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The Fundamental Role of General Orthonormal Bases
In System Identification

Brett NinnessMember, IEEE Hakan Hjalmarssonylember, IEEE and Fredrik Gustafsson

Abstract—The purpose of this paper is threefold. Firstly, it and then assume that in fact (2) holds approximately for finite
is to establish that contrary to what might be expected, the N andn, hence the result (1).
accuracy of well-known and frequently used asymptotic variance A main contribution of this paper is to show that in fact, for

results can depend on choices of fixed poles or zeros in the | | . tuati th imati 1
model structure. Secondly, it is to derive new variance expressions several commonly occurring situations, the approximation (1)

that can provide greatly improved accuracy while also making Ccan be quite misleading, even for largeandn. For example,
explicit the influence of any fixed poles or zeros. This is achieved problems are shown to occur when employing model structures

by employing certain new results on generalized Fourier series wjth fixed denominator terms or when utilizing extensions of

and the asymptotic properties of Toeplitz-like matrices in such a ARX structures with fixed noise model zeros
way that the new variance expressions presented here encompass = . h b . L
pre-existing ones as special cases. Via this latter analysis a new Civen these new observations, a more important purpose

perspective emerges on recent work pertaining to the use of Of this work is to establish how (1) should be modified so
orthonormal basis structures in system identification. Namely, as to provide improved accuracy. In deriving these enhanced
th"’;_t orthfc])cnqrma_ll bases(?re much more tha? an ilmpf)lerpiﬂtational accuracy expressions, the third and final main theme of this
option oftering Improved numerical properties. In ract, they are . :

aﬁ intrinsic pagrt ofpestimation since,gs zhown here, orthon)grmal paper emerges, namely, to provide a new perslpectllv.e o,n the
bases quantify the asymptotic variability of the estimates whether fole of orthonormal model structures in system identification.
or not they are actually employed in calculating them. To elaborate more on this final point, there has recently been
significant activity on the system identification application of
special classes of fixed denominator model structures that are
constructed to be orthonormal; see for example [44], [45],
l. INTRODUCTION [15], [37], [34], and the references therein. This latter work has

RESULT that has found great utility in practical applicab&en motivated by two main factors: firstly, the achievement of
tions of least squares system identification methods [8pproved numerical conditioning and secondly, the provision
[21], [2] is that the sensitivity to measurement noise of thef efficient parameterizations that allow decreased variance

ensuing frequency response estimate’=) may be quantified error while still minimizing bias error.
as [25], [22], [24], [50] However, this second feature is not dependent on the

o n &, (w) orthonormal property of the model structure. This is so
Var {G(e’“)} =~ N@V(w) (1) since the orthonormal structure is, under a linear parameter
v space transform, equivalent to any other equivalently flexible
where®, (w) and®,(w) are the measurement noise and inputonorthonormal structure with the same fixed poles. As well,
excitation spectral densities (respectivel§y),is the length of since least squares methods are employed, the estimates
the available data record, and is the order of the model depend linearly on the output measurements. Therefore,

~

Index Terms—Parameter estimation, system identification.

G(e?%). modulo numerical issuegreciselythe same estimates of the
In [25], [22], and [24] an essential principle in deriving (1)system frequency response, are obtained whether or not one
is to establish that goes to the effort of implementing an orthonormal structure
) N S e @, (w) as opposed to a simpler structure wherein (for example) the
N},{IEOC S Var{G(e™)} = T (w) (2 denominator is fixed, and only the numerator coefficients are
estimated.
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analysistool to determine the properties of estimates derivgd0]. The sequel will comment on how these foundations relate
with respect toany model structure. to the paper at hand.
In particular, this strategy achieves the aforementioned goal

of improving the accuracy of (1) by replacingin (1) with a I
function K, (w,w) which is the so-called “reproducing kernel” . o ) .
associated with a particulardimensional subspace and which N the interests of clearly motivating the analysis of this
depends on fixed poles or zeros. Note that even if such fix@@Per. consider the simple case of estimating, via least-squares,
components are not explicitly present in the model structu) 7 = 12th-order FIR model of the true system (the zero-
they are implicitly there whenever the common practice &rder hold equivalence is calculated using a sampling period

. MOTIVATION

data prefiltering is employed; see Section VII. of 1)

As well, by utilizing the orthonormal basis formulation of 1
[34], an explicit formula forK,, (w, w) can be generated which G(q) = ZOH{m}
clearly shows howK,,(w,w), and henceVar {G(e’“)}, is 0.1548¢ + 0.0939

affected by fixed model structure poles or zeros. For example, =
it will be seen that in the special case of all the poles/zeros

