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Simultaneous Stabilization via Static approach to tackle a variety of simultaneous stabilization problems
Output Feedback and State Feedback is through numerical means. In general, nhonsmooth optimization
techniques have to be used. Some research effort has been directed
Yong-Yan Cao, You-Xian Sun, and James Lam along this line of thought, such as [9]-[13]. Unfortunately, an

efficient algorithm for this problem is as yet to be constructed. An

alternative approach is to reduce this kind of problem to a well-known

Abstract—In this paper, the simultaneous stabilization problem is computation problem. In this paper, we will focus on reducing the

considered using the matrix inequality approach. Some necessary and simultaneous stabilization problem to a computational procedure of
sufficient conditions for simultaneous stabilizability of » strictly proper iterative nature.

multi-input/multi-output (MIMO) plants via static output feedback and . . . .

state feedback are obtained in the form of coupled ARI's. It is shown that The purpose of this paper is to construct a numerical algorithm to
any such stabilizing feedback gain is the solution of some coupled linear determine the existence of a simultaneously stabilizing static output
quadratic control problems where every cost functional has a suitable feedback controller for a collection of given linear time-invariant
,Cnrgsiatl‘i’-trm@';\/l Ir)‘ettgéitri]‘i’ ilﬁrf?gvergége?]rtiézmtobfisso"iseotr‘héhic:ij”el:& ”%fgtrﬁ; multi-input/multi-output (MIMO) plants using matrix inequality ap-
:negualitiyes. The effecti\?eness gf the approach is illustrated Sy numerical proach. We hasten to note that the matrix Inequall_ty approach has
examples. already been employed for the simultaneous stabilization problem
via state feedback by Geromet al. [13]. However, the simultaneous
stabilization via static output feedback has not been dealt with in
that context. The main contribution of this paper can be summarized
as follows. It is shown that there exists a simultaneously stabilizing

I. INTRODUCTION controller via static output feedback or state feedback if and only

Simultaneous stabilization is an important problem in the ardthere exists a stabilizing solution for a collection of coupled
of robust control design. It is the problem of determining a Sing@lgebral_c Riccati inequalities (ARI_’s) or_acollectlon of cou_pled linear
controller which will simultaneously stabilize a finite collection ofduadratic (LQ) control problems in which the cost functional has a
plants. It may apply to linear plants characterized by different modg4itable cross term satisfying an inequality constraint. The solution
of operation (for instance, failure modes) or to the stabilization Gocedure is applicable to any fixed number of plants. The design
nonlinear plants linearized at several equilibria. Recently, resea®f2t€gy consists of finding suitable weighting matrices such that
results also clearly show the relevance of simultaneous stabilizati®}f solution of these coupled LQ control problems corresponds to
to system robustness [1]. a snmultaneouely stabilizing output f_eedback c_ont_roller. A heuristic

The simultaneous stabilization problem was first introduced fifrative algorithm based on the linear matrix inequality (LMI)
[2] and [3]. It was shown that in the case of two plants, thiechnique is pre_sented to solve th_e weighting matrl_ces and generate
problem reduces to the well-known strong stabilization problerH€ feedback gain. It should be pointed out that the idea of this paper
The problem of simultaneously stabilizing plants can always be _derlves from [19]. However, the numerical algorithm presented here
reduced to the problem of simultaneously stabilizing- 1 plants IS Novel and may also be employed to solve the problem in [19] and
using a stable compensator, as shown in [4]. Other design reslfdl
on simultaneously stabilizing controllers can be found in [5]-{7].

However, even for three single-input/single-output (SISO) systems, Il. PRELIMINARIES

no tractable si.multaneous stabili;ation design procedure has pee[h this paper, all matrices are with appropriate dimensions if the
proposed. Basically, there are still many open problems associaifghensions are not explicitly stated. The notati§n> 0 means that
with simultaneous stabilization. X is a symmetric and positive definite matrix.

Recently, Blondel and Gevers [8] discussed the complexity of First, let us consider the linear time-invariant plaitdescribed
simultaneous stabilization and proved that the simultaneous stal- the equation

lizability of three linear systems is rationally undecidable. From their
paper, one may conclude that this problem is very difficult due to w(t) = Ae(t) + Bu(?),  w(0) =0 @
its NP-hard nature (see also [26] and [27]). Fortunately, this doﬁﬁ’lerem(t) € R" is the state vector(t) € R™ is the control vector,

not signify the end of the simultaneous stabilization problem. Ong,y 4 B are constant matrices. The following lemma is well-known
possible approach to deal with this kind of problem is to find 4], [15].

efficient numerical algorithm. It now becomes clear that an effective | amma 1: Let the plantG be given by (1). The® is stabilizable

via state feedback if and only if there exist matrideés> 0, @@ > 0.
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The LQ control problem with cross term, which we take as theloreover, the simultaneously stabilizing static output feedback con-
basis for our development, involves minimizing the cost troller can be constructed from

e . - - _ p=lar~T T\—1
v(xg) = / (:cl Q4 2u’ Sz + u[Ru) dt 2 K=R"MC(CC). (13)
0

The proof is similar to that of [19] and [25]. Some subsequent

where @ > 0, R > 0, and § are constant weighting matrices o rections and comments may be found in [17], [23], and [24]. The

satisfying necessary modification in the definition af is that
Q-S"RT'S>0. 3) 0" = max (a)
The solution of the LQ control problem associated with (1)—(3) is [u;)lllhere B
w=Kz, K=-R'B'P+5) S (P A+ AT P

*
a; = max

» 2T(ELMTR'R-1ME,)’

/ Fva T T p—1 T _
PA+A"P—(B"P+ SR B'P+S)+Q=0. (4 e d Ker(MEL). 2 £ 0. i=1, .1

. Lemma 2: Let thg plant& be given by (,1)' Ther.d; is stabilizable Another modification is that (10) is also a necessary condition as a
via state feedback '_f ar_1d only if there exist mat_ndés> 0,0>0, consequence of Lemma 1. In [19] this fact has been ignored, hence
R > 0, and S satisfying (3) and ARE (4) with cross term, O'the main result is invalid (see [24)).
equwalent_ly, there_ .eX'St matr_lceg >0, B >0, and§ satisfying This theorem implies that simultaneous stabilization via static
the following modified ARI with cross term: output feedback can be viewed as the solutionrafoupled LQ

PA+A"P—(B"P+S) 'R B"P+S)+S"R™'S <0. (5) control problems with suitable weighting matricét, R, and S"

in the functional (2) satisfying the coupled constraint (11).
Remark 2: Lemma 2 was established in [24]. Based on its proof Corollary 1: Given the planti in (1), it is stabilizable via static
in [24] and Lemma 1, it can be shown that for aRy> 0, ARI (5) output feedback if and only if there exist matriogs> 0, R > 0,
has a feasible solutionfX .S) if and only if (A, B) is stabilizable. and M such that the following constrained ARE:

PA+A"P—(S4+B'"P)')RY(S+B'"P)+Q=0 (14)
Q-S'R'Ss>0 (15)
S=ME,-B'P (16)

I1l. A N ECESSARY AND SUFFICIENT CONDITION

Now we consider the simultaneous stabilization-gflantsG;
€T t) = A;x;(t) + Biu; (t s y; (8) = Cha (t 6 . . . .
( *) *) vilt) ® © has a solution” > 0, or equivalently, there exist matricd3 > 0,
where the stater;(t) € R", the inputu;(t) € R™, the output R > 0, andM satisfying the following constrained ARI with suitable
yi(t) € RP andn is the order ofG;. We assume cross term

Ci=C, i=1,--,r (7) PA+A"P—(S+B'P)'R'(S+B'P)+S'"R'S<0. (17)

andC has full rank. For example, this condition is satisfied for single- Remark 3: Corollary 1 is the corrected version of [19, Th. 3.1] (see
output plants of the same order since it is always possible to reali2d]). By comparing Theorem 1 and Corollary 1 with Lemma 2, it can
them in minimal observable form. In addition, for multiple modebe observed that the range space of the cross matigxconstrained.
control of r modelsG;(s) of an uncertain plant, uncertainty oftenln the case of static output feedback, constraint (16) appears, and so
exists only in the system matrix and (or) input matrix. In thesd/ € R™*? becomes the free variable instead.%fc R™*". S is
situations, (7) is satisfied. LeE be the right inverse of”, i.e., related to the output matriX’ such thatS € Range(C'). For the

CFE = I, where], is the identity matrix of ordep. SinceC has static output feedback simultaneous stabilization- gflants, M is

full rank, E can be constructed from the coupling variable. Obviously, this condition is not related to the
o P number of the plants to be simultaneous stabilized. In [7], however,
E=C(CCr) . () the number of plants is restricted by the dimensions of the input and

output.

Corollary 2: Let » plants G; be given by (6), then they are
simultaneously stabilizable via state feedback if and only if there
efdst matricesP* > 0, R > 0, Q' > 0, and M satisfying the
\"ollowing coupled ARE’s:

So E, = EC is the orthogonal projection matrix dm(C”) and
vy, = E,x = Ey.

Theorem 1: Let » plants G; be given by (6) with same output
matrix C', then they are simultaneously stabilizable via static outp
feedback if and only if there exist matricéd > 0, R > 0, Q' > 0,

and M satisfying the following coupled ARE’s: P'A 4+ AP —(S"+B PY' RS +B P+ Q' =0,
PA+ATP — (8" + BTPHY' RS + B P+ Q' i=1,-r (18)
=0, i=1-,r (9) i il -1 i
e Q' -S R'S'>0

Q' -S R7'S'>0 (10)

S'=ME, — B P (11) §"=M-BP (19)
or equivalently, there exist matricé® > 0, R > 0, and)M satisfying or equivalently, there exist matricé% > 0, R > 0, andM satisfying
the following coupled ARI's: the following coupled ARI's:

PA 4+ AP —(S"+ B PHY'RT'(S"+ B P) PA 4+ AP —(S+B'P)Y' R (S + B P)

+S RIS <0, i=1,--, 1 (12) 1S5 RIS <0, =1 -, (20)
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Remark 4: Note that Corollary 2 corresponds to the case where Proof—Sufficiency:Note that
C =1 in Theorem 1. An obvious advantage of the above approach " T N .
is that the quadratic stability is not required to be satisfied [14], [16]. PA+aA°P _,PBR 5r _MS R B P-PBR™S
This is because a different plant is associated with a different Lya- <PA+A"P-PBR'B'P-S'"RT'B'P
punov matrix?;. In general, the results are usually more conservative —PBR'S+S"R™'S
if quadratic stability is used to treat simultaneous stabilization. — PA+ATP—2PBR'B"P+(BTP -5 R

(BTP-5)<0.
IV. AN ITERATIVE LMI A LGORITHM

In this section, we present an iterative algorithm based on theNecessity: It is not difficult to see that there must exist a scalar
theory in earlier sections to simultaneously stabilizelants in (6) # > 1 such that
via static output fee(_jback a_md state feedb_ack control. . PA+A'P—PBR'B'P-S"R"'B'P— PBR™'S

From the results in Section lll, the static output feedback stabi- o Tt
lization problem is transformed into solving (17) under constraint to TS RTS<0 @4)
(16). Moreover, the static output (respectively, state) feedback simpls
taneous stabilization problem become the feasibility of inequalities . . - B
(12) [respectively, (20)] under constraint (11) [respectively, (19)]. PA+ A" P — (> +1)PBR™'B' P+ (pB'P - p~'S)" R~
Obviously, as the constraints (1_1),_(16), and (_19) are all linear, the . (pBTp —p7'S) <o.
key to solving these problems lies in the solution of (5).

In fact, all of the above matrix inequality problems belong tdience
the class of bilinear matrix inequality (BMI) problems, which are T 5 17 T T e
generally very difficult for which to obtain solutions or to determine PA+A 1;_ 2p EBR B P+(pB P —-p8) R
feasibility [26]. However, if we can derive an iterative form for its “(pB"P—p75) <0.
feasibility, we may construct an iterative algorithm based on the leg
technique [22]. Inequality (5) is equivalent to the following nonlinear
matrix inequality:

ubstitutingp? P with P, we obtain (23). [
Due to the negative sign in the2PBR™ B” P term, (23) cannot

be simplified to an LMI. To accommodate the2PBR™*BTP
PA+ATP-PBR'B"P-S"R'B"P-PBR'S < 0. (21) term, we introduce an additional design variabfe Since (X —

P)Y'BR™*B*(X—P) > 0 for anyX andP of the same dimension,

From Remark 1 and the proof of Theorem 1, we mayket= I we obtain

sq that (21) becomes_ a BMI problen_m In fact, this selection is X"BR-'B"P+ P BR-'B"X — X"BR~'BTX

without loss of generality for the following reason. From the proof -

of Theorem 1 (see also [19] and [23]), it can be seen that if the <P BR B P (25)

lants are stabilizable simultaneously via static output feedback thﬁn . . . - .
P . y P ' e equality holds ifX = P. This leads to a sufficient condition for
a sufficiently largen can be chosen so that whed = oI, there

exist matricesP* and M that satisfy (12) and (11). Consequently,t he feasibility of the BMI (21)

P=a'P,S=a'S"\M=a'M'R=1i=1-,r, A'P+PA—2XBR 'B'P-2PBR 'B'X

is also a solution of ARI’'s (12) constrained by (11). In other words, ovnp—!nTv Tp _ \Tp-l/pTp

a feasible solution exists for BMI (21) witk = I. In fact, we have FIXBRTB X (B P -5 ET(B P —5)<0. (20)

established the following result. Theorem 3: There exists a feasible solutiof (> 0, S) satisfying
Corollary 3: Let r plants G; be given by (6), then they are the BMI (21) if and only if there exist a matri§ and two matrices

simultaneously stabilizable via static output feedback if and only > 0 and X > 0 satisfying the matrix inequality (26).

there exist matrice®" > 0, Q' > 0, and M satisfying the following Proof: The sufficiency is obvious, thus only the necessity needs

coupled ARE'’s: to be proven. Obviously, if BMI (21) has a feasible solutidh

; o ; T s T i T i 0, S), then there exists a positive real number 0 such that

PA+A P —(S+B/'PY (S+B/'PHY+ Q" =0,

i=1-,r

i T i Y T pi
Q-5 S >0, S“=MFE, —B; P

A"P+PA-2PBR'B"P4+(B"P-5)"R™!
(B"P—-S)+cI<0.
. i X >2BR'BT X =P—-AX
or equivalently, there exist matricd3' > (0 and M satisfying the stflfr(:zéyrfnfﬁg%??};lﬁhgn B and set '
following coupled ARI's: ST ’ -
. o o P 2(P-X)BR 'B"(P-X)<cl
P'A;i+ AP —(S"+ B/ PHY'(S'"+ B/ P')+ 5" § <0,
=1 ey 22) So (26) holds. ]

o Using the Schur complement, (26) is equivalent to the quadratic

Theorem 2: There exists a feasible solutioR (> 0. S) satisfying Matrix inequality shown in (27), at the bottom of the page. This BMI

the BMI (21) if and only if the following matrix inequality holds: ~POints to an iterative approach to solve the matriseand > > 0,
namely, if X is fixed in (27), then it reduces to an LMI problem

PA+A"P-2PBR'B"P+(B"P-S)"R™'(B"P—-5) < 0. inthe unknownsS and P. The LMI problem is convex and can be
(23) solved if a feasible solution exists.

A"P4+PA—-2XBR'B" —2PBR™'B"X +2XBR™'B"X (B"P-5)"

(B'P - 5) _R <0 (27)
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When X is fixed, however, LMI (27) is only a sufficient condition This is because if
for feasibility of BMI (21). In fact, if we find its solution, then we
find a solution of (21). Unfortunately, it has no solution is general. T o7 T T
On the other hand, if we simply perturb (26) by3 P, then we obtain AP+ PA-2XBB I -20BB X +2XBB° X
a necessary condition for static output feedback stabilizability, i.e., - 8P+ (BTPi — S)T(BTPZ' -95)<0

A"P4+ PA-3P-2XBR'B"P-2PBR™'B"X

: then
+2XBR'BTX + (BTP- "R Y (BTP-5)<0.

Consequently, the closed-loop system matrices- BKC' have ATPi+ PA=2PBB" P~ 3P+ (B' P~ S)(B' P~ 5) <0
eigenvalues on the left-hand side of the lifg¢s) = 3/2 in the

complexs-plane. Based on the idea that all eigenvalued ef BK'C' 5 goiution Bis1 < B: can be found in Step 2) Wit =
are shifted progressively toward the left half-plane through thg. 3 -

s M+l — H
reduction of 4, we may close in on the feasibility of (2). In the  Remark 7: The existence of a solution of optimization problem
following algorithm, we will fix R = I.

