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The Fundamental Role of General Orthonormal Bases
in System Identification

Brett Ninness,Member, IEEE, Håkan Hjalmarsson,Member, IEEE, and Fredrik Gustafsson

Abstract—The purpose of this paper is threefold. Firstly, it
is to establish that contrary to what might be expected, the
accuracy of well-known and frequently used asymptotic variance
results can depend on choices of fixed poles or zeros in the
model structure. Secondly, it is to derive new variance expressions
that can provide greatly improved accuracy while also making
explicit the influence of any fixed poles or zeros. This is achieved
by employing certain new results on generalized Fourier series
and the asymptotic properties of Toeplitz-like matrices in such a
way that the new variance expressions presented here encompass
pre-existing ones as special cases. Via this latter analysis a new
perspective emerges on recent work pertaining to the use of
orthonormal basis structures in system identification. Namely,
that orthonormal bases are much more than an implementational
option offering improved numerical properties. In fact, they are
an intrinsic part of estimation since, as shown here, orthonormal
bases quantify the asymptotic variability of the estimates whether
or not they are actually employed in calculating them.

Index Terms—Parameter estimation, system identification.

I. INTRODUCTION

A RESULT that has found great utility in practical applica-
tions of least squares system identification methods [8],

[21], [2] is that the sensitivity to measurement noise of the
ensuing frequency response estimate may be quantified
as [25], [22], [24], [50]

(1)

where and are the measurement noise and input
excitation spectral densities (respectively),is the length of
the available data record, and is the order of the model

In [25], [22], and [24] an essential principle in deriving (1)
is to establish that

(2)
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and then assume that in fact (2) holds approximately for finite
and hence the result (1).

A main contribution of this paper is to show that in fact, for
several commonly occurring situations, the approximation (1)
can be quite misleading, even for largeand For example,
problems are shown to occur when employing model structures
with fixed denominator terms or when utilizing extensions of
ARX structures with fixed noise model zeros.

Given these new observations, a more important purpose
of this work is to establish how (1) should be modified so
as to provide improved accuracy. In deriving these enhanced
accuracy expressions, the third and final main theme of this
paper emerges, namely, to provide a new perspective on the
role of orthonormal model structures in system identification.

To elaborate more on this final point, there has recently been
significant activity on the system identification application of
special classes of fixed denominator model structures that are
constructed to be orthonormal; see for example [44], [45],
[15], [37], [34], and the references therein. This latter work has
been motivated by two main factors: firstly, the achievement of
improved numerical conditioning and secondly, the provision
of efficient parameterizations that allow decreased variance
error while still minimizing bias error.

However, this second feature is not dependent on the
orthonormal property of the model structure. This is so
since the orthonormal structure is, under a linear parameter
space transform, equivalent to any other equivalently flexible
nonorthonormal structure with the same fixed poles. As well,
since least squares methods are employed, the estimates
depend linearly on the output measurements. Therefore,
modulo numerical issues,preciselythe same estimates of the
system frequency response, are obtained whether or not one
goes to the effort of implementing an orthonormal structure
as opposed to a simpler structure wherein (for example) the
denominator is fixed, and only the numerator coefficients are
estimated.

Given this observation, a key contribution of this paper is
to discover a new role for orthonormal bases in a system
identification context that is beyond their implementational
advantage of improved numerical conditioning. This insight,
which involves exposing that orthonormal bases play a far
more fundamental role in system identification theory than has
been previously suggested, is achieved by taking a different
approach to that of previous work [44], [45], [15], [37],
[34] where only model structures parameterized in terms of
orthonormal bases have been considered. In contrast, it is
shown here how orthonormal bases may also be used as an
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analysistool to determine the properties of estimates derived
with respect toany model structure.

In particular, this strategy achieves the aforementioned goal
of improving the accuracy of (1) by replacingin (1) with a
function which is the so-called “reproducing kernel”
associated with a particular-dimensional subspace and which
depends on fixed poles or zeros. Note that even if such fixed
components are not explicitly present in the model structure,
they are implicitly there whenever the common practice of
data prefiltering is employed; see Section VII.

As well, by utilizing the orthonormal basis formulation of
[34], an explicit formula for can be generated which
clearly shows how and hence is
affected by fixed model structure poles or zeros. For example,
it will be seen that in the special case of all the poles/zeros
fixed at the origin (FIR/ARX model structures) ,
and hence (1) arises as a special case. However, if all the poles
are not chosen at the origin, then inclusion of the
term in place of in (1) is shown here to smoothly extend the
original analysis of [22], [25] and in so doing provide more
accurate approximation of over a wider range
of circumstances.

The paper is structured as follows. In Section II a short
simulation example demonstrating the possible inaccuracy of
the variance error approximation (1) is presented to moti-
vate the ensuing analysis. The paper then provides a formal
problem definition in Section III and in so doing allows
Section IV to theoretically examine and hence isolate the cause
of the inaccuracy demonstrated numerically in Section II.
This leads to the work of Section V where it is shown how
new techniques, based on new system theoretic results per-
taining to generalized orthonormal bases, generalized Fourier
convergence, and generalized Toeplitz-like matrices may be
employed to provide a variance error approximation which, in
some circumstances (such as those illustrated in Section II),
is a great improvement over the pre-existing one (1). In
Section VI it is shown how the same new tools may be
used to also quantify the bias error for fixed denominator
model structures. By the end of Section VI the paper has
exclusively focused on fixed denominator generalizations of
the FIR structure, but in Section VII the scope is broadened
to also consider ARX-like structures with fixed zeros in the
noise model. In analogy with the preceding analysis, it is
demonstrated that if all the noise model zeros are not fixed at
the origin, then the asymptotic variance expressions derived in
[22] and [24], although prima facie applicable, are also liable
to suffer from inaccuracy, the severity of which depends on
the proportion of nonorigin placed zeros. Motivated by this, it
is demonstrated in Section VII how the same new techniques
and results of previous sections can be brought to bear in the
ARX modeling context so as to provide new approximations
whose validity is not degraded by choosing noise model zeros
away from the origin. Finally, Section VIII provides some
concluding perspectives on the results and techniques of the
paper.

There have been a number of contributions dealing with
certain aspects of the problems considered in this paper, the
foremost of which are [25], [22], [44], [45], [15], [37], and

[10]. The sequel will comment on how these foundations relate
to the paper at hand.

II. M OTIVATION

In the interests of clearly motivating the analysis of this
paper, consider the simple case of estimating, via least-squares,
an th-order FIR model of the true system (the zero-
order hold equivalence is calculated using a sampling period
of 1 s)

by observing 10 000 samples of its input–output response when
the former is a stationary Gaussian process with spectral den-
sity and the latter is corrupted
by zero mean Gaussian white noise of variance
In this case, since both and can reasonably be considered
“large,” then the approximation (1) could be expected to
hold. This can be checked by Monte Carlo simulation over,
say, 500 input and noise realizations so as to estimate the
variance by its sample average, which can then
be compared to the approximation (1). The results for just such
an experiment are shown in Fig. 1 with the agreement between
(dashed–dot line) the expression (1) and the sample average
(solid line) being excellent. Note that in this simulation (and in
all the rest to follow in this section), the bias error is negligible,
and hence the variance error represents the total error.

