
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 6, JUNE 1999 1277

Simultaneous Stabilization via Static
Output Feedback and State Feedback

Yong-Yan Cao, You-Xian Sun, and James Lam

Abstract—In this paper, the simultaneous stabilization problem is
considered using the matrix inequality approach. Some necessary and
sufficient conditions for simultaneous stabilizability of rrr strictly proper
multi-input/multi-output (MIMO) plants via static output feedback and
state feedback are obtained in the form of coupled ARI’s. It is shown that
any such stabilizing feedback gain is the solution of some coupled linear
quadratic control problems where every cost functional has a suitable
cross term. A heuristic iterative algorithm based on the linear matrix
inequality (LMI) technique is presented to solve the coupled matrix
inequalities. The effectiveness of the approach is illustrated by numerical
examples.

Index Terms—Algebraic Riccati inequality, linear matrix inequality,
simultaneous stabilization, static output feedback.

I. INTRODUCTION

Simultaneous stabilization is an important problem in the area
of robust control design. It is the problem of determining a single
controller which will simultaneously stabilize a finite collection of
plants. It may apply to linear plants characterized by different modes
of operation (for instance, failure modes) or to the stabilization of
nonlinear plants linearized at several equilibria. Recently, research
results also clearly show the relevance of simultaneous stabilization
to system robustness [1].

The simultaneous stabilization problem was first introduced in
[2] and [3]. It was shown that in the case of two plants, the
problem reduces to the well-known strong stabilization problem.
The problem of simultaneously stabilizingr plants can always be
reduced to the problem of simultaneously stabilizingr � 1 plants
using a stable compensator, as shown in [4]. Other design results
on simultaneously stabilizing controllers can be found in [5]–[7].
However, even for three single-input/single-output (SISO) systems,
no tractable simultaneous stabilization design procedure has been
proposed. Basically, there are still many open problems associated
with simultaneous stabilization.

Recently, Blondel and Gevers [8] discussed the complexity of
simultaneous stabilization and proved that the simultaneous stabi-
lizability of three linear systems is rationally undecidable. From their
paper, one may conclude that this problem is very difficult due to
its NP-hard nature (see also [26] and [27]). Fortunately, this does
not signify the end of the simultaneous stabilization problem. One
possible approach to deal with this kind of problem is to find an
efficient numerical algorithm. It now becomes clear that an effective
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approach to tackle a variety of simultaneous stabilization problems
is through numerical means. In general, nonsmooth optimization
techniques have to be used. Some research effort has been directed
along this line of thought, such as [9]–[13]. Unfortunately, an
efficient algorithm for this problem is as yet to be constructed. An
alternative approach is to reduce this kind of problem to a well-known
computation problem. In this paper, we will focus on reducing the
simultaneous stabilization problem to a computational procedure of
iterative nature.

The purpose of this paper is to construct a numerical algorithm to
determine the existence of a simultaneously stabilizing static output
feedback controller for a collection of given linear time-invariant
multi-input/multi-output (MIMO) plants using matrix inequality ap-
proach. We hasten to note that the matrix inequality approach has
already been employed for the simultaneous stabilization problem
via state feedback by Geromelet al. [13]. However, the simultaneous
stabilization via static output feedback has not been dealt with in
that context. The main contribution of this paper can be summarized
as follows. It is shown that there exists a simultaneously stabilizing
controller via static output feedback or state feedback if and only
if there exists a stabilizing solution for a collection of coupled
algebraic Riccati inequalities (ARI’s) or a collection of coupled linear
quadratic (LQ) control problems in which the cost functional has a
suitable cross term satisfying an inequality constraint. The solution
procedure is applicable to any fixed number of plants. The design
strategy consists of finding suitable weighting matrices such that
the solution of these coupled LQ control problems corresponds to
a simultaneously stabilizing output feedback controller. A heuristic
iterative algorithm based on the linear matrix inequality (LMI)
technique is presented to solve the weighting matrices and generate
the feedback gain. It should be pointed out that the idea of this paper
derives from [19]. However, the numerical algorithm presented here
is novel and may also be employed to solve the problem in [19] and
[24].

II. PRELIMINARIES

In this paper, all matrices are with appropriate dimensions if the
dimensions are not explicitly stated. The notationX > 0 means that
X is a symmetric and positive definite matrix.

First, let us consider the linear time-invariant plantG described
by the equation

x(t) = Ax(t) +Bu(t); x(0) = x0 (1)

wherex(t) 2 Rn is the state vector,u(t) 2 Rm is the control vector,
andA, B are constant matrices. The following lemma is well-known
[14], [15].

Lemma 1: Let the plantG be given by (1). ThenG is stabilizable
via state feedback if and only if there exist matricesP > 0; Q > 0;
andR > 0 satisfying the following algebraic Riccati equation (ARE):

PA +A
T
P � PBR

�1
B
T
P +Q = 0

or equivalently, there exist matricesP > 0 andR > 0 satisfying
the following ARI:

PA +A
T
P � PBR

�1
B
T
P < 0:

Remark 1: In fact, (A; B) is stabilizable, if and only if, for any
Q > 0 andR > 0 the above ARE has a unique solutionP > 0; see
[15], or equivalently, for anyR > 0; the above ARI has a feasible
solution; see [14], [20], and [21].
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The LQ control problem with cross term, which we take as the
basis for our development, involves minimizing the cost

v(x0) =
1

0

(xTQx+ 2uTSx+ uTRu)dt (2)

where Q > 0, R > 0, and S are constant weighting matrices
satisfying

Q� STR�1S > 0: (3)

The solution of the LQ control problem associated with (1)–(3) is [15]

u = Kx; K = �R�1(BTP + S)

PA+ ATP � (BTP + S)TR�1(BTP + S) +Q = 0: (4)

Lemma 2: Let the plantG be given by (1). ThenG is stabilizable
via state feedback if and only if there exist matricesP > 0, Q > 0,
R > 0, and S satisfying (3) and ARE (4) with cross term, or
equivalently, there exist matricesP > 0, R > 0, andS satisfying
the following modified ARI with cross term:

PA+ATP � (BTP +S)TR�1(BTP +S) +STR�1S < 0: (5)

Remark 2: Lemma 2 was established in [24]. Based on its proof
in [24] and Lemma 1, it can be shown that for anyR > 0, ARI (5)
has a feasible solution (P; S) if and only if (A; B) is stabilizable.

III. A N ECESSARY AND SUFFICIENT CONDITION

Now we consider the simultaneous stabilization ofr plantsGi

_xi(t) = Aixi(t) +Biui(t); yi(t) = Cixi(t) (6)

where the statexi(t) 2 Rn, the input ui(t) 2 Rm, the output
yi(t) 2 Rp andn is the order ofGi. We assume

Ci = C; i = 1; � � � ; r (7)

andC has full rank. For example, this condition is satisfied for single-
output plants of the same order since it is always possible to realize
them in minimal observable form. In addition, for multiple model
control of r modelsGi(s) of an uncertain plant, uncertainty often
exists only in the system matrix and (or) input matrix. In these
situations, (7) is satisfied. LetE be the right inverse ofC, i.e.,
CE = Ip whereIp is the identity matrix of orderp. SinceC has
full rank, E can be constructed from

E = CT (CCT )�1: (8)

So E? = EC is the orthogonal projection matrix onIm(CT ) and
x? = E?x = Ey.

Theorem 1: Let r plantsGi be given by (6) with same output
matrix C, then they are simultaneously stabilizable via static output
feedback if and only if there exist matricesP i > 0, R > 0, Qi > 0,
andM satisfying the following coupled ARE’s:

P iAi +AT
i P

i
� (Si +BTP i)TR�1(Si +BT

i P
i) +Qi

= 0; i = 1; � � � ; r (9)

Qi
� Si R�1Si > 0 (10)

Si =ME? �BT
i P

i (11)

or equivalently, there exist matricesP i > 0,R > 0, andM satisfying
the following coupled ARI’s:

P iAi +AT
i P

i
� (Si +BT

i P
i)TR�1(Si +BT

i P
i)

+ Si R�1Si < 0; i = 1; � � � ; r: (12)

Moreover, the simultaneously stabilizing static output feedback con-
troller can be constructed from

K = R�1MCT (CCT )�1: (13)

The proof is similar to that of [19] and [25]. Some subsequent
corrections and comments may be found in [17], [23], and [24]. The
necessary modification in the definition of�� is that

�� = max
i=1; ���; r

(��i )

where

��i = max
x

xT (P iAi +AT
i P

i)x

xT (E?MTR�1R�1ME?)
;

x =2 Ker(ME?); x 6= 0; i = 1; � � � ; r:

Another modification is that (10) is also a necessary condition as a
consequence of Lemma 1. In [19] this fact has been ignored, hence
the main result is invalid (see [24]).

This theorem implies that simultaneous stabilization via static
output feedback can be viewed as the solution ofr-coupled LQ
control problems with suitable weighting matricesQi, R, and Si

in the functional (2) satisfying the coupled constraint (11).
Corollary 1: Given the plantG in (1), it is stabilizable via static

output feedback if and only if there exist matricesQ > 0, R > 0,
andM such that the following constrained ARE:

PA +ATP � (S +BTP )TR�1(S +BTP ) +Q = 0 (14)

Q� STR�1S > 0 (15)

S =ME?�B
TP (16)

has a solutionP > 0, or equivalently, there exist matricesP > 0,
R > 0, andM satisfying the following constrained ARI with suitable
cross term

PA+ATP � (S+BTP )TR�1(S+BTP )+STR�1S < 0: (17)

Remark 3: Corollary 1 is the corrected version of [19, Th. 3.1] (see
[24]). By comparing Theorem 1 and Corollary 1 with Lemma 2, it can
be observed that the range space of the cross matrixS is constrained.
In the case of static output feedback, constraint (16) appears, and so
M 2 Rm�p becomes the free variable instead ofS 2 Rm�n. S is
related to the output matrixC such thatS 2 Range(C). For the
static output feedback simultaneous stabilization ofr plants,M is
the coupling variable. Obviously, this condition is not related to the
number of the plants to be simultaneous stabilized. In [7], however,
the number of plants is restricted by the dimensions of the input and
output.

Corollary 2: Let r plants Gi be given by (6), then they are
simultaneously stabilizable via state feedback if and only if there
exist matricesP i > 0, R > 0, Qi > 0, and M satisfying the
following coupled ARE’s:

P iAi + AT
i P

i
� (Si +BT

i P
i)TR�1(Si +BT

i P
i) +Qi = 0;

i = 1; � � � ; r (18)

Qi
� Si R�1Si > 0

Si =M �BT
i P

i (19)

or equivalently, there exist matricesPi > 0,R > 0, andM satisfying
the following coupled ARI’s:

P iAi + AT
i P

i
� (Si +BT

i P
i)TR�1(Si +BT

i P
i)

+ Si R�1Si < 0; i = 1; � � � ; r: (20)
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Remark 4: Note that Corollary 2 corresponds to the case where
C = I in Theorem 1. An obvious advantage of the above approach
is that the quadratic stability is not required to be satisfied [14], [16].
This is because a different plant is associated with a different Lya-
punov matrixPi. In general, the results are usually more conservative
if quadratic stability is used to treat simultaneous stabilization.

IV. A N ITERATIVE LMI A LGORITHM

In this section, we present an iterative algorithm based on the
theory in earlier sections to simultaneously stabilizer plants in (6)
via static output feedback and state feedback control.

From the results in Section III, the static output feedback stabi-
lization problem is transformed into solving (17) under constraint
(16). Moreover, the static output (respectively, state) feedback simul-
taneous stabilization problem become the feasibility of inequalities
(12) [respectively, (20)] under constraint (11) [respectively, (19)].
Obviously, as the constraints (11), (16), and (19) are all linear, the
key to solving these problems lies in the solution of (5).

In fact, all of the above matrix inequality problems belong to
the class of bilinear matrix inequality (BMI) problems, which are
generally very difficult for which to obtain solutions or to determine
feasibility [26]. However, if we can derive an iterative form for its
feasibility, we may construct an iterative algorithm based on the LMI
technique [22]. Inequality (5) is equivalent to the following nonlinear
matrix inequality:

PA+AT
P�PBR

�1
B

T
P�S

T
R
�1
B

T
P�PBR

�1
S < 0: (21)

From Remark 1 and the proof of Theorem 1, we may letR = I

so that (21) becomes a BMI problem. In fact, this selection is
without loss of generality for the following reason. From the proof
of Theorem 1 (see also [19] and [23]), it can be seen that if the
plants are stabilizable simultaneously via static output feedback, then
a sufficiently large� can be chosen so that whenR = �I, there
exist matricesP i andM that satisfy (12) and (11). Consequently,
P i = ��1P i; Si = ��1Si; M i = ��1M i; R = I; i = 1; � � � ; r,
is also a solution of ARI’s (12) constrained by (11). In other words,
a feasible solution exists for BMI (21) withR = I. In fact, we have
established the following result.

Corollary 3: Let r plants Gi be given by (6), then they are
simultaneously stabilizable via static output feedback if and only if
there exist matricesP i > 0; Qi > 0; andM satisfying the following
coupled ARE’s:

P
i
Ai +A

T
i P

i
� (Si +B

T
i P

i)T (Si +B
T
i P

i) +Q
i = 0;

i = 1; � � � ; r

Q
i
� S

i
S
i
> 0; S

i =ME? �B
T
i P

i

or equivalently, there exist matricesP i > 0 andM satisfying the
following coupled ARI’s:

P
i
Ai +A

T
i P

i
� (Si +B

T
i P

i)T (Si +B
T
i P

i) + S
i
S
i
< 0;

i = 1; � � � ; r: (22)

Theorem 2: There exists a feasible solution (P > 0; S) satisfying
the BMI (21) if and only if the following matrix inequality holds:

PA+A
T
P � 2PBR�1BT

P +(BT
P �S)TR�1(BT

P �S) < 0:
(23)

Proof—Sufficiency:Note that

PA + A
T
P � PBR

�1
B

T
P � S

T
R
�1
B

T
P � PBR

�1
S

� PA+ A
T
P � PBR

�1
B

T
P � S

T
R
�1
B

T
P

� PBR
�1
S + S

T
R
�1
S

= PA+ A
T
P � 2PBR�1BT

P + (BT
P � S)TR�1

� (BT
P � S) < 0:

Necessity: It is not difficult to see that there must exist a scalar
� > 1 such that

PA + A
T
P � PBR

�1
B

T
P � S

T
R
�1
B

T
P � PBR

�1
S

+ �
�2
S
T
R
�1
S < 0 (24)

i.e.,

PA+ A
T
P � (�2 + 1)PBR�1BT

P + (�BT
P � �

�1
S)TR�1

� (�BT
P � �

�1
S) < 0:

Hence

PA + A
T
P � 2�2PBR�1BT

P + (�BT
P � �

�1
S)TR�1

� (�BT
P � �

�1
S) < 0:

Substituting�2P with P , we obtain (23).
Due to the negative sign in the�2PBR�1BTP term, (23) cannot

be simplified to an LMI. To accommodate the�2PBR�1BTP

term, we introduce an additional design variableX. Since (X �

P )TBR�1BT (X�P ) � 0 for anyX andP of the same dimension,
we obtain

X
T
BR

�1
B

T
P + P

T
BR

�1
B

T
X �X

T
BR

�1
B

T
X

� P
T
BR

�1
B

T
P: (25)

The equality holds ifX = P . This leads to a sufficient condition for
the feasibility of the BMI (21)

A
T
P + PA � 2XBR�1BT

P � 2PBR�1BT
X

+ 2XBR�1BT
X + (BT

P � S)TR�1(BT
P � S) < 0: (26)

Theorem 3: There exists a feasible solution (P > 0; S) satisfying
the BMI (21) if and only if there exist a matrixS and two matrices
P > 0 andX > 0 satisfying the matrix inequality (26).

Proof: The sufficiency is obvious, thus only the necessity needs
to be proven. Obviously, if BMI (21) has a feasible solution (P >

0; S), then there exists a positive real number" > 0 such that

A
T
P + PA� 2PBR�1BT

P + (BT
P � S)TR�1

� (BT
P � S) + "I < 0:

Select a symmetric matrixX � 2BR�1BT and setX = P ��X,
where�X = "1=2X�1=2, then

2(P �X)BR�1BT (P �X) � "I:

So (26) holds.
Using the Schur complement, (26) is equivalent to the quadratic

matrix inequality shown in (27), at the bottom of the page. This BMI
points to an iterative approach to solve the matricesS andP > 0,
namely, if X is fixed in (27), then it reduces to an LMI problem
in the unknownsS andP . The LMI problem is convex and can be
solved if a feasible solution exists.

ATP + PA� 2XBR�1BT
� 2PBR�1BTX + 2XBR�1BTX (BTP � S)T

(BTP � S) �R
< 0 (27)
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WhenX is fixed, however, LMI (27) is only a sufficient condition
for feasibility of BMI (21). In fact, if we find its solution, then we
find a solution of (21). Unfortunately, it has no solution is general.
On the other hand, if we simply perturb (26) by��P , then we obtain
a necessary condition for static output feedback stabilizability, i.e.,

ATP + PA � �P � 2XBR�1BTP � 2PBR�1BTX

+ 2XBR�1BTX + (BTP � S)TR�1(BTP � S) < 0:

Consequently, the closed-loop system matricesA � BKC have
eigenvalues on the left-hand side of the line<(s) = �=2 in the
complexs-plane. Based on the idea that all eigenvalues ofA�BKC
are shifted progressively toward the left half-plane through the
reduction of�, we may close in on the feasibility of (2). In the
following algorithm, we will fix R = I.

Iterative Linear Matrix Inequality (ILMI) Algorithm:

Step 1) Seti = 1, selectQ > 0. Solve the following ARE:

ATP + PA � PBBTP +Q = 0

and setX = P .
Step 2) Solve the following optimization problem forPi; M , and

�i.
OP1: Minimize�i subject to the LMI constraints shown

in (28)–(30), shown at the bottom of the page.
Step 3) If�i � 0; (Pi; S) is a feasible solution. STOP.
Step 4) Solve the following optimization problem forPi andM .

OP2: Minimize trace(Pi) subject to the LMI con-
straints shown in (28)–(30).

Step 5) IfkX � Pik < �, a predetermined tolerance, go to Step
6); else setX = Pi and i = i+ 1, then go to Step 2).

Step 6) This algorithm cannot get a feasible solution. STOP.

Remark 5: The optimization problem in Step 2) is a generalized
eigenvalue minimization problem. This step guarantees that the poles
of the closed-loop system move to the left half-plane progressively.
The optimization problem OP2 is necessary to guarantee the conver-
gence of the algorithm. Numerical experiences indicated that� may
converge slowly in some cases. One way to terminate the algorithm
is when�i�1 � �i is smaller than a prescribed tolerance for a fixed
number of successive iterations. In Step 3), if a feasible solution is
obtained and the feedback gain is too large, one may set�i = 0 and
let the algorithm continue iterating to make the difference ofX and
P as small as possible.

Remark 6: Inequality (27) plays a crucial role in the ILMI algo-
rithm. Obviously, there always exists a solution for the optimization
problem OP1 wheni = 1. For i > 1, the existence of the solution
is guaranteed by (27). For a given stabilizable system (that is, (27)
has a solution), the solution sequence�i is a decreasing sequence.

This is because if

ATPi + PiA� 2XBBTPi � 2PiBB
TX + 2XBBTX

� �iPi + (BTPi � S)T (BTPi � S) < 0

then

ATPi+PiA�2PiBB
TPi��iPi+(BTPi�S)T (BTPi�S) < 0

a solution �i+1 � �i can be found in Step 2) withPi+1 =
Pi; �i+1 = �i.

Remark 7: The existence of a solution of optimization problem
OP2 is ensured by (28). The solutionPi is a symmetric positive-
definite matrix which implies that the sequencetrace(Pi) is bounded
below. It is not difficult to find that the solution sequencetrace(Pi)
is a monotonic decreasing sequence if�i is fixed for i > k andk is
a positive constant. Due to the effect of numerical errors in Step 2),
optimization problem OP2 may be infeasible. In such a case, we set
�i = �i +��i for some small positive number��i and solve OP2
again.

Remark 8: This algorithm can be easily extended to find a solution
for the static output feedback simultaneous stabilization problem
involving r plants with the same output matrixC. In this case,
(28)–(30) should be as shown in (31), at the bottom of the page,
and in Step 4)trace(Pi) should be replaced by r

j=1
trace(P j

i ).
By duality, the static output feedback simultaneous stabilization ofr
plants with same input matrixB can also be considered.

V. EXAMPLES

Example 1: Consider the following linear parameter-varying
plant:

G(s) =
s+

p
� + 1

s2 + (�2 � 10)s+ 3� + 11
; 3 � � � 11:

The nominal operating point is�0 = 7. We consider simultaneously
stabilizing three plants at operating points�0 = 7, �1 = 3, and
�2 = 11. The minimal realizations of these three plants are

A0 =
�39 1
�32 0

; B0 =
1

3:646
; A1 =

1 1
�20 0

B1 =
1

2:732
; A2 =

�111 1
�44 0

; B2 =
1

4:317

C0 =C1 = C2 = [1 0]:

Using the ILMI Algorithm, we obtain� = �5:464 and K =
�1:9322�107 only after one iteration. The feedback gain is unaccept-
ably large and hence the algorithm is allowed to continue iterating.

ATPi + PiA� 2XBBTPi � 2PiBB
TX + 2XBBTX � �iPi (BTPi � S)T

BTPi � S �I < 0 (28)

S =ME? �BTPi (29)

Pi =P T
i > 0 (30)

AT
j P

j
i + P j

i Aj � 2XjBjB
T
j P

j
i � 2P j

i BjB
T
j X

j + 2XjBjB
T
j X

j � �iP
j
i (BT

j P
j
i � Sj)T

BT
j P

j
i � Sj �I < 0

Sj =ME? �BT
j P

j
i

P j
i =P j

i ; j = 1; � � � ; r (31)
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TABLE I
PARAMETER VALUES FOR EXAMPLE 2

After 29 iterations, we obtainedK = �2:5709, M = [2:5709 0],
and

P0 =
7:5030 �0:0030

�0:0030 0:1521
� 10�2

S0 = [2:4960 � 0:0055]

P1 =
1:2929 �0:0140

�0:0140 0:048 39

S1 = [1:3162 � 0:1182]

P2 =
2:8464 �0:0004

�0:0004 0:0438
� 10�2

S2 = [2:5425 � 0:0019]:

The eigenvalues are�40.5506,�1.0203;�0.7855� 5.1388i; and
�113.0837,�0.4872, respectively. Hence, the above output feedback
gain stabilizes simultaneously the plants.

Example 2: Consider an F4E fighter aircraft model considered in
[9]–[12]

_x(t) =
a11 a12 a13
a21 a22 a23
0 0 �30

x +
b1
0
30

u:

The values of the parametersa11; a12; a13; a21; a22; a23, andb1 at
different operating points are given in Table I.

Now we consider simultaneously stabilizing the four plants at
different operating points using the ILMI Algorithm. After one
iteration withR = 1, a solution is found with

� = �3:6021; K = [0:9865 7:8075 � 6698] � 104

while after 24 iterations

K = [0:0218 0:2391 � 0:1180]

M = [�0:0218 � 0:2391 0:1180]

P1 =
0:1530 1:1928 0:0577
1:1928 9:7085 0:1447
0:0577 0:1447 0:3292

� 10�3

P2 =
0:0193 0:2261 �0:0443
0:2261 2:7315 �0:5142

�0:0443 �0:5142 0:1679
� 10�3

P3 =
0:0350 0:4508 �0:1586
0:4508 6:4330 �2:6305

�0:1585 �2:6305 1:3205
� 10�3

P4 =
0:0371 0:1361 0:1143
0:1361 2:6636 �1:5783
0:1143 �1:5783 2:2186

� 10�3

S1 = [�0:0086 � 0:1269 0:1138]

S2 = [�0:0152 � 0:1622 0:1009]

S3 = [�0:0141 � 0:1219 0:0649]

S4 = [�0:0187 � 0:1679 0:0715]:

The eigenvalues of the four closed-loop systems are�0.7236,
�33.1021, �3.6899; �33.5600, �5.3834, �1.8588; �32.5675,
�2.9751� 3.6091i; and�3.5694� 5.3054i,�31.9763, respectively.
Hence, this state feedback simultaneously stabilizes these four plants.

Now we assume the states are not measurable directly and the
output matrix is given by

C =
1 2 0
1 0 �2

:

In this case, the third plant is nonminimum phase. The zeros are
19.2431� 11.1025i and 12.6260, 22.1417. Using the above algo-
rithm, � = �0:0427 is obtained after 41 iterations. To achieve a
smaller gain, the algorithm is allowed to continue iterating, only after
another three iterations, and we get

K = [0:1109 � 0:0952]

M = [1:2874 �0:6437 0:6437 ]

P1 =
0:1879 1:1558 0:0435
1:1558 10:0022 0:1725
0:0435 0:1725 1:0490

� 10�3

P2 =
0:0194 0:2780 0:0084
0:2780 3:9787 0:09431
0:0084 0:0943 0:9503

� 10�3

P3 =
0:0360 0:5208 �0:1426
0:5208 7:6748 �2:7429

�0:1426 �2:7429 5:7825
� 10�3

P4 =
0:0509 0:2021 0:3420
0:2021 4:0981 �1:0280
0:3420 �1:0280 5:2243

� 10�3

S1 = [0:001426 � 0:1139 � 0:2177]

S2 = [�0:0106 � 0:1489 � 0:2167]

S3 = [�0:008302 � 0:0952 � 0:3761]

S4 = [�0:01697 � 0:1554 � 0:2872]:

The eigenvalues of the four closed-loop systems are�0.7714,
�22.2118,�4.6724; �6.9586, �1.8756, �21.0284; �4.4036 �
2.6944i, �19.9292; and�4.9677� 5.1719i, �18.8380, respectively.
Hence, this output feedback simultaneously stabilizes these four
plants.

VI. CONCLUDING REMARKS

The main point of this paper is to propose a numerical algorithm
to solve the problem of simultaneous stabilization via static output
feedback and state feedback control. A necessary and sufficient
condition for simultaneous stabilizability of a collection of MIMO
plants via static output feedback is given using a collection of
coupled ARE’s and ARI’s. The corresponding result for the state
feedback case is also derived. The simultaneous stabilization problem
is recast as a computational procedure. An iterative algorithm based
on the LMI technique has been presented. Although the issue of
convergence is yet to be established, the effectiveness of the approach
is demonstrated well by numerical examples involving this class of
BMI problems.
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A Parametric Approach for Robust Identification

Shuning Wang, Jianshe Dai, and Masahiro Tanaka

Abstract—A convergent algorithm for lll1 robust identification of a
stable rational transfer function with known order is proposed, which is
implemented by solving a linear programming problem and can produce
a rational transfer function with a fixed order. An explicit upper bound
on its worst case identification error is given. Its performance is proven
to be close to that of an interpolatory algorithm if a high-order Galois
sequence is taken as the input signal.

Index Terms—Control-oriented models, linear programming, parame-
ter identification, robust estimation, transfer function.

I. INTRODUCTION

The problem considered in this paper may be regarded as a novel
formulation within the framework of robust control oriented worst
case/deterministic system identification, which was first posed in [1]
and then studied by many authors such as [2]–[6]. In this framework,
the a priori information for system identification consists of a lower
bound on the relatively stability of the plant, an upper bound on
a certain gain associated with the plant, and an upper bound on
the noise level. The task of identification is to design an algorithm
which may map a group of observed data, either in frequency
domain or in time domain, onto a nominal transfer function, and
to derive an explicit upper bound on its worst case/deterministic
identification error measured byH1 or l1 norm. A number of
references concerning this subject may be found in the survey paper
[7].

It is worth noting that all the works mentioned above tackle this
problem with a nonparametric approach, which takes the transfer
function to be identified as an infinite Taylor’s expansion. Though
this approach may avoid making any assumption on the order of a

Manuscript received December 2, 1996; revised July 15, 1997. Recom-
mended by Associate Editor, J. Chen. This work was supported in part by
the 863 Program of China under Grant 863-512-9505-17 and the Science
Foundation of Tsinghua University.

S. Wang is with the Department of Automation, Tsinghua University,
Beijing, 100084 China.

J. Dai is with the Institute of Systems Engineering, Huazhong University
of Science and Technology, Wuhan, 430074 China.

M. Tanaka is with the Department of Information Technology, Okayama
University, Okayama, 700-8530 Japan (e-mail: m.tanaka@computer.org).

Publisher Item Identifier S 0018-9286(99)03030-5.

0018–9286/99$10.00 1999 IEEE


