notation. Equations (10)—(12) are used for the
one-sided algorithm and (10 (1Y), and (12) are used for
the two-sided algorithm. In the subsequent description the

A7)

two-sided randomized difference are used, that is,

Trgt = (@ + Ukt )Lz p oy 1<, 3

+ .0 + 2 L (Jleptarys > Mo, } (13)
(yk+1 cfk—l—l)gk ) -
+ _ ok = Y Lloitaiyin I>Ms,) (14)
(Z/k+1 - yk+1)9k @) i=0
2cy, oo =0
and where(My, k € IN) is a sequence of strictly positive, strictly
increasing real numbers that diverges+too. It is clear that
11 117 o is the number of truncations that have occurred before time
gk = [A_,{’ T A_fj k. Clearly the random vectar; is measurable with respect to
Fr = ]—",f\/]—",ffl whereF2 = o(A;, i € {0, ---, k}). Thus
are used to estimatg(xy) = VL(x) where the random vector\,, is independent of(z;, i < k).
0 0 The following conditions are imposed on the algorithm.
Yopr = L(@n) + &g 9)

y,jgrl, Yr41» @Ndgy are given by (3), (4), and (6), respectively.
The two-sided algorithm is described by (7) and the one-
sided algorithm is described by (7) with’Y8eplaced by (8).
By a modification of the algorithm (7) and the use of a direct
approach to verifying convergence, the conditions A2), A3),
Ab), and A6) are eliminated, A4) and A7) are relaxed, and Al)
is weakened to one that provides not only a sufficient but also
a necessary condition for convergence. This result is given in

H1) The functionV L = f is locally Lipschitz continuous.
There is a unique maximum df at z° that is the only
local extremum so thaf(xz°) = 0 and f(z) # 0 for
x # 2°. There is acy € R, such that|z*|| < ¢ and
SupHxH:ca L(.Z') < L(.Z'*)

) The two sequences of strictly positive real numbers
(ar, K € N) and (¢;, & € IN) satisfy a;, — 0 and
e — 0ask — oo, > po,ar = oo and there is a
p € (1, 2] such thatdy";7, &b < oc.

Theorem 1. In Theorem 2 the observation noise is modified toRemark: If L is twice continuously differentiable thefi
one with only bounded second moments that is independent®flocally Lipschitz continuous. If in H1)" is the unique
(A, k € IN). A convergence rate and an asymptotic normalitjinimum of L, then in (13) and (14} should be replaced
of the algorithm are given in Theorems 3 and 4, respectivelyy —ay.
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The main result of this section is the following theorem thdor ;1 given by (12) and theith components ofu;, (1) and
gives necessary and sufficient conditions for the convergengg1) are, respectively

of the algorithm (13).

Theorem 1: Let H1) and H2) be satisfied ar{dy, & € IN)
be given by (13) with the conditions fdA:, i = 1, ---, 4
k € IN) given for the algorithm. The sequenc¢ey, & € IN)
satisfies

lim z =z° as. (15)

k—oo

wherez? is given in H1) if and only if for eactk € N the

observation nois€;, in (11) or (11) can be decomposed into hij =

the sum of two terms for eache {1, ---, ¢} as
gk = Gk + Vk (16)
such that
>, ape
SO o as 17)
P NS
and ’
J
1%
li kL —0 as. (18)
forj=1,---,4¢ WhereAi is given in (2).

Before proving the theorem, two lemmas are proved.

wj, ; = filzn + i+ () — filan) (27)
g, ; = filzr + aly + 6i(1) — fi(zr) (28)

and the ith components of wk() and u(2) are
Eﬁéz hij(1/A%) andzﬁéZ g (1/AL), respectlvely, and

([ fi(on +cxdr(d — 1) + 8(5)) A
je{l, -, i-1}
(29)
Filan + a(Qu(i — 1) + AF(5)) + 61(3)) A
(7 jefitl, -0
( fi(xr — CkAk(l -1+ 60 ))AJ
o = jedL, - ‘L—l} | | (30)
filor — a(Dr(i = 1) + AZ(5)) + 6x(5)) Ay
(7 jefitl, 0

and hy; and g; are independent oA} .
Proof: By comparing (12 and (24) it follows that the
¢th component ofe;4 is
L{xy + cpAg) — Lz — cpg)
2ek A,

