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A Kiefer–Wolfowitz Algorithm
with Randomized Differences

H. F. Chen,Fellow, IEEE, T. E. Duncan,Fellow, IEEE,and B. Pasik-Duncan,Senior Member, IEEE

Abstract—A Kiefer–Wolfowitz or simultaneous perturbation
algorithm that uses either one-sided or two-sided randomized
differences and truncations at randomly varying bounds is given
in this paper. At each iteration of the algorithm only two obser-
vations are required in contrast to 2̀̀̀ observations, wherè̀̀ is the
dimension, in the classical algorithm. The algorithm given here is
shown to be convergent under only some mild conditions. A rate
of convergence and an asymptotic normality of the algorithm are
also established.

Index Terms—Kiefer–Wolfowitz algorithm, perturbation algo-
rithm, simultaneous stochastic approximation, stochastic approx-
imation with randomized differences.

I. INTRODUCTION

A Kiefer–Wolfowitz (KW) algorithm [8] is used to find the
extrema of an unknown function : which

may be observed with some additive noise. If the gradient
of can be observed, then the problem can be solved by a
Robbins–Monro (RM) algorithm.

Let be the estimate of the unique extremum ofat the
th iteration. One approach to a KW algorithm is to observe
at the following values:

for where .
Consider noisy observations of so that the processes

, IN, and , IN,
satisfy

and

where , IN and , IN are observation
noise processes. The ratio

(1)

can be used as an estimate for theth component of . Using
these estimates a KW algorithm requires 2measurements of
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. If is large, for example, the optimization of weights in a
neural network, then this KW algorithm can be rather slow.

To reduce the number of measurements that are required, a
random difference method can be used. There is a fairly long
history of random search or approximation ideas in stochastic
approximation (e.g., Fabian [7]). Koronacki [10] introduced
a random version of the KW algorithm using a sequence of
random unit vectors that are independent and uniformly dis-
tributed on the unit sphere or unit cube, and he gave sufficient
conditions for the convergence of the algorithm. Koronacki
[10], [11] noted that the random direction methods have a
better reduction of bias effects caused by the use of finite
differences for the derivatives than the nonrandom direction
methods and that these methods reduce the required number
of observations or measurements. Spall [14] reintroduced a
random direction version of the KW algorithm and called it
a simultaneous perturbation stochastic approximation (SPSA)
algorithm. Using the ordinary differential equation (ODE)
method [12] Spall showed the convergence and the asymptotic
normality of this modified KW or simultaneous perturbation
algorithm though the conditions that he required are restrictive.

Initially Spall’s KW or simultaneous perturbation algorithm
and the conditions that he uses are described. Let,

, be a sequence of mutually
independent and identically distributed random variables with
zero mean. Let be given by

(2)

At each iteration, two measurements are taken:

(3)

(4)

Then the vector symmetric difference

(5)

where

(6)

is used as an estimate for .
The KW or simultaneous perturbation algorithm is formed

as follows:

(7)

In this form the algorithm seeks the maximum of. The
minimum of is found by replacing by .
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For the convergence of the algorithm (5) Spall [14] required
the following conditions.

A1) The random variables , IN is a
martingale difference sequence (mds) with uniformly
bounded second moments.

A2) The integrability condition

is satisfied.
A3) The sequence , IN is assumeda priori to be

uniformly bounded, that is,

a.s.

where .
A4) The third derivative of is bounded.
A5) The point is an asymptotically stable point

for the differential equation where
.

A6) The sequence , IN is infinitely often in
a compact set that is contained in the domain of
attraction of given in A5).

A7) The sequences , IN and , IN satisfy
, for all IN, and as
, and .

Furthermore, some conditions are imposed on the sequence
, IN in [14], but this sequence can be arbitrarily

chosen by the user of the algorithm so these conditions should
not be considered as restrictions.

In this paper, both a one-sided randomized difference and a
two-sided randomized difference are used, that is,

(8)

(8 )

and

are used to estimate where

(9)

, , and are given by (3), (4), and (6), respectively.
The two-sided algorithm is described by (7) and the one-

sided algorithm is described by (7) with (8) replaced by (8).
By a modification of the algorithm (7) and the use of a direct
approach to verifying convergence, the conditions A2), A3),
A5), and A6) are eliminated, A4) and A7) are relaxed, and A1)
is weakened to one that provides not only a sufficient but also
a necessary condition for convergence. This result is given in
Theorem 1. In Theorem 2 the observation noise is modified to
one with only bounded second moments that is independent of

, IN . A convergence rate and an asymptotic normality
of the algorithm are given in Theorems 3 and 4, respectively.