fixed at the origin (FIR/ARX model structuref),,(w,w) =n, by observing 10 000 samples of its input—output response when
and hence (1) arises as a special case. However, if all the palgs former is a stationary Gaussian process with spectral den-
are not chosen at the origin, then inclusion of thig(w,w) sity ®,(w) = 0.25/(1.25 — cosw) and the latter is corrupted
term in place of» in (1) is shown here to smoothly extend theéyy zero mean Gaussian white noise of varianée= 0.001.
original analysis of [22], [25] and in so doing provide morgn this case, since both and NV can reasonably be considered
accurate approximation ofar {G(c’“)} over a wider range “large,” then the approximation (1) could be expected to
of circumstances. hold. This can be checked by Monte Carlo simulation over,
The paper is structured as follows. In Section Il a shogay, 500 input and noise realizations so as to estimate the
simulation example demonstrating the possible inaccuracy@frianceVar {G(e/“)} by its sample average, which can then
the variance error approximation (1) is presented to mofie compared to the approximation (1). The results for just such
vate the ensuing analysis. The paper then provides a formaglexperiment are shown in Fig. 1 with the agreement between
problem definition in Section Il and in so doing allowsdashed—dot line) the expression (1) and the sample average
Section 1V to theoretically examine and hence isolate the caygelid line) being excellent. Note that in this simulation (and in
of the inaccuracy demonstrated numerically in Section Il the rest to follow in this section), the bias error is negligible,
This leads to the work of Section V where it is shown howind hence the variance error represents the total error.
new techniques, based on new system theoretic results pemNow suppose, as may commonly occur in practice, that
taining to generalized orthonormal bases, generalized Foufigifor knowledge of the poles ofi(¢) exists. Then in the
convergence, and generalized Toeplitz-like matrices may jpgerests of decreasing the bias error it makes sense to try
employed to provide a variance error approximation which, t incorporate this prior knowledge in the estimation process
some circumstances (such as those illustrated in Section By, fixing some poles in the model near where it is believed
is a great improvement over the pre-existing one (1). the true poles lie [44], [15]. For example, suppose in the
Section VI it is shown how the same new tools may bgrevious simulation it is believed that a dominant pole is near
used to also quantify the bias error for fixed denominater = 0.75, so that guesses of, say,= {0.7,0.72,0.78,0.8}
model structures. By the end of Section VI the paper hage to be incorporated into the model structure. This can
exclusively focused on fixed denominator generalizations p& implemented by simply prefiltering the input B(q) =
the FIR structure, but in Section VII the scope is broadengd /(¢ — 0.7)(¢ — 0.72)(¢ — 0.78)(¢ — 0.8) before an FIR
to also consider ARX-like structures with fixed zeros in thenumerator” mode|é’(q) is estimated, and then the complete
noise model. In analogy with the preceding analysis, it &stem@'(q) = G(q)F(q) may be taken as the fixed-pole
demonstrated that if all the noise model zeros are not fixededtimate of the underlying dynamics.
the origin, then the asymptotic variance expressions derived inSince the model order is still largen = 12), then (1)
[22] and [24], although prima facie applicable, are also liabkhould still provide a quantification of the variability of this
to suffer from inaccuracy, the severity of which depends afew estimate by labeling the FIR estimateCasnd reasoning
the proportion of nonorigin placed zeros. Motivated by this, it o ' o
is demonstrated in Section VII how the same new techniques  Var {G'(¢/*)} = |F(c/“)|*Var {G(/“)}

(g — 0.6065)(q — 0.3679)

and results of previous sections can be brought to bear in the n v 12 ¢, (w)
: . o ~— | s ——
ARX modeling context so as to provide new approximations N |F(e3)]2®,, (w)
whose validity is not degraded by choosing noise model zeros n ®,(w)
away from the origin. Finally, Section VIII provides some =N o) 3)
concluding perspectives on the results and techniques of the “
paper. which is unchanged from the normal FIR case. This un-

There have been a number of contributions dealing witthanging nature is also reasonable, since the FIR case can be
certain aspects of the problems considered in this paper, twmnsidered as already incorporating prior knowledge of system
foremost of which are [25], [22], [44], [45], [15], [37], and poles; namely poles near the origin.
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Fig. 1. FIR with all poles at origin. This is a comparison of a Monte Carlo estimate of sample variability (solid line) with (dashed—dot line) thmajgprox
expression (1). Note that this last line obscures a dashed line which is the new approximation (53). The obfuscation occurs because for the case of all
poles at the origin, the pre-existing approximation (1) and the new one (53) are identical.
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Fig. 2. FIR with four poles away from origin. This is a comparison of the Monte Carlo estimate of sample variability (solid line) with (dash—dog line) th
approximate expression (1) and (dashed line) the new improved approximation (53) derived in this paper.

Interestingly, when the expression (3) is compared to Monsample variability again being compared to (3) in Fig. 3. In
Carlo calculated sample variability as it is in Fig. 2, thethis case there is virtually no agreement (even qualitative)
the agreement between the true variability (solid line) arzketween true and predicted variability.
approximation (3) (dash—dot line) is seen to be not nearly asClearly then, the well-known approximation (1) can be
good as is Fig. 1. Nevertheless, the expression (3) still providgsite misleading in situations where it would be expected
useful information on the qualitative “high-pass” nature of howo be reliable, and this apparently puzzling and practically
the true variability changes with frequency. The dashed lin@portant phenomenon is the motivation for this paper. In
near the solid one in Fig. 2 will be commented on in a momerihe work to follow, the conundrum just illustrated will be

Now suppose even more guesses of systemsolved by exposing certain hitherto unappreciated principles
poles are made, say, at the locationg = pertaining to when it is advisable to conclude (1) on the
{0.7, 0.72, 0.78, 0.8, 0.75, 0.85, 0.82, 0.79} with the basis of (2). Furthermore, a new expression to extend (1) will
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Fig. 3. FIR with eight poles away from origin.