1
— filzw) + M Ekt1-

To describe easily the replacement of some componentierefore, to obtain (26) it suffices to show that

of A by zero, two functions are introduced. Let(-)

{0, ---, £} - R' and AS(+) {0, ---, £} — IR® be given by
Ar(s) =[Af, -+, 83,0, -, 0, A0)=0  (19)
An(s) =[0, -, 0, AFF - ALTE, AR = 0. (20)
It is clear that

Ay = AL(0) = Ar(f) (21)
and

Ap(i— 1)+ A5G =[AL, -+, ATL 0, AL ALT

(22)

For notational convenience léf (i) denote a generidR‘-
valued random vector such that

6k(L):[07707 6;;707"'70]11
——— ————

i—1

(23)
£—1

where [8,(1)| < |eral, a € R is fixed, andsi may vary for
different applications.

Lemma 1: If H1) is satisfied, then the observation.41
given by (12) or (19 can be expressed as

f(@r) + erqr (24)

Y41 =
where

1
ept1 = wi(1) + wi(2) + o Ert10n (25)

for yr41 given by (12) and

Eptl = % <wk(1) + we(2) +ur (1) +ur(2) % §k+1gk>
(26)

L(a:k + CkAk) — I;(a?k — CkAk) _ fz(];k)
2CkAk
l
= 3| whi + i + D (wi, + ) (31)
i
where
s 1
wy; = P i (32)
k J Ak
and
. (33)
k J Ak
It follows that
Lz + crAy) — I;(xk — R Ay) — fian)
2CkAk
Lz 4+ cpdy) — L(zy) | L(xy) — Lz — i)
= g + _
2CkA§C 2CkA§C

— fi(z

2CkA7

k)
i—1
{Z xk +CkAk ))

j=1
— L(zp + cxAr(j — D) + L(zp + e Ay)
L(xk + e (Bx(i — 1) + A5(2)))

Py

j=i+1
— L(zn + cr(Bi(i = 1) + A3()))]

(wr 4+ cn(Ar(t — 1) + AL — 1))

— L{zp 4 cp(Dp(i — 1) + Ai(i)))]}
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1 i—l Let ' C Q be thew-set such that for eacly € Q' (17)
t oA Z (L(z1 — crAr(y — 1)) is finite, (18) is satisfied, and (38) and (39) are finite for all
Rk =t N € N. It is clear thatP(Q') = 1.
— L(zp — e Ax(5))] If the number of truncations is finite then there is an
: such thato,, = oy for all n > N and || >7F a;y541] =
+ Z (zr — en(Ar(i — 1) + AL(G))) |Zmt2 — @pn, || £ 2M,,, for all ng > N. Thus the inequality
j=it1 (36) is satisfied.
— L(zy — cp(Ap(i — 1) + A5G — 1))] Now let o, — oo and assume that (36) is not satisfied.
+ Lok — cx (Do — 1) + A () Choosec > ||z|| and fix it wherez is the limit of the
Tl TGS ¢ subsequence(z,,, ¥ € IN). By the convergence ofz,, ,
k € IN) there is ak. such that
—L(.Tk — CkAk) _
¢+ ||zl
lem I < =5
— filxn)- (34)

It is clear by the Taylor formula that for all £ > k.. Choose a sequend€, s € IN) of strictly

E[L(xk +ar) — L{ww + en(Be(i — 1) + A5(9)) that (36) is not satisfied for eachi, there are &, > s and
2 GWAV anms € {ng,, -+, m(ng,, Ts)} such that
n L(a:k — Ck(Ak(L — 1) + Ai(L))) — L(a:k — CkAk) 1
AZ ms =
— 2fi(a:k)} = wy,; +u, (35) =k

>
and forj < i—1, L{zs+cxA(j)) — Lizk+cxde(i—1)) = It can be assumed th&at,, > ks > k. for all s € IN and let

filor + A — 1)+ Ar(y )AL = hy;, which is independent m+1 c— |1zl
of AZ ms = inf ¢ m: Z a;Yit1|| > 5 (40)
The other expressions in (29) and (30) are obtained by a i=nu,

similar argument.