II. THE ALGORITHM AND ITS CONVERGENCE

Initially the algorithm is precisely described. Let ,
, IN be a sequence of independent and identically

distributed random variables where , ,
for all and IN and some ,

. Furthermore, let be independent of ,
, , for IN. Define and by

the following equations:

(10)

(10 )

(11)

(11 )

It follows that

(12)

(12 )

Equations (10), (10), (11), (11), (12), and (12) represent
some abuse of notation. Equations (10)–(12) are used for the
one-sided algorithm and (10), (11 ), and (12) are used for
the two-sided algorithm. In the subsequent description the
meaning of is determined by whether the one-sided or
the two-sided algorithm is used. Choose and fix it.
Define the following KW algorithm with randomly varying
truncations and randomized differences:

(13)

(14)

where , IN is a sequence of strictly positive, strictly
increasing real numbers that diverges to . It is clear that

is the number of truncations that have occurred before time
. Clearly the random vector is measurable with respect to

where , . Thus
the random vector is independent of , .

The following conditions are imposed on the algorithm.

H1) The function is locally Lipschitz continuous.
There is a unique maximum of at that is the only
local extremum so that and for

. There is a such that and
.

H2) The two sequences of strictly positive real numbers
, IN and , IN satisfy and

as , and there is a
such that .

Remark: If is twice continuously differentiable then
is locally Lipschitz continuous. If in H1) is the unique
minimum of , then in (13) and (14) should be replaced
by .
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The main result of this section is the following theorem that
gives necessary and sufficient conditions for the convergence
of the algorithm (13).

Theorem 1: Let H1) and H2) be satisfied and , IN
be given by (13) with the conditions for , ;

IN given for the algorithm. The sequence , IN
satisfies

a.s. (15)

where is given in H1) if and only if for each IN the
observation noise in (11) or (11) can be decomposed into
the sum of two terms for each as

(16)

such that

a.s. (17)

and

a.s. (18)

for where is given in (2).
Before proving the theorem, two lemmas are proved.
To describe easily the replacement of some components

of by zero, two functions are introduced. Let
and be given by

(19)

(20)

It is clear that

(21)

and

(22)
For notational convenience let denote a generic -
valued random vector such that

(23)

where , is fixed, and may vary for
different applications.

Lemma 1: If H1) is satisfied, then the observation
given by (12) or (12) can be expressed as

(24)

where

(25)

for given by (12) and

(26)

for given by (12) and the th components of and

are, respectively

(27)

(28)

and the th components of and are
and , respectively, and

(29)

(30)

and and are independent of .

Proof: By comparing (12) and (24) it follows that the

th component of is

Therefore, to obtain (26) it suffices to show that

(31)

where

(32)

and

(33)

It follows that
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(34)

It is clear by the Taylor formula that

(35)

and for ,
, which is independent

of .
The other expressions in (29) and (30) are obtained by a

similar argument.
For given by (12), (31) changes to

(31 )

and the analysis is the same except that the terms are
deleted.

Lemma 2: If H1), H2), (17), and (18) are satisfied, then
there is with such that for any fixed
and any convergent subsequence , IN there exist
positive constants , , and such that if then

(36)

for each , where

(37)

Proof: For notational convenience, the evaluation of the
random variables at is suppressed. For example, is
simply denoted as .

Since and are independent of and
for some it follows by the convergence theorem for
mds’s [3], [6] that for each IN and

a.s. (38)

a.s. (39)

Let be the -set such that for each (17)
is finite, (18) is satisfied, and (38) and (39) are finite for all

IN. It is clear that .
If the number of truncations is finite then there is an

such that for all and
for all . Thus the inequality

(36) is satisfied.
Now let and assume that (36) is not satisfied.

Choose and fix it where is the limit of the
subsequence, , IN . By the convergence of ,

IN there is a such that

for all . Choose a sequence , IN of strictly
positive numbers that converges to zero. Since it is assumed
that (36) is not satisfied for each there are a and
an such that

It can be assumed that for all IN and let

(40)

Since the sequence , IN is convergent, it follows by
the Lipschitz continuity of that

for where and satisfy (27) and (28),
respectively. It is elementary to verify that

for . Thus

where and is given by (40). From (40) and the
convergence of , IN it follows that

(41)

for each .
Since as there is an such that if

then . Thus

(42)

and

(43)
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for all . Inequality (41) implies that

(44)

and

(45)

for all where . By the local
Lipschitz condition it follows that

where and are given by (32) and (33), respectively,
and thus

and

For it follows from (38), (39), (44), and (45) that

and

for all and , . Combining (38), (39),
(44), and (45) it follows that

and

The following inequalities are elementary:

(46)

and

(47)

The right-hand sides of the inequalities (46) and (47) tend to
zero as . However by (40) it follows that

(48)
so that (47) and (48) are not compatible and (36) is verified.