Now suppose, as may commonly occur in practice, that
prior knowledge of the poles of exists. Then in the
interests of decreasing the bias error it makes sense to try
to incorporate this prior knowledge in the estimation process
by fixing some poles in the model near where it is believed
the true poles lie [44], [15]. For example, suppose in the
previous simulation it is believed that a dominant pole is near

so that guesses of, say,
are to be incorporated into the model structure. This can
be implemented by simply prefiltering the input by

before an FIR
“numerator” model is estimated, and then the complete
system may be taken as the fixed-pole
estimate of the underlying dynamics.

Since the model order is still large , then (1)
should still provide a quantification of the variability of this
new estimate by labeling the FIR estimate asand reasoning

(3)

which is unchanged from the normal FIR case. This un-
changing nature is also reasonable, since the FIR case can be
considered as already incorporating prior knowledge of system
poles; namely poles near the origin.
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Fig. 1. FIR with all poles at origin. This is a comparison of a Monte Carlo estimate of sample variability (solid line) with (dashed–dot line) the approximate
expression (1). Note that this last line obscures a dashed line which is the new approximation (53). The obfuscation occurs because for the case of all
poles at the origin, the pre-existing approximation (1) and the new one (53) are identical.

Fig. 2. FIR with four poles away from origin. This is a comparison of the Monte Carlo estimate of sample variability (solid line) with (dash–dot line) the
approximate expression (1) and (dashed line) the new improved approximation (53) derived in this paper.

Interestingly, when the expression (3) is compared to Monte
Carlo calculated sample variability as it is in Fig. 2, then
the agreement between the true variability (solid line) and
approximation (3) (dash–dot line) is seen to be not nearly as
good as is Fig. 1. Nevertheless, the expression (3) still provides
useful information on the qualitative “high-pass” nature of how
the true variability changes with frequency. The dashed line
near the solid one in Fig. 2 will be commented on in a moment.

Now suppose even more guesses of system
poles are made, say, at the locations

with the

sample variability again being compared to (3) in Fig. 3. In
this case there is virtually no agreement (even qualitative)
between true and predicted variability.

Clearly then, the well-known approximation (1) can be
quite misleading in situations where it would be expected
to be reliable, and this apparently puzzling and practically
important phenomenon is the motivation for this paper. In
the work to follow, the conundrum just illustrated will be
resolved by exposing certain hitherto unappreciated principles
pertaining to when it is advisable to conclude (1) on the
basis of (2). Furthermore, a new expression to extend (1) will
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Fig. 3. FIR with eight poles away from origin.

be derived which is shown as the dashed line in Figs. 1–3
and which (by consideration of those figures) can clearly
offer greatly improved approximation of the true variability
in certain circumstances.

III. PROBLEM FORMULATION

Having provided certain motivating arguments, the remain-
der of the paper proceeds more formally. The problems studied
in this paper are ones in which point data records of an
input sequence and output sequence of a linear time
invariant system are available. It is assumed that this data is
generated as follows:

Here is an unknown transfer function describing, in
terms of the forward shift operator the system dynamics
that are to be identified by means of the observations
and The output measurements are corrupted by a
zero mean and stationary noise sequence where

is a stable and stably invertible and monic transfer
function and is a zero mean white noise sequence with
varianceE and withE for some

The input is assumed to be quasi-stationary in the
sense used by Ljung [20] (or, equivalently, to be amenable
to the “generalized Harmonic analysis” of Wiener [48]) so
that it has an associated spectral density which
is assumed to be Lipschitz continuous of some order
The spectral density of the noise process is denoted as

and is also assumed to be positive and
Lipschitz continuous of order

The identification schemes considered here are ones in
which the prediction error framework [20], [43], [5] is used.
This requires a model structure

(4)

parameterized by a vector to be employed which is
of the form

This structure implies the following one-step-ahead predictor:

(5)

and associated prediction error

(6)

so that if the quadratic criterion

is employed, then based on the point data observation, a
least squares estimate of may be found as

(7)

The theory pertaining to the properties of such a method is
very rich. Germane to this paper are the properties that [20],
[43], [5]

as

where with E denoting expectation over the underlying
probability space that any random variables are defined on

E (8)

As well [23], [20]

as
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where

(9)

and with the definition of the prediction error gradient
as

then

E

E

E (10)

and

E

E

(11)

A key contribution of [20], [22], [25] is to recognize that in
applications, often the quantification of the parameter space
properties of are of secondary importance to their influence
on the associated properties of and
For the purposes of analyzing the latter, it is expedient to
define the composite transfer function

(12)

and argue by Taylor expansion that

where here denotes Euclidean norm so that with the

notation and with denoting
“conjugate transpose”

(13)

where

(14)

This suggests the approximation

E

Unfortunately, the evaluation of is always too com-
plicated to be useful. A key contribution of [22], [25] is to
observe that in contrast to the intractability of the limit

E

does have a simple and useful form; for example
for FIR model structures [25].

The suggestion of [22], [25] is to then assume that even for
finite and it can reasonably be expected that
has approximately converged to the simple form so that

E (15)

is a good approximation. The validity of this strategy is
argued via numerical example in [22], [25], [20], and indeed
it has won widespread acceptance as a tool for analyzing
the performance of least squares estimation schemes; see for
example [8], [21], [2], [12], and [16].

However, Section II has illustrated what seems to be the
unappreciated fact that in certain circumstances the accuracy
of (15) is not guaranteed even for what might be considered
“large” or Instead, it is indicated in Figs. 1–3 that
the presence of fixed model structure poles that are away
from the origin may seriously degrade the accuracy of the
approximation (1). The following section provides a theoretical
analysis of this previously unrecognized phenomenon.

IV. FIXED DENOMINATOR MODEL STRUCTURES

The observations of Section II will, in the interests of
generality, be addressed by considering the class of so-called
“fixed denominator” model structures. This terminology will
refer to structures of the form (4) in which the poles of

are prespecified and of which the archetypal example
is

(16)

with

(17)

for some user chosen poles
where denotes the field of complex numbers. Although this
is the quintessential form, the results to be presented here will
apply to a much more general class of “fixed denominator”
model structures (54), (55) considered later.