be derived which is shown as the dashed line in Figs. 1parameterized by a vecté* € R™ to be employed which is
and which (by consideration of those figures) can cleartf the form

offer greatly improved approximation of the true variability 00 o0
in certain circumstances. Glq, ") = ng(en)q*k, H(q,0") = 1+Z hi(6™)g .
k=1 k=1
I1l. PROBLEM FORMULATION This structure implies the following one-step-ahead predictor:

Having provided certain motivating arguments, the remain- G(6™) = [1 = H (g, 0™y + H *(q,0™)Glq, 6™)u,
der of the paper proceeds more formally. The problems studied

in this paper are ones in whicl¥ point data records of an ®)
input sequenc¢u, } and output sequendgy } of a linear time  ang associated prediction error
invariant system are available. It is assumed that this data is
generated as follows: e (0™) 2 e — 3 (67) (6)
yr = G(Q)us + H(q)es. so that if the quadratic criterion
N
Here G(q) is an unknown transfer function describing, in Vi (67) 2 ngg(gn)
terms of the forward shift operatay, the system dynamics 2N &

that are to be identified by means of the observatibng i )

and {4 }. The output measuremenfs;} are corrupted by a 'S employed, thelj based on theé point data observation, a
zero mean and stationary noise sequence H(q)e, where €8St squares estimag; of ¢ may be found as

H(q) is a stable and stably invertible and monic transfer G2 e minV (6" 7
function and{e,} is a zero mean white noise sequence with N A ("), (7)
variancee{c?} = o2 < oo and withe{|e;|*t°} < oo for some o _ .
§>0. The input{x,} is assumed to be quasi-stationary in thé€ theory pertaining to the properties of such a method is
sense used by Ljuhg [20] (or, equivalently, to be amenab{&"Y rich. Germane to this paper are the properties that [20],
to the “generalized Harmonic analysis” of Wiener [48]) s¢#3l, [5]

that it has an associated spectral densityw) > 0 which g 25 0n as N s oo

is assumed to be Lipschitz continuous of some order0. N ?

The spectral density of the noise procgss} is denoted as where with {E-} denoting expectation over the underlying

P, (w) = o?|H(c’*)|? and is also assumed to be positive angrobability space that any random variables are defined on
Lipschitz continuous of ordet > 0.

The identification schemes considered here are ones in 67 2 argmin]\lim E{Vn(6™)}. (8)
which the prediction error framework [20], [43], [5] is used. greme AT
This requires a model structure As well [23], [20]

e = G(q,0"uy + H(q, ™)y (4) VN@ - 07) D N(0, P,),asN — o
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where does have a simple and useful form; for examplgs) =
p A p-lp gl 9 $,(w)/®,(w) for FIR model structures [25].
n = R Onky ©) The suggestion of [22], [25] is to then assume that even for
and with the definition of the prediction error gradientgn) finite N andn it can reasonably be expected that' A, (w)

as has approximately converged to the simple fakfa) so that
d ., .. = Fr n
P (0") = %ytw ) E{lIy (W)l (w)} ~ NA(‘U) (15)
then is a good approximation. The validity of this strategy is
2 argued via numerical example in [22], [25], [20], and indeed
A d*Vn(6) . . .
R, = lim E 1007 it has won widespread acceptance as a tool for analyzing
Nmeo =07 the performance of least squares estimation schemes; see for
1 N example [8], [21], [2], [12], and [16].
= JHm > E{u ()9 (6} However, Section Il has illustrated what seems to be the
t=1 unappreciated fact that in certain circumstances the accuracy
) 1 X o i (87) T of (15) is not guaranteed even for what might be considered
_Alﬂ)l})oNZE et(6") don (10) “large” N or n. Instead, it is indicated in Figs. 1-3 that
t=1 the presence of fixed model structure poles that are away
and from the origin may seriously degrade the accuracy of the
T approximation (1). The following section provides a theoretical
A . dVN(HQ) dVN(Hg) . . . .
Q. = Aym NE 2 2 analysis of this previously unrecognized phenomenon.
N N
1 IV. FIXED DENOMINATOR MODEL STRUCTURES
= lim — E{tp (07 (0T e, (6™)e (67},
A’ﬁooN;; 1)) 2x(6)ee ()} The observations of Section Il will, in the interests of

(11) generality, be addressed by considering the class of so-called

o . . ~ “fixed denominator” model structures. This terminology will
A key contribution of [20], [22], [25] is to recognize that inrefer to structures of the form (4) in which the poles of
applications, often the quantification of the parameter spacgq, #") are prespecified and of which the archetypal example
properties of?}, are of secondary importance to their influencgs
on the associated properties 6{c’, 6%.) and H(e/*, 6%;). .
For. the purposes pf analyzing the. latter, it is expedient to G(q,6™) A DIq) Zezqk’ H(g.6")=1 (16)
define the composite transfer function

k=0
(g, 6") = [G(g,0"), H(g,0™)] (12)  with
and argue by Taylor expansion that s
. < , Dn(g) = [J(a— &) (17)
ly(w) = 1(e, 0y) — (e, 67) =0

: T . A
— [iﬂ(cﬂw’gg)} (0% — 67) + o(||6% —gr|)  for some user chosen poldg,} € D = {z € C: |2| <1}

don whereC denotes the field of complex numbers. Although this
|| denotes Euclidean norm so that with thds the quintessential form, the results to be presented here will
apply to a much more general class of “fixed denominator”
model structures (54), (55) considered later.
Specialized “orthonormal” versions of this structure have

where here|| -
notationll’ (¢7, 67) 2 dII(e*,6)/d6™ and with-* denoting
“conjugate transpose”

\/ﬁﬁN(w) A N0, Ap(w)) (13) recently attracted significant research attention [44], [45], [15]
where it has been suggested that although the chice 0
where in (16) gives the common FIR structure, it is intuitively
TV (e gnyTE 1w on more reasonable to choose the pofés} according to prior
An(w) = [T, 0" Il (e, 67). (14) knowledge so as to be close to the suspected true poles of
This suggests the approximation G(q).