For yxr: given by (12), (31) changes to Since the sequende:,, , £ € IN) is convergent, it follows by

the Lipschitz continuity off that

4
L(afk + CkAk) - L(-Tk) _ f(-Tk) _ wi + Z wi (31/) klun wrm ;=0
CkA? ¢ v s °? —00
K IF khm unk ; =0

and the analysis is the same except that dhe terms are ) 4 4 )
deleted. O forie{1,.--, 1} wherew; ; andu;, satisfy (27) and (28),

Lemma 2: If H1), H2), (17), and (18) are satisfied, therfeSpeC“Ve'y It is elementary to verify that

there isQ?’ ¢ Q with P(QY") = 1 such that for any fixed € ¢ hm o w; .=0
and any convergent subsequedeg, (w), k € IN} there exist "
positive constantd4, 7', andkr such that ifk > kg, then kll_l)glo ankuflki =0
m+1 S,
Z a1 (w)|| < M (36) for ¢ # j. Thus
i=ny lim a,, Yn, +1 =0
for eachm € {ns, ---, m(ny, T)}, where T

wherem, > ny, andm, is given by (40). From (40) and the
convergence ofz,,, & € IN) it follows that

m(n, t) max{ Z a; < t} (37

Proof. For notational convenience, the evaluation of the
random variables ab is suppressed. For example,, (w) is
simply denoted ag,, . for eachm € {ng , ms}.

Sincehs; andgy; are independent ek}, and}";7, af < oo Sinceo,, — oo asn — oo there is ansg such that ifs > s
for somep € (1, 2] it follows by the convergence theorem forthen M, > c. Thus
mds’s [3], [6] that for eachV € IN and j # i "

m

Ty, + Z a;yi+1|| <c (41)

P=ng,

Z akwiil{lhkjlél\r} < o0, a.s. (38) xnks + Z ilYi+1 S Mo-”ks (42)
k=1 T
i1 39) and
> iy, 2ny <00, as. (39)
k=1 LTm+1 = Tm + AmYm+1 (43)

positive numbers that converges to zero. Since it is assumed
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for all m € {ns,, ---, ms}. Inequality (41) implies that
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The right-hand sides of the inequalities (46) and (47) tend to
zero ass — oo. However by (40) it follows that

lzml| <c (44)
and o c— ||
/ 41— T, FCm,41Ym,42]| = Z a;Yit1|| >
1)l < (45) = 2
/ (48)
E;glhnﬂ; ioi%?fié)n i ;Z)llfg\}v]; \;\;]r;etrec € Ry By the local ot (47) and (48) are not compatible and (36) is verified.
O
lim maX{|wﬁﬁj| + |ujnj|; me {ng,, -, ms+1}} =0 Now the proof of Theorem 1 is given.
sTee Proof—Sufficiency:By (36) it follows that fork sufficiently
wherew} . anduj; are given by (32) and (33), respectivelylarge there is no truncation for ah € {ny, ---, m(ny, ')}
and thus SO

ms

: P
lim E a;w;; =0
§—00

P=n

my
; ) =
lim E au;; =0
5§—00 |

T=Ng g

and

: J _
Shm Umy+1Wh, 115 =0
: J _
Shm Uy 41Uy, 415 =0-

For N > ¢ it follows from (38), (39), (44), and (45) that

ms

lim E aw’, =0
SA)OC‘ v ZA

T=Npg
ms
lim E a;u, =0
5—0C v Z)\
P=ng,
and
: J _
lim A, +1Wy, 1) =0

5—0C

lim an,, 410 5 =0

§—00 ms+1

forall A # j andj, A € {1, ---, l}. Combining (38), (39),
(44), and (45) it follows that

ms

lim Z aieir1 = 0
5—00 |

Z:TL)\,S
and

lim am,416m,42 = 0.

§—0C
The following inequalities are elementary:

ms ms

< S alfEl+| S

i:n;\,s

[#m,+1 = @y, @i€it1
i:n;\,s

ms

<dT, + Z ;€41 (46)
=,
and
||-Tms+1 — Lny, + ams+lyms+2||
< l#m,+1 — Ty, ||+ @41l f(@m, + 1)
+ ||a/7n,s—|—167ns+2||- (47)

(49)

LT+l = Tm + AmYm+1

and||z,,,|| < 2M, ||f(zm)|| £ M’ where M’ € R;.