Specialized “orthonormal” versions of this structure have
recently attracted significant research attention [44], [45], [15]
where it has been suggested that although the choice
in (16) gives the common FIR structure, it is intuitively
more reasonable to choose the poles according to prior
knowledge so as to be close to the suspected true poles of

In order to explain why when using these fixed denominator
model structures, the prima facie applicable results of [25]
lead to such a poor approximation illustrated in Fig. 3, it is
necessary to precisely examine the steps used in [25] to arrive
at (1). For this purpose, first note that in the fixed denominator
case the prediction error gradient is given by
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where and

(18)

Therefore, so that from (10)

E (19)

Defining for any positive function the
symmetric Toeplitz matrix by (sometimes, in the

interests of readability, will be used in place of

(20)

then using Parseval’s formula the matrix , may be written
as [20]

(21)

where clearly It is also possible
[22], for the case of to establish that provided the
true system is in the model set then so that

Furthermore, by employing
well-known results on the asymptotic behavior of Toeplitz
matrices [11], [47] it is also true that

where the precise meaning of theoperator is that equality
occurs in Hilbert-Schmidt weak matrix norm (defined by

) as
Therefore, since in the fixed denominator case

and so that
and hence then from (14)

and the preceding Toeplitz matrix approximation

(22)

The final key ingredient facilitating the analysis in [25] is to
recognize that

(23)

where the are the Fourier coefficients of defined by

so that the left-hand side of (23) is in fact a Cesàro mean
Fourier reconstruction of which is known [51], provided
is continuous, to converge uniformly to on its domain and
with increasing

The reasoning underlying the proofs of [25] for the special
FIR case of then is that since by
(23) the expression (22) is theth-order Ces̀aro mean Fourier
reconstruction of then for large (22) should be
approximately described by

(24)

which is (1).
Now the mechanism leading to the possible inaccuracy

of (1) is exposed. In order for (1) to be an accurate ap-
proximation, it is necessary that theth-order Ces̀aro mean
Fourier reconstruction of inherent in (22) has ap-
proximately converged. The size of for which this may be
expected to hold depends [51] on the smoothness of

For the special FIR case of
the smoothness is fixed as the smoothness of so

that the approximation can be expected to monotonically
improve with increasing However, if poles are not chosen
at the origin then the smoothness of may
decrease with increasing so that convergence of (22) with
increasing need not occur.

Put another way, for poles of not at the origin,
the Fourier reconstruction inherent in (22) is with respect to
coefficients which are more accurately labeled as rather
than since they depend on the model orderbecause they
are the Fourier coefficients of In this case, as the
length of the Fourier reconstruction grows, the coefficients
may change if changes, so there is no guarantee that
approximate convergence has occurred for “large” but finite

Therefore, the more poles that are chosen that are away from
the origin, and hence the more dependent onthat
is, the less one should rely on (1) applying for finitesince
the less likely it is that the underlying Fourier series has come
close to convergence.

This is precisely the behavior demonstrated in Figs. 1–3 of
Section II.

V. VARIANCE ERROR FORFIXED

DENOMINATOR MODEL STRUCTURE

Initially, this analysis of the utility of (1) for certain model
structures may seem pessimistic since it indicates that much
higher model orders will be necessary before (1) can be
used. A main contribution of this paper is to show that in
fact this pessimism is unfounded since, as precursed by the
dashed lines of Figs. 2 and 3, it is possible to derive improved
approximations that do not require increased model complexity
in order to be accurate.

Central to achieving this goal is the consideration of par-
ticular rational basis functions, hereafter denoted as the set

and defined by ( denotes complex conjugation of
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scalar quantities)

(25)

They are orthonormal according to the inner product definition

(26)

where the orthonormality following
easily using Cauchy’s integral formula. These basis functions
have been discussed in detail in [34] in the context of gener-
alizing certain other orthonormal bases existing in the system
identification literature [44], [45], [37], [15].

One of the main contributions of this paper is to recognize
that the asymptotic frequency domain properties of
are invariant to reparameterizations of the model structure,
and to therefore not attempt the scrutiny of (16) directly, but
instead consider its reparameterized form

(27)

which, as will be demonstrated, is much more amenable to
analysis than the original form (16).

Pivotal to the ensuing study employing this idea is
the recognition of the importance of the so-called “re-
producing kernel” associated with the space

and which may be expressed
as

(28)

It derives its name from the property that for any and
such that then

(29)

and by virtue of which is unique [35]. In Section VI
it will be shown how the property (29) can be exploited in
order to quantify bias error, but to do so a more explicit expres-
sion for (28) is required. This has been derived in [35] where in
analogy with equivalent formulas in the study of orthogonal
polynomials [11], [41] it is termed a “Christoffel–Darboux”
formula

(30)

In this expression, is defined as the Blaschke product-
like quantity

However, deferring the question of bias error until later, the
purpose of this section is to quantify variance error, and for
this purpose it is necessary to modify the original Toeplitz
matrix formulation (20) to

(31)

which although formally identical to (31), is functionally quite
different in that the underlying orthonormal basis is not fixed
at the trigonometric one, but a generalization obtained by
redefining from (18) to

(32)

Matrices defined by (31), (32) will be called “generalized
Toeplitz” matrices, with the epithet deriving from the fact that
if all the poles are chosen at the origin then

is a bona-fide Toeplitz matrix, but otherwise it is not.
Pertinent to the employment of the matrices (31) in this

paper is that with denoting the matrix two-norm [9] and
as shown in [35] the following bounds apply:

(33)

Using the new notation (31), (32) the reparameterized model
structure (27) may be written as so that

and hence using (19) and Parseval’s formula
is a generalized Toeplitz matrix of the form

The matrix is more difficult to handle. To expand on this,
note that with the formulation

(34)

then and hence using the definition (11)

E

(35)

If the data are collected in open loop so that and
are uncorrelated, then this can be rewritten as

E E

E (36)

Considering only the first part of this expression, use of
Lemma A.1 in the Appendix permits its expression as

E E

(37)

This result (37) has been used in previous work [44], [45],
[37], [34] related to the results of this section but despite its
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importance, to the knowledge of the authors, a proof of (37)
has not previously appeared in any literature.

This still leaves the term containing components
to be dealt with. Clearly, from definition (34) these terms are
due to undermodeling, and if it so happens that is in
the model set, then they will be zero and hence (37) will
completely describe In the seminal work [25], [22], the
assumption of being in the model set for finite was
not made, and instead the effect of the components
was directly addressed. In subsequent work [44], [45], [37],
[34] related to this paper it has been assumed that since
eventually is to be considered, then the effect of

will eventually be inconsequential and hence can be
neglected from the beginning. However, since enters
into the formulation of in such a complicated way, it
is not obvious that its effect on will tend to zero with
increasing even if itself does.

As a result, this paper elects to in fact account for it by
using (37) to write as

where is the second term of (36) which, if neglected
ab initio as in [44], [45], [37], implies a presumption of

With these comments in hand, the analysis can proceed by
noting that from (9)

With the reparameterization (27), then
with being the generalized form (32) so that

(the derivative with respect to has been ignored
since it is zero) and hence from (14) the quantity
quantifying variance error may be written as

(38)

In order to simplify this for large it is necessary to know
something of the asymptotic algebraic structure of the gener-
alized Toeplitz matrices in this expression, and this turns out
to be a somewhat delicate question.

In related work [11], [47] pertaining to “classical” symmet-
ric Toeplitz matrices it is shown that

as where denotes the Hilbert–Schmidt
weak matrix norm defined earlier. In the generalized case
considered here, an equivalent result cannot be shown to
hold without overly restrictive assumptions being imposed
[35]. Instead, it is necessary to be more subtle and recognize
that in applications what is really important is how products

affect vectors only in the directions specified
by

This principle leads to the notion of asymptotic equivalence
between two matrices and with notation

as (39)

if for all

(40)

The utility of this idea is that if as then the
asymptotic consideration of quadratic forms of and in

are identical. Specifically, for any and
using the Cauchy–Schwarz inequality

(41)

However, taking advantage of the explicit forms of the repro-
ducing kernel made possible by (28) and (25)

(42)

(43)

where is some constant
independent of that is guaranteed to be finite provided all
the poles are chosen in some closed subset of the open
unit disk Substituting (43) in (41) then shows that the
latter tends to zero with increasing, thereby establishing the
asymptotic equivalence of the quadratic forms. Note the key
role played by the reproducing kernel

Of fundamental importance in using these principles to
clarify (38) are the results of [35] showing that if and
are any (possibly complex-valued) functions that are invertible
and Lipschitz continuous of some order and if all the
poles are chosen in some closed subset of the open unit
disc then

as (44)

as (45)

Applying these results to (38) then provides the formulation

(46)

as so that using the mechanism illustrated in (41)

(47)
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where

(48)

which using (33), the Cauchy–Schwarz inequality, and the
explicit form (28), can be bounded as

(49)

In order to further simplify (47) to some useful form, it is
pivotal that a generalized analog of the Fourier convergence
of (23) exists. Such a result is provided in [35] where it is
shown that provided then for any possibly
complex-valued but continuous

(50)

Again observe the key role played by the reproducing kernel,
and in particular note that use of the formulation (28), (25)
with gives so that the left-hand side of
(50) becomes the Cesàro mean (23). Because of this, the result
(50) can be seen to expand Fourier convergence analysis to the
general orthonormal basis (25) which contains the classical
trigonometric basis of (23) as a special case of In
fact, (50) is something more than this, since it also shows
convergence to zero if In the special trigonometric case
this latter specialization appears to have been first established
in [13].

Applying (50) to (47) then provides the result that (assume
for the moment that the limit exists—this will
be verified later)

(51)

The dividend of considering the orthonormal reparameteriza-
tion (27) rather than the more natural fixed denominator form
(16) is now revealed. Namely, in doing so (51) is derived
from asymptotic analysis of an expression (47) which involves
generalized Fourier analysis of an underlying function
whose smoothness is invariant to model order or fixed pole
selection. This crucial feature will permit the derivation of the
improved variance error approximation shown in Figs. 1–3.

Before further elucidating this point, the developments of
this section are formally collected in the following theorem
and corollary.

Theorem V.1:With calculated via (7) using the model
structures (16), (27) or any other structure with the same fixed
poles all chosen to lie within the open unit disk, then
with given by (28) and in the limit
as

where, provided the data is collected in open loop, all the poles
are chosen in a closed subset ofand

are Lipschitz continuous of some order , then with the
definition

where is defined by (48), then

where for some finite

Proof: It has already been established in (13) and (14)
that

as

where An extension of this is that
as

where

so that using the notation of (13), (14)

where

It has just been established in (51) that

which accounts for the asymptotic value of the diagonal terms
of For the off-diagonal terms note that using the
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formulation (46) and the definition (48) we have

However, by the argument leading to (43),
for some finite so that

Use of (50) then completes the proof.
The main use of this result will be to infer the nature of the

variability of However, as pointed out in [20],
convergence in distribution guarantees nothing about mean-
square convergence. Therefore, to be rigorous, it is necessary
to separately consider this, but fortunately such examination is
straightforward provided the assumptions on the noise process

are somewhat strengthened.
Corollary V.1: Under the same conditions as the previous

theorem, but with a strengthened requirement thatE ,
then

E

(52)

where

with defined by (48).
Proof: The proof follows from the previous theorem

using the methods in [20, Appendix 9B].
By drawing on the precedent of [25], [22] in which the

approximation (1) is derived from the asymptotic result (2),
this paper uses the new asymptotic result (52) and the explicit
formulas (28), (25) to suggest the approximation

(53)

Note that in providing this approximation, it has been assumed
as in [44], [45], and [37] that the undermodeling-induced
component is negligible, and this simplification will be
commented upon later. However, before doing so, there are
several important points pertaining to the approximation (53)
that need to be highlighted.

Firstly, the expression (53) is shown as a dashed line in the
Figs. 1–3 of Section II which, being so close to the sample
variability estimate of the true variability, illustrates that in
situations where some fixed denominator poles are chosen
away from the origin, the new expression (53) can represent
an approximation that is significantly more accurate than the
well-known one (1). As already suggested, the reason for
the improved approximation rests solely with the strategy

of reparameterizing with respect to the orthonormal bases
(25) in that by doing so, the asymptotic result (52) involves
considering convergence of the generalized Fourier expansion
(47) of a function whose smoothness is invariant to the
model order, so that the degree of approximation in concluding
(53) on the basis of (52) can be expected to monotonically
improve with increasing model order

By using this novel reparameterization approach, the es-
sential feature imbuing the new expression (53) with greater
accuracy than the pre-existing approximation (1) is that the
influence of the fixed pole location on
is quantified by the reproducing kernel ; see for
example Fig. 4 where the expression is plotted for
a variety of choices of In particular, note that for all
poles fixed at the origin, by the formulation (28), (25) then

so that in this special case of FIR modeling,
(53) is identical to (1). However, the more poles that are
not fixed at the origin, the more will (being then
frequency dependent) differ from and hence the more the
new approximation (53) will, in the interests of improved
accuracy, be perturbed from the original approximation (1).

A point to note is that Fig. 4 indicates that the choice
of poles could be conceived as a design variable for
decreasing variance error at particular frequencies. However,
not only might this incur an increased bias error if the
are chosen far from the true poles (see the following section),
but Fig. 4 also indicates that a decrease in variance error at
one frequency is traded against increases at another frequency.
In fact, it is a trivial consequence of orthonormality that the
areas (on a linear axis and divided by) underneath all the
curves in Fig. 4 are the same and equal to the model order

Another issue worth emphasizing is that the results in The-
orem V.1 and Corollary V.1 and hence in the approximation
(53) apply for any model structure (of which (16) and (27) are
special cases) of the form

(54)

where

(55)

with and arbitrary but such that the
eigenvalues of are

It seems quite unexpected that this variance quantification
role for the orthonormal bases given by (25) should arise
in such a fundamental manner in a problem that can via (54)
and (55) beab initio formulated with no orthonormality in its
structure.