. - In order to explain why when using these fixed denominator
NE{lly () (w)} = An(w)- model structures, the prima facie applicable results of [25]

lead to such a poor approximation illustrated in Fig. 3, it is
necessary to precisely examine the steps used in [25] to arrive
at (1). For this purpose, first note that in the fixed denominator
case the prediction error gradiept is given by

Unfortunately, the evaluation ai, (w) is always too com-
plicated to be useful. A key contribution of [22], [25] is to
observe that in contrast to the intractability/of (w), the limit
. N _ = ~ .1 A
lim —E{lIny(w)Ij(w)} = lim —A,(v) = Alw) ~
Nom—oo noee $u(07) = Lu(@) Dy (@we = Da(@)i
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where i, 2 D (q)u and The reasoning qnderlying the proofs of [25] for the special
FIR case of|D,(e¢’*)| = |e?*™| = 1 then is that since by
A o N . ) R .
() 2 L . (18) (23) the expression (22) is theth-order Cearo mean Fourier
reconstruction ofl /®;(w), then for largen (22) should be
Therefore,di), /d6™ = 0 so that from (10) approximately described by
- 1o ny T gn EVar {G(e7,07%)} zlA (w)
Ry = lim = E{p(0)9/ ()} (19) n ONE
t=1 o2 1

Defining for any positive functiory: [—m, 7] — (0,00) the
n x n symmetric Toeplitz matrixZ;,( f) by (sometimes, in the __ v (24)
interests of readabilityy will be used in place of/*) Py (w)

L) 2 5 [ L@ @ Wihis@. | o
g - Now the mechanism leading to the possible inaccuracy

of (1) is exposed. In order for (1) to be an accurate ap-
then using Parseval’s formula the mat,, may be written proximation, it is necessary that theh-order Cearo mean
as [20] Fourier reconstruction ol /®;(w) inherent in (22) has ap-
proximately converged. The size affor which this may be
R, =T,(®a) (21) expected to hold depends [51] on the smoothnedsdfw) =
' |D,.(e7)|? /@, (w). For the special FIR case oD, (c¢/*)| =
where clearly®; = |D,(c¢/)| 2®,(w). It is also possible 1, the smoothness is fixed as the smoothnes® ofw) so
[22], for the case off (¢) = 1 to establish that provided thethat the approximation can be expected to monotonically
true system is in the model set th€p, = o?R, so that improve with increasing:. However, if poles are not chosen
P, = 0’R;! = o>I71(®;). Furthermore, by employing at the origin then the smoothness |}, (¢/“)|?/®,,(w) may
well-known results on the asymptotic behavior of Toeplitdecrease with increasing so that convergence of (22) with

matrices [11], [47] it is also true that increasingn need not occur.
Put another way, for poles ab, (¢) not at the origin,
-1 1 the Fourier reconstruction inherent in (22) is with respect to
D coefficients which are more accurately labeled{&s} rather

_ . _ _ than{c, } since they depend on the model orddrecause they
where the precise meaning of theoperator is that equality are the Fourier coefficients ¢D,,|?/®,. In this case, as the
occurs in Hilbert-Schmidt weak matrix norin | (defined by lengthn of the Fourier reconstruction grows, the coefficients

|An|> = n~! Trace {A} A, }) asn — oo. may change ifD,,(¢/“)| changes, so there is no guarantee that
Therefore, since in the fixed denominator cé#g, 6™) = approximate convergence has occurred for “large” but finite

DY (I'T ()" and H(q,6") = 1 so thatll(q,8") =  Therefore, the more poles that are chosen that are away from

G(q,6") and hencdl'(q,6") = D;*(g)I'»(g) then from (14) the origin, and hence the more dependentdhat |D,,(e’)|

and the preceding Toeplitz matrix approximation is, the less one should rely on (1) applying for finitesince

the less likely it is that the underlying Fourier series has come
close to convergence.
This is precisely the behavior demonstrated in Figs. 1-3 of

Section Il
The final key ingredient facilitating the analysis in [25] is to

recognize that

0_2
A(e) & T T )T <¢ia>rn(w). 22)

V. VARIANCE ERROR FORFIXED
n
k oL DENOMINATOR MODEL STRUCTURE
| | ckeju,k (23

@ = Y (11

k=—n

Initially, this analysis of the utility of (1) for certain model
structures may seem pessimistic since it indicates that much
where the{c; } are the Fourier coefficients ¢¥{w) defined by higher model orders. will be necessary before (1) can be
used. A main contribution of this paper is to show that in
fact this pessimism is unfounded since, as precursed by the
dashed lines of Figs. 2 and 3, it is possible to derive improved
approximations that do not require increased model complexity
so that the left-hand side of (23) is in fact a @es mean in order to be accurate.