By these last two inequalities, there is Ah> 0 such that
hm; andg,,; given by (29) and (30), respectively, satisfy the
inequalities

|hrnj| S N
|grnj| S N

for all m € {ng, ---, m(ny, T)} andj € {1, ---, I} for all
k sufficiently large. Therefore, fok # j

m(ng,t)

Z a;,wf}\(w)

i=ny

lim

k—oo

m(ng,t)

> awl (W) g, i<ny| =0

=N

= lim
k—oo

for A € {1, ---, I} by (38) and (39) forw € ' where{' is
given in Lemma 2. Thus fow € ' and X # j

m(ng,t)

2 : J
aiwi)\

1=ny

o

lim li =
Jim lim sup T

k—oo

(50)

for all t € [0, T]. For A = j it follows that

m(ng,t)

%igb 1iiisolip T Z aiwi)\)\(w)
=N}
m(ng,t)
Z ai(falzs + e — 6i(N))

1=ny

lim limsup
T—0 koo

— falzs))

m(ng,t)

Z a;0(1)| =0

i=ng

lim limsup
T—0 j—ooo

(51)
whereo(1) — 0 as¢ — oo because;; — 0 andé§;(\) — 0 as

¢t — oo and||z;|| < 2M foralli € {ny, ---, m(nx, t)}. Thus,
the noise condition required in Theorem A in the Appendix
is satisfied, while for the functiom in Theorem A,—L can

be selected (cf. Remark 2). Then sufficiency follows from
Theorem A.
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Necessity:Now it is verified that (15) implies (16)—(18). Let e£+1 be given by
Assume that (15) is satisfied and Rt\ A" be the set, where ' '
(zn, n € N) converges and the series in (38) and (39) are Chyr = &bl — Vigq-
finite for any N € IN, P(N) = 0 and fixw € Q\N. Again
for notational convenience the evaluations/atre suppressed. By (57) and (58) it follows that
There is aK € IN such that ifk > o then

T
2 Cr+1 Ck+1
Th+l = Tk + CkYk+1- 265&'1)'1 wk(2) B Uk(2) B [Ckzk’ o Ckgi
Use the decomposition in [15] so that
Chal — Th By (53)—(56) it follows that
: - 2
€py1 = -'—aik flag) = 62-1)-1 + 62-1)-1 (52)
ak a.s. (60)
where 6&21 = —f(x) and cfﬁl = (Tp41 — xn)/on. It is Z ey,
clear that . . .
for j € {1,---,1}. Equations (58)—(60) give the required
Z ak6k+1 < 00 (53) dec_qmposition (16)—_(18). The_ equ_ations_ (_16)—(18_) can be
verified for the one-sided algorithm in a similar fashiond
and Assuming an independence condition the following theorem
lim Y —o (54) gives a large family of noise processes that satisfy (16)—(18).
koo KFL T Theorem 2: Let H1) and H2) be satisfied. ;7 (a3} /c3)

o< 0 and the observation noisé;, & € IN) has the property
that{(k+1) is independent ofA;, j = 1, 2, k) for each
k € IN and satisfies one of the foIIowmg two condmons

Since (zx, k € IN) is convergent and (38) and (39) are
satisfied, it follows thafim;—, w,” = 0, limu—oo u,” =0

and27 1azw7)\<rso Yoo aiul, < oo forall A # j and A,

jell, -, I}, Thuslimy_ .o wk(l) =0, limg o0 ur(1) = 0 1) sup, |£k|2§ ¢ a.s. wheréef is a random variable;
and 2) sup B¢ < oo
o0 then
w;(2) < 55
; aiwi(2) < oo (59) lim z, =2° a.s. (61)
= k—oo
> aiui(2) <oo (56) wherezy is given by (13).
i=1 Proof: Initially it should be noted that; may depend
where wi,(1), un(1), wi(2), and w,(2) are defined in arbitrarily orf1 E)g"j, jd7£dkg and r_‘ngy_notbbe zero mean, e.g., ?_
Lemma 1. From (26) and (52) it follows that sequence of bounded deterministic observation errors satisfies
) the conditions.
= prign = — (2f () 4+ wi(1)) + ur(1)) + 22 It is only necessary to vern‘y (16)—(18). Let 1) be satisfied,
o LI (2f(e) o)+ ux()) H that is, there is a random variabfesuch thatsupy - |€x] <
— wi(2) — ur(2)). (57) ¢ < oo.Forje{1,---, ¢} andk € N let 7} be given by

By (35) it follows that
2fi(wr) 4+ wi,; + uiy

Fl=o(Al, ie€{0, -, Kk}, &, ped{0, -, k+2}).

