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Suboptimal Model Predictive Control Their dual-mode controller employs a terminal constraint of the form
(Feasibility Implies Stability) z(k+N) e D_ C D CW and a stage cost that is zeroin both
assumptions being similar to, if somewhat more complex than, ours
P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings (see, e.g., Assumption A2). Theorem 2 (below), which establishes
stability of fixed-horizon dual-mode optimal MPC is similar if the
system is linear to [9, Theorem 1].
Abstract—Practical difficulties involved in implementing stabilizing To reduce the severe computational problems associated with

model predictive control laws for nonlinear systems are well known. . . . .
Stabilizing formulations of the method normally rely on the assumption nonconvexity, asuboptimalapproach for continuous-time systems,

that global and exact solutions of nonconvex, nonlinear optimization Proposed in [4] and discussed informally in [10] and [11], employs
problems are possible in limited computational time. In this paper, we an initial feasible solution which is improved iteratively in lieu of
first establish conditions under which suboptimal model predictive control  gptimization. A variable horizon strategy was employed. The purpose
(MPC) controllers are stabilizing; the conditions are mild holding outthe ot this paper is to extend these results by showing that under mild
hope that many existing controllers remain stabilizing even if optimality o - . L . -

is lost. Second, we present and analyze two suboptimal MPC schemestonditions, fea_15|b|llty r_a_ther than opt_lmallty is sufflc_lent for st_ablllty
that are guaranteed to be stabilizing, provided an initial feasible solution and to establish stability of suboptimal fixed horizon versions of

is available and for which the computational requirements are more MPC for nonlinear discrete-time systems. We examine two cases:

reasonable. first, when the stability constraint is;.n~ = 0 and second, when
Index Terms—Dual-mode control, nonconvex nonlinear optimization, it iS x4+~ € W; we then compare the results with optimal MPC
nonlinear model predictive control, suboptimal control. employing these two stability constraints.

The paper is organized as follows. Section Il sets up the back-
ground and notation for the paper. Here, we present a result that
establishes that feasibility, rather than optimality, is sufficient for

Conventional formulations of nonlinear model predictive contradtability. In Section 1Il, we briefly review optimal MPC strategies and
(MPC) require, at each sampling instant, an exact global solution iigjhlight their stabilizing properties. The suboptimal MPC schemes
a nonconvex, nonlinear program. To ensure stability the nonlinege propose are discussed in Section IV; their stabilizing proper-
program includes a stability constraint, normally an equality coffies are established and their computational demands discussed. In
straint on the terminal state [1], [2]. This makes the implementatiG®ection V, we present some illustrative examples and concluding
of stabilizing MPC difficult on at least two counts. On the one handemarks are made in Section VI.
exact satisfaction of nonlinear equality constraints cannot, in general,
be achieved in finite computational time and early termination of I,
the optimization may cause errors that affect stability. On the other ) . . . )
hand, global solutions cannot usually be guaranteed, or are highlyVe consider discrete-time nonlinear systems described by
computationally expensive. The theory behind nonlinear MPC is Tpi1 = [, ug) (1)
consequently often inapplicable, although in some applications it ma;
be possible to employ global optimization. This has been done in th@€rexx € IR" andu; € IR™ denote the state and control vectors
context of specific control applications [3], but not yet in MPC.  at discrete timek and f(-): IR" x R™ — IR" is assumed to be

To reduce problems associated with the terminal equality constra@ntinuous at the origin witlf (0, 0) = 0.

2(k + N) = 0, one proposal [4] (for continuous time systems) The objective is to regulate the stat¢o the origin and we consider
replaces this constraint by an inequality constrait+N') € W and receding-horizon control laws that determine at each sampling instant
employs a local asymptotically stabilizing controller(-) in W; the k. Statexy, a finite sequence of future controls

setW is required,inter alia, to be positively invariant underr (-).
Another interesting version of MPC employs infinite horizon cost
and finite horizon control [5]-[7], an approach normally restricted &9 satisfy certain constraints; hew® is the control horizon. Let
linear systems. Interestingly, this approach tests whether the statd@atixs Thr1jk, * > TreN|ky Wherezy, = ;. denote the corre-
the end of the control horizon lies in the output admissible set [8] as@onding state sequence. The current control aatiofis chosen to
varies the control horizon, if necessary, to satisfy this test. Henceb@ the first vector in the sequeneg, i.e.,

test implicitly of the formx(k + N) € W is used.

In an interesting paper [9] (which appeared after this paper was sub-
mitted), the authors identify difficulties in transposing the continuouser all %. If the control v is a continuous function of the state
time results of [4] to discrete-time MPC and propose a fixed horizen Lyapunov stability theory establishes convenient conditions for
dual-mode (optimal) MPC strategy for linear time invariant systemasymptotic stability. In suboptimal control, the control employed is

not unique and may also vary discontinuously with the state. Hence,
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. INTRODUCTION

FEASIBILITY IMPLIES STABILITY
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Uk = Vgjk (3)
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mean that the system has an (asymptotically) stable equilibriumfat all #. Optimal MPC minimizes, at each state-time pair ), an
the origin. A functiona(-), defined on nonnegative reals, isid  objective function
function if it is continuous, strictly increasing with(0) = 0. For all CAN_1
r>0.n>1 Bl = {z € R o] < r}. (. ) = (25 v
Theorem 1: Let there exist: ¢, m) ; Lies, vi) ®
1) a functionV(-): R® x R®™ — IR continuous at the origin _
with (0. 0) = 0 and a-function a(-), such that for all Subject to

) n N
v &R we R, v = flagvg), k= ©

Vi, m) 2 a(ll=l) “) the control and state constraints (7) and a stability constraint (see

2) asefF C IR" that contains an open neighborhood of the origiR®low); herex = {vy, ---, vx—} is the decision variable. Because
and aK -function~(-), such that every realizatiopws, =} of [ @nd L are time invariant, the solution to this optimal control

the controlled system with, € F satisfiesz, € F for all  Problem isy(x) = a°(x) = {ni(x), ---, 7k (2)}; () := 77 ()
L > 0 and is the implicit MPC control law. The control applied to the plant (at

(x, k)) is, therefore

V@it mer) = Viwk, me) < =v([[(e. we)l))  (5)
with u; denoting the first element ofy;
3) a constant- > 0 and ak function o(-), such that every  The resultant value function for the optimal control problem is
realization{x, of the controlled system with, € B , ;
satisfies tre Y ‘ o(x) == V(w, °(x)). (11)
7l < o (). (6) “Classical” fixed horizon MPC (for nonlinear discrete time sys-
- tems) employs the stability constraint
Then, the controlled system is asymptotically stabléin
Proof:

* Stability:Let {x, } represent a trajectory of the controlled system |n this note, we use classical MPC to denote model predictive
commencing at an arbitrary pointy € F. BecauseV is control with a terminal equality stability constraint. Dual-mode fixed-
continuous at the origin, with’ (0, 0) = 0, there exist a constant horizon MPC, on the other hand, employs the stability constraint
r1 > 0 and ak function3(-) such thal’ (z, =) < 3(||(«, 7)||)
forallz € B}, = € BX™; also, afF contains the origin in its reNn €W (13)
interior, there exists a constant > 0 such thatB,,, C F. For
anye > (), there exist$ > 0 such that: 1) < min (r, r1, 72);

TE4N = 0. (12)

wherelV is a convex compact subset ¥fwhich contains the origin
2)0(8) < r1: and 3)3(6 +(8)) < ale); 6 > 0 exists because in its interjor. Insideﬂ_/’ a_locally stabilizing control law: = hy ()
afe) > 0 ando(§) — 0 asé — 0, so thatd(6 + o(8)) — 0 as (he(): W — U) satisfying
6 — 0. Supposé|xo|| < 6; then||mo|| < o(6) andV (w0, mo) < Lz, hi(z)) = 0, Vel (14)
Bllxo. 7)) < Alllxoll + lImoll) < A6 + 0 (6)) < ale).
Moreover, sincé|zo|| < &, we havel (a4, mr) < V(zo, mo) <  is employed. WhedV = {0}, the local control law is: = 11 (0) =
afe) for all k& > 0. Also, a(||xx]|]) < V(xk, me) for all 0, in which case this requirement is satisfiedZif0, 0) = 0. The
k > 0. Therefore, we havex(||z.|]) < «(e) and it follows setW is chosen to be positively invariant for the system;, =
that ||«x|| < e for all & > 0, all zy € B§. f(xk, hr(xe)). A method for constructing? and h (presented in

» Convergence:ln view of (4), we haveV(x, w) > 0 for [4]) can be extended to the discrete-time case (see the Appendix).
all =z, =. Furthermore, it follows from (5) that” decreases The following assumptions are made:
along trajectories of the controlled system that commence inpQ: £(.) is continuous at the origin, wittf(0, 0) = 0;
. It follows that with o € F, V (24, 7)) — V* ask — Al: L(-) is continuous at the origin witlL(0, 0) = 0;
oo, where V* is a nonnegative constant. We conclude that a2: L{z, hi(x)) = 0 for all 2 € W;
Vi(wksr, mrp1) = V(wg, mp) — 0 ask — oo and this implies  A3: there exists ak function ((-) such that L(x, u)
that y([|(wk. ue)l]) — 0. Becausey(-) is a K function, it £(||(z, w)||) for all = ¢ W and for allu.
follows thatzy, ux — 0 ask — co. If W = {0}, Assumption A3 simply requires thak(z, u) >

o _ ) ) _ O ¢(||(z, w)|)) for all 2, v. We may, for instance, choose(x, u) =
If the initial sequencer, is feasible, so, in the nominal case, are,’ (.4’ Ru, with Q andR positive definite. Ifi” # {0}, a function

all subsequent sequences computed according to which satisfies Assumptions A1-A3 is

v

(k) = {(vejp—1s ** s Vhov—alk—1s Pr{@ern—1jh—1)} Lz, u) = 6(2)L(x, u) (15)

wheremi.—1 = {vk—ijk—1, Vkjk—1, ** s VkpN—1[k—1}. ThEOrEM 1 yhere s o) = 2'Qz + o' Ru, with Q and R positive definite and
shows that initial feasibility is sufficient for nominal stability. _
b() = {0, if €W (16)

IIl. OPTIMAL MPC SIRATEGIES 1, otherwise.

The goal of MPC is to regulate the state of the system to the originThat optimal fixed-horizon model predictive control with a terminal

while satisfying control and state constraints of the form equality stability constraint is stabilizing is established by Keerthi and
Gilbert [1]. Optimal fixed-horizon dual-mode MPC for discrete time
ur €U linear systems has been analyzed in [9]. For nonlinear systems, we

xr € X (7) bhave the following result.
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Theorem 2: Let F denote the set of states for which there exists not to satisfy (7), (9), and (12) or not to yield a cost reduction
a control sequence that satisfies (7), (9), and (13). Optimal fixeok —L(z#—1, ux—:) as in the nominal case. Then a new control
horizon dual-mode MPC is asymptotically stabilizing with a regiosequencer;, is computed, which yields the required cost reduction.
of attraction[F. Small ;. values make this requirement easier to achieve.

Proof: Stability is a local property and follows from the stabi- If the model is very inaccurate or disturbances are large, there may
lizing properties of the control law = hz(x) in W. Also, if the not exist a control sequence that satisfies (7), (9), and (12) and yields
state enter$V’, convergence to the origin follows from the properties cost reduction. Then the algorithm fails, regardlesg.ofhe best
of 1. It therefore only remains to show that all trajectories of thstrategy may then be to give up on cost reduction and to simply find

controlled system, commencing i enteri¥ in finite time. a new control sequence; that satisfies (7), (9), and (12) as is done
Supposero, ¢ W. BecausdV contains an open neighborhood ofat time & = 0.
the origin, there exists a constant> 0 such that: ¢ W = ||z|| > r. The stabilizing properties of the control law that arise by imple-

It follows from Assumption A3 thatr ¢ W = L(x, u) > ((r) mentation of Algorithm 1 are established below.

for all . Since L(x, hp(x)) = 0 for all = € W, it follows Theorem 3: Let F represent the set of states for which there exists
that ¢(f(x, h(x))) — o(x) < —L(x, h(x)) for all x so that the a control sequence that satisfies (7), (9), and (12). If there exikts a
optimal value of the objective decreases by at least,, u.) at function,s(-), and a constant > 0 such thatj|m.|| < o(]|x]||) for

each sampling instarik. all z; € By, the suboptimal MPC law is asymptotically stabilizing
Let & denote a finite integer such that(r) > ¢(xo). If the with a region of attractiorf.

state has not enteréd” by time = %, we havel||z.|| > r and, Proof: It follows from Assumptions A0 and Al that the MPC

therefore, L(xy, ux) > €(r) for k = 0,1, ---, %. It follows that objective ¢ is continuous at the origin, witk(0, 0) = 0. Further-

() < Ppao) — %£(r) < 0 a contradiction since the objective is,more, ¢(x, 7) > L(z, u) for all , =, whereu denotes the first

by definition, nonnegative. We conclude that € F = »rz € W  control in the sequence; in view of Assumption A3, it follows

with % finite. This completes the proof. that ¢(x, w) > £(||x, u]||), for all 2, =, sinceW = {0}. The first
Thus, the dual-mode MPC strategy is, under mild conditionspndition of Theorem 1 is, therefore, satisfied.

stabilizing. By casting the stability condition as an inequality, com- The algorithm also ensures thatzit+1, mi+1) — ¢(zk, ) <

putational problems associated with exact satisfaction of nonlineapL(x\, ux) along trajectories of the controlled system. This sat-

equality constraints are reduced. Nevertheless, global solutions tsfies the second condition of Theorem 1 since> 0 and L(-) is

constrained nonlinear optimal control problem must still be obtainddunded below by & function (Assumption A3).

iteratively. Since most optimization methods, when applied to a Finally, the third condition of Theorem 1 is satisfied by assumption.

nonconvex problem, yield local rather than global minima, we Asymptotic stability therefore follows from Theorem 1. O
turn our attention to suboptimal strategies, which are more easilyThe condition ||7|| < o(]|zx]]) can be incorporated as an
obtained. additional nonrestrictive constraint in the algorithm. The suboptimal

version of fixed-horizon dual-mode control MPC requires, as does
the optimal version, a locally asymptotically stabilizing control law
IV. SuBOPTIMAL MPC STRATEGIES u = hr(x) such thath: W — U, whereW is a compact subset
In this section, we propose suboptimal versions of the two MP@f X, contains an open neighborhood of the origin, and is positively
laws presented in Section Ill to illustrate the fact that feasibility is sufavariant for the systemy;,;, = f(ww, ho(xr)). The suboptimal
ficient for stability; in these versions, the computational requiremewersion of dual-mode MPC is defined by the following algorithm.
is reduced to finding a control profile that satisfies the control, state , Algorithm 2—Suboptimal Dual-Mode MPC:
and stability constraints. The solution need not minimize the objectives Choosep € (0, 1].
either globally or locally and, since in the nominal case, recalculation« At time k = 0, statew, if o € W setuo = hz (o). Otherwise,
of the control profile at each sampling instant is theoretically not find a control sequence, = {vojos v1j0s *++» Un—1j0} @nd cor-
necessary, the previously obtained control profile is normally an responding state sequenéeo, Tijos <+, Tnjo} that satisfies
excellent “hot start” for the current nonlinear program. Finding a  (7), (9), and (13); set,, = vojo-
control profile that satisfies a set of constraints is significantly easiere At time %, state z. if 2, € W set up =

than solving a global optimization problem; even this problem is hr(xg). Otherwise, choose a control sequeneg =

made easier by the availability of “hot starts”; indeed, in the nominal {Vkks Vkgifhs *+ s Vien—1x} and  corresponding  state

case at least, all that is required is an initial feasible control profile. sequence{wr, @1k, - s Trpnjk} that satisfies (7), (9),
A suboptimal version of “classical” fixed-horizon MPC (which (13), and ¢(ax, 1) < Glwp—r, mh—1) — p Llap—1, up—1),

employs a terminal equality stability constraint) is presented below. ysing = = {Uklk—ts = Vkgn—2(k—1> DL (Then—1jk—1)} @S
Algorithm 1—Suboptimal Classical MPC: an initial guess. Sety, = vy.

» Choosen € (0, 1]. As in the first algorithmy satisfies all the constraints en, even

* At time k& = 0, statexo, find a control sequenc&o = if 4 = 1, in the nominal case, i.e., when the model is exact and there
{vojo> V110, *++» vy 110} that satisfies (7), (9), and (12); setare no disturbances.
o = Yojo- The stabilizing properties of the control law defined by implemen-

* At time &, state x,, choose a control sequencetation of Algorithm 2 are established below.

T = {vke o veen—1e} that satisfies (7), (9), (12),  Theorem 4: Let F represent the set of states for which there exists
and ¢(wk, ) < @(ak—1, The—1) — pL(xr—1, uk—1) USING  a control sequence that satisfies (7), (9), and (13). The suboptimal
™ = {Uk[k—1,"". Vipn—2(k—1. 0} @s an initial guess. Set dual-mode MPC law is asymptotically stabilizing with a region of
Uk = Vglk- attraction[F.

In the nominal case, when the model is exact and there are ndrhe proof for this theorem follows closely the proof for Theorem
disturbancesy satisfies all the constraints an, even ify = 1. This  2; the fact thatL(x, hr(x)) = 0 for all # € W ensures that
choice form;, requires no further computation. In practice, howeve)(zgy1, Trt+1) — ¢(zk, ) < —pL(xy, ug) along trajectories of
model inaccuracies and disturbances may cause the control sequéineecontrolled system i, ¢ W. Convergence téV in finite time
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Fig. 1. Example 1: optimal classical MPC.
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Fig. 2. Example 1: suboptimal classical MPC.

follows, because: > 0 and L(-) is bounded below by & function is zo = [1 1]’, which belongs to the region of attraction for both
(Assumption A3). classical and dual-mode MPC wifti = 5 and the constraints we use.
Global or even local minimization of the objective is not required For linear systems, the control optimization required for optimal
and all the constraints that must be satisfied are inequalities. TM®C may be cast as a quadratic program. The benefits of suboptimal
computational complexity of the control calculation is substantiallMiPC are thus not as great as with nonlinear systems. Fig. 1 shows the
reduced. results obtained for optimal classical MPC; the results obtained for
The suboptimal dual-mode MPC law drives the system stal& to the suboptimal version are shown in Fig. 2. This suboptimal version
in finite time in the presence of model inaccuracies and disturbaneesguires solution of a finite set of linear inequalities at each sampling
as long as the algorithm does not fail. If the local control law= instant (if there are disturbances or model error); a linear program
hi(x) is robust in the sense that it keeps trajectories that commenmnay be employed.
in W in W, then the above stability guarantee for dual-mode MPC Both control schemes stabilize the process, satisfy the input and
holds in the presence of model inaccuracies and disturbances provigtde constraints at all times, and have similar performance; perfor-

a feasible solution to the inequalities (7), (9) and (13) can be fourmance of the suboptimal scheme depends, of course, on the initial
Failure of the algorithm may be caused by large model inaccuracig®file.

or disturbances. For the suboptimal version of fixed-horizon dual-mode MPC we set
W ={z € R": ||r]|w < 0.225}, with hz (x) defined as the uncon-
V. ILLUSTRATIVE EXAMPLES strained LQR lawh, (z) = —Kx where K = [1.4216, —0.795].
. . . .. Thenz, € W = =z = f(xg, hr(zg € W, because
We present two simulated examples to illustrate the main ide b et F@e, hrl@e)

) X - ff‘?l — BK || = 1 so thatW is positively invariant, as required.
of the paper. In the first example, we consider a linear process. L

hi . h imal and suboptimal Mlé 0, ks, mapsW ontoU andW C X. The stage cost i&(x, u) =
this case, we can easily compute the optimal and suboptima e&)[m'm + u'u], with #(x) defined as in (16). The results obtained

laWS_ and we compare optimal and suboptimal M_PC formulanons_, wWith the optimal and suboptimal formulations are presented in Figs. 3
nominal simulations. In the second example, we illustrate suboptimal ; 4 respectively

MPC of a nonlinear process and observe the effects of disturbanceéOth control schemes stabilize the process and satisfy the input

and model inaccuracies. ) o and state constraints. The trajectories differ considerably; although
Exa}mple 1: The process we consider is linear, unstable, and IS ¢ W in both versions,||zs|]2 is considerably less for the
described by suboptimal version than the optimal version which does not ¢ost
thi1 = Awy + Bug (17) in W. Consequently||us|| is larger and the response less smooth in
the optimal version.

Example 2: We consider a single-state nonlinear process, modeled
2 —0.96 1 as
A= B = Ug. 18
|:1 0 :| |:0:| k (18) Thy1 = T+ ub. (19)

The stage cost id.(z, u) = 2’z + «'u. The horizon isN = 5, We implement the suboptimal dual-mode MPC law with horizon
and the constraint sets for the controls and statestare {u € N =2, U= {u € R: |u| < 2}, andX = {# € R": |z| < 2.5}.
R: |u| < 0.5}, andX = {z € R": ||z|| < 1}. The initial state The locally stabilizing control law is;(z) = 0 andW = {z €

where
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Fig. 4. Example 1: suboptimal dual-mode MPC.
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Fig. 5. Example 2: effects of state disturbance MPC.

R": |2| < 0.5}. The stage cost i&(z, u) = 6(x)[z> + «*], with u = h.(x). The local control law then steers the state asymptotically

f(x) defined as in (16) and we set = 0.1. The initial state is to the origin.

29 = 3, which violates the state constraint, but belongs to the regionin the second simulation, we illustrate the effects of model inac-

of attraction for the dual-mode MPC law with the settings we use.curacies and large disturbances. We still use the model of (19), but
First, we present a simulation, in which a disturbapgds added the process is now described by

to the system state so that the process is described by

Tht! = .ri’ + 0.-5'11?,, + Prtis k>0 (22)
Thi1 = 25+ up + Prta (20) wherepyr = 0 for all & # 10, pio = 1. The local control law
u = hy(x) is robust to the model inaccuracy and to disturbances of
where p, = 1/k. The local control lawu = hr(x) = 0 is magnitude no greater than 0.375 in the sense that it keeps trajectories

robust to disturbances of magnitude no greater than 0.25 in the seo6€1), that commence il despite disturbances of this size.

that it keeps trajectories of (20) that commencdlihdespite such ~ The simulation results are presented in Fig. 6. At time zero,
disturbances. a control sequencerg, is calculated, which merely satisfies the

The simulation results are presented in Fig. 5. At time zergpnstraints. At time one, a new control sequencenust be computed

a control sequencery, which merely satisfies the constraints, isas # does not satisfy the stability constraints due to the model
calculated. At times one and two, new control sequencesind inaccuracy. No recalculation is required after time one. The state
w2 need to be computed asincreases the cost and does not satisfgntersi¥ at time three at which time control switches to the local
the constraints due to the disturbance. No recalculation is requile& « = h,(x) and the stage cost becomes zero. At time ten,
after time two. At time five, the state entdrs and the disturbance a disturbance suddenly hits the process making it impossible to
has decayed enough to be handled by the robust local control Ievaintain zero cost. The algorithm then fails and we lose the stability
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Fig. 6. Example 2: effects of model inaccuracies and state disturbances.

guarantee. We continue control by temporarily abandoning “costThen, for allz € C.

reduction” attempts. At time ten, therefore, a new control sequence __ N

mo is calculated, which satisfies the constraints, but yields an Vig(a)) = V(x)

increased cost. Althoughio = 0, the controller produceso # mo. =V(Fr+e(x)) - V(z) =V(Fz) - V(z)+ei(x)
No recalculation of the control is required after time ten. The state
re-entersW at time 13 and is subsequently steered asymptotical
to the origin by the robust local control law = h;(z). Although ence,

_the sta_bility guarantee is lost momentarily at time ten, it is regained Vig(x)) = Viz) < =(1/2)a Qx + e ().
immediately afterwards.

ere|lei (z)|| < d||z||*; d > 0 is easily obtained frone; and P.

It is then a simple matter to determine an> 0 such that

VI. CONCLUSIONS Vigla)) - Vi(z) < —(1/4)@?1@1:
In this paper, we consider optimization problems that arise with N
the practical implementation of MPC for nonlinear discrete-timf@" all @ € W. where
systems and show that feasibility rather than optimality suffices W, = {z| 2" Pz < al.
for stability. We illustrate this result by establishing stability for -
suboptimal versions of classical and dual mode MPC; the suboptinTddis value ofx is then reduced, if necessary, to ensure satisfaction of
versions haveelatively modest computational demands. The discon-
tinuous stage cost (15) causes computational difficulties if optimal
MPC is employed [9]. This difficulty is avoided in the suboptimalrye resyitanty,, satisfies all our requirements f&; it is positively
MPC strategies presented above. It is possible to avoid the useRfariant for the system1 = f(zr, hy(ex)) and any motion
discontinuous stage cost by adding a suitable terminal cost; this Wilymencing at an initial state i’ satisfies the state and control
be discussed elsewhere. constraints and converges to the origin.
If a Lipschitz constant; for g.(-) is not known, anyx satisfying

max {V(g(x) = V() + (1/4)z" Qz} <0

W.CcXnC,, KW,CU. (22)

APPENDIX
Here, we discuss briefly determination of the®8étIf the system is

linear and the setd and’X are specified by sets of linear inequalitiesgp,q (22) is acceptable. The maximization is global, but the problem

then¥” can be chosen to be the output admissible set defined in [8lhighiy structured and it is known that sufficiently small satisfies
where a method for constructing this set is given. This is the optimaly inequality.

(largest) set which satisfies the requirementsWor

Suppose then, that(-) is nonlinear and that the partial derivative
f=(-) = [f=(+), fu(-)] with z := (z, w) is Lipschitz continuous with
Lipschitz constant: in a neighborhood”. = {z|||z|]| < =} of the  The authors would like to thank R. H. Findeisen for his helpful
origin; this constant is often available. Choose the local stabilizitggmments.
controlleru = h, (x) to be linear, i.e.h;(z) = Kx whereA+ BK
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II. MAIN RESULT

Consider the dynamic equations of a rigid manipulator, with
n + 1 links interconnected by: joints, with possibly time-varying
parameters (see [9])

B(q, a(t))q + C(q, ¢, a(t))q + h(q, a(t))
dB(gq, a(t)) p

+H(g, 4ol + T=EE S G = utdt) ()
in which the vectory = [¢1, -+, ¢-]* represents the joint relative
Robust Adaptive Control of Robots with Arbitrary displacements, the vectoft) depends on the kinematic and dynamic

parameters of the robot and actuators and enters linearly in the robot
equations, the vectar denotes generalized forces (forces or torque)
Patrizio Tomei applied at the joints,B(q, «) is the symmetric positive definite
inertia matrix,C'(q, ¢, )¢ represents Coriolis and centripetal forces,
(0B/3dt)q takes into account the time-varying nature of parameters

Abstract—We consider the tracking problem for robot manipulators  «, and f(q, ¢, «) denotes frictional forces. The disturbance forces
with unknown and (possibly) time-varying parameters, which are subject gre grouped into the vectak(t) which is assumed to be bounded.

to bounded disturbances. We provide a state feedback adaptive control
algorithm which guarantees arbitrary transient performance as well as

The vectora is assumed to belong to a known compact set, which

arbitrary disturbance attenuation. If the disturbances vanish and the foOr the sake (_)f simplicity is SUPPOSG‘_j to be a closed ball ant_ered at
parameters remain constant, the proposed controller achieves asymptotic ax (the nominal value ofx) with radiusé,, (the largest deviation

tracking. from the nominal value); moreover, it is assumed to be differentiable
Index Terms—Disturbance attenuation, robot manipulators, robust With bounded time derivative. The deviations of the parameters from
adaptive control, time-varying parameters. the nominal values are indicated by the vedioe= « — an. The

choice ofC'(¢, ¢, «(t)) is not unique; we choose the elementsCof

as follows [5], [12]:
I. INTRODUCTION

We consider the problem of high-performance tracking control of Cij = % it 65” +> <aaB“" - 633")4;} 2)
robotics manipulators when their parameters are unknown (and/or q k=1 £ a4
time-varying) and they are affected by time-varying disturbancegherei, j = 1, ---, n, so that ifa is constant, the matrix

Our objective is to achieve a state feedback control which guarantees B ’ " 9B !
arbitrary transient performance and disturbance attenuation (as IongM -2C(g, ¢, a) = Z hd .(q, )
as the actuator power is sufficient) while ensuring zero output tracking ! =1 94
error when parameters are constant and disturbances are zero. jg skew-symmetric [5], [12]. As noted in [9], if(¢) is time-varying,
The latter property is not provided by robust @& ., control \yith the choice (2) the matrix3", (8B(q, a(t)))/(dqi)di —

techniques such as those proposed in [1]-[4] while it is guarantegd ,, , a(t)) is still skew-symmetric while the matrix
by adaptive controls such as those presented in [5] and [6] (see dB(q, a(t))

also [7] for a survey). On the other hand, adaptive controllers may m
not work properly in presence of time-varying disturbances and ¢

¢ —2C (¢, ¢, @)

—2C(q, ¢, a(t))

_~= 0B(q, a(t)) . | 9B(q. a(t))
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