The role of orthonormal bases in system identification is
therefore much deeper and more intrinsic than had previ-
ously been thought. This provides further motivation for their
employment and study that is in addition to the numerical ef-
ficiency and modeling efficiency features exposed in previous
works [44], [37], [15], [34].

Indeed, previous work which has pioneered the use of
orthonormal bases for system identification [44], [45], [37]
has also considered variance expressions which are restricted
versions of the form (53). For example, in [44] the use
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Fig. 4. Plot, for various choices off�kg; of term Kn(!;!) = �n�1
k=0

jBk(e
j!)j2; which captures the effect of pole choicef�kg on the transfer function

estimate sensitivity to measurement noise. Heren = 4:

of Laguerre bases is analyzed. However, this case may be
encompassed in the framework of this paper by choosing all
the poles the same and real-valued as in which
case (53) reduces to

(56)

which is the same as the result obtained in [44].
In [37], [15], which is the first work to consider the case

of possibly different poles, they are still all restricted to be
cyclically repeated from a finite set, say
and the result

(57)

is derived where with
being the particular set of orthonormal bases considered in
[37]. The quantity is the number ofcomplete repetitionsof
the whole setof bases in the model structure.

This latter point on complete repetitions of pole sets is of
crucial importance since it has been demonstrated here that
when inferring an approximation like (53) from an asymptotic
result like (57) it is vital that convergence of a result like
(57) can be reasonably expected to have occurred for finite

However, if all the fixed poles in a model are chosen
differently as in Section II, then Therefore, since (57)
is asymptotic in it cannot be argued that (57) can reasonably
be expected to have converged in this case of and
hence the theoretical justification for an approximation like
(53), which is derived on the basis of [37, eq. (57)], is in
these cases problematic.

On the other hand, using the methods of this paper, attention
is focussed on the asymptotic nature of (47) which converges

with increasing model order rather than pole set repetition
count. In view of this (and with the precedent of the foundation
work [44], [45], [37], [15] in mind) the new techniques
proposed here are considered to provide a more theoretically
sound argument for inferring a fixed order approximation from
an asymptotic result.

Indeed, because of the fixed pole restrictions involved in
previous work, the connections made here to general fixed
denominator models of the form (54), (55) were never made
and hence the fundamental relationship of orthonormal bases
to situations which are notab initio formulated in terms of
them has not been previously exposed.

A consequence of the pole restrictions imposed in the
previous work [44], [45], [37] is that it forces the bases
employed there to mimic the algebraic property

of the classical trigonometric basis. This allows
an elegant path to variance results to be followed, wherein
the problem is reduced to an equivalent FIR problem by
establishing, via a bilinear or multilinear (“Hambo”) transform,
an algebra isomorphism between and The original
results of [25] are then mapped through this same isomorphism
in order to generalize them [44], [45], [37].

As is evident, the strategy of this paper is completely
different and, apart from avoiding pole restrictions, it has
the dividend of illustrating new analysis methods employing
recently derived results [35] pertaining to generalized Toeplitz
matrices and generalized Fourier analysis. These new tech-
niques are considered to be of interest in their own right, as
they would appear to have potential for application beyond the
particular system identification setting considered here.

The final advantage of the methods pursued here are that
they permit an explicit formulation (28), (25) for the term
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revealing how fixed poles affect variability; in
previous work it has been implicit in a state-space construction
[37]. Indeed, by the recognition here that this term
affecting variability is a reproducing kernel, and hence unique,
a closed form expression for the equivalent term in [37] is
provided for the first time.

It remains to comment on the undermodeling-induced
term in the derivation of (53). Firstly, note that with its omis-
sion in Theorem V.1 so that the frequency response
estimates at different frequencies are asymptotically uncorre-
lated. Note also, that it can be argued that disregarding
is reasonable, since if one assumes for the sake of simplicity
that E E E
then using Lemma A.1 and assuming is a stationary
stochastic process

so that use of (33) provides

In this case, using (49)

Since it will be proved in Lemma VI.1 that the right-hand side
of this inequality tends to zero, theoretical justification which
has not been provided in some previous works of neglecting
the term is provided.

In fact, this can be made more rigorous in such a way to
even address the closed-loop case, but at the cost of more
restrictive assumptions.

Theorem V.2:Under the restriction that both and
are Gaussian-distributed zero mean stationary stochastic

processes, then the results of Theorem V.1 and Corollary
V.1 hold even for closed-loop data collection and with the

term guaranteed to be identically zero provided that the
substitution

is made in the statements of Theorem V.1 and Corollary V.1.
Here is to be interpreted as the spectral density of
the prediction error residual sequence defined in (6)
evaluated at the latter being defined in (8).

Proof: The assumption of open-loop data collection only
manifests itself in the proofs of Theorem V.1 and Corollary
V.1 by allowing the splitting of (35) into two terms in (36), the
first of which can have Lemma A.1 applied to it to conclude
that as where accounts
for the second undermodeling-induced term in (36). However,
under Gaussian assumptions, and regardless of whether or
not the data is collected in open loop, then instead of this
strategy Lemma A.2 may be applied directly to establish that

as (with ). The
rest of the proofs of Theorem V.1 and Corollary V.1 then go
through unchanged.

Therefore, in the Gaussian case, the new approximation
(53), which contains the pre-existing one (1) as a special
FIR case, is shown theoretically to hold for closed-loop data

collection. This is the first time a result like (53) has been
established for this case of “fixed denominator” modeling, all
the preceding work [25], [44], [45], [37] either applying only
for open-loop situations, or when considering closed-loop data
[22], applies only for the very rare case of the true noise model
being

To illustrate the efficacy of Theorem V.2, consider the
simulation conditions of Section II altered so that the closed-
loop scenario of a proportional controller of gain is
involved and that furthermore the reference signal has
spectrum and the measurement
noise has spectrum

The sample average and theoretical variabilities
given by (1) and (53) for this situation where eight poles in the
model structure are not at the origin are shown in Fig. 5. As in
Section II, the new approximation (53) shown as the dashed
line provides a more informative approximation to the true
variability (solid line) than does the pre-existing approximation
(1). Note that in using Theorem V.2 to form the (dashed line)
approximation in Fig. 5, it was assumed that (since the model
structure was considered “rich” and there were no common
parameters between dynamics and noise model) there was
negligible bias error, and hence that

An interesting point is that the simulation producing Fig. 5
specifically violated the Gaussian assumptions that Theorem
V.2 was derived under by using uniformly distributed random
processes. This robustness of the result to violations of the
assumptions it was derived under is considered encouraging
from the viewpoint of its practical utility.

VI. BIAS ERROR WITH FIXED

DENOMINATOR MODEL STRUCTURE

Having quantified the variance error involved with using
the structure (16), the paper now turns to the question of
quantifying the bias error, again by a strategy of considering
the equivalent but more tractable orthonormal reparameter-
ization (27). First, a key motivation for a model structure
such as (16) is the intuitive belief that for fixed any un-
dermodeling associated with lack of model structure richness
can be decreased by choosing poles in close
to the true poles in the underlying true system
The following theorem justifies this intuition by use of the
Christoffel–Darboux formula (30).

Theorem VI.1:Suppose has partial fraction expansion

where all the poles satisfy Put as the best
approximation to with respect to the basis functions

Then

(58)
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Fig. 5. FIR with eight poles away from origin; closed-loop data collection and a non-Gaussian (uniformly) distributed process.

Proof: Take Then since is analytic in
the use of Cauchy’s integral theorem provides

Also, by use of the defining property (29) of the reproducing
kernel

Using a change of variable then leads to

so that using the Christoffel–Darboux Formula (30)

(59)

Then by using (59) and Cauchy’s residue theorem

Writing with letting and using the
triangle inequality then gives the result.

Note that this bound is tight in the sense that if per-
fect knowledge of the poles of is available (so that

) then the upper bound is zero. The interpreta-
tion of the result is that the convergence of the expansion (27)
to the underlying system can be very much faster than
that of the special cases of FIR, Laguerre, or two-parameter
Kautz expansions if reasonable guesses of the poles of

can be made. This is so since

(60)

is analytic on and of modulus 1 on the boundary of
Therefore, by the maximum modulus theorem, the factor

(60) with that appears times in the bound (58) is of
modulus less than one, and hence the bound (58) decreases
geometrically with model order the geometric rate will
depend on the error term in the guess in the true
pole position

A bound similar to that of Theorem VI.1 is given, using
completely different methods related to the new theory of
“Hambo” transforms in [15]. However, it is less explicit
since it contains a constant scaling factor for which the only
information available is that it is finite.

The significance of Theorem VI.1 in the context of quantify-
ing the undermodeling-induced error in an estimated frequency
response is realized by noting that

(61)

so that for white the expression
(58) is a quantification of the asymptotic undermodeling-
induced estimation error.

Although (58) appears to be the most explicit statement
that can be made about undermodeling-induced error, it is
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possible to draw further conclusions that apply also when
is not white. For example, it is shown in [31] that the

frequency response magnitude is on average (over frequency)
underestimated in the sense that

Equation (61) may also be used to bound the bias error in
estimating by noting that since, under the condition

the are complete in then it
may be expanded as

(62)

Using this notation, the following bias error bound can be
obtained.

Lemma VI.1: Suppose that so that the
coefficients in (62) are well defined. Then

Proof: The method of proof is identical to that employed
by Wahlberg in [44]. Expression (61) characterizesas the
solution to

E

Using this and defining the sequence as

gives

E

But by Parseval’s theorem

E

Now, using the triangle inequality, the Cauchy–Schwarz in-
equality, and using (33) to bound provides

But from (62)

As mentioned for the particular case of Laguerre models
studied in [44], this indicates that as then will
converge to the expansion coefficients given in (62) and

hence the frequency response estimate will converge to the
true one provided the expansion coefficients in (62) decrease
sufficiently quickly so that

This is satisfied, for example, if is stable and finite
dimensional. In this case a simple argument using Cauchy’s
residue theorem shows that there exists a and
such that

VII. ARX-T YPE MODEL STRUCTURES

Although the fixed denominator model structure (16) and its
generalization (54), (55) have many practical advantages such
as relevance to “identification for control” ideas [1], [40], [27],
[33] and the requirement of only simple and robust numerical
procedures for the calculation of [44], [37], they suffer
from the drawback of relying on prior knowledge of pole
location.

A common strategy for avoiding this drawback is to estimate
the pole locations of while still involving a predictor
that is linear in so that the advantage of simple numerical
requirements for finding is retained. This is done by
employing the model structure

(63)

where

with

being the vector of parameters to be estimated and is
as previously defined in (17).

Here the dynamics and noise model share parameters in
As is well known, this can lead to bias if the model structure
is not rich enough [46], [20]. The motivation for including
the term in the noise model is to avoid this bias by
allowing for some while simultaneously,
through zeros of cancelling parts of that
pertain only to achieving sufficient flexibility for

Most commonly the model structure (63) appears with the
choice in which case it is known as the “equation
error” or sometimes “ARX” model structure and for which the
analysis of Ljung [22] provides, using the definition (12), the
well-known result (which holds, when at least asymptotically
in the true system is in the model set)

(64)

Here
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Fig. 6. Conventional ARX estimation with all noise model zeros at the origin. This is a comparison of the Monte Carlo estimate of sample variability (solid
line) with (dash–dot line) the approximate expression (64). Note that this last line obscures a dashed line which is the new approximation (79) because for
the case of all poles at the origin the pre-existing approximation (64) and the new one (79) are identical.

is the spectral density of the two-dimensional vector signal
defined as

The importance of the latter, as will become clear in a moment,
is to allow [by use of (5)] the prediction error gradient
to be expressed as

(65)

Since this strategy of avoiding bias can lead to overparame-
terization of the degree of which depends on how
many extra terms in are required for modeling
there is great importance in choosing the zeros not, in
fact, all at the origin but as close as possible to where the
true zeroes of are believed to lie. For example, if
has a zero near the unit circle, an AR expansion
accounting for this zero will need to be of quite high order
before it is accurate [39].

A main purpose of this section is to highlight that unfortu-
nately (and in resonance with the fixed denominator case) if
according to this motivation the are not all chosen at the
origin, then the approximation (64) can be quite inaccurate,
even for large model order and data length.

This perhaps unexpected phenomenon can be illustrated in
a fashion similar to that of Section II by considering the least
squares method (7) and an th-order ARX-like structure
(63) for the estimation of the “̊Aström system”

on the basis of observed open-loop input–output
measurements, the former being white Gaussian noise with
spectral density and the latter
being corrupted by white Gaussian noise of variance

Suppose also that all fixed noise model zeroes in
are chosen at the origin, so that a true ARX structure is

employed. Note that in this example, and all the rest following
in this section, the bias error in the estimation process is
negligible, and hence the variance error will represent the
total estimation error. In any event, since both
and can reasonably be considered large [22], then the
approximation (64) for the variance error could be expected
to be accurate, and indeed it appears to be so when shown
as the dash-dot line in Fig. 6, with the sample average (over
500 Monte Carlo simulations) estimate of the true variability
being shown as the solid line.

However, if three noise model zeros are moved away from
the origin to be at then the ensuing com-
parison of the theoretical (dash–dot line) approximation (64)
and the Monte Carlo estimate (solid line) of true variability
shown in Fig. 7 shows much less agreement. Continuing, by
choosing six noise model zeros away from the origin at

the results of this choice shown in
Fig. 8 indicate that now the approximation between (dash–dot
line) the theoretical approximation (64) and (solid line) the
estimated true variability is so poor as to be considered very
uninformative.

In contrast, the dashed line in Figs. 6–8 (which, in Fig. 6)
is equal to and hence obscured by the dash–dot line) remains
a good approximation regardless of the fixed zero position.
This line is in fact the new approximation to be derived in
this section, and again in resonance with the preceding fixed
denominator analysis, it involves replacing theterm in (64)
with a term Since the latter in fact equals for
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Fig. 7. ARX-type structure with three noise model zeros not at the origin; comparison of Monte Carlo estimate of sample variability (solid line) with
(dash–dot line) the approximate expression (64) and (dashed line) the new approximation (79).

Fig. 8. ARX-type structure with six noise model zeros not at the origin.

all the zeros at the origin, the original approximation (64) is
encompassed as a special case.

Also in accordance with the previous analysis, the improved
approximation shown in Figs. 6–8 is obtained by reparameter-
izing the model structure into an equivalent orthonormal form
which is tractable to analysis using the new generalized Fourier
and Toeplitz results of [35] presented in Section V.

It is, of course, first necessary to establish the theoretical
genesis of the inaccuracy phenomenon illustrated in Figs. 6–8,
and for this purpose it is necessary to give a brief synopsis of
the methods used in [22] to derive (64).

The conditions assumed there which are salient to the model
structure are that it satisfy what is called a “shift” property

formulated as the requirement that with defined as in
(18), an matrix of transfer functions exists such
that

(66)

where the dimension will be made clear in a moment
by example and denotes the Kronecker tensor product of
matrices defined for an matrix and an matrix

to provide the matrix as

...
...
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Furthermore, it is argued in [22] that assuming thatis such
that (that is, it is assumed
that the true system is in the model set) then with the Toeplitz
matrix definition (18), (20) extended to block-Toeplitz matrices
via

(67)

to handle multivariable spectral densities then
using known results on the asymptotic nature of block-Toeplitz
matrices [49], [14]

as (68)

so that recognizing implicit Cesáro means and employing
classical results from Fourier analysis via (14), it is argued
in [22] that for large the following approximations are valid
(some abuse of notation is made in the interests of readability):

(69)

(70)

where in progressing to the last line, invertibility of
has been assumed.

However, for the model structure (63), it is easily shown
[22] that with the elements in the vector grouped into

blocks each of dimension and each of the form
then the corresponding of (66) is

given as

Therefore, when evaluated at it is better labeled as
since if all the are chosen away from the origin then
via the term, the magnitude of the transfer function
components of all depend on In this case
the Fourier convergence argument allowing the progression
from (69), (70) is problematic since the matrix-valued func-
tion whose th-order Fourier
reconstruction is implicit in (69), cannot be guaranteed to
converge as increases since the function possibly (depending
on how many zeros of are not at the origin) becomes
less smooth with increasing

In the strict ARX case originally analyzed in [22] there is (as
illustrated in Fig. 6) no problem since in this instance, with all
the zeros at the origin, so that by the
assumption of the true system being in the model class, then
the function being implicitly Fourier
reconstructed in (69) is invariant to increasingso that indeed

it is valid to conclude increasing accuracy with increasing
and hence pass from (69), (70).

Therefore, in order to provide the improved approximation
shown in Figs. 6–8 for the case of many zeros of not
at the origin, the challenge is to mimic this invariant to
behavior of the underlying Fourier reconstructed function.

As in Section V, this is achieved by using the observation
that, asymptotically in the frequency response properties
of estimates are invariant to (injective) changes in model
structure, so that instead of the ARX-like structure (63) the
equivalent orthonormally parameterized model structure

(71)

(72)

is considered, whether or not the actual implementation em-
ploys this or the more natural form (63).

The advantage of the orthonormally parameterized form
(71), (72) is that with the generalized definition (32) for
it satisfies a generalized shift property (again with )

where now

(73)

is (by the assumption of true system lying in the model class)
independentof for any choice of

To make this more precise, it is necessary to expand
(31) to the definition of a generalized block-Toeplitz matrix
depending on an dimensional positive definite matrix-
valued function as

(74)

where is the generalized form (32). Also, using the
assumption that (at least asymptotically as ) the true
system is in the model set [22], then so that using
(65), (10), (11) and Parseval’s theorem

and therefore

However, by Lemma A.5 the same equivalence (45) shown
in [35] to hold for generalized Toeplitz matrices can also
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be shown to hold for generalized block Toeplitz matrices. In
particular, using the definition (74)

(75)

as where here the definition of the equivalence is
extended from that of (39), (40) to being that (75) implies that

component-wise and for all Therefore, again
using the reasoning in (41), then from (14) use of the or-
thonormal reparameterization idea means that instead of (69)
the following expression is considered:

(76)

Asymptotic in analysis of this expression then provides what
are the last main technical results of the paper.

Theorem VII.1: With calculated via (7) using the model
structures (63), (71), (72) or any other equivalent structure with
the same fixed noise model zeroes all chosen to lie within
the unit disk then in the limit as

where with given by (28) and under
the assumption that eventually, for large enoughthe true
system is in the model set, then

Proof: It has already been established in (13) that with
the definition of the composite transfer matrix (12)

as

where (76) gives an asymptotic in expression for
Because of the Kronecker product terms

in (76), the result (50) is not applicable. However, Lemma
A.3 shows that for an arbitrary regular multivariable
spectral density, then (50) may be extended to

component-wise in and where is defined
by (67). Applying this result to (76) with

then gives (since
is invertible)

(76a)

Corollary VII.1: Under the same conditions as the previous
theorem, but with a strengthened requirement thatE
then

(77)

Proof: The proof follows from the previous theorem
using the methods in [20, Appendix 9B].

The essential points of Theorem VII.1 and Corollary VII.1
that discriminates them from previous corresponding results
[22] is that the asymptotic expression (76a) implicitly involves
generalized Fourier reconstruction of a matrix-valued function

which is invariant to
regardless of whether fixed noise model zeros are chosen at
the origin or not. In this case, and unlike the analysis leading
to (64), it can be expected that the approximation between the
left-hand side of (76a) and its asymptotic value on the right-
hand side of (76a) will monotonically improve with increasing

again regardless of the location of the fixed noise model
zeros.

As a consequence of this, the suggestion of this paper is that
an improved approximation for the variability of ARX-type
model structure estimates is obtained from (52) by assum-
ing that for finite and convergence has approximately
converged in (76a) so that

(78)

In particular, if the data is collected in open-loop
then

(79)

and

(80)

which explicitly shows, via the
term, how the choice of fixed zeros in the noise model
influences the sensitivity of the final transfer function estima-
tion to measurement noise; again, see Fig. 4. Note that as per
the previous section on fixed denominator model structures,
these new expressions contain the results for equation error
structures presented in [22] as a special case of since
the latter implies so that (78) becomes
(64).
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To conclude this section, it is interesting to note two
important cases where fixed-zero noise models in ARX struc-
tures are implicitly involved, albeit via alternate motivations.
Firstly, consider the case of employing a standard ARX
structure save that, in the interests of concentrating attention
on certain frequency regions [46], the common practice of
data prefiltering is employed in such a way that [denoting the
filtering action by the transfer function ] the ARX model
structure being employed becomes

In this case, if the filter is all pole of the form
then this model structure is clearly identical to the

model structure (63) with fixed-zero noise model and for which
it was shown in Figs. 7–8 that the approximation (64) can be
quite poor if the number of prefilter poles is an appreciable
proportion of the model order. This leads to the conclusion that
whenever all-pole prefilters are used with ARX structures, then
the improved approximation (78) is preferable.

Finally, in the interests of numerical conditioning when sam-
pling well beyond the Nyquist rate, the so-called “operator”
model structure is an option [30], [7]. Such structures, when
in equation error form as presented in [30], appear as

(81)

where with equal to the sampling period in seconds,is
defined as

and

with

and now the are chosen to all lie in the disc
Aside from numerical considerations,

another dividend of using this model structure is that since
the operator is the Euler differencing approximation to
the differentiation operator, the ensuing estimates can be
interpreted as an approximation of the underlying continuous-
time system. Again, this depends on sampling well beyond
the Nyquist rate [32].

In the operator case and in the absence of noise model
knowledge, it is natural to simply choose
However, when operating in a operator framework it is
not natural to make the specific equivalent choice

since a key philosophy underlying the use of
operators is that of more closely approaching continuous-time
intuition, wherein the precise value of is incidental. Other
considerations therefore come into play in the choice of the
zeros of for which [30] provides a discussion.

In this setting, attention is therefore focused on a model
structure (81) which is (modulo numerical issues) equivalent

to the shift operator model (63) with fixed noise model zeros
not at the origin, but at the locations The
most accurate quantification of the variability of the ensuing

operator-based estimates will therefore by given by the
new approximation (78). Theseoperator inspired asymptotic
variability issues were first prescienced in [10].

VIII. C ONCLUSION

This paper has provided an exposition of the previously
unsuspected intrinsic nature of orthonormal bases in the study
of certain least squares estimation problems. In works [25],
[22], and [20] preceding this paper, the bases have been
present in the special form corresponding to of

so that they have been hidden since then
However, as shown for the

first time here in a completely general setting, they become
apparent for certain structures with fixed pole or zero terms
where and hence whose changing nature with
respect to increasing cannot be ignored in arguments that are
asymptotic in This paper has shown that the analytic key to
circumventing this difficulty is to develop and apply results
that generalize certain Fourier convergence and asymptotic
Toeplitz matrix properties to the case of an underlying general
rational orthonormal basis, of which the classical trigonometric
basis is a special case.

As a final comment, it is important to acknowledge that the
orthonormal basis ideas used in this paper have a very long
history. The study of the formulation (25) in mathematical
literature can be traced back at least as far as [28], [42],
and the engineering applications (25) seem to originate in
[17], although it clear that Wiener was aware of the practical
relevance of (25) somewhat earlier [19]. In more recent times,
the list of works employing specialized “Laguerre” or “two-
parameter Kautz” forms of (25) is immense, but a partial
list for readers interested in further investigations includes
[29], [4], [38], [36], [26], [44], [45], [37], [15], [6], [36],
[18]. However, a key feature discriminating this latter work
from that in the current paper is that in pre-existing studies
the orthonormal bases were explored as animplementational
option while here, they have been employed purely as an
analysistool, and this tool is applicable to model structures
that are notab initio formulated in terms of them.

APPENDIX I
AUXILIARY RESULTS

Lemma A.1: Let be a stationary stochastic process
with associated covariance function and spectral density

satisfying

and suppose is a quasi-stationary process with associated
spectral density Then with and
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defined by (32)

E E

Proof: Without loss of generality assume for
so that

E E

E

E

Therefore, defining

E

leads to (the absolute value inequalities following are to be
interpreted component-wise in the matrix quantities involved)

However, by the quasi-stationarity assumption on then
. So for sufficiently large then

can be made arbitrarily small,
and since also by assumption then the first
term in the above overbound tends to zero with increasing

For the second term, note that since by the assumption
that then so that
for large enough then can be made
arbitrarily small. As well, by the quasi-stationarity assumption
on which implies that exists component-
wise, then which com-
pletes the proof.

Lemma A.2: Suppose that and are both realiza-
tions of zero mean Gaussian distributed stationary stochastic
processes and the orthonormal model structure (27) is em-
ployed. Then regardless of whether the data is collected in
open or closed loop, and with no approximation caused by
neglecting an undermodeling-induced term, the matrix
defined in (11) obeys

as where the matrix formulation is defined in
(31) and is the spectral density of the prediction
residuals defined in (6) and evaluated at
defined in (31).

Proof: From the definition (11) after using the station-
arity assumption and the change of variable and
regrouping terms

E

E

where the properties of Cesàro means have been used in
progressing to the last line. Using the Gaussianity assumption
and the formula for fourth moments of jointly Gaussian
random variables [43]

E

E E

E E

where use is made of the fact that by the definition of
E Furthermore (suppressing the dependence
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on and with denoting Kronecker delta)

E E

E E

E E

E

E

Using an identical line of argument

E E

E

E

E

E

Now, in the case of all the poles being real, then since

However, in [35] it is shown that expressions of this form
tend to zero with increasing provided all the poles
are chosen within the open disc This same result can
also be shown to hold for the being complex, but at
the expense of considerably more involved arithmetic which
is not appropriate to document here. Therefore, since

and it has just been established that
as then as

Lemma A.3: Let be a continuous matrix-valued
function defined on Then

component-wise in and where is defined by (67)
with being the generalized form (32).

Proof: Using the algebraic properties of Kronecker ten-
sor product [3] and the definition (67) of

Use of the result (50) on noting that the above expression is a
matrix made up of terms of the form
with being the th scalar entry of and with

defined by (31), (32) then completes the proof.
Lemma A.4: With the definition of the generalized Toeplitz

matrix being expanded to that of generalized block-Toeplitz
matrix by (74), then for any complex matrix-valued
functions which have entries which are Lipschitz continuous
of order

(A1)

(A2)

are component-wise.
Proof: Using the formulation (74)



NINNESS et al.: FUNDAMENTAL ROLE OF GENERAL ORTHONORMAL BASES 1405

Also, by a similar argument

Therefore, defining leads to

Now, when , then the scalar result (44) gives that
this expression divided by tends to zero as

When it is first necessary to upper-bound the
above expression using the Cauchy–Schwarz inequality as

before again using the
scalar result (44) to conclude that this overbound, and hence
the expression of interest also tends to zero when divided by

as
Lemma A.5: With the property (A2) being understood as

the defining feature of the relationship as
for generalized block-Toeplitz matrices defined by

(74), then for any Lipschitz continuous matrix-valued
function that is invertible

as

Proof:

However, by Lemma A.4 as
so that use of the Cauchy–Schwarz inequality and the

bound completes the proof.
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