Fourier reconstruction of which is known [51], providedf Central to achieving this goal is the consideration of par-
is continuous, to converge uniformly tb on its domain and ticular rational basis functions, hereafter denoted as the set
with increasingn. {B1(q)} and defined by-(denotes complex conjugation of

N " —Jjwk
o = — (w)e 7¥" dw
2 J_ .
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scalar quantities) However, deferring the question of bias error until later, the
T3 purpose of this section is to quantify variance error, and for
Bo(q) 2 1 - [%l this purpose it is necessary to modify the original Toeplitz
72— & matrix formulation (20) to
é\/l_|§k2kl 1—551 . . A 1 @
o = g =g ) w2t m(p 2 L [ nen@iee e
(25) which although formally identical to (31), is functionally quite
They are orthonormal according to the inner product definitialifferent in that the underlying orthonormal basis is not fixed
N at the trigonometric one, but a generalization obtained by
(f,g) = 2— f(ef‘“) g(e7*) dw redefiningl’,,(z) from (18) to
f 1 (26) Fu(z) £ Bo(2). Bu(z). - B (D (32)
27rJ

Matrices defined by (31), (32) will be called “generalized
whereT 2 {z € C: |z| = 1}; the orthonormality following Toeplitz” matrices, with the epithet deriving from the fact that
easily using Cauchy’s integral formula. These basis functiofisall the poles{{;} are chosen at the origin theW, (f) =
have been discussed in detail in [34] in the context of genéfr(f) is a bona-fide Toeplitz matrix, but otherwise it is not.
alizing certain other orthonormal bases existing in the systemPertinent to the employment of the matrices (31) in this
identification literature [44], [45], [37], [15]. paper is that witH| - || denoting the matrix two-norm [9] and

One of the main contributions of this paper is to recognizs shown in [35] the following bounds apply:
that the asymptotic frequency domain propertie& 6§/« ég,)

are invariant to reparameterizations of the model structure, M (HI < 11 lleos MO = 1/ fllee- - (33)
and to therefore not attempt the scrutiny of (16) directly, byjsing the new notation (31), (32) the reparameterized model
instead consider its reparameterized form structure (27) may be written a8(q, 6) = ' (¢)6" so that
(67) = I',,(¢) and hence using (19) and Parseval’s formula
G(q,0™) = Z 0 Bi(q H({q,6")=1 (27) R, is a generalized Toeplitz matrix of the form
R, = M, (®,).

which, as will be demonstrated, is much more amenable to

analysis than the original form (16). The matrix@,, is more difficult to handle. To expand on this,
Pivotal to the ensuing study employing this idea isote that with the formulation

the recognition of the importance of the so-called “re- N "

producing kernel” K, (z, ;) associated with the space z(85) = [Gla) — Glg, 07)]un (34)

X, = Span{Bo,B1,---,B,_1} and which may be expressecthenc,,(#") = z,(6™) + 1, and hence using the definition (11)

as

N—1N-—
n—1
n — 1 - E m 9" /
Ku(zow) = S B(Bu(z),  zpueC.  (28) =y ZE_I {ntmlzn(87) + 1a]
= Tem(B2) + ]} (35)

It derives its name from the property that for afiye X,, and

p € C such thaty & {&,---,&_1} then If the data are collected in open loop so tHat, } and{vx}
are uncorrelated, then this can be rewritten as

F(1) = (F(2), K (2, 10)) (29) s
and by virtue of whichk', (=, 1) is unique [35]. In Section VI Q, = lim — Z Z E{vrtyl Y E{vrim}
it will be shown how the property (29) can be exploited in k=0 m=0
order to quantify bias error, but to do so a more explicit expres- N-1N-—
sion for (28) is required. This has been derived in [35] where in + lim Z Z E{¢utim2a(65)2m(65)}. (36)
analogy with equivalent formulas in the study of orthogonal k=0 m=0
polynomials [11], [41] it is termed a “Christoffel-Darboux”considering only the first part of this expression, use of
formula Lemma A.1 in the Appendix permits its expression as
1 — (1) pn(2) N—1N—-1
K. (z,p) = ———""7—7, z, 10 € D. 30
(7.11) nz— 1 i (30) hm — Z Z E{rl } E{vari }
In this expressiony,,(z) is defined as the Blaschke product- 1" =0 Z’—O
like quantity =5 L) (@) @u (W)@, (w)dw.  (37)
v

/ 1— &z
wo(z) =1, on(z) 2 < §k7>, n>1 This result (37) has been used in previous work [44], [45],
[37], [34] related to the results of this section but despite its
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importance, to the knowledge of the authors, a proof of (3¥)for all w € [—w, 7]
has not previously appeared in any literature. ) )
This still leaves the term containinf; (67)} components i En(@)An = BallAn = Ba]"Tn(w)
to be dealt with. Clearly, from definition (34) these terms are "~ Kn(w,w)
due to undermodeling, and if it so happens thally) is in  tpe ility of this idea is that itA, ~ B,, asn — oo then the

the model set, then they will be zero and hence (37) wi IS : . . - .