 L{en+ exln) — Llen + en(Ani — 1) + AZ() By ';Eetdefinition ofAy, it is independent ofx4, and Fj_,
_ S, so thai
L(wy, — cn(Ax(i — 1) + A5 (6)) — Lz — cr ) Shet1
+ 4 . B| St 5 E|G|Fl.|=0 as
2B Al k1| =&k 7 k-1
Let 1, be given by and
T Ll—ad) - Lio-a@a-1 + 0500 D Bl g Aha| | 20 @V < as.
(58) =1 % (A7) =1 Ck
By th h f ’ it follows th
By (27) and (28) it follows that y the convergence theorem for mds'’s [3], [6], it follows that
i — ar Ert1
ML = — fi(anten Dp A0k (i) — fi(ar— e Ar+6i(i)) (59) Z o A s as
CkAk k=1 k k
fori e {1,---,1} and for all j € {1,---, £}. Thus in (16) it can be assumed that
J J '
lim filzn £ g + 6(0) = fi(2°) = 0. v =0ande, =& forj=1,.... L
Sy £ e+ 6(9) = file?) Now assume thatup,. E¢2 < o is satisfied.
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By the independence assumption it follows that fox £, and
Ay is independent of Ay, &k+1, &+1) SO that

201-6) _
E|Siten :E[LH&H}E LIl=o Z "
ALAL AL Al
p It follows that |Ax,(w)| in (38) is uniformly bounded for
for all ¢ € {1, ---, £} so that je{l,---, ¢} andk € N for eachw where(z,, n € N)
oo 2 oo converges toz". By the convergence theorem for mds’s it
E <Z i §kJ;1> <b SUPESH Z < 00 follows that
= G Ay k=1 K

: ‘ : a.s.
whereb is an upper bound dft/A}|. It follows directly that ; % ) <o

> WL g As in the proof of Theorem 2 it follows from (63) that

pr AN
for all j,»: 1, -, E To verify (17) and (18) it suffices to Z al s £J+1 g; <oo as.
chooser;, = 0 ande;, = &. O =

Remark 2: Using Theorem A in the Appendix, Theorems 1

and 2 can be extended to the case whgfe) = 0 for all  Using (66) and the last two inequalities verifies (65). O
x € J and.J is not a singleton. In this case H1) is replaced by Remark 3: If a, = 1/n and¢, = 1/n" for somev €
C2 2) and 3) in Theorem A where = —L and f is locally (0, 1/2) and alln € N, then the conditions ofa,,, n € IN)
Lipschitz continuous. and (c,, n € IN) in Theorem 3 are satisfied.

The following result is an asymptotic normality property of
(z,, n € IN) given by the algorithm (13).
Theorem 4: Assume that the conditions H1) and H2) are

Ill. RATE OF CONVERGENCE AND ASYMPTOTIC NORMALITY

In the following theorem a rate of convergence of thg

algorithm (13) is given.

Theorem 3: Assume the hypotheses of Theorem 2 and that1) hmnﬂoo( Ont1

lim (a4 —a;") =a >0 (62)
| o = ofal)
> 2VE <o (63)
j=L1
for someé € (0, 1) and
fla) = Fle —2%) + y(x) (64)

whereF' € L(RY, RY), y(x) = o(||z — z°||) and F 4 a1 is
stable. Then(z,,, n € IN) given by (13) satisfies

|lzn — 2% = o(a®) a.s. (65)

atisfied and that:

-1

—a, Y =a > 0andec, = a} for some

€ (1/4,1/2);
2) 17(x) ~ F(x - )] < bllz — ¥+ for somep > 0
andb > 0;
3) F' + avl is stable anozj L f(l 7% < o for some

6 (v/L+7) 7

4) & = Yi_obiwa_; if {yn} is given by (12), and
&n = 230 _obiwn_; if {yn} is given by (12) where
w; =0foré <0, (b;,7€{0,1,---,r}) is a sequence
of real numbersy € IN is fixed and(w;, F*, ¢ € IN) is

an mds that is independent @h;, i € IN) and satisfies
E[w}|F21] < o9
for all ¢ € IN whereog € R4

lim E[w72|.7'"7“11] =o?

for § given in (63). wheres? € Ry and
Proof: By Theorem B in the Appendix it suffices to show
that (sn, n € IN) given by (25) or (26) can be represented
as e, = on + v, wherer, = o(a’) asn — oo and
Zk ak ek+1 < oo a.s. It suffices to verify this result
for (25) because the proof for (26) is similar. It follows by
Theorem 2 thatim,,_,. z, = ° a.s. By the local Lipschitz

condition on it follows from (31) that

(1/2)
. 2
(D] = Ofer) = o(a}) 66)  §— 22 <Z m) [ et
- 0
ask — oo. Sincecy = of =0

o) Sl ()

Ay L .
Ck and r is given in 4).

lim sup Efw?} Tjw;>n3] = 0.

-
N—oo ic

Then for both the one-sided and the two-sided algorithms
a, *(z, — xo) Lz (67)

wherep = —~andZ is anN(0, S) random variable

a?) it follows that
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Proof: Since~y > &, it follows thatc, = a] = o(a}),
2(1—6 21—~—6
Z;ilaj( )/Cjzzzjilaj( v=9)

|l — 2°|| = o(al})

(69)

and after a finite number of iterations of (13) there are no

subsequent truncations.
Sincep = (1/2) —v,v € (1/4,1/2), 0 <pp < 1/4, v > p,
and F' + ol is stable, it follows directly that

—p -1 1 H
an—l—l an—l—l - an
i I e
an an

=(1+ aa, + an(a;_il_l — a;l —a))?
=14 apa, + o(ay).
Let u,, be given by

Uy = a, F(a, — a:o)

so that

Upt1 = (1 + apa, +ola,)) X <un +anat
x (F(a:n 2% & flan) — Flz — 2°)

+ 1)+ w2 + - Gt ) )

= + a, (F'+ apl + o(1))]u,
+ (1 + O(an))a D 2, — 20|17
+ (1 + 0(an))al D% (w (1) + wn(2))

+ (14 O0(an)a ¢, 41 gn (70)

where subsequently the verification is made only for (1

because for (22 it is only necessary to replac&,; by
&nt1/2, andw, (1), w,(2), andg,, are given in Lemma 1.
Let &, be given by

n

O = [[ T+ a(F + apl) + o(1))
=k
Pj 41 =1

wherek < n. SinceF'+aud is stable it follows that fon large

1©0al] < A exp<—A ) m)
=k

where A\; and A are strictly positive constants.
Consider the following algorithm:

(71)

An1 = (I + an(F + apl + o(1))), + all/ D w,(2)

M1 = Ot 1 L I <Mon 3 7 L0 1> Mo

n—1

on =3 L lI> Mo}
=0

whereM;. > 0 for all k € IN and M}, T oo ask — co. Since
S e < oo andy > 1/4, 7% a7 < 0. By the
martingale convergence theorem, . , a£1/2)+”wk(2) < 00
a.s.

Similar to the proof of Lemma 2, it can be verified that for
any convergent subsequenfeg,, } there are positive constants

< oo and by Theorem 3

449

M, T, andkr such that ifk > %z, then

m—+1
S wl(F + apd + o) + a0~ P wy(2)]

i:nk

< M.

Therefore, for any fixed there isc(w) such that||n;(w)|| <
e(w), Vi ng < i < m(ng, T), and

m(ng,t)

> (a0 + o P w(2))]| = 0.

iznk

lim limsup —
T—0 koo T

Since I' + aul is stable, by Theorem Ay, — 0 a.s. as
n — oo. Therefore, the algorithm for,, becomes the one
without truncations starting from somm), i.e.,

M1 = (L + an(F + apd + o(1)n, + al/ D w,(2)

for n > ng and hence
n
1/2
Th+1 = (Pn7 noTng T Z (Pn7 i+1a§, / )+’ywi(2)'
i:ng

By (71) and the convergence ¢, n € IN) to zero it
follows that

Z (I)n,,i+1a§1/2)+’y(2) — 0, a.s.asm — oo

1=ng

%?nd hence>_"_, <I>n7i+1a§1/2)+”wi(2) — 0 a.s. asn — oo,

which implies
lim Y @y i1 (14 O(a))al P wi(2) =0 as.
By (69) it follows that

(14 O(an))alt/P+7b||z,, — 20|+
< B(1 4 O(an))al/PT7a(+9° = O(al*e)

wheree 2 (14 8)8§ +(1/2)+~ > (1/2) +2y 2 ¢ > 0, and
from (27), it follows that

(14+0(a,))all/DT ey, (1) = 0(al/DT70(e,)) = O(alt).
Solving the recursion (70) it follows that

Unt1 = Ppaur + 3 Prirro(a;)

=1
+> i1+ O(a:))al™ P w;(2)

=1

+ Z (Pm‘,-l—la;/QSi-l—lgi-

=1
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1.5 1 i 1 1 L 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 1. The path ofz, with 2* = 5 and initial valuexzy = 3.

Since Since (A,,, n € IN) is independent of(¢,, n € N) it
" " follows by a standard method [5], [8], which is sketched in
Z ai exp| —A Z a; the Appendix, that
=1 j=i+1 n
d
1 n a‘)g n Z ‘Pn,i+1ail/2§i+1gi —Z
S (1-e i Ay g i=1
)\ J
=t = whereZ is N(0, S). O
1 n n
= exp| —A aj | —exp| —A a;
A ; ( »;rl ’ ; ’ IV. A NUMERICAL EXAMPLE
" " An elementary numerical example is given of the one-
+ A a2 exp| =\ Z a; sided algorithm (10), (13). Lek(z) = —22 + 4z + 2, which
2= it has a unique maximum at = 2. The random variable

Al is uniformly distributed on {1, —0.5] U [0.5, 1] for

it follows that i € {1, ---, £}. The noise processds; , k € IN) and (£?,

n Aa; n 1 k € IN) are independent white Gaussian processes and the
Z <1 ) )ai exp| —A Z aj | < N constantsy, ¢, and My, areay = 1/(k + 20), ¢ = 1/k1/°
=1 j=itl and M;, = 2k for k € N. In Fig. 1 is a graph of{zx,
Sincea, — 0 asn — oo it follows that 0 < k < 5000} with z9 = 3 andz* = 5. In Figs. 2 and
. . 3 are graphs ofy;", 0 < & < 5000) and (3, 0 < k < 5000),
a; exp | —A a; respectively.

is uniformly bounded for € IN. This boundedness and (71) V. CONCLUSION

The classical Kiefer—Wolfowitz algorithm has been modified

imply that in two ways: 1) the one-sided and the two-sided randomized
differences are used instead of the two-sided deterministic

nlggo Z Dy iq1 - (a;) = 0. differences and 2) the estimates are truncated at randomly

i=1 varying bounds. For the convergence analysis, a direct method

Thus is used rather than the classical probabilistic method or the

a different approach to algorithm analysis, the following

) ODE method. By the algorithm modifications 1) and 2) and
=0 as
algorithm improvements have been made: 1) some restrictive

n
. 1/2
lim <Un+1 — Z ‘Pn,i-q-mi/ &iv10i

n—oo ;
=1
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-10 I 1 ! L 1 | L 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 2. The path of the observatiqm,trl.

10— -7 - - oo T T T T T T

—L L

1

—4 I 1 1 1 ) ! S
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 3. The path of the observatiqm2+l.

conditions on the functior. or some boundedness assump- APPENDIX
tions on the estimates have been removed; 2) some restrictiv
conditions on the noise process have been removed; ano%S
the number of required observations at each iteration have ) . )

been reduced. If the functiof has many extrema then the CO0) The functionf: IR" — IR is Borel measurable and
algorithm may become stuck at a local extremum. To obtain locally bounded and/ = {x: f(z) = 0}.

the almost sure convergence to global extrema, some methodsl) The sequence of strictly positive numbgts, n € IN)
that combine search and stochastic approximation are needed, —converges to zero anyl,>” | a,, = oo,

but it seems that there is a lack of a complete theory for thisC2) There is a continuously differentiable functian

approach. R‘ — R such that

1heorem A: Assume that the following conditions are sat-
red.
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1) SuPs<ae, sy<a S5 (@)va(x) <O for all A > 6 > The proof of this theorem is given in [4]

Q wherev,, is the gradient ofv and d(z, S) = A sketch of the proof thap_._, @, Z+1a £Z+1gz L Zis
inf{||z — yl|: y € S}. given. Letl,, , = [T (I + a:(F + aul)), ¥, j41 = I.
2) v(J) is nowhere dense. Then
3) There is acy > 0 such that]|z*|| < ¢ n
. ) 1/2 . .
U(J}*) < |1ﬁlf U(JJ) nh—ILlo z; (I)n,z+lai £z+lgz
x||=cq =
Then (z,,, n € IN) defined by (13) with > 4107410 =0 as.
Yt = f(@n) + e (72) -

Therefore, it suffices to show that
converges to the sef on A where

n
1/2 d
m(ng,t) Z \Ijnyi‘f'lai/ £i+1gi _>N(07 S)
A=< lim limsup T Z a;git1|| =0 =1
T kmoo i=ng By using the Central Limit theorem for random vectors

with two indices in [13], it is straightforward to verify that
all of the conditions required fo€, ;11 = W, i41a/” -
(Z]:O b;gi4;)w;+1 are satisfied.

for all ¢ € [0, T'] whenever(n;, &k € IN) is such

that(z,,, k € IN) is convergen

Hence
and Z W, z+1a Z bjgitj | witt 4 N(0, 5).
=0
k,T) a s < T .
m(k, T) =m X{ Z 4= } It now remains to show that

The proof of this result is given in [1] or [2].
Remark Al: Given the conditions of Theorem Az, n € dm . = Z U, Z““ Z bjwit1—igi

IN) converges so that =t
Y
A=A — Z \I/n z—l—la/ Z ijz—{—J Wi41 = 0
m(k,T) j=0
=) A h,{rf:ip T Z @iit1| = in probability.
Write #,, as
forallte [0, 1] ;. U 1/2
[0, 7] N = Z Z \Ijn,i—l—lai/ bjwit1-;0
j=0 i=1
However, it should be noted that the equality = A’ is ! = 1/2
satisfied only with the conditions C0)-C2). Without these _Z ‘ Z W, it10;""bjwis19i4;
conditions there is only the inclusia C A. If £;,; depends §=0 i=n—j+l
on z; then since the behavior ¢f,,, n» € IN) is not known it r 172y, 12
is difficult to verify if a point is inA’ while to verify a point - Z Z Wi it1 = @4 ;Y it 1) D Wit 1Git -
is in A is easier because only convergent subsequences need j=0 i=1
to be considered. By (71) the first term on the right-hand side gf tends to
Remark A2:If J = {2%} then C2-2) is immediately zero a.s., while the second term tends to zero in probability
satisfied and C2-3) becomeffr™|| < co and v(z™) <  since the expectation of its norm converges to zero as cc.
inf)|z)=c, v(x) for someco. The last term in the expression gf, equals
Theorem B: If the conditions C0)-C2) of Theorem A are , h
satisfied where/ = {2°} and N 12 O
a; Z U, i ht1 Gk (F + apbiwig1 giyj
nlgn (a, n+1 agl) =a>0 =0 i=1 k=1
) r n—j 1/2
=] 1— @ /
en =€+ n, vy =0(al), Yooy a; e < oo, H+ avl + <<a_> - ) Wi jt1bj Wi 1Giy ;-
is stable for some € (0,1] and asz — 20, f(z) = 5=0 i=1 s

H(z — ") +6(x), 6(2°) = 0, and§(x) = o(||x — 2°||) then  Taking expectation of the norm of each term and not-
ing that sup, > r_; ax||¥n, xt1l]” < oo, V7 > 0, and
(an/ani1)Y? = 1+ (1/2)aa, + o(ay), it is concluded that
asn — oo where(z,, n € IN) is given by (13) andy,+1 both terms converge to zero in probability. Therefore,— 0

is given by (71). in probability asn — oo. O

|l = 2°|| = o(a;)
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