Now the proof of Theorem 1 is given.
Proof—Sufficiency:By (36) it follows that for sufficiently

large there is no truncation for all
so

(49)

and , where .
By these last two inequalities, there is an such that

and given by (29) and (30), respectively, satisfy the
inequalities

for all and for all
sufficiently large. Therefore, for

for by (38) and (39) for where is
given in Lemma 2. Thus for and

(50)

for all . For it follows that

(51)

where as because and as
and for all . Thus,

the noise condition required in Theorem A in the Appendix
is satisfied, while for the function in Theorem A, can
be selected (cf. Remark 2). Then sufficiency follows from
Theorem A.
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Necessity:Now it is verified that (15) implies (16)–(18).
Assume that (15) is satisfied and let be the set, where

IN converges and the series in (38) and (39) are
finite for any IN, and fix . Again
for notational convenience the evaluations atare suppressed.
There is a IN such that if then

Use the decomposition in [15] so that

(52)

where and . It is
clear that

(53)

and

(54)

Since IN is convergent and (38) and (39) are
satisfied, it follows that ,
and , for all and ,

. Thus ,
and

(55)

(56)

where , , , and are defined in
Lemma 1. From (26) and (52) it follows that

(57)

By (35) it follows that

Let be given by

(58)

By (27) and (28) it follows that

(59)

for and

Let be given by

By (57) and (58) it follows that

By (53)–(56) it follows that

a.s. (60)

for . Equations (58)–(60) give the required
decomposition (16)–(18). The equations (16)–(18) can be
verified for the one-sided algorithm in a similar fashion.

Assuming an independence condition the following theorem
gives a large family of noise processes that satisfy (16)–(18).

Theorem 2: Let H1) and H2) be satisfied. If
and the observation noise , IN has the property

that is independent of , for each
IN and satisfies one of the following two conditions:

1) a.s. where is a random variable;
2) ;

then

a.s. (61)

where is given by (13).
Proof: Initially it should be noted that may depend

arbitrarily on , and may not be zero mean, e.g., a
sequence of bounded deterministic observation errors satisfies
the conditions.

It is only necessary to verify (16)–(18). Let 1) be satisfied,
that is, there is a random variablesuch that

. For and IN let be given by

By the definition of , it is independent of and
so that

a.s.

and

a.s.

By the convergence theorem for mds’s [3], [6], it follows that

a.s.

for all . Thus in (16) it can be assumed that
and for .

Now assume that is satisfied.
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By the independence assumption it follows that for ,
is independent of , , so that

for all so that

where is an upper bound of . It follows directly that

a.s.

for all . To verify (17) and (18) it suffices to
choose and .

Remark 2: Using Theorem A in the Appendix, Theorems 1
and 2 can be extended to the case where for all

and is not a singleton. In this case H1) is replaced by
C2 2) and 3) in Theorem A where and is locally
Lipschitz continuous.

III. RATE OF CONVERGENCE ANDASYMPTOTIC NORMALITY

In the following theorem a rate of convergence of the
algorithm (13) is given.

Theorem 3: Assume the hypotheses of Theorem 2 and that

(62)

(63)

for some and

(64)

where , and is
stable. Then IN given by (13) satisfies

a.s. (65)

for given in (63).
Proof: By Theorem B in the Appendix it suffices to show

that , IN given by (25) or (26) can be represented
as where as and

a.s. It suffices to verify this result
for (25), because the proof for (26) is similar. It follows by
Theorem 2 that a.s. By the local Lipschitz
condition on it follows from (31) that

(66)

as . Since it follows that

and

It follows that in (38) is uniformly bounded for
and IN for each where IN

converges to . By the convergence theorem for mds’s it
follows that

a.s.

As in the proof of Theorem 2 it follows from (63) that

a.s.

Using (66) and the last two inequalities verifies (65).
Remark 3: If and for some

and all IN then the conditions on , IN
and , IN in Theorem 3 are satisfied.

The following result is an asymptotic normality property of
, IN given by the algorithm (13).

Theorem 4: Assume that the conditions H1) and H2) are
satisfied and that:

1) and for some
;

2) for some
and ;

3) is stable and for some
, ;

4) if is given by (12), and
if is given by (12) where

for , , is a sequence
of real numbers, IN is fixed and , , IN is
an mds that is independent of , IN and satisfies

for all IN where

where and

INININ

Then for both the one-sided and the two-sided algorithms

(67)

where and is an random variable

(68)

and is given in 4).
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Proof: Since it follows that ,
and by Theorem 3

(69)

and after a finite number of iterations of (13) there are no
subsequent truncations.

Since , , , ,
and is stable, it follows directly that

Let be given by

so that

(70)

where subsequently the verification is made only for (12)
because for (12) it is only necessary to replace by

, and , , and are given in Lemma 1.
Let be given by

where . Since is stable it follows that for large

(71)

where and are strictly positive constants.
Consider the following algorithm:

where for all IN and as . Since
and , . By the

martingale convergence theorem
a.s.

Similar to the proof of Lemma 2, it can be verified that for
any convergent subsequence there are positive constants

, , and such that if , then

Therefore, for any fixed there is such that
, : , and

Since is stable, by Theorem A, a.s. as
. Therefore, the algorithm for becomes the one

without truncations starting from some , i.e.,

for and hence

By (71) and the convergence of , IN to zero it
follows that

a.s. as

and hence a.s. as ,
which implies

a.s.

By (69) it follows that

where , and
from (27), it follows that

Solving the recursion (70) it follows that
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Fig. 1. The path ofxk with x
�
= 5 and initial valuex0 = 3.

Since

it follows that

Since as it follows that

is uniformly bounded for IN. This boundedness and (71)

imply that

Thus

a.s.

Since , IN is independent of , IN it
follows by a standard method [5], [8], which is sketched in
the Appendix, that

where is .

IV. A N UMERICAL EXAMPLE

An elementary numerical example is given of the one-
sided algorithm (10), (13). Let , which
has a unique maximum at . The random variable

is uniformly distributed on [ 1, 0.5] [0.5, 1] for
. The noise processes , IN and ,

IN are independent white Gaussian processes and the
constants , , and are , ,
and for IN. In Fig. 1 is a graph of ,

with and . In Figs. 2 and
3 are graphs of , and , ,
respectively.

V. CONCLUSION

The classical Kiefer–Wolfowitz algorithm has been modified
in two ways: 1) the one-sided and the two-sided randomized
differences are used instead of the two-sided deterministic
differences and 2) the estimates are truncated at randomly
varying bounds. For the convergence analysis, a direct method
is used rather than the classical probabilistic method or the
ODE method. By the algorithm modifications 1) and 2) and
a different approach to algorithm analysis, the following
algorithm improvements have been made: 1) some restrictive
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Fig. 2. The path of the observationy+
k+1

.

Fig. 3. The path of the observationy0
k+1

.

conditions on the function or some boundedness assump-
tions on the estimates have been removed; 2) some restrictive
conditions on the noise process have been removed; and 3)
the number of required observations at each iteration have
been reduced. If the function has many extrema then the
algorithm may become stuck at a local extremum. To obtain
the almost sure convergence to global extrema, some methods
that combine search and stochastic approximation are needed,
but it seems that there is a lack of a complete theory for this
approach.

APPENDIX

Theorem A: Assume that the following conditions are sat-
isfied.

C0) The function : is Borel measurable and
locally bounded and : .

C1) The sequence of strictly positive numbers, IN
converges to zero and .

C2) There is a continuously differentiable function:
such that
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1) for all
where is the gradient of and

: .
2) is nowhere dense.
3) There is a such that

Then , IN defined by (13) with

(72)

converges to the set on where

for all whenever IN is such

that IN is convergent

and

The proof of this result is given in [1] or [2].
Remark A1: Given the conditions of Theorem A, ,

IN converges so that

for all

However, it should be noted that the equality is
satisfied only with the conditions C0)–C2). Without these
conditions there is only the inclusion . If depends
on then since the behavior of , IN is not known it
is difficult to verify if a point is in while to verify a point
is in is easier because only convergent subsequences need
to be considered.

Remark A2: If then C2-2) is immediately
satisfied and C2-3) becomes and

for some .
Theorem B: If the conditions C0)–C2) of Theorem A are

satisfied where and

, , ,
is stable for some and as ,

, , and then

as where , IN is given by (13) and
is given by (71).

The proof of this theorem is given in [4].

A sketch of the proof that is
given. Let , .

Then

a.s.

Therefore, it suffices to show that

By using the Central Limit theorem for random vectors
with two indices in [13], it is straightforward to verify that
all of the conditions required for

are satisfied.
Hence

It now remains to show that

in probability.
Write as

By (71) the first term on the right-hand side of tends to
zero a.s., while the second term tends to zero in probability
since the expectation of its norm converges to zero as .

The last term in the expression of equals

Taking expectation of the norm of each term and not-
ing that , , and

, it is concluded that
both terms converge to zero in probability. Therefore,
in probability as .
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