) ; ymptotic consideration of quadratic forms4f and B,, in
completely describ&,,. In the seminal work [25], [22], the I',.(w) are identical. Specifically, for any, A € [, ] and
assumption ofG(g) being in the model set for finite was uéing the Cauchy—Schwarz ineéuality ’ ’

not made, and instead the effect of the.(67)} components
was directly addressed. In subsequent work [44], [45], [37], ‘FZ(w)AnFn(A) I* (w)BTn(N)

—0. (40

2

[34] related to this paper it has been assumed that since K (w,w) K (w,w)
eventuallyn — oo is to be considered, then the effect of . 9
z(67) will eventually be inconsequential and hence can be - [ (w)[An = Bn]l'n ()
neglected from the beginning. However, singg6?) enters K (w,w)
into the formulation ofA,,(w) in such a complicated way, it < ‘FZ(w)[An — B.][A, — B,|'T(w)
is not obvious that its effect on, (w) will tend to zero with - K, (w,w)
increasingn even if 2, (67) itself does. L (AT, (A)
As a result, this paper elects to in fact account for it by m . (41)

using (37) to write@,, as
However, taking advantage of the explicit forms of the repro-
Qn =M, (9,9,)+ A, ducing kernel made possible by (28) and (25)

where A,, is the second term of (36) which, if neglected

n—1
* _ _ GAN|2
ab initio as in [44], [45], [37], implies a presumption of FRln(A) = Kn(A,A) = ;'Bk(e )

limn_)oo ||An|| = 0. n—1 2
With these comments in hand, the analysis can proceed by _ Z 1 — [&| (42)
noting that from (9) = el — &G
n—1
Py =M Y ()M (2,2,) M, 1 (2,) <2y 1— &
+ M N (DDA M (D). T eie - 2
= K (w,w) (43)

With the reparameterization (27), the&®(q,8™) = I'I(¢)6"

with T',,(¢) being the generalized form (32) so thH{q,6") = wherep = maxy i |e/ — &|/|e’* — & | is some constant
I',.(¢) (the derivative with respect té/(¢) has been ignored independent of: that is guaranteed to be finite provided all
since it is zero) and hence from (14) the quantity(w) the poles{¢{.} are chosen in some closed subset of the open

guantifying variance error may be written as unit disk D. Substituting (43) in (41) then shows that the
latter tends to zero with increasing thereby establishing the
An(w) =T (w) M (R0) M (249, ) My, (@) (w) asymptotic equivalence of the quadratic forms. Note the key

+ I (W)YMTH (@) A M (D, ) (w).  (38) role played by the reproducing kernél, (w, w).

Of fundamental importance in using these principles to
In order to simplify this for largen it is necessary to know clarify (38) are the results of [35] showing that jf and g
something of the asymptotic algebraic structure of the genéfe any (possibly complex-valued) functions that are invertible
alized Toeplitz matrices in this expression, and this turns o@d Lipschitz continuous of some order- 0, and if all the
to be a somewhat delicate question. poles{&;} are chosen in some closed subset of the open unit

In related work [11], [47] pertaining to “classical” symmetdisc D, then

ric Toeplitz matricesT,,(f), it is shown that|T,,(f)T,.(g) —
T,.(f9)| — 0 asn — oo where|-| denotes the Hilbert—-Schmidt M (f)Mn(g) ~ Me(fg) asn — co (44)
weak matrix norm defined earlier. In the generalized case M) ~ My (1/f) asn — oo (45)

considered here, an equivalent result cannot be shown to ] )
hold without overly restrictive assumptions being imposedPPIying these results to (38) then provides the formulation

[35]. Instead, it is necessary to be more subtle and recognize ®
that in applications what is really important is how products P, ~ M, <¢—”> + M7HR)AMH(R,)  (46)
M., ()M, (g) affect vectors only in the directions specified “
by [ (w). asn — oo so that using the mechanism illustrated in (41)
This principle leads to the notion of asymptotic equivalence .
between twon x n matricesA4,, and B,, with notation lim An(w) _ im I3 (W) M (@) /®u)ln (@)
n—oo K,(w,w) n—oo K, (w,w)

A, ~ DB, asn— oo (39) ) (47)
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where are Lipschitz continuous of some order- 0, then with the
5 ( ) A Fz(w)Mn—l((I)u)AnMn—l((I)u)rn(w) (48) definition
n\W) = )
Kn(w,w) §(w) £ lim 6,(w)
which using (33), the Cauchy—Schwarz inequality, and the _ _
explicit form (28), can be bounded as whereé,(w) is defined by (48), then
18n(@)] < 1L/ @ullZ 1A (49) @) G
N o lim ¥,(w,A) = u(w) + o(w)l
In order to further simplify (47) to some useful form, it is no0 5( ) ®,(\)
pivotal that a generalized analog of the Fourier convergence &, (N)
of (23) exists. Such a result is provided in [35] where it is h ; i
shown that provided (1 — |£x|) = oo then for any possibly where for some finite
complex-valued but continuou 3
P » B()] < l6(w)].
: 1 . flw), w=2A : .
Lim mrn(w)Mn(f)rn()‘) =10 w £\ Proof: It has already been established in (13) and (14)
o ’ (50) that

jw agny jw An
Again observe the key role played by the reproducing kernel, \/N[C;(e On) = G(e™, 65)]
and in particular note that use of the formulation (28), (25) SMN(0,A,(w)) asN —
with &, = 0 gives K,,(w,w) = n so that the left-hand side of . o
(50) becomes the Cam mean (23). Because of this, the resuwhere A, (w) = I}, (w) P.I',(w). An extension of this is that
(50) can be seen to expand Fourier convergence analysis to@ggV — o0
general orthonormal basis (25) which contains the classical jw Any jw gn
¢ ] ! i G(e?v,6%) — G(e?™,67)
trigonometric basis of (23) as a special casefpf= 0. In N fn ix /\/(0 by (W, \))
: : ' e | G(e,0%) — G, 67)
fact, (50) is something more than this, since it also shows
convergence to zero X # w. In the special trigonometric caseywhere
this latter specialization appears to have been first established . .
in [13]. S(w,\) 2 {Fn(w)PnFn(w) Fn(w)PnFn(A)}
Applying (50) to (47) then provides the result that (assume ’ LBl n(w) TR PLR(A)
for the moment that the limifim,, . &, (w) exists—this will
be verified later)