' ) - ! . OP2 is ensured by (28). The solutidh is a symmetric positive-
Iterative Linear Matrix Inequality (ILMI) Algorithm: definite matrix which implies that the sequeneece(P;) is bounded

Step 1) Set = 1, select() > 0. Solve the following ARE: below. It is not difficult to find that the solution sequencece(P;)
. . is a monotonic decreasing sequencg;ifis fixed fori > k andk is
A"P+PA-PBB'P+Q=0 a positive constant. Due to the effect of numerical errors in Step 2),
optimization problem OP2 may be infeasible. In such a case, we set
and setX = P. Bi = Bi + Ap; for some small positive numbeXx3; and solve OP2
Step 2) Solve the following optimization problem By, M, and again.
3. Remark 8: This algorithm can be easily extended to find a solution
OP1: Minimizes; subject to the LMI constraints shown for the static output feedback simultaneous stabilization problem
in (28)-(30), shown at the bottom of the page. involving » plants with the same output matrik'. In this case,
Step 3) If3; <0, (P, S) is a feasible solution. STOP. (28)—(30) should be as shown in (31), at the bottom of the page,

Step 4) Solve the following optimization problem & and. and in Step 4)race(P;) should be replaced by"!_, trace(P}).
OP2: Minimize trace(P;) subject to the LMI con- By duality, the static output feedback simultaneous stabilization of

straints shown in (28)—(30). plants with same input matri® can also be considered.
Step 5) If||X — P;|| < 6, a predetermined tolerance, go to Step
6); else setX = P, andi =i + 1, then go to Step 2). V. EXAMPLES

Step 6) This algorithm cannot get a feasible solution. STOP.  Example 1: Consider the following linear parameter-varying
Remark 5: The optimization problem in Step 2) is a generalize@lant:
eigenvalue minimization problem. This step guarantees that the poles )
. s+ \/ﬁ +1
of the closed-loop system move to the left half-plane progressively.  G(s) = — Z-10 YN 3<8< 11
The optimization problem OP2 is necessary to guarantee the conver- 52+ ( )5 436+
gence of the algorithm. Numerical experiences indicated thaiay =~ The nominal operating point i% = 7. We consider simultaneously
converge slowly in some cases. One way to terminate the algoriti#dbilizing three plants at operating poirts = 7, #; = 3, and
is whenj;_1 — /3 is smaller than a prescribed tolerance for a fixelz = 11. The minimal realizations of these three plants are
number of successive iterations. In Step 3), if a feasible solution is -39 1 1 1 1
obtained and the feedback gain is too large, one may,set0 and 40 = {—32 ()}’ Bo = {3.646}" A= {—2() ()}
let the algorithm continue iterating to make the differenceXofind 1 ~111 1 1
P as small as possible. . . B = [2_732}’ A2 = {—44 0}’ B {4.317}
Remark 6: Inequality (27) plays a crucial role in the ILMI algo- CoeC == 0
rithm. Obviously, there always exists a solution for the optimization ~° ~ '~ ~*~ [t ol
problem OP1 when = 1. For¢ > 1, the existence of the solution Using the ILMI Algorithm, we obtaind = —5.464 and K =
is guaranteed by (27). For a given stabilizable system (that is, (27).9322x10" only after one iteration. The feedback gain is unaccept-
has a solution), the solution sequengeis a decreasing sequenceably large and hence the algorithm is allowed to continue iterating.

AP, + PA-2XBB"P, - 2P,BB*X +2XBB'X - 3,P, (B'P, -S)" <0 (28)
BTpP. -5 -1

S=ME, —-B"P, (29)

P=PF>0 (30)

[A]T P/ + P/A; —2X'B;BI P/ —2P/B;B] X’ + 2X'B;B X’ — 3;P/ (B] P/ - SJ')’T} <0

BIP/ — & -I

S’ =ME, — B/ P/
PI=P", =11 (31)
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TABLE |
PARAMETER VALUES FOR EXAMPLE 2
Operating point 1 2 3 4
Mach number 0.5 0.9 0.85 1.5

Altitude (ft) 5000 35000 5000 35000
aj; —0.9896 -0.6607 | -1.702 | -0.5162
ap 17.41 18.11 50.72 26.96
aps 96.15 84.34 263.5 178.9
an 0.2648 0.08201 0.2201 —0.6896
az -0.8512 | -0.6587 | —1.418 ~1.225
az; -11.39 —10.81 -31.99 —30.38
b -97.78 -272.2 -85.09 —175.6

After 29 iterations, we obtained” = —2.5709, M = [2.5709
and

0],

1281

S, =[-0.0152 —0.1622 0.1009]
S5 =[-0.0141 —0.1219 0.0649]
Sy =[-0.0187 —0.1679 0.0715].

The eigenvalues of the four closed-loop systems a®7236,
—33.1021, —3.6899; —33.5600, —5.3834, —1.8588; —32.5675,
—2.9751+ 3.609%; and—3.5694+ 5.3054, —31.9763, respectively.
Hence, this state feedback simultaneously stabilizes these four plants.

Now we assume the states are not measurable directly and the
output matrix is given by

12 0
C‘L 0 —2}'

In this case, the third plant is honminimum phase. The zeros are
19.2431+ 11.1025 and 12.6260, 22.1417. Using the above algo-
rithm, 3 = —0.0427 is obtained after 41 iterations. To achieve a

= [ 7.5030 —0.0030} % 102 smaller gain, the algorithm is allowed to continue iterating, only after
[—0.0030  0.1521 another three iterations, and we get
So =[2.4960  — 0.0055] K =[0.1109 — 0.0952]
p [ 12929 —0.0140 }
! —0.0140  0.04839 M =[1.2874 —0.6437 0.6437]
51 =[1.3162 - 0.1182] [0.1879  1.1538  0.0435
P, = [ 2.8464 —0.0004} % 102 Py = [1.1558 10.0022 0.1725 | « 1077
| —0.0004 0.0438 10.0435  0.1725  1.0490
52 =[2.5425 - 0.0019] 0.0194 0.2780  0.0084
The eigenvalues are-40.5506,—1.0203; —0.7855+ 5.1388; and P, = [0.2780 3.9787 0.09431 | x10~°
—113.0837~-0.4872, respectively. Hence, the above output feedback [0.0084 0.0943  0.9503
gain stabilizes simultaneously the plants. - - _ .
Example 2: Consider an F4E fighter aircraft model considered in P, = ggggg géigg _g;i;g «10-3
[o1-12] —0.1426 —2.7429  5.7825
ayr a2 ars b _
i) = |an  an ass |2+ | 0 |u. 0.0509 0.2021 0.3420 .
0 0 —30 30 P, =10.2021 4.0981 —-1.0280 | «10™
10.3420 —1.0280 5.2243
The values of the parametets;, a1z, a13, a21, a2, azs, andb; at
different operating points are given in Table I. 51 =1[0.001426  —0.1139  —0.2177]
_Now we con;ider s_imultan_eously stabilizing the four plants at So =[-0.0106 —0.1480 — 0.2167]
different operating points using the ILMI Algorithm. After one
iteration with B = 1, a solution is found with S3 =[-0.008302 —0.0952 —0.3761]
3 = —3.6021, K =[0.9865 7.8075 — 6698]+ 10 S4 =[-0.01697 —0.1554 —0.2872].
while after 24 iterations The eigenvalues of the four closed-loop systems a®7714,
K =[0.0218 02391 —0.1180] —22.2118, —-4.6724; —6.9586, —1.8756, —21.0284; —4.4036 +
2.6944, —19.9292; and-4.9677+ 5.1719, —18.8380, respectively.
M =[-0.0218 —0.2391 0.1180] Hence, this output feedback simultaneously stabilizes these four
[0.1530 1.1928 0.0577 plants.
Py = [1.1928 9.7085 0.1447 | x 107°
10.0577 0.1447 0.3292 VI. CONCLUDING REMARKS
[ 0.0193  0.2261 —0.0443 The main point of this paper is to propose a numerical algorithm
P=| 02261 27315 —0.5142 | x 1073 to solve the problem of simultaneous stabilization via static output
—0.0443 —0.3142  0.1679 feedback and state feedback control. A necessary and sufficient
) condition for simultaneous stabilizability of a collection of MIMO
0.0350  0.4508 —0.1586 plants via static output feedback is given using a collection of
Py =| 04508  6.4330 —2.6305 | x 10~° coupled ARE’s and ARI's. The corresponding result for the state
|—0.1585 —2.6305  1.3205 feedback case is also derived. The simultaneous stabilization problem
[0.0371 0.1361 0.1143 is recast as a computational procedure. An iterative algorithm based
P, = |0.1361 96636 —1.5783 | x 103 on the LMI tgchnlque has be_en presented. Although the issue of
0.1143 —1.5783 99186 convergence is yet to be established, the effectiveness of the approach
- is demonstrated well by numerical examples involving this class of
51 =[-0.0086 —0.1269 0.1138] BMI problems.
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