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Suboptimal Model Predictive Control
(Feasibility Implies Stability)

P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings

Abstract—Practical difficulties involved in implementing stabilizing
model predictive control laws for nonlinear systems are well known.
Stabilizing formulations of the method normally rely on the assumption
that global and exact solutions of nonconvex, nonlinear optimization
problems are possible in limited computational time. In this paper, we
first establish conditions under which suboptimal model predictive control
(MPC) controllers are stabilizing; the conditions are mild holding out the
hope that many existing controllers remain stabilizing even if optimality
is lost. Second, we present and analyze two suboptimal MPC schemes
that are guaranteed to be stabilizing, provided an initial feasible solution
is available and for which the computational requirements are more
reasonable.

Index Terms—Dual-mode control, nonconvex nonlinear optimization,
nonlinear model predictive control, suboptimal control.

I. INTRODUCTION

Conventional formulations of nonlinear model predictive control
(MPC) require, at each sampling instant, an exact global solution of
a nonconvex, nonlinear program. To ensure stability the nonlinear
program includes a stability constraint, normally an equality con-
straint on the terminal state [1], [2]. This makes the implementation
of stabilizing MPC difficult on at least two counts. On the one hand,
exact satisfaction of nonlinear equality constraints cannot, in general,
be achieved in finite computational time and early termination of
the optimization may cause errors that affect stability. On the other
hand, global solutions cannot usually be guaranteed, or are highly
computationally expensive. The theory behind nonlinear MPC is
consequently often inapplicable, although in some applications it may
be possible to employ global optimization. This has been done in the
context of specific control applications [3], but not yet in MPC.

To reduce problems associated with the terminal equality constraint
x(k + N) = 0, one proposal [4] (for continuous time systems)
replaces this constraint by an inequality constraintx(k+N) 2W and
employs a local asymptotically stabilizing controllerhL(�) in W ; the
setW is required,inter alia, to be positively invariant underhL(�).
Another interesting version of MPC employs infinite horizon cost
and finite horizon control [5]–[7], an approach normally restricted to
linear systems. Interestingly, this approach tests whether the state at
the end of the control horizon lies in the output admissible set [8] and
varies the control horizon, if necessary, to satisfy this test. Hence, a
test implicitly of the formx(k + N) 2 W is used.

In an interesting paper [9] (which appeared after this paper was sub-
mitted), the authors identify difficulties in transposing the continuous-
time results of [4] to discrete-time MPC and propose a fixed horizon
dual-mode (optimal) MPC strategy for linear time invariant systems.

Manuscript received April 1, 1996; revised October 20, 1997.
Recommended by Associate Editor, M. Di Benedetto. This work was
supported by the National Science Foundation under Grant ECS-93-12922.

P. O. M. Scokaert is with the Centre National d’Etudes de Telecommuni-
cations, 38243 Meylan Cedex, France.

D. Q. Mayne is with the Department of Electrical and Electronic
Engineering, Imperial College, London, SW7 2BT U.K. (e-mail:
mayne@ece.ucdavis.edu).

J. B. Rawlings is with the Department of Chemical Engineering, University
of Wisconsin, Madison, WI 53706 USA.

Publisher Item Identifier S 0018-9286(99)01288-X.

Their dual-mode controller employs a terminal constraint of the form
x(k+N) 2 D

�

� D �W and a stage cost that is zero inD, both
assumptions being similar to, if somewhat more complex than, ours
(see, e.g., Assumption A2). Theorem 2 (below), which establishes
stability of fixed-horizon dual-mode optimal MPC is similar if the
system is linear to [9, Theorem 1].

To reduce the severe computational problems associated with
nonconvexity, asuboptimalapproach for continuous-time systems,
proposed in [4] and discussed informally in [10] and [11], employs
an initial feasible solution which is improved iteratively in lieu of
optimization. A variable horizon strategy was employed. The purpose
of this paper is to extend these results by showing that under mild
conditions, feasibility rather than optimality is sufficient for stability
and to establish stability of suboptimal fixed horizon versions of
MPC for nonlinear discrete-time systems. We examine two cases:
first, when the stability constraint isxk+N = 0 and second, when
it is xk+N 2 W ; we then compare the results with optimal MPC
employing these two stability constraints.

The paper is organized as follows. Section II sets up the back-
ground and notation for the paper. Here, we present a result that
establishes that feasibility, rather than optimality, is sufficient for
stability. In Section III, we briefly review optimal MPC strategies and
highlight their stabilizing properties. The suboptimal MPC schemes
we propose are discussed in Section IV; their stabilizing proper-
ties are established and their computational demands discussed. In
Section V, we present some illustrative examples and concluding
remarks are made in Section VI.

II. FEASIBILITY IMPLIES STABILITY

We consider discrete-time nonlinear systems described by

xk+1 = f(xk; uk) (1)

wherexk 2 IRn anduk 2 IRm denote the state and control vectors
at discrete timek and f(�): IRn � IRm ! IRn is assumed to be
continuous at the origin withf(0; 0) = 0.

The objective is to regulate the statex to the origin and we consider
receding-horizon control laws that determine at each sampling instant
k, statexk, a finite sequence of future controls

�k = fvkjk; vk+1jk; � � � ; vk+N�1jkg (2)

to satisfy certain constraints; hereN is the control horizon. Let
fxkjk; xk+1jk; � � � ; xk+Njkg where xkjk = xk denote the corre-
sponding state sequence. The current control actionuk is chosen to
be the first vector in the sequence�k, i.e.,

uk = vkjk (3)

for all k. If the control u is a continuous function of the state
x, Lyapunov stability theory establishes convenient conditions for
asymptotic stability. In suboptimal control, the control employed is
not unique and may also vary discontinuously with the state. Hence,
the conditions under which suboptimal control is stabilizing needs to
be more carefully examined. Indeed, at each sampling instantk, the
only demand placed on the control profile�k is that it belongs to a set
�k (defined by inequalities);�k can be an arbitrary element of this set
so that many different values of controluk can be (and are) selected
for a given statexk. In this section, we present a result similar to the
standard Lyapunov stability theorem, but which allows nonuniqueness
and discontinuity in the control law. This result simplifies subsequent
analysis. In the sequel, we use (asymptotic) stability of a system to
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mean that the system has an (asymptotically) stable equilibrium at
the origin. A function�(�), defined on nonnegative reals, is aK
function if it is continuous, strictly increasing with�(0) = 0. For all
r � 0; n � 1, Bn

r := fx 2 IRn: kxk � rg.
Theorem 1: Let there exist:

1) a functionV (�): IRn � IRNm ! IR continuous at the origin
with V (0; 0) = 0 and aK-function �(�), such that for all
x 2 IRn; � 2 IRNm,

V (x; �) � �(kxk) (4)

2) a set � IRn that contains an open neighborhood of the origin
and aK-function
(�), such that every realizationfxk; �kg of
the controlled system withx0 2 satisfiesxk 2 for all
k � 0 and

V (xk+1; �k+1)� V (xk; �k) � �
(k(xk; uk)k) (5)

with uk denoting the first element of�k;
3) a constantr > 0 and aK function �(�), such that every

realizationfxk; �kg of the controlled system withxk 2 Bn
r

satisfies

k�kk � �(kxkk): (6)

Then, the controlled system is asymptotically stable in.
Proof:

• Stability:Let fxkg represent a trajectory of the controlled system
commencing at an arbitrary pointx0 2 . BecauseV is
continuous at the origin, withV (0; 0) = 0, there exist a constant
r1 > 0 and aK function�(�) such thatV (x; �) � �(k(x; �)k)
for all x 2 Bn

r ; � 2 BNm
r ; also, as contains the origin in its

interior, there exists a constantr2 > 0 such thatBn
r � . For

any� > 0, there exists� > 0 such that: 1)� � min (r; r1; r2);
2) �(�) � r1; and 3)�(�+�(�)) < �(�); � > 0 exists because
�(�) > 0 and�(�)! 0 as� ! 0, so that�(� + �(�))! 0 as
� ! 0. Supposekx0k � �; thenk�0k � �(�) andV (x0; �0) �
�(k(x0; �0)k) � �(kx0k + k�0k) � �(� + �(�)) < �(�).
Moreover, sincekx0k � �, we haveV (xk; �k) � V (x0; �0) <
�(�) for all k � 0. Also, �(kxkk) � V (xk; �k) for all
k � 0. Therefore, we have�(kxkk) < �(�) and it follows
that kxkk < � for all k � 0, all x0 2 Bn

� .
• Convergence:In view of (4), we haveV (x; �) � 0 for

all x; �. Furthermore, it follows from (5) thatV decreases
along trajectories of the controlled system that commence in

. It follows that with x0 2 , V (xk; �k) ! V ? as k !
1, where V ? is a nonnegative constant. We conclude that
V (xk+1; �k+1)� V (xk; �k)! 0 ask ! 1 and this implies
that 
(k(xk; uk)k) ! 0. Because
(�) is a K function, it
follows thatxk; uk ! 0 as k ! 1.

If the initial sequence�0 is feasible, so, in the nominal case, are
all subsequent sequences�k computed according to

�(k) = f(vkjk�1; � � � ; vk+N�2jk�1; hL(xk+N�1jk�1)g

where�k�1 = fvk�1jk�1; vkjk�1; � � � ; vk+N�1jk�1g. Theorem 1
shows that initial feasibility is sufficient for nominal stability.

III. OPTIMAL MPC STRATEGIES

The goal of MPC is to regulate the state of the system to the origin
while satisfying control and state constraints of the form

uk 2

xk 2 (7)

for all k. Optimal MPC minimizes, at each state-time pair(x; k), an
objective function

�(x; �) =

k+N�1

j=k

L(xj ; vj) (8)

subject to

xj+1 = f(xj ; vj); xk = x (9)

the control and state constraints (7) and a stability constraint (see
below); here,� = fvk; � � � ; vN�1g is the decision variable. Because
f and L are time invariant, the solution to this optimal control
problem is�0k(x) = �0(x) = f�01(x); � � � ; �

0
N(x)g; h(�) := �01(�)

is the implicit MPC control law. The control applied to the plant (at
(x; k)) is, therefore

uk = h(x): (10)

The resultant value function for the optimal control problem is

�(x) := V (x; �0(x)): (11)

“Classical” fixed horizon MPC (for nonlinear discrete time sys-
tems) employs the stability constraint

xk+N = 0: (12)

In this note, we use classical MPC to denote model predictive
control with a terminal equality stability constraint. Dual-mode fixed-
horizon MPC, on the other hand, employs the stability constraint

xk+N 2W (13)

whereW is a convex compact subset ofwhich contains the origin
in its interior. InsideW a locally stabilizing control lawu = hL(x)
(hL(�): W ! ) satisfying

L(x; hL(x)) = 0; 8 x 2W: (14)

is employed. WhenW = f0g, the local control law isu = hL(0) =
0, in which case this requirement is satisfied ifL(0; 0) = 0. The
setW is chosen to be positively invariant for the systemxk+1 =
f(xk; hL(xk)). A method for constructingW and h (presented in
[4]) can be extended to the discrete-time case (see the Appendix).

The following assumptions are made:

A0: f(�) is continuous at the origin, withf(0; 0) = 0;
A1: L(�) is continuous at the origin withL(0; 0) = 0;
A2: L(x; hL(x)) = 0 for all x 2 W ;
A3: there exists aK function `(�) such that L(x; u) �

`(k(x; u)k) for all x 62 W and for allu.

If W = f0g, Assumption A3 simply requires thatL(x; u) �
`(k(x; u)k) for all x; u. We may, for instance, chooseL(x; u) =
x0Qx+u0Ru, withQ andR positive definite. IfW 6= f0g, a function
which satisfies Assumptions A1–A3 is

L(x; u) = �(x)L(x; u) (15)

whereL(x; u) = x0Qx+ u0Ru, with Q andR positive definite and

�(x) =
0; if x 2W

1; otherwise.
(16)

That optimal fixed-horizon model predictive control with a terminal
equality stability constraint is stabilizing is established by Keerthi and
Gilbert [1]. Optimal fixed-horizon dual-mode MPC for discrete time
linear systems has been analyzed in [9]. For nonlinear systems, we
have the following result.
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Theorem 2: Let denote the set of states for which there exists
a control sequence that satisfies (7), (9), and (13). Optimal fixed-
horizon dual-mode MPC is asymptotically stabilizing with a region
of attraction .

Proof: Stability is a local property and follows from the stabi-
lizing properties of the control lawu = hL(x) in W . Also, if the
state entersW , convergence to the origin follows from the properties
of hL. It therefore only remains to show that all trajectories of the
controlled system, commencing in, enterW in finite time.

Supposex0 =2 W . BecauseW contains an open neighborhood of
the origin, there exists a constantr > 0 such thatx =2W ) kxk � r.
It follows from Assumption A3 thatx =2 W ) L(x; u) � `(r)
for all u. Since L(x; hL(x)) = 0 for all x 2 W , it follows
that �(f(x; h(x))) � �(x) � �L(x; h(x)) for all x so that the
optimal value of the objective decreases by at leastL(xk; uk) at
each sampling instantk.

Let �k denote a finite integer such thatk`(r) > �(x0). If the
state has not enteredW by time k = k, we havekxkk � r and,
therefore,L(xk; uk) � `(r) for k = 0; 1; � � � ; k. It follows that
�(x

k
) � �(x0) � k`(r) < 0 a contradiction since the objective is,

by definition, nonnegative. We conclude thatx0 2 ) x
k
2 W

with k finite. This completes the proof.
Thus, the dual-mode MPC strategy is, under mild conditions,

stabilizing. By casting the stability condition as an inequality, com-
putational problems associated with exact satisfaction of nonlinear
equality constraints are reduced. Nevertheless, global solutions to a
constrained nonlinear optimal control problem must still be obtained
iteratively. Since most optimization methods, when applied to a
nonconvex problem, yield local rather than global minima, we
turn our attention to suboptimal strategies, which are more easily
obtained.

IV. SUBOPTIMAL MPC STRATEGIES

In this section, we propose suboptimal versions of the two MPC
laws presented in Section III to illustrate the fact that feasibility is suf-
ficient for stability; in these versions, the computational requirement
is reduced to finding a control profile that satisfies the control, state,
and stability constraints. The solution need not minimize the objective
either globally or locally and, since in the nominal case, recalculation
of the control profile at each sampling instant is theoretically not
necessary, the previously obtained control profile is normally an
excellent “hot start” for the current nonlinear program. Finding a
control profile that satisfies a set of constraints is significantly easier
than solving a global optimization problem; even this problem is
made easier by the availability of “hot starts”; indeed, in the nominal
case at least, all that is required is an initial feasible control profile.

A suboptimal version of “classical” fixed-horizon MPC (which
employs a terminal equality stability constraint) is presented below.

Algorithm 1—Suboptimal Classical MPC:

• Choose� 2 (0; 1].
• At time k = 0, state x0, find a control sequence�0 =
fv0j0; v1j0; � � � ; vN�1j0g that satisfies (7), (9), and (12); set
u0 = v0j0.

• At time k, state xk, choose a control sequence
�k = fvkjk; � � � vk+N�1jkg that satisfies (7), (9), (12),
and �(xk; �k) � �(xk�1; �k�1) � �L(xk�1; uk�1) using
� = fvkjk�1; � � � ; vk+N�2jk�1; 0g as an initial guess. Set
uk = vkjk.

In the nominal case, when the model is exact and there are no
disturbances,� satisfies all the constraints on�k, even if� = 1. This
choice for�k requires no further computation. In practice, however,
model inaccuracies and disturbances may cause the control sequence

� not to satisfy (7), (9), and (12) or not to yield a cost reduction
of �L(xk�1; uk�1) as in the nominal case. Then a new control
sequence�k is computed, which yields the required cost reduction.
Small � values make this requirement easier to achieve.

If the model is very inaccurate or disturbances are large, there may
not exist a control sequence that satisfies (7), (9), and (12) and yields
a cost reduction. Then the algorithm fails, regardless of�. The best
strategy may then be to give up on cost reduction and to simply find
a new control sequence�k that satisfies (7), (9), and (12) as is done
at time k = 0.

The stabilizing properties of the control law that arise by imple-
mentation of Algorithm 1 are established below.

Theorem 3: Let represent the set of states for which there exists
a control sequence that satisfies (7), (9), and (12). If there exists aK
function,�(�), and a constantr > 0 such thatk�kk � �(kxkk) for
all xk 2 Bn

r , the suboptimal MPC law is asymptotically stabilizing
with a region of attraction .

Proof: It follows from Assumptions A0 and A1 that the MPC
objective� is continuous at the origin, with�(0; 0) = 0. Further-
more, �(x; �) � L(x; u) for all x; �, whereu denotes the first
control in the sequence�; in view of Assumption A3, it follows
that �(x; �) � `(kx; uk), for all x; �, sinceW = f0g. The first
condition of Theorem 1 is, therefore, satisfied.

The algorithm also ensures that�(xk+1; �k+1) � �(xk; �k) �
��L(xk; uk) along trajectories of the controlled system. This sat-
isfies the second condition of Theorem 1 since� > 0 andL(�) is
bounded below by aK function (Assumption A3).

Finally, the third condition of Theorem 1 is satisfied by assumption.
Asymptotic stability therefore follows from Theorem 1.
The condition k�kk � �(kxkk) can be incorporated as an

additional nonrestrictive constraint in the algorithm. The suboptimal
version of fixed-horizon dual-mode control MPC requires, as does
the optimal version, a locally asymptotically stabilizing control law
u = hL(x) such thath: W ! , whereW is a compact subset
of , contains an open neighborhood of the origin, and is positively
invariant for the systemxk+1 = f(xk; hL(xk)). The suboptimal
version of dual-mode MPC is defined by the following algorithm.

Algorithm 2—Suboptimal Dual-Mode MPC:

• Choose� 2 (0; 1].
• At time k = 0, statex0 if x0 2W setu0 = hL(x0). Otherwise,

find a control sequence�0 = fv0j0; v1j0; � � � ; vN�1j0g and cor-
responding state sequencefx0; x1j0; � � � ; xNj0g that satisfies
(7), (9), and (13); setu0 = v0j0.

• At time k, state xk if xk 2 W set uk =
hL(xk). Otherwise, choose a control sequence�k =
fvkjk; vk+1jk; � � � ; vk+N�1jkg and corresponding state
sequencefxk; xk+1jk; � � � ; xk+Njkg that satisfies (7), (9),
(13), and�(xk; �k) � �(xk�1; �k�1) � �L(xk�1; uk�1),
using � = fvkjk�1; � � � ; vk+N�2jk�1; hL(xk+N�1jk�1)g as
an initial guess. Setuk = vkjk.

As in the first algorithm,� satisfies all the constraints on�k, even
if � = 1, in the nominal case, i.e., when the model is exact and there
are no disturbances.

The stabilizing properties of the control law defined by implemen-
tation of Algorithm 2 are established below.

Theorem 4: Let represent the set of states for which there exists
a control sequence that satisfies (7), (9), and (13). The suboptimal
dual-mode MPC law is asymptotically stabilizing with a region of
attraction .

The proof for this theorem follows closely the proof for Theorem
2; the fact thatL(x; hL(x)) = 0 for all x 2 W ensures that
�(xk+1; �k+1) � �(xk; �k) � ��L(xk; uk) along trajectories of
the controlled system ifxk =2 W . Convergence toW in finite time
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Fig. 1. Example 1: optimal classical MPC.

Fig. 2. Example 1: suboptimal classical MPC.

follows, because� > 0 andL(�) is bounded below by aK function
(Assumption A3).

Global or even local minimization of the objective is not required
and all the constraints that must be satisfied are inequalities. The
computational complexity of the control calculation is substantially
reduced.

The suboptimal dual-mode MPC law drives the system state toW

in finite time in the presence of model inaccuracies and disturbances
as long as the algorithm does not fail. If the local control lawu =
hL(x) is robust in the sense that it keeps trajectories that commence
in W in W , then the above stability guarantee for dual-mode MPC
holds in the presence of model inaccuracies and disturbances provided
a feasible solution to the inequalities (7), (9) and (13) can be found.
Failure of the algorithm may be caused by large model inaccuracies
or disturbances.

V. ILLUSTRATIVE EXAMPLES

We present two simulated examples to illustrate the main ideas
of the paper. In the first example, we consider a linear process. In
this case, we can easily compute the optimal and suboptimal MPC
laws and we compare optimal and suboptimal MPC formulations, in
nominal simulations. In the second example, we illustrate suboptimal
MPC of a nonlinear process and observe the effects of disturbances
and model inaccuracies.

Example 1: The process we consider is linear, unstable, and is
described by

xk+1 = Axk +Buk (17)

where

A =
2 �0:96
1 0

B =
1
0
uk: (18)

The stage cost isL(x; u) = x0x + u0u. The horizon isN = 5,
and the constraint sets for the controls and states are= fu 2
IR: juj � 0:5g, and = fx 2 IRn: kxk1 � 1g. The initial state

is x0 = [1 1]0, which belongs to the region of attraction for both
classical and dual-mode MPC withN = 5 and the constraints we use.

For linear systems, the control optimization required for optimal
MPC may be cast as a quadratic program. The benefits of suboptimal
MPC are thus not as great as with nonlinear systems. Fig. 1 shows the
results obtained for optimal classical MPC; the results obtained for
the suboptimal version are shown in Fig. 2. This suboptimal version
requires solution of a finite set of linear inequalities at each sampling
instant (if there are disturbances or model error); a linear program
may be employed.

Both control schemes stabilize the process, satisfy the input and
state constraints at all times, and have similar performance; perfor-
mance of the suboptimal scheme depends, of course, on the initial
profile.

For the suboptimal version of fixed-horizon dual-mode MPC we set
W = fx 2 IRn: kxk1 � 0:225g, with hL(x) defined as the uncon-
strained LQR lawhL(x) = �Kx whereK = [1:4216; �0:795].
Then xk 2 W ) xk+1 = f(xk; hL(xk)) 2 W , because
kA � BKk1 = 1 so thatW is positively invariant, as required.
Also, hL mapsW onto andW � . The stage cost isL(x; u) =
�(x)[x0x + u0u], with �(x) defined as in (16). The results obtained
with the optimal and suboptimal formulations are presented in Figs. 3
and 4, respectively.

Both control schemes stabilize the process and satisfy the input
and state constraints. The trajectories differ considerably; although
x3 2 W in both versions,kx3k2 is considerably less for the
suboptimal version than the optimal version which does not costx

in W . Consequently,ku3k is larger and the response less smooth in
the optimal version.

Example 2: We consider a single-state nonlinear process, modeled
as

xk+1 = x
2

k + u
3

k: (19)

We implement the suboptimal dual-mode MPC law with horizon
N = 2, = fu 2 IR: juj � 2g, and = fx 2 IRn: jxj � 2:5g.
The locally stabilizing control law ishL(x) = 0 andW = fx 2
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Fig. 3. Example 1: optimal dual-mode MPC.

Fig. 4. Example 1: suboptimal dual-mode MPC.

Fig. 5. Example 2: effects of state disturbance MPC.

IRn: jxj � 0:5g. The stage cost isL(x; u) = �(x)[x2 + u2], with
�(x) defined as in (16) and we set� = 0:1. The initial state is
x0 = 3, which violates the state constraint, but belongs to the region
of attraction for the dual-mode MPC law with the settings we use.

First, we present a simulation, in which a disturbancepk is added
to the system state so that the process is described by

xk+1 = x2k + u3k + pk+1 (20)

where pk = 1=k. The local control lawu = hL(x) = 0 is
robust to disturbances of magnitude no greater than 0.25 in the sense
that it keeps trajectories of (20) that commence inW despite such
disturbances.

The simulation results are presented in Fig. 5. At time zero,
a control sequence�0, which merely satisfies the constraints, is
calculated. At times one and two, new control sequences�1 and
�2 need to be computed as� increases the cost and does not satisfy
the constraints due to the disturbance. No recalculation is required
after time two. At time five, the state entersW and the disturbance
has decayed enough to be handled by the robust local control law

u = hL(x). The local control law then steers the state asymptotically
to the origin.

In the second simulation, we illustrate the effects of model inac-
curacies and large disturbances. We still use the model of (19), but
the process is now described by

xk+1 = x3k + 0:5u3k + pk+1; k � 0 (21)

where pk = 0 for all k 6= 10, p10 = 1. The local control law
u = hL(x) is robust to the model inaccuracy and to disturbances of
magnitude no greater than 0.375 in the sense that it keeps trajectories
of (21), that commence inW despite disturbances of this size.

The simulation results are presented in Fig. 6. At time zero,
a control sequence�0, is calculated, which merely satisfies the
constraints. At time one, a new control sequence�1 must be computed
as � does not satisfy the stability constraints due to the model
inaccuracy. No recalculation is required after time one. The state
entersW at time three at which time control switches to the local
law u = hL(x) and the stage cost becomes zero. At time ten,
a disturbance suddenly hits the process making it impossible to
maintain zero cost. The algorithm then fails and we lose the stability
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Fig. 6. Example 2: effects of model inaccuracies and state disturbances.

guarantee. We continue control by temporarily abandoning “cost
reduction” attempts. At time ten, therefore, a new control sequence
�10 is calculated, which satisfies the constraints, but yields an
increased cost. Althoughx10 = x0, the controller produces�10 6= �0.
No recalculation of the control is required after time ten. The state
re-entersW at time 13 and is subsequently steered asymptotically
to the origin by the robust local control lawu = hL(x). Although
the stability guarantee is lost momentarily at time ten, it is regained
immediately afterwards.

VI. CONCLUSIONS

In this paper, we consider optimization problems that arise with
the practical implementation of MPC for nonlinear discrete-time
systems and show that feasibility rather than optimality suffices
for stability. We illustrate this result by establishing stability for
suboptimal versions of classical and dual mode MPC; the suboptimal
versions haverelativelymodest computational demands. The discon-
tinuous stage cost (15) causes computational difficulties if optimal
MPC is employed [9]. This difficulty is avoided in the suboptimal
MPC strategies presented above. It is possible to avoid the use of
discontinuous stage cost by adding a suitable terminal cost; this will
be discussed elsewhere.

APPENDIX

Here, we discuss briefly determination of the setW . If the system is
linear and the sets and are specified by sets of linear inequalities,
thenW can be chosen to be the output admissible set defined in [8]
where a method for constructing this set is given. This is the optimal
(largest) set which satisfies the requirements forW .

Suppose then, thatf(�) is nonlinear and that the partial derivative
fz(�) = [fx(�); fu(�)] with z := (x; u) is Lipschitz continuous with
Lipschitz constantc in a neighborhoodCz = fzj kzk � "g of the
origin; this constant is often available. Choose the local stabilizing
controlleru = hL(x) to be linear, i.e.,hL(x) = Kx whereA+BK
is stable whereA := fx(0; 0) andB := fu(0; 0). Let g: IRn ! IRn

be defined byg(x) := f(x; Kx). Thenc(1 + kKk) is a Lipschitz
constant forgx(�) in Cx := fxj(x; Kx) 2 Czg so that

g(x) = Fx+ e(x)

whereF := A + BK andke(x)k � c1kxk
2 for all x 2 Cx where

c1 = c(1 + kKk)2. ChooseQ > 0 (a suitable choice is obtained
if K is designed using linear quadratic optimal control) andP > 0
satisfying the Lyapunov equation

P = [A +BK]TP [A +BK] +Q:

Let the Lyapunov functionV (�): IRn ! IR be defined by

V (x) = (1=2)xTPx:

Then, for all x 2 Cx

V (g(x))� V (x)

= V (Fx+ e(x))� V (x) = V (Fx)� V (x) + e1(x)

whereke1(x)k � dkxk3; d > 0 is easily obtained fromc1 andP .
Hence,

V (g(x))� V (x) � �(1=2)xTQx+ e1(x):

It is then a simple matter to determine an� > 0 such that

V (g(x))� V (x) � �(1=4)xTQx

for all x 2 W� where

W� := fx j xTPx � �g:

This value of� is then reduced, if necessary, to ensure satisfaction of

W� � \Cx; KW� � : (22)

The resultantW� satisfies all our requirements forW ; it is positively
invariant for the systemxk+1 = f(xk; hL(xk)) and any motion
commencing at an initial state inW satisfies the state and control
constraints and converges to the origin.

If a Lipschitz constantc1 for gx(�) is not known, any� satisfying

max
x2W

fV (g(x))� V (x) + (1=4)xTQxg � 0

and (22) is acceptable. The maximization is global, but the problem
is highly structured and it is known that� sufficiently small satisfies
the inequality.
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Robust Adaptive Control of Robots with Arbitrary
Transient Performance and Disturbance Attenuation

Patrizio Tomei

Abstract—We consider the tracking problem for robot manipulators
with unknown and (possibly) time-varying parameters, which are subject
to bounded disturbances. We provide a state feedback adaptive control
algorithm which guarantees arbitrary transient performance as well as
arbitrary disturbance attenuation. If the disturbances vanish and the
parameters remain constant, the proposed controller achieves asymptotic
tracking.

Index Terms—Disturbance attenuation, robot manipulators, robust
adaptive control, time-varying parameters.

I. INTRODUCTION

We consider the problem of high-performance tracking control of
robotics manipulators when their parameters are unknown (and/or
time-varying) and they are affected by time-varying disturbances.
Our objective is to achieve a state feedback control which guarantees
arbitrary transient performance and disturbance attenuation (as long
as the actuator power is sufficient) while ensuring zero output tracking
error when parameters are constant and disturbances are zero.

The latter property is not provided by robust orH1 control
techniques such as those proposed in [1]–[4] while it is guaranteed
by adaptive controls such as those presented in [5] and [6] (see
also [7] for a survey). On the other hand, adaptive controllers may
not work properly in presence of time-varying disturbances and
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parameters (see [8]). For these reasons, in [9] a robust adaptive
controller was developed which may tolerate time-varying parameters
and disturbances, and guarantees asymptotic tracking in presence
of constant parameters and vanishing disturbances. However, the
transient performance are related to disturbance bounds and speed
of parameter variations and cannot be arbitrarily improved.

In this note, we present a robust adaptive state feedback tracking
controller which guarantees arbitrary transient performance as well
as arbitrary attenuation on the output tracking error of the effects of
bounded disturbances and time-varying parameters (both inL2 and
L1 sense). Moreover, the proposed controller provides asymptotic
output tracking when disturbances vanish and parameters become
constant. The control algorithm is obtained suitably modifying the
techniques developed in [10] and [11] with reference to single-input
single-output systems.

II. M AIN RESULT

Consider the dynamic equations of a rigid manipulator, with
n + 1 links interconnected byn joints, with possibly time-varying
parameters (see [9])

B(q; �(t))�q + C(q; _q; �(t)) _q + h(q; �(t))

+ f(q; _q; �(t)) +
@B(q; �(t))

@t
_q = u+ d(t) (1)

in which the vectorq = [q1; � � � ; qn]
T represents the joint relative

displacements, the vector�(t) depends on the kinematic and dynamic
parameters of the robot and actuators and enters linearly in the robot
equations, the vectoru denotes generalized forces (forces or torque)
applied at the joints,B(q; �) is the symmetric positive definite
inertia matrix,C(q; _q; �) _q represents Coriolis and centripetal forces,
(@B=@t) _q takes into account the time-varying nature of parameters
�, and f(q; _q; �) denotes frictional forces. The disturbance forces
are grouped into the vectord(t) which is assumed to be bounded.
The vector� is assumed to belong to a known compact set, which
for the sake of simplicity is supposed to be a closed ball centered at
�N (the nominal value of�) with radius�M (the largest deviation
from the nominal value); moreover, it is assumed to be differentiable
with bounded time derivative. The deviations of the parameters from
the nominal values are indicated by the vector� = � � �N . The
choice ofC(q; _q; �(t)) is not unique; we choose the elements ofC
as follows [5], [12]:

Cij =
1

2
_qT

@Bij

@q
+

n

k=1

@Bik

@qj
�

@Bjk

qi
_qk (2)

wherei; j = 1; � � � ; n, so that if� is constant, the matrix

dB(q; �)

dt
� 2C(q; _q; �) =

n

i=1

@B(q; �)

@qi
_qi � 2C(q; _q; �)

is skew-symmetric [5], [12]. As noted in [9], if�(t) is time-varying,
with the choice (2) the matrix n

i=1
(@B(q; �(t)))=(@qi) _qi �

2C(q; _q; �(t)) is still skew-symmetric while the matrix

dB(q; �(t))

dt
� 2C(q; _q; �(t))

=

n

i=1

@B(q; �(t))

@qi
_qi +

@B(q; �(t))

@t

� 2C(q; _q; �(t)) (3)

is no longer skew-symmetric. For the robot (1), we define the
following problem.
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