Afw) D) | Koww) 0 17
A Rl w) ~ ) |k B (B \/N{ (M)}

0
The dividend of considering the orthonormal reparameteriza- <G GJ: 95’ G(G{:’eg))
tion (27) rather than the more natural fixed denominator form G, 0%) = G(e,67)
(16) is now revealed. Namely, in doing so (51) is derived /\/(0, . (w, \))
from asymptotic analysis of an expression (47) which involves
generalized Fourier analysis of an underlying functigry®, Where
whose smoothness is invariant to model order or fixed poleE
i ) . i ) o (w, A)
selection. This crucial feature will permit the derivation of the 12
improved variance error approximation shown in Figs. 1-3. _ {Kn(w,w) 0 } 5 (W, A)
Before further elucidating this point, the developments of ) e
this section are formally collected in the following theorem Ko -1/2
n(w,w) 0
and corollary. X X [ )\)}
Theorem V.1:With 8% calculated via (7) using the model ’
structures (16), (27) or any other structure with the same fixed —_— —
poles{&,} all chosen to lie within the open unit didR, then - *Kn(w’w) VE(w,w) K (X A)
with K, (w,w) = K,.(c*, /) given by (28) and in the limit DB (w) A
as N — oo VE (w0, w)K,(\ ) K,(A\ )

so that using the notation of (13), (14)

-1/2 jw An jw gn i i i
JE Ko(w,w) 0 / G(GJ/XQAN) _ G(G{A’QO) It has just been established in (51) that
0 Kn()\, )\) G(G‘] 5 9}) — G(G‘] ; 92) P (CU)
2, (O, S0, V) LS O Bt W

where, provided the data is collected in open loop, all the polesich accounts for the asymptotic value of the diagonal terms
{&,} are chosen in a closed subsetdfand ¢, (w), ®,(w) of X,(w,A). For the off-diagonal terms note that using the
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formulation (46) and the definition (48) we have of reparameterizing with respect to the orthonormal bases
. I (W) Pl (N) (25) in that by doing so, the asymptotic result (52) involves
o(w) = i — considering convergence of the generalized Fourier expansion
\/Kn(w’ W) Kn(AA) (47) of a function®,. /®,, whose smoothness is invariant to the
_ D) M (2,/2)0n(N) model order, so that the degree of approximation in concluding
VEn(w,0)K,(\,\) (53) on the basis of (52) can be expected to monotonically
Ko (w, )6, (w) improve with increasing model order.

By using this novel reparameterization approach, the es-
sential feature imbuing the new expression (53) with greater
However, by the argument leading to (43K,.(A\, A) > accuracy than the pre-existing approximation (1) is that the

VE (w,w)K, (AN

p? K, (w,w) for some finitey so that influence of the fixed pole location oWar {G(ej“,ég%)}
) I (W) PaTn () is quantified by the reproducing kerné{,,(w,w); see for
S(w) < p— 2T 4 b (w). example Fig. 4 where the expressiéf, (v, w) is plotted for
Kn(w,w) a variety of choices of&;}. In particular, note that for all
Use of (50) then completes the proof. m poles fixed at the origin, by the formulation (28), (25) then

The main use of this result will be to infer the nature of th&,, (w,w) = n so that in this special case of FIR modeling,
variability of G(ej“,ég,). However, as pointed out in [20], (53) is identical to (1). However, the more poles that are
convergence in distribution guarantees nothing about meawt fixed at the origin, the moré,,(w,w) will (being then
square convergence. Therefore, to be rigorous, it is necesdaeguency dependent) differ from and hence the more the
to separately consider this, but fortunately such examinationnew approximation (53) will, in the interests of improved
straightforward provided the assumptions on the noise processuracy, be perturbed from the original approximation (1).
{e:} are somewhat strengthened. A point to note is that Fig. 4 indicates that the choice

Corollary V.1: Under the same conditions as the previousf poles {¢;} could be conceived as a design variable for
theorem, but with a strengthened requirementE{at} < oo, decreasing variance error at particular frequencies. However,
then not only might this incur an increased bias error if & }

_ _ N y o are chosen far from the true poles (see the following section),
Jim  lim WEHG(GJ )= G, 60)1°} but Fig. 4 also indicates that a decrease in variance error at
B, (w) ’ one frequency is traded against increases at another frequency.
=2 4 §(w) (52) In fact, it is a trivial consequence of orthonormality that the
Pu(w) areas (on a linear axis and divided Py) underneath all the
where curves in Fig. 4 are the same and equal to the model order
AL Another issue worth emphasizing is that the results in The-
Sw) = lim 6,(w) orem V.1 and Corollary V.1 and hence in the approximation
(53) apply for any model structure (of which (16) and (27) are
special cases) of the form

with é,(w) defined by (48).
Proof: The proof follows from the previous theorem
using the methods in [20, Appendix 9B]. | (g, 0™ )ue = ¢7 0" (54)
By drawing on the precedent of [25], [22] in which the
approximation (1) is derived from the asymptotic result (2jyhere
this paper uses the new asymptotic result (52) and the explicit
formulas (28), (25) to suggest the approximation Pr41 = Apr + Buy (55)

o 1 ¢, (w) 2 y with A € R™™ and B € R™*! arbitrary but such that the
Var {G(e’,0%) } ~ N@ugw; Z |Bi(e?)*. (53) eigenvalues ofd are {£y, &1, -+, &1}
k=0 It seems quite unexpected that this variance quantification
Note that in providing this approximation, it has been assumedle for the orthonormal bas€#3;. } given by (25) should arise
as in [44], [45], and [37] that the undermodeling-inducedh such a fundamental manner in a problem that can via (54)
componenté(w) is negligible, and this simplification will be and (55) beab initio formulated with no orthonormality in its
commented upon later. However, before doing so, there ateucture.
several important points pertaining to the approximation (53) The role of orthonormal bases in system identification is
that need to be highlighted. therefore much deeper and more intrinsic than had previ-
Firstly, the expression (53) is shown as a dashed line in thasly been thought. This provides further motivation for their
Figs. 1-3 of Section Il which, being so close to the samptamployment and study that is in addition to the numerical ef-
variability estimate of the true variability, illustrates that irficiency and modeling efficiency features exposed in previous
situations where some fixed denominator poles are choseorks [44], [37], [15], [34].
away from the origin, the new expression (53) can representindeed, previous work which has pioneered the use of
an approximation that is significantly more accurate than tleethonormal bases for system identification [44], [45], [37]
well-known one (1). As already suggested, the reason foas also considered variance expressions which are restricted
the improved approximation rests solely with the strategyersions of the form (53). For example, in [44] the use
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Reproducing Kemel for various pole choices

16 T — T LA S S S | T — T Ty .
12
10 e
8 TCTUC T It TTIrTo oo oTrootrorrsto T N
‘Mixture of real and complex polgs & - * ;
= T
o All poles real and at the origin: (FIRY  © © . ?
2 :
o . P i AT ; i ;
107° 107% 107 10° 10"

Frequency (Normalised)

Fig. 4. Plot, for various choices df¢;.}, of term Kn (w,w) = S7_L |Bx(e7%)|2, which captures the effect of pole choi¢é, } on the transfer function
estimate sensitivity to measurement noise. Here= 4.

of Laguerre bases is analyzed. However, this case may wigh increasing model order rather than pole set repetition
encompassed in the framework of this paper by choosing eflunt. In view of this (and with the precedent of the foundation
the poles the same and real-valuedégs= ¢ € R in which work [44], [45], [37], [15] in mind) the new techniques
case (53) reduces to proposed here are considered to provide a more theoretically
W) 1-¢& sound argument for inferring a fixed order approximation from
SN (w) [ — (56) an asymptotic result. | S .
o ) ) Indeed, because of the fixed pole restrictions involved in
which is the same as the result obtained in [44]. previous work, the connections made here to general fixed

In [37], [15], which is the first work to consider the casgjanominator models of the form (54), (55) were never made
of p.ossmly different poles, _they are still all restricted to bgnd hence the fundamental relationship of orthonormal bases
cyclically repeated from a finite set, sgy € {§o,--,{p-1} to situations which are nadb initio formulated in terms of
and the result them has not been previously exposed.

lim LV&H {G(5°, 7)) = (57) A consequence of the pole restrictions imposed in the
mN=oo mKp(w,w) Py (w) previous work [44], [45], [37] is that it forces the basgs, }

is derived whereK,(w,w) = Y2_1|Bi(e?)|? with {By} e,TP,lf’f)d there to mimic the algebraic property™ ¢ =
being the particular set of orthonormal bases consideredei]n ™ of the classu_:al trigonometric basis. This aIIows_
[37]. The quantitym is the number otomplete repetitionsf an elegant pa_tth to variance results_to be followed, wherein
the whole setof bases{Bo, - - -, 3,1} in the model structure. the problem is reduced to an _9quwa|:ant FIR” problem by

This latter point on complete repetitions of pole sets is &Stablishing, viaa bilinear or multilinear (*Hambo") transform,
crucial importance since it has been demonstrated here tA8t@lgebra isomorphism betwegh,, } ande’. The original
when inferring an approximation like (53) from an asymptotif€Sults of [25] are then mapped through this same isomorphism
result like (57) it is vital that convergence of a result likd" Order to generalize them [44], [45], [37].
(57) can be reasonably expected to have occurred for finiteAS iS evident, the strategy of this paper is completely
m. However, if all the fixed poles in a model are choseflifferent and, apart from avoiding pole restrictions, it has
differently as in Section Il, them = 1. Therefore, since (57) the dividend of illustrating new analysis methods employing
is asymptotic inmn, it cannot be argued that (57) can reasonabl@cently derived results [35] pertaining to generalized Toeplitz
be expected to have converged in this casenof= 1, and matