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A globally onvergent frequeny estimatoryLiu Hsu, zRomeo Ortega�and zGilney DammyEletrial EngineeringCOPPE/UFRJP.O. Box 68504, 21945/970Rio de Janeiro, BRAZILliu�oep.ufrj.br
zLaboratoire des Signaux et SystemesCNRS-SUPELECPlateau de Moulon, 91192Gif sur Yvette, FRANCE[rortega,damm℄�lss.supele.frJune 30, 1999AbstratOn{line estimation of the frequeny of a sinusoidal signal is a lassial problem in systems theory thathas many pratial appliations. In this paper we provide a solution to the problem of ensuring a globallyonvergent estimation. More spei�ally, we propose a new adaptive noth �lter whose dynami equationsexhibit the following remarkable features: i) all signals are globally bounded and the estimated frequenyis asymptotially orret for all initial onditions and all frequeny values; ii) we obtain a simple tuningproedure for the estimator design parameters, whih trades{o� the adaptation traking apabilities withnoise sensitivity, ensuring (exponential) stability of the desired orbit; iii) transient performane is on-siderably enhaned, even for small or large frequenies, as witnessed by extensive simulations. To revealsome of the stability{instability mehanisms of the existing algorithms and motivate our modi�ationswe make appeal to a novel nonlinear (state{dependent) time saling. The main advantage of workingin the new time sale is that we remove the oupling between the parameter update law and the �lteritself, deomposing the system into a feedbak form where the required modi�ations to ensure stabilitybeome apparent. Even though we limit our attention here to the simplest ase of a single onstantfrequeny without noise the algorithm is able to trak time{varying frequenies, preserves loal stabilityin the presene of multiple sinusoids, and is robust with respet to noise.Keywords: frequeny estimation, adaptive noth �lter, noise anellation, stability analysis, nonlinearsystems, adaptive signal proessing.1 IntrodutionWe are interested here in the problem of ontinuous{time on{line estimation of the frequeny �� > 0 of apure sinusoidal signal n = k sin(��t)where n is measurable, and its amplitude; k > 0, is also unknown.1 Frequeny estimation is a fundamentalquestion in systems theory that has many pratial appliations, for instane in ative noise and vibrationontrol [4℄ in heliopters [9℄, disk drives [2℄ and magneti bearings [10℄. It is also a hallenging theoretialproblem (even in the ase when noise is absent) sine the nonlinear dependene on the unknown frequenystymies the appliation of standard well known tehniques. For instane, if it is expressed using a state{spae realization of the sinusoid, we are onfronted with a problem of simultaneous estimation of the stateand the parameter, whih is a well{known open problem in systems theory. Although in disrete{time itis possible to obtain a linear parametrization, hene side{stepping the aforementioned obstale, the ritial�Author to whom all orrespondene should be addressed.1The estimators onsidered here are in fat appliable for the more general ase n = ksin(��t + �), where � is a onstantbut unkown phase. 1



dependene of the estimate on the sampling time (partiularly for frequenies lose to 0 or �) makes thisformulation inadequate in a global ontext. Also, it is lear that a diret o�{line solution is possible, but weare looking here for on{line implementations that attenuate (via averaging) the noise e�ets and are able totrak time{varying frequenies.There exists several algorithms to estimate on{line the frequeny of a sinusoid; for a detailed review seethe lassial paper [12℄, or the more reent work of [8℄. Probably, the �rst adaptive solution was the lineenhaner of [29℄, later analyzed in [28℄, whih amounts to the implementation of an adaptive k{step aheadpreditor with a �nite impulse response (all zero) �lter. When suitably tuned, the sheme onverges to apolynomial with zeros on the unit irle, having angular loations orresponding to the signal frequenies.An improved formulation of this sheme was later reported in [21℄ and [22℄. Finite impulse response �ltersproved de�ient in reuperating the sinusoid sine sharp uto� harateristis are needed. This motivatedthe onsideration of adaptive in�nite impulse response �lters (with poles and zeros) in [7℄. The onstraintsimposed on noth �lters yield simple relations between the poles and the zeros. Without imposing suhonstraints serious problems of numerial instability arise. The one{parameter{per{sinusoid noth model,whih advantageously exploited these onstraints, was �rst proposed in [19℄, and has sine been studied bymany other authors, see the referenes in [24℄ and [1℄.To the best of our knowledge, in spite of this intensive researh, the basi problem of designing a globallyonvergent estimator remained open. In this paper we provide a solution to this problem. More spei�allythe main ontribution in this paper is the development of a ontinuous{time on{line frequeny estimatorwith the following remarkable features:{ all signals are globally bounded and, for suÆiently slow adaptation, the estimated frequeny is asymp-totially orret for all initial onditions and all frequeny values;{ we propose a simple tuning proedure for the design parameters, whih trades{o� the adaptation trakingapabilities with noise sensitivity, always ensuring (exponential) stability;{ the estimated frequeny is restrited to take nonegative values, without the introdution of parameterprojetions;{ transient performane is onsiderably enhaned, even for small and large frequenies, as witnessed byextensive simulations.Our frequeny estimator is an adaptive noth �lter (ANF), whih takes o� from the ANF proposed in[23℄, later adapted for ontinuous{time in the interesting paper [2℄. As pointed out in the latter, the dynamiequations that desribe ANF's, although of low order, are extremely ompliated. Their stability analysishas been limited to the appliation of loal averaging tehniques under the assumption of slow adaptation.Even though the preditions made with this analysis are quite aurate (at least under slow adaptation andlose to the equilibrium), our onern to obtain global stability motivates us to further study the underlyingstability{instability mehanisms of this ANF. This is done in setion 2 of our paper, where we presentRegalia's ANF and, {in the spirit of [25℄{, we prove the existene of (a family of) slow adaptation integralmanifolds. In partiular, we expliitely de�ne the frozen parameter integral manifold, whih ontains thedesired orbit, and prove that the motion on this manifold is stable. More importantly, we show that forsmall frequenies adaptation speeds{up triggering instability, while, on the other hand, for large frequeniesadaptation slows down and performane is degraded.To avoid the two latter undesirable phenomena we propose in setion 3 the simple, but essential, mod-i�ation of saling the ANF's foring term. We also show that saling does not a�et stability under slowadaptation. It modi�es, though, the shape of the frozen parameter integral manifold. An additional bene�-ial e�et of saling is that it ensures the estimate is always positive. (Besides its obvious pratial appeal,this feature is important in the sequel to insure global existene of a nonlinear time{saling introdued todeouple the �lter from the estimator).The saled ANF is, however, not globally stable, solutions may esape to in�nity for suÆiently largeinitial onditions. To further proeed with our goal of obtaining a globally onvergent sheme we introdue insetion 4 a novel nonlinear (state{dependent) time saling.2 The main advantage of working in the new time2See [20℄ for an appliation of time{saling to the analysis of an adaptive system and some illustrative examples.2



sale is that we \deouple" the parameter update law from the �lter itself, obtaining a representation of theANF as a feedbak interonnetion of a stable linear time{invariant (LTI) system with a \nonlinear gain".It turns out that this gain an be bounded with the introdution of a suitable normalization fator in theestimator, rendering the system amenable for L1 small{gain analysis. In this way we obtain an upperboundon the adaptation gain that ensures the �lter signals are globally bounded. Our main result is presented insetion 5 where we establish global asymptoti onvergene of the estimated frequeny, for suÆiently slowadaptation speeds, of the proposed saled and normalized ANF.ANF's ontain two design parameters, the adaptation gain that determines the speed of adaptation,{hene its alertness to trak frequeny variations{, and the damping oeÆient that determines the \depthof the noth", and onsequently its noise sensitivity. A further ontribution of our paper, whih is presentedin setion 6, is the development of a tuning proedure to trade{o� between adaptation alertness and noisesensitivity, preserving (exponential) stability. This is a very deliate task beause, as we �rst show, the ANFmay exhibit very omplex dynami behaviour {even lose to the steady{state{ if the parameters are notproperly tuned. In partiular we show that the tangent approximation of the dynamis along the desiredorbit is desribed by two oupled Mathieu's equations. Hene the (analytial) haraterization in parameterspae of the stability{instability boundary is ruled out. Sine the frequeny and the amplitude of the sinusoidare unknown, our tuning proedure satis�es the sine qua non onditions of being frequeny{independent androbust to amplitude unertainty.We wrap up the paper with some onluding remarks and further researh in setion 7. In partiular,we point out that even though we onentrated our attention here in the simplest ase of a single onstantfrequeny without noise, in [5℄ we have shown, {via simulations and some analysis,{ that the algorithm isable to trak time{varying frequenies, preserves loal stability in the fae of multiple sinusoids, and is robustvis �a vis noise.Throughout the paper we present simulation results that orroborate our laims. Extensive simulations,further details on the present work and appliations to the noise anelling problem may be found in [5℄.2 The algorithm of Regalia: Stability and instabilityIn this setion we present Regalia's ANF, prove that it has a unique periodi orbit at the desired frequeny,and explain, via an approximate frozen parameter analysis, the mehanism by whih it renders this orbitstable for suÆiently slow adaptation. This approximate reasoning is later formalized proving, {in the spiritof [25℄{, the existene of (a family of) slow adaptation integral manifolds. In partiular, we expliitely de�nethe frozen parameter integral manifold whih ontains the desired orbit. More importantly, we show that forsmall frequenies adaptation speeds up triggering instability, while, on the other hand, for large frequeniesadaptation slows down and performane is degraded.2.1 MotivationOne popular alternative to solve the frequeny estimation problem is to use an ANF [24℄. A noth �lter isan LTI system whose magnitude response vanishes at a partiular point in the j! axis, whih is alled thenoth frequeny, and whose magnitude response is nearly onstant at other points. Exellent approximationsare obtained using seond{order �lters, where to insure that the �lter is proper a bandwidth parameter thatdetermines the \noth depth" is added. In this way, feeding n to the noth �lterHN (p) = p2 + ��2p2 + 2� ��p+ ��2will provide (up to exponentially deaying exponentials) a zero output when the noth is entered in ��,i.e. when �� = ��. It is then reasonable to ombine a \time{varying" noth �lter with an estimator thatadjusts the noth loation using the information from the �lter output. Sine the unknown parameterenters nonlinearly, the question is, of ourse, how to implement the estimator to guarantee some stabilityproperties? In [23℄ a very interesting proedure to arry out this task was presented. As opposed to thelassial approah of minimizing an output error ost funtion (whih generates loal minima [24℄, [1℄) in[23℄ the estimator is designed to ahieve a stable averaged behaviour [14℄.3



The equations of Regalia's ANF, later transposed to ontinuous{time in [2℄, are given as�x+ 2�� _x+ �2x = n (2.1)_� = �x(n� 2�� _x) (2.2)where � represents the estimated frequeny, � > 0 is the damping oeÆient, and  > 0 determines theadaptation speed3. These two design parameters are used to trade-o� between adaptation alertness to trakfrequeny variations and noise sensitivity. As will beome lear below, the initial onditions of the ANF aretypially hosen as (x(t0); _x(t0); �(t0)) = ( �k̂2��20 ; 0; �0) 2 R3, where k̂ and �0 are initial guesses for k and ��,respetively.4The fat below follows inmediately from the ANF's equations.Fat 2.1The dynamial system (2.1), (2.2) has a unique periodi orbit with onstant (and orret) estimated fre-queny given by5 O 4= 24 �x_�x�� 35 = 24 �k2��2� os(��t)k2��� sin(��t)�� 35 (2.3)222To provide some insight into the ANF's operation, let us assume that adaptation has frozen. In that ase(2.1) redues to x = 1p2 + 2� ��p+ ��2 n (2.4)with �� onstant. Then, the signal driving the adaptation law beomesx(n� 2� �� _x) = x� p2 + ��2p2 + 2� ��p+ ��2 n�It will therefore be zero when �� � ��, whih is the desired equilibrium. This is true even if in the updatelaw we inlude only the seond right hand term. However, inluding x gives the algorithm an additionalstabilization mehanism that may be unveiled noting that the estimation error an be written asx(n� 2�� _x) = x(�x + �2x)Hene, lose to the equilibrium (2.3), where � = �� and ��x = ��2��x, we havex(n� 2�� _x) � (��2 � �2�)�x2The derivations above show that, whenever we are lose to the desired orbit and adaptation is slow, thesearh in parameter spae will go in the right diretion (i.e., f� > �� ) _� � 0g, and vie versa). This is thekey (loal) stabilization mehanism of Regalia's ANF whih is rigourously formalized in the next subsetion.See also [23℄ for an alternative disussion of the ANF above using Ljung's ODE analysis.2.2 Stability analysisAs in all adaptive systems, when the adaptation gain  of the ANF update law is small the estimatedfrequeny � tends to evolve slowly ompared to the �lter states � 4= [x; _x℄T . As shown in the fundamentalpaper [25℄ this onept of slow adaptation an be made preise by proving that it ours on an integralmanifold of (2.1), (2.2), i.e., a time{varying 1{dimensional surfae M � R3 suh that(�(t0); �(t0)) 2M ) (�(t); �(t)) 2M ; 8t � t0The proposition below establishes the existene of a {family of slow manifolds for Regalia's ANF. Thesimplest member of this family is the \frozen parameter" manifold M0, orresponding to  = 0. Wefurthermore show that in this manifold the update law is stable.3In [2℄ there is an additional �lter gain whih an be absorbed into k without a�eting the subsequent analysis.4Of ourse, suh a hoie is more meaningful if the phase of the sinusoid is zero at t = t0. See footnote 1 of the introdution.5Here, and throughout the rest of the paper, we use �(�) to denote equilibria (not neessarily onstant).4



Proposition 2.1 (Integral manifolds of slow adaptation)There exists 0 suh that for eah  2 [0; 0℄, (2.1), (2.2) has a uniquely de�ned integral manifold M =ft; �; � : � = f(t; �)g, whih arbitrarily approahes the frozen-parameter manifold M0 as  ! 0. Thelatter an be expliitely haraterized and expressed in a time-independent form as a 2-dimensionalmanifold in R3 given byM0 = �(x; _x; �) : x2 + 1�2� _x2 = k2(�2 � �2�)2 + 4�2�2�2�� (2.5)Furthermore, on the manifold M the update law is asymptotially stable in the sense that � ! �� ast!1.ProofThe proof of existene of the manifolds is a diret appliation of Theorem 3.1 of [25℄, and it boils down toverifying the required assumptions. We refer the reader to that paper and to [5℄ for further details, and to[16℄ for a similar analysis.First, we take a state{spae realization of (2.1), (2.2) as_� = � 0 1��2 �2�� ��+ � 01 �n (2.6)_� = ��1(n� 2���2)Let �0(t; �) be the steady{state response with frozen � of (2.6), whih an be readily veri�ed to be given by�0(t; �) = a(�) � sin(��t+ �(�))�� os(��t+ �(�)) � (2.7)where a(�) 4= kD(�) ; �(�) 4= artan �2�����2 � �2� (2.8)and D2(�) 4= (�2 � �2�)2 + 4�2�2�2� > 0 (2.9)Notie that �(�) and a(�) are ontinuous funtions of �.The proof that the frozen parameter manifold is ontained in the set (2.5) follows from diret substitutionof (2.7).Now, introduing the deviation of � from �0(t; �) as a new state variabley = �� �0(t; �)we rewrite the ANF equations as_y = � 0 1��2 �2�� � y + �0�(t; �)F (t; �; y)_� = �[�01(t; �) + y1℄fn� 2��[�02(t; �) + y2℄g 4= �F (t; �; y)where �0�(t; �) is the sensitivity matrix. We an now show that the onditions of theorem 3.1 of [25℄ hold,namely:� (Assumption 2.1) The frozen parameter unfored system_y = � 0 1��2 �2�� � yis exponentially stable 8� > 0;� (Assumption 2.2) �0(t; �); �0�(t; �) are bounded and the latter is Lipshitzian in �;5



� (Assumption 3.1) F (t; �; y) is ontinuous, hene bounded in ompats, and Lipshitzian in � and y.Invoking theorem 3.1 of [25℄ this proves the existene of a {family of slow manifolds M for suÆientlysmall .The stability of the update law an be shown as an appliation of Theorem 4.1 of [25℄ and Theorem 4.4.3of [27℄. Note that when y = 0 the update law redues to_� = F (t; �; 0) = �01(t; �)[n� 2���02(t; �)℄ = (�2 � �2�)[�01(t; �)℄2 (2.10)and its averaged form is _�a = �(�2a � �2�)a(�a)=2 4= fa(�a)where fa(�a) has an isolated zero at �a = �� and [dfa=d�a℄�a=�� < 0. 222Remark 2.1One an further prove the attrativity of the integral manifold M (Theorem 5.1 of [25℄). The existeneand stability results established thus far are only loal. However, the slow manifold approah was disussedabove in some detail beause it sets a onvenient framework also for the global analysis that we pursue.2.3 Simulations: Instability and performane degradationIn this subsetion we present some simulations6 that illustrate the result of proposition 2.1, and reveal twopotential problems for Regalia's ANF that appear for small and large frequenies, respetively. This twophenomena motivate our �rst modi�ation, saling, whih is presented in setion 3.The existene of the slow adaptation manifold is depited in Figs. 1, 2 and 3, where the latter learlyshows the vertex{up one form of the frozen{parameter manifold (2.5). The fast onvergene of the trajetorytowards the slow manifold, and the subsequent drift along it towards the desired orbit (t > 5), is bestappreiated in the plot of � � t of Fig. 2. The initial onditions (IC) in this simulation are [x1; x2; x3℄ =[1; 1; 10℄, and the remaining parameters  = 0:1, � = 0:1, �� = 5, k = 10. Note the periodi orbit at � = ��with amplitude k2��2� = 2 for x1.
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Figure 3: 3D state-spae plotSine the amplitude of the periodi orbit (2.3) grows unboundedly with �� ! 0 and dereases to zeroas �� ! 1, two problems may arise. If �� is large, the amplitude may be so small that the onvergenebeomes very slow. This is shown in Figs. 4, 5 and 6, where the ICs are taken as [1; 1; 10℄,  = 0:5, � = 0:4,�� = 100 and k = 10. We have let the simulation run up to 10000 to verify that parameter onvergene wasnot yet ahieved.6In all simulations we denote (x1; x2; x3) = (x; _x; �). 6
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Figure 6: 3D state-spae plotOn the other hand, with small ��, large osillations may provoke unpreditable behavior and triggerinstability. This an be seen in Figs. 7, 8, 9 where we have taken �� = 0:1, keeping the remaining onditionsand parameters as in the previous ase.
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Figure 9: 3D state-spae plotRegalia's ANF is only loally stable, it may go unstable for large ICs. For instane, it an be shown bysimulation that for  = 0:7, � = 0:3, �� = 5, k = 1 and IC [1; 1; 10℄, the system has stable behaviour andonvergene to the orret frequeny is observed. However, it is shown in [5℄ that with IC [10; 1; 10℄, thetrajetory blows away.Remark 2.2It is lear from the simulations (e.g., Fig. 8 above or Fig. 2 of [2℄) that nothing prevents the estimate � fromtaking negative values during the transient. As shown above this triggers instability. Even though, a simpleprojetion ould be added to avoid this to happen, there's no guarantee that an aummulation point of thealgorithm ours lose to zero whene the projetion will be turning on and o� inde�nitely. This is a verydeliate well known problem in adaptive systems that we want to avoid in our global (fully deterministi)analysis.3 Saled adaptive noth �lterMotivated by the disussions above, we propose in this setion our �rst modi�ation to Regalia's ANF:{ Saling of the foring signal to obtain a \unitary gain" in steady{state and avoid the undesirable rossingthrough zero of the estimated frequeny (remark 2.2).7



After presenting the modi�ed sheme, whih we alled saled{ANF, we prove the positivity of the estimateand verify, via simulation, how the instability problems mentioned above are avoided.3.1 Proposed modi�ation and positivity of the estimateWe propose to modify Regalia's ANF (2.1), (2.2) by saling the foring term n with a fator �2 to get�x+ 2�� _x+ �2x = �2n (3.1)_� = �(�2n� 2�� _x)x (3.2)Using the same reasoning as in subsetion 2.1 it is easy to see that, under ideal onditions, the amplitudeof x will onverge to k=2�, instead of k=2��2� as in Regalia's algorithm, thus avoiding the instability and theslow onvergene that appear for low and high frequenies, respetively.Another nie feature of the new algorithm is that the frequeny searh is restrited to non-negative values.That is, along the solutions of (3.1), (3.2) the following impliation holds�(t0) > 0) �(t) > 0; t 2 [t0;1)This is, of ourse, a diret onsequene of the invariane of the set f� � 0g.Besides its obvious pratial interest this property will be important in the next setion where, to deouplethe �lter and the estimator dynamis, we will introdue a time sale hange that involves a division by �.Remark 3.1Proeeding as done in proposition 2.1 it is possible to show the existene of the slow manifolds for the saledANF. In this ase the steady{state response with frozen � is given by (2.7) but with a(�) = k�2=D(�) insteadof (2.8). Hene the frozen parameter manifold looks likeM0 = �(x; _x; �) : x2 + 1�2� _x2 = k2�2(�2 � �2�)2 + 4�2�2�2��It is interesting to note that the one is now inverted. It is easy to see, also, that the fundamental relationship(2.10) still holds true. We will ome bak to this in setion 5 where we will analyse the saled and normalizedANF.3.2 SimulationsThe improved performane of the new saled ANF, for large ��, an be seen in Figs.10{12. We used the samedata of Figs. 4{6, for whih Regalia's ANF exhibited very poor onvergene properties. We an see that theosillations reasonably soon ahieve large enough values, thus resulting in muh faster transient response.
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For small ��, the saled system also exhibits good behaviour mainly beause the osillation amplitudesare not so large as in the original ANF. Thus, a fast and nie onvergene is observed. See Figs. 13{15,whih should be ompared with Figs. 7{9. Again, the same data are used to produe both simulations.
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Figure 15: 3D state-spae plotEven though saling has removed two important drawbaks of Regalia's ANF it is veri�ed in [5℄ that thenew estimator is still only loally stable.4 Time sale hange and normalizationTo guide ourselves in the modi�ation to the ANF required to ahieve globality we propose in this setiona nonlinear time sale hange that deouples the dynamis of the estimator and the �lter. More preisely,in this time sale we an represent the ANF as a feedbak interonnetion of a stable LTI system witha \nonlinear gain", whih an be bounded with the introdution of a suitable normalization fator in theestimator. In this way we an prove that, for the normalized and saled ANF, the �lter signals are globallybounded. The proof of asymptoti onvergene of the estimate, being more tehnially involved, is left tosetion 5. Even though it may be argued that normalization is a standard modi�ation to ahieve globality,it will beome lear below that the required form of the normalization is far from obvious, and beomes onlylear in the new time sale.4.1 Notation and preliminariesTime saling, whose importane in the study of dynamial systems is reognized already in Lyapunov'soriginal work [15℄, plays a fundamental role in the theory developed here and is used in the remaining of thepaper. Some simplifying notations will be introdued as follows. Consider a system given bydx(t)dt = f(x(t); t); x(t0) = x0 2 Rn (4.1)Then, de�ne the time-sale transformationd�dt = g(x(t); t); �(t0) = t0where, � is the new time variable, x(t) is a solution of (4.1), and g(x(t); t) > 0; 8t 2 IM = [t0; tM ), witht0 being an initial time and tM the upper limit of the maximal interval of de�nition of x(t) as a funtionof t. This de�nes (under the usual assumptions of existene and uniqueness of solutions) a homeomorphismR ! R relating the time variables as � = �(t); t = t(�)In terms of the new time variable, the original system is transformed intodx� (�)d� = fg�1(x� (�); t)9



n{ -n(�) -6- x0(�)H(p) ���(�)
Figure 16:The notational simpli�ations we adopt in this paper are: x� (�) is simply replaed by x(�). Also, we use_(:) 4= d(:)dt and (:)0 4= d(:)d� . When lear from the ontext we will use the symbol p to denote di�erentiation withrespet to either t or � . To learly distinguish between the time sales we will expliitly write the argument(�) whenever the signal is expressed in that time sale.Note that, if x(t) is a solution of the original system (4.1), then x� (�) = x(t(�)) is a solution of thetransformed system above. Sine we will study the stability of (4.1) using its �{sale representationx0(�) = fg�1(x(�); t(�))we must prove that the new time variable � = �(t) is de�ned 8t, nondereasing and satis�es� !1, t!1 (4.2)Establishing this fat is a diÆult tehnial hurdle of our analysis that will, unfortunately, translate intosome additional omplexity in the algorithm.4.2 Estimator and �lter deouplingProposition 4.1Let us de�ne a (state{dependent) time sale hange asd�(t)dt = �(t); �(t0) = �0 (4.3)with �(t0) > 0. Then, in the � time sale and 8� � �0, the dynamis of the saled ANF (3.1), (3.2) aredesribed by the following 4{dimensional autonomous systemx00(�) + 2�x0(�) + [1 + 2�(x0(�))2℄x(�) = [1 + x(�)x0(�)℄n(t(�)) (4.4)�0(�) = [2�x0(�) � n(t(�))℄x(�)�(�) (4.5)t0(�) = 1�(�) (4.6)with initial onditions7 (x(�0); x0(�0); �(�0); t(�0)) = (x(t0); _x(t0)�(t0) ; �(t0); t0).In partiular, the �lter equations (4.4) an be represented as the feedbak interonnetion of Fig. 16where H(p) 4= pp2 + 2�p+ 1 (4.7)and �(�) 4= x(�)[2�x0(�) � n(t(�))℄ (4.8)2227Notie that, even though x and x(�) denote the same funtion in di�erent time sales, this is not so for _x and x0(�), henethe di�erene in initial onditions. 10



ProofThe proof is a straightforward appliation of the hain rule(�)0(�) = _(�) 1�(�)and the inorporation of t(�) as a state variable. Appliation of the time sale hange to (3.1) yieldsx00(�) + [2� + �0(�)�(�) ℄x0(�) + x(�) = n(t(�))while (3.2) beomes (4.5). The proof is ompleted replaing (4.5) in the expression above and rearrangingthe terms in (4.4) to obtain the feedbak system of Fig. 16. 222Remark 4.1It is useful to rewrite (4.4) asx00(�) + x(�) + [1 + x0(�)x(�)℄[2�x0(�) � n(t(�))℄ = 0From simple inspetion of the equation above and (4.5) we see that, in the � time sale, the unique solutionwhih ensures the estimator equation is in steady{state is2664 �x(�)�x0(�)���t(�) 3775 = 2664 �k2� os(�)k2� sin(�)��1�� � 3775 (4.9)4.3 Normalization and global boundednessFrom Fig. 16, and provided the time saling is well de�ned, we see that if the gain �(�) is bounded {whih an be ahieved with a suitable seletion of { we an use a simple L1 small{gain argument to proveboundedness of the feedbak loop. This reasoning motivates the introdution in this subsetion of our seondmodi�ation: normalization of the update law. This allows us to ahieve global boundedness of the �ltersignals. The proof of boundedness and onvergene of � is, unfortunately, more tehnial and requires theassumption of slow adaptation. Therefore, it is postponed to setion 5.Proposition 4.2Consider the saled normalized ANF �x+ 2�� _x+ �2x = �2n (4.10)_� = (2� _x� �n)x� (4.11) = �f1 +N [x2 + ( _x� )2℄gf1 + �j�j�g (4.12)where, �;N; � > 0 and � � 1. We propose the following state realization8 for (4.10){(4.12)_z1 = �z2 (4.13)_z2 = �[�z1 � 2�z2 + n� z1z2(2�z2 � n)℄ (4.14)_� = (2�z2 � n)z1�2 (4.15) = �(1 +N�2z)(1 + �j�j�) (4.16)where z1 = x, z2 = x0 and �2z 4= z21 + z22 .8Notie that, in ontrast to (2.6), this is not a anonial state{spae realization sine x2 is not the derivative of x1. Thispartiular form will be needed for the subsequent analysis. 11



Assume known an upperbound kM of the sinusoidal noise amplitude, i.e., k � kM , �x � > 0, andhoose �; N suh that � < 2NkMN1=2 + 4� khk1 (4.17)where h is the impulse response of the transfer funtion (4.7) and k � k1 4= R10 j � jdt is its L1 norm.Under these onditions,i) The time sale hange (4.3) is globally de�ned, i.e., (4.2) holds;ii) z1 and z2 are globally bounded. 222ProofPositivity of the estimate, stated in fat 3.1, shows that � is a stritly inreasing funtion, thus to prove i),we need only to rule out the possibilities of � going to in�nity in �nite time or that � onverges to a �niteonstant as t ! 1. These senarios orrespond to the ases when � esapes to in�nity in �nite time and� � �0 = R tt0 �(s)ds !  < 1 as t ! 1, respetively. To prove that � does not esape to in�nity in �nitetime, let us rewrite (4.11) as _� = �1� (4.18)where we have de�ned �1 4= x(2� _x� �n) (4.19)Some simple alulations with (4.19) yieldj�1j � �1M 4= �2N (kMN1=2 + 4�)��1=��where ��1=��(�) 4= sup� j�j(1+�j�j�) = ��1=�(1 � 1=�)(� � 1)�1=� < 1. Integrating (4.18) and using thebound above we get � � e��1M t�(0)whih proves that � does not esape to in�nity in �nite time.We will now prove that9 limt!1� =1. We will proeed by ontradition, thus assume that limt!1� =�M <1. Then, notie that the developments arried out for the time saling in proposition 4.1 remain validfor time{varying . Heneforth, (4.10), (4.11) beome (4.4){(4.6), with(�) = �[1 +N�2z(�)℄(1 + �j�(�)j�)In partiular, in the � time sale, the estimator (4.11) is desribed by �0(�) = �(�)�(�). Some simplealulations with (4.8) show that �(�) satis�es the boundj�(�)j < �2N (kMN1=2 + 4�) (4.20)We draw two important onlusions here. First, from (4.20) we see that �0 is linearly bounded and thus�(�) annot derease to zero faster than exponentially and thus � = 0 annot be reahed in �nite time. Thisimplies that the open set � > 0 is invariant. Note that system (4.4)-(4.6) is singular for � = 0, however, forthe open set � > 0 the system is loally ontinuously di�erentiable, whih guarantees (loal) existene anduniqueness of solutions within the invariant set. Seond, again as �(t), �(�) an grow at most exponentially.The latter implies that �(�) and �0(�), are bounded for � 2 [0; �M ). This in turn implies that �(t) and_�(t) are bounded 8t � 0. Hene, �(t) is uniformly ontinuous. Integrating (4.3) from 0 to 1 and invokingBarbalat's lemma [27℄, one onludes that �(�) ! 0 as � ! �M .This situation annot happen beause, as already pointed out, �(�) an derease to zero at most expo-nentially, and onsequently, �(�) remains bounded away from zero (or is identially equal to zero) for any9Reall that �(t), being stritly inreasing in t, either is unbounded or tends to a �nite onstant.12



�nite interval [0; �M ). The ontradition is therefore established thus proving the global de�nition of thetime sale hange.To prove the global boundedness result ii), (in the � time sale), we refer to the feedbak system ofFig. 16. Realling that the L1 gain of an LTI operator is the L1 norm of its impulse response [6℄, andombining (4.17), (4.20) we establish boundedness of x0(�) as a straightforward appliation of the L1 small{gain theorem. Also, notie that z1(�) = x(�) is the output of an asymptotially stable linear time invariantsystem with bounded input n(�)� �(�)x0(�), hene is also bounded. The proof is ompleted observing thatz2 = _x� = x0(�), whose boundedness we just established. 222Remark 4.2Normalization was originally motivated by our onern to bound the gain �(�) in Fig. 16 and prove globalboundedness. It is lear from (4.8) that to ahieve this end it suÆes to inlude the �rst two terms in braketsin (4.12). The remaining term is needed, as shown in the proof, to avoid �nite esape time phenomena.Observe, however, that � may be taken arbitrarily small.5 Global onvergene of the estimateIn this setion we prove the main result of the paper:Proposition 5.1There exists �� > 0 satisfying the bound10 �� < 2NkMN1=2 + 4� khk1suh that for all � � �� all signals of the new ANF (4.13){(4.16) are globally bounded for arbitrary initialonditions. Furthermore, the estimated frequeny is asymptotially orret, that is limt!1 � = ��.222To arry out the proof we will proeed along the following steps (for eah one of whih a subsetion is devotedbelow):1. As done in setion 2.2 (slow manifold approah), we evaluate the quasi{stati solution of the new ANF,(i.e., its steady{state response with frozen �), and de�ne as error signals the deviation of the atualANF signals with respet to this quasi{stati solution. The error system will be of the following formy0(�) = Ay(�) + �h(�; y; �) (5.1)�0(�) = �f(�; y; �) (5.2)whih is in the standard separated time sales form of averaging theory [27℄.2. We prove that the error subsystem (5.1) may be regarded as an exponentially stable LTI systemperturbed by small (order �) parametri and external disturbanes. Hene, under suÆiently slowadaptation, the atual signals z1(�) and z2(�) of the saled and normalized ANF get arbitrarily loseto the quasi{stati solutions. This means that, after some �nite time, y(�) will be onstrained to besmall.3. We deompose the estimator equation into a nominal system and a perturbation asf(�; y; �) = f0(�; y; �) + f1(�; y; �)with �� an asymptotially stable equilibrium point for the nominal system and the perturbing termis order �ky(�)k. Heneforth, one y(�) is small, one an prove that �(�) will have to reah an �-neighbourhood of the ideal value ��.1110See proposition 4.2 for the de�nition of the right hand terms.11Unfortunately, the lak of exponential stability of the nominal system hampers us from invoking standard perturbationresults to establish this result, hene an additional tehnial lemma is required.13



4. We show that the periodi orbit is loally exponentially stable with a domain of stability D, whih isvalid for all suÆiently small � (via standard averaging theory). This implies that the omplete errorvetor will eventually enter D, and then exponential onvergene of the error vetor to zero follows.5.1 Error equationsAs pointed out in remark 3.1 the quasi{stati solution of the new ANF di�ers from the one of Regalia's ANFonly on a fator �2. Hene, for the state spae realization (4.13){(4.15) we get� z01(�; t)z02(�; t) � = a(�)�2 � sin(��t+ �(�))��� os(��t+ �(�)) � (5.3)where a(�); �(�) are given by (2.8). Notie that, in this state realization12z02 = 1� �z01�t (5.4)whih explains the presene of 1=� in the seond omponent.We undersore at this point that the loal stabilization mehanism disussed in setion 2.2, whih ensuresthe stable behaviour of the estimator in the frozen parameter manifold, is also present in the new ANF. Thisis lear from the identity (2�z02 � n)z01 = �[1� (��� )2℄(z01)2 (5.5)We denote again the error vetor y = [y1 y2℄T 4= [z1 � z01 z2 � z02 ℄T . Our motivation to study thebehaviour of y beomes lear if we rewrite the estimator equation (4.11) in a form that exhibits expliitelythe stabilization mehanism aptured by (5.5). Towards this end, we deompose it as_� = (2�z2 � n)z1�2= [(2�z2 � n)y1 + 2�z01y2 + (2�z02 � n)z01 ℄�2= �(g0 + gT y)�2 (5.6)where we have de�ned �g0 4= �(z01)2[1� (��� )2℄ (5.7)�g 4= � � g1g2 � =  � 2�z2 � n2�z01 �In appendix A we show that g is bounded. Consequently, if we an prove that the ANF signals get loseto the quasi{stati solutions, i.e., that kyk beomes small, then the estimator dynamis will be dominatedby the term _� = �g0�2. In the proof of proposition 2.1 we established that this equation is asymptotiallystable.From (4.13){(4.15), and using the properties of the quasi-stati solution we obtain the error equations_y1 = �y2 � �z01�� _�_y2 = �(�y1 � 2�y2)� �z1z2(2�z2 � n)� �z02�� _�We an transform this system using the time sale � , (4.8) and the de�nition of y2(�) to obtainy01(�) = y2(�) � �z01(�)�� �0(�)y02(�) = �y1(�) � 2�y2(�) � �(�)[y2(�) + z02(�)℄� �z02(�)�� �0(�)12For the sake of brevity in the sequel we will omit the arguments (�; t) of the quasi{stati solution.14



Finally, we express the error equations in the ompat formy0(�) = [A0 + �A1(�)℄y(�) + �b1(�)g0(�) (5.8)where A0 4= � 0 1�1 �2� � ; A1(�) 4= � 0 00 � 1��(�) �+ b1(�)gT (�)with b1(�) 4= " ��(�)�z01(�)���z02(�) � �(�)�z02 (�)�� #5.2 Stability of the error equationsThe lemma below establishes the desired properties for the error signals.Lemma 5.1There exists a �nite time �r � 0, suh that the error signals of the saled and normalized ANF (4.13){(4.16)satisfy the bound ky(�)k � � ; 8� � �r (5.9)for arbitrary initial onditions provided � is suÆiently small. Moreover, there exists positiveonstants13  and � suh that ky(�)k � �[e��� � jg0(�)j + e��� ℄ (5.10)where � denotes the onvolution operator.ProofIn the appendies A and B we show that, similarly to �(�), g0(�) and the vetor b1(�) are bounded. Therefore,the subsystem (5.8) an be regarded as an exponentially stable linear time-invariant system perturbed bysmall parametri and external disturbanes. The proof is then standard and based on the quadrati Lyapunovfuntion V (�) = yT (�)Py(�), with AT0 P + PAT0 = �Q; P;Q > 0The derivative of this Lyapunov funtion givesV 0(�) = �yT (�)Qy(�) + yT (�)(AT1 P + PA1)y(�) + �bT1 (�)Py(�)g0(�)� �(�0 � �)ky(�)k2 + �ky(�)k jg0(�)jfrom this inequality and the boundedness of g0(�) (5.9) follows immediately. To establish (5.10) we invokethe omparison method (see, e.g., setion 5.4 of [13℄). 2225.3 Behaviour of the estimateOne we have shown that the �lter signals z1; z2 get arbitrarily lose to the quasi{stati solutions, remaininglose after some �nite time �r (or tr), we will next analyze the behavior of the estimated frequeny �. Wewill show that, no matter its initial ondition at time �r, the estimate will neessarily approah arbitrarilylose the orret value �� at some �nite future time.13To avoid the proliferation of onstants we will use  as a generi notation for a positive onstant and eventually let � absorba onstant fator , i.e., use simply � instead of �. 15



Lemma 5.2The estimated frequeny � of the saled and normalized ANF (4.13){(4.16) is bounded for arbitrary initialonditions provided � is suÆiently small. Further, for any arbitrarily small positive number �, 9� � �rsuh that j�(�)� ��j � �.14ProofWe know, from lemma 5.1, that 9�r suh that ky(�)k � �; 8� � �r. First, assume that �(�r) > ��. We willshow that �(�) annot remain bounded away from ��, for all inreasing � . Assume that this is not the ase,i.e., 9� > 0 suh that, �(�) > � + ��; 8� > �r. In this ase, g0(�) � 0;8� > �r.Now, the estimator equation in the � time sale reads like�0(�) = �[g0(�) + gT (�)y(�)℄�(�) (5.11)We an integrate this equation, use the sign property of g0(�) above and invoke the bound (5.10) to getln[ �(�)�(�r) ℄ � Z ��r �[g0 � � (e��s � g0)℄ds+ �2 (5.12)4= h� � g0 + �2 (5.13)where h� is the impulse response orresponding to the transfer funtionH� 4= �(s+ �� �)s(s+ �)Remark that, for � suÆiently small, the impulse response h�(�) is positive. This together with the non-positivity of g0(�) readily implies that �(�) is bounded above by a onstant. Thus, all state variables areuniformly bounded. This in turn implies that they are uniformly ontinuous in � sine their derivatives withrespet to � are uniformly bounded, aording to the error equations (5.8). This also implies that g0(�) isuniformly ontinuous.Now (5.12) an also be rewritten ashÆ � Z ��r g0(s)ds � ln[ �(�)�(�r) ℄� �2 � �where hÆ is the impulse response of HÆ(s) 4= � (s+���)(s+�) , and we have used the property of boundedness of�(�) to establish the seond inequality.Assume � > �, so that HÆ(s) is minimum-phase. Sine g0(�) � 0, the integral R g0 is noninreasingand, from the minimum-phase assumption, it must be bounded below by a onstant.15 Sine the integrandis uniformly ontinuous and the integral is noninreasing, the integrand must tend to zero, by Barbalat'slemma. In turn, this implies that lim�!1 g0(�) = 0. We will now prove that this leads to a ontradition.From the de�nition of g0(�) (5.7) we see that the above limit is possible only if lim�!1 z01(�) = 0.However, one has z01(�) = a(�)�2sin[��t(�) + �(�(�))℄Sine we have assumed � > ��, then a(�)�2(�) �  > 0; 0 > �(�(�)) > ��; 8� . Then, the zero limit ofz01(�) implies lim�!1 sin[��t(�) + �(�(�))℄ = 0Thus, an absurd results and therefore � must arbitrarily approah �� for some large enough � > �r.14This does not mean that �(�) will onverge, or even remain lose to �� for all � > �. The former will be implied beausethe state trajetory will then be \trapped" in the domain of exponential stability D.15Indeed, de�ning v 4= hÆ � R ��r g0, we also have R ��r g0 = �hÆ � v, where L�hÆ = (s+ �)=(s + �� �). Thus, if v � � for someonstant  > 0, the same holds for R g0, provided �� � > 0. 16



The ase �(�r) < �� is analyzed in analogous way. We �rst onlude that �(�) is bounded below by apositive onstant (whih may depend on the initial onditions). The remainder follows exatly as in thepreeding ase. Note that the relevant property of g0(�) in this ase is 0 < �(�) < �� ) g0(�) > 0. 2225.4 Convergene and exponential stabilityFrom Proposition 5.2, all trajetories enter a small ompat set D0 = f(y; �) : kyk � �; j�� ��j � �g at some�nite time t = t(�), provided � is suÆiently small.Now note that system (5.8), (5.11) is in the separated time sales standard form of averaging theory ([27℄,Setion 4.4.1) (5.1{5.2). The latter is shown lo. it. to be reduible to the onventional standard form ofaveraging theory _x = �f(t; x). One an show that the averaged system is exponentially stable around theperiodi orbit as in [2℄. The same holds for the original system and the domain of exponential stability Daround the equilibrium point (y; �) = (0; ��) is independent of �, for � suÆiently small ([13℄, Theorem 7.5).Thus one an hoose � so that D0 2 D. This implies that the trajetories in the error spae will eventuallyenter the domain D and exponential onvergene will ensue.6 Tuning of the �lter parametersThe ANF ontains two design parameters, the adaptation gain that determines the speed of adaptation,{hene its alertness to trak frequeny variations{, and the damping oeÆient that determines the \depthof the noth", and onsequently its noise sensitivity. A further ontribution of our paper, whih is presentedin this setion is the development of a tuning proedure to trade{o� between adaptation alertness and noisesensitivity, preserving (exponential) stability. Of ourse, the proedure will be pratially useful only if it isindependent of the unknown �� and robust vis �a vis k.To undersore the importane of suitable tuning we �rst show that, even lose to the equlibria, theANF (both Regalia's and the one proposed here) an exhibit very omplex dynami behaviour if the tuningparameters are not well hosen. This will be done by proving that around the desired orbit the ANF isdesribed by two oupled Hill's equations, one of them being a Mathieu equation, whose omplexity ofthe stability{instability domains is well known [18℄. A orollary of this study is the de�nition of a simpleondition for the parameters whih is \almost neessary" to avoid instability.6.1 Complex dynamisWe are now only interested in the loal behavior around the periodi orbit with � = �� > 0. As will beseen in setion 6.3, the normalization fator only hanges gain  by a onstant fator in suh loal analysis.Hene, we start our analysis without taking into aount the normalization. Further, to reveal the omplexdynamis we will work in the � time-sale, whih loally is always well de�ned.From proposition 4.1 we know that the dynamis of the saled ANF (3.1), (3.2), in the � time sale, isdesribed by (4.4){(4.6). We are interested in the behaviour of this system lose to the trajetory (4.9). We�nd onvenient to introdue a hange of oordinates x3(�) = log(�(�)). Taking the Jaobian of (the staterealization of) (4.4){(4.6) and evaluating it along the trajetory above gives the tangent approximation_e(�) = 26664 0 1 0 0�1 �2� + k22� sin(�) os(�) 0 	(�)0 �k os(�) 0 k2��2� os2(�)0 0 �1�� 0 37775 e(�) (6.1)where 	(�) 4= ��k os(�)� ��k34�2 os2(�) sin(�)17



We will now write this system as two oupled Hill's equations. The �rst two equations of (6.1) an beequivalently rewritten as e001(�) + [2� � k22� sin(�) os(�)℄e01(�) + e1(�) = 	(�)e4Also, di�erentiating one more time the last equation of (6.1) and replaing the third one we gete004(�) + k22� os2(�)e4(�) = k�� e01(�) (6.2)What we want to stress here is that the unfored part of (6.2) is a Mathieu equation of the formw00(�)� k24� (1 + os(2�))w(�) = 0It is well known that the stability{instability boundaries of this equation are very omplex, see e.g. [18℄. Inpartiular, it is known that the neighborhood around k24� = 1 is unstable. Therefore, an \almost" neessaryondition for stability of our ANF is k24� < 1 (6.3)The sharpness of the above stability ondition was tested by simulation as follows. We simulated both, thefull saled ANF (3.1), (3.2) and its tangent approximation (in the � time sale) (6.1). In all simulations weset k = 1, and for eah � > 0, the adaptation gain  was inreased until the stability limit was reahed. Theresulting stability boundaries, whih may be found in [5℄, are surprisingly lose.Remark 6.1It is of ourse possible, though highly improbable, that the ouplings between the Hill's equations have astabilizing e�et. This is indeed ontradited by the simulations presented above.Remark 6.2The same analysis applied to Regalia's ANF (2.1), (2.2) leads to similar onlusions. In partiular, it an beshown that e4(�) satis�es a damped Mathieu equation of the forme004(�) � k22��2� sin(2�)e04(�) + k22��4� os2(�)e4 = k�3� e01(�)whose behaviour is even more ompliated than the undamped one.6.2 A tuning proedure for exponential stabilityWe will show in this subsetion that an important advantage of introduing the saling is that, for eahgiven noise amplitude k, there is a simple proedure to tune the algorithm gains � and . We will see in thenext subsetion how normalization an further relax the requirement of knowledge of k. The analysis in thissubsetion is done in the t time sale.Before presenting this result we note that the periodi orbit for the saled ANF (3.1), (3.2) is24 �x_�x�� 35 = 24 �k2� os(��t)k��2� sin(��t)�� 35 (6.4)Proposition 6.1Consider the linear periodially time-varying three dimensional system_z = 264 0 1 0�1 �2� sin t+ 1� os t0 �k2 os t k22� os t sin t 375 z (6.5)If the trivial equilibrium of (6.5) is exponentially stable, then (6.4) is an exponentially stable periodiorbit of the proposed saled ANF (3.1), (3.2). 18



n{ - -6 G(p) ��(t)
Figure 17:ProofThe proof is based on Lyapunov's �rst method as applied to the linearization, along the orbit (6.4), of (3.1),(3.2). This proedure yields the linear periodially time{varying tangent approximation_e = 264 0 1 0��2� �2��� k��[sin ��t+ 1� os ��t℄0 �k�� os ��t k2��2� os ��t sin ��t 375 ewhere e is the deviation of the state with respet to the desired orbit. The proof is ompleted introduingthe hange of oordinates z = 24 1 0 00 1�� 00 0 k�� 35 eand the time sale hange dsdt = ��, whih yields (6.5). 222Even though a simple numerial study of (6.5) would provide us with some simple tuning rules, it is ofourse interesting to devise a more sistemati proedure to hek stability of the saled ANF. The study ofthe stability of linear periodially time{varying systems like (6.5) has a very long history, see e.g., [30℄, [26℄and referenes therein. We present below an \absolute stability{like" suÆient ondition where the searhof the multipliers an be formulated as a onvex optimization problem involving linear matrix inequalities �ala [17℄. For the sake of brevity we only reast the system of proposition 6.1 into this framework. An expliitstability ondition, in terms of the tuning parameters  and �, will be reported elsewhere.Corollary 6.1Consider the feedbak system of Fig. 17 where G(s) is a 2� 3 transfer matrix with state spae realizationA 4= 2664 0 1 0 0�1 �2� 1� 10 �k22 0 �10 0 1 0 3775 ; B 4= 2664 0 00 01 00 1 3775 ; C 4= 24 0 2� 0 00 0 1 00 0 0 1 35whih is asymptotially stable for all ; �; k > 0, and �(t) is a periodially time{varying matrix�(t) 4= k24� � � os 2t sin 2t 0� sin 2t 0 sin 2t �If this system is L2 stable, then (6.4) is an exponentially stable periodi orbit of the proposed saledANF (3.1), (3.2). 19



ProofFirst, we rewritte the linearized dynamis (6.5) as_za = Aa(t)za 4= 26664 0 1 0 0�1 �2� 1� 10 �k2 os2 t k22� os t sin t �10 �k2 os t sin t 1 k22� os t sin t 37775 za (6.6)where we have de�ned za 4= [z1; z2; z3 os t; z3 sin t℄T . The interest of this \system inmersion" is that theaveraged system yields 1� Z �0 Aa(t)dt � ATo prove that A is exponentially stable for all ; �; k > 0 we an do a root{lous analysis of the harateristipolynomial, whih is given by 1 + k22� s(s+ �)(s2 + 2�s+ 1)(s2 + 1) = 0The proof is ompleted heking that we an write these equations in the perturbation form_za = [A�B�(t)C℄za 222Remark 6.3The importane of proposition 6.1 (and its orresponding orollary) stems from the fat that the system(6.5) is independent of ��, hene for a given noise amplitude k, we an tune the gains  and � o�{line. Weshould undersore that the reasoning above an not be used to derive a similar tuning proedure for thebasi Regalia's ANF. This may be seen as follows. The Jaobian matrix of (the state realization [x; _x; x3℄of) (2.1), (2.2) evaluated along the orbit (2.3) yieldsF (��; ��t) 4= 264 0 1 0��2� �2��� k�� [� sin(��t) + 1� os(��t)℄0 �k�� os(��t) k22��3� os(��t) sin(��t) 375We look now for a (linear) hange of oordinates that transforms this matrix into a form ��E(��t), wherethe dependene of E on �� is only through the sin and os funtions. If we an �nd suh a matrix, the timesale hange d�dt = �� will �nally yield a linear system independent of ��, as done in the proof of proposition6.1. But the existene of suh a transformation implies the existene of a matrix T (m) suh thatT (m)24 0 1 01m2 2m2 3m0 4m 5m3 35T�1(m) = mE0with E0 a matrix independent of m and i some onstants. Sine the trae is invariant under similaritytransformation this woud imply the existene of another onstant 6 (= trae(E0)) suh that 6m =2m2 + 5m3 , whih learly is not possible for all m.6.3 Robust tuning proedureWe will show in this subsetion that for the saled normalized ANF we an obtain a tuning proedure whih,besides being independent of the unknown frequeny �� as the tuning proedure above, is robust with respetto the noise amplitude k.To this end, onsider the linearized system (6.5) and notie the fator �0 4= k2. It is possible to regardthis fator as a single design parameter. By diret appliation of averaging theory, one an assert that,for suÆiently small �0, the linearized system is exponentially stable. Thus, there exists for eah damping20



fator � a positive salar �01(�), suh that the linearized system, and thus the periodi orbit, is (loally)exponentially stable 8�0 2 (0; �01(�)).However, sine we are dealing with external disturbanes, the noise amplitude an hange. Then, itwould be eventually neessary to adjust  in order to keep the performane (or the stability) of the adaptive�lter. Normalization irumvents this problem as follows. It an be easily veri�ed that the inlusion ofthe normalization (4.12) does not a�et neither the main orbit nor the linearized system around this orbit,exept that �0 = k2 must be replaed by�0nor 4= k2�(1 + Nk24�2 )(1 + �j��j�) (6.7)The expression above follows from the fat that on the orbit (6.4), one has�x2 + ( _�x�� )2 = k24�2 (6.8)We see that the e�etive gain is now bounded 8k sine �0nor < 4�2�N .Loal stability is therefore guaranteed for arbitrary noise amplitude if�N � �01(�)4�2An approximate expliit loal stability ondition an be obtained from (6.3), whih gives �01(�) ' 4�. Thus,the ondition is simply �N � 1�Remark 6.4The above approximate expression for loal stability shows that higher gain � is allowed for smaller �.This was on�rmed by extensive simulations performed with the linearized system (6.5) modi�ed with thenormalized steady state gain aording to (4.12), (6.7), see [5℄.6.4 SimulationsThe unstable behavior of Regalia's ANF due to inadequate tuning is shown in Fig. 18 and Fig. 19, wherewe repeated the simulations of Figs. 1{3, but with  = 4 and � = 5, respetively.Next, we illustrate the inuene of the noise amplitude. The saled but non-normalized ANF systemwith � = 1:35, � = 0:4, �� = 5, k = 1, IC : [1; 1; 10℄, results in fast and smooth response. However, withk = 10 the system blows away. This means that the saled ANF should be retuned aording to the noiseamplitude. Of ourse this is undesirable in pratie. In ontrast, normalization makes the ANF stabilityimmune to noise amplitude hanges. With � = 0:5; � = 2; N = 1 and k = 1000 we have obtained Figs.20{22. Stable behavior was observed for k ranging from 1 to 1000.As observed in Remark 6.4 normalization allows us to trade{o� a higher gain � with a smaller �. Toillustrate this point the simulations above (with k = 10) were repeated for the normalized and saled ANFand it was observed that stability was preserved for � as high as 200. However, when the normalization wasremoved, � had to be smaller than 0:012 to preserve stability. See [5℄.7 ConlusionsWe have solved in this paper the problem of global frequeny estimation. The proposed algorithm is a saledand normalized ANF inspired from the one reported in [23℄. The new ANF was analyzed in terms of itsstability, onvergene and tuning. Despite a quite formidable omplexity of its dynamial behavior, someonlusive results were established. A simple, yet sharp, rule for guaranteeing loal stability was determined.The following fundamental and useful properties were established: (a) the new �lter is shown to preserve21
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Figure 22: 3D state-spae plotloal exponential stability under arbitrary frequeny hanges of the sinusoidal noise, thanks to saling; (b)normalization also allows loal stability preservation for arbitrary hanges of the noise amplitude; () thenew �lter an be made globally asymptotially stable under suÆiently small adaptation gain. Neither ofthe latter mentioned properties are enountered in the original version of the ANF.Even though we onentrated our attention here in the simplest ase of a single onstant frequenywithout noise, in [5℄ we have shown, {via simulations and some analysis,{ that the algorithm is able to traktime{varying frequenies, preserves loal stability in the presene of multiple sinusoids, and is robust vis �avis noise.Some preliminary results about the integration of the new adaptive noth �lter in noise anellationsystems, in the spirit of [2℄, are reported in [5℄. Also, urrent researh is under way to modify the �lter toestimate multiple frequenies. The outome of this researh will be reported elsewhere.AknowledgmentsPart of this work was realized while the seond author was visiting Prof Hsu in the University of Rio deJaneiro. The warm hospitality of this group is deeply aknowledged. Also, the seond author would like tothank Anders Rantzer for suggesting the hange of oordinates used in the proof of orollary 6.1. The workof Gilney Damm in LSS is sponsored by the brazilian foundation CAPES.22
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�(�z01=��) = k�2rP6(�r; t)=P8(�r) (B.6)Sine P8 in the above expression is given by P8 = [(�2r � 1)2 + 4�2�2r ℄2, whih does not have real roots, itfollows that F1 is analyti 8� 2 <. As before, the limits for �r ! 0 or 1 are bounded. Consequently, F1 isuniformly bounded by a onstant and thus (B.1) is obtained.Finally, the bound (B.2) is obtained in similar way, using the following relationships derived from (5.4)z02 = ��1 �z01�t (B.7)F2 := �(�z02=��) = � ��� (��1�z01=�t) (B.8)We an also write F2 = [���1 �z01�t + ��t �z01�� ℄ (B.9)Then, from (B.5)(B.6), one has z02 = k�rP2(�r; t)=P4(�r) (B.10)F2 = k�r[P2(�r; t)=P4(�r) + P6(�r; t)=P8(�r)℄ (B.11)Sine the funtions F2 and z02 are analyti 8�r as before, and their limits for �r ! 0 or1 are bounded, thenthese funtions are also uniformly bounded by onstants. Thus, the bound (B.2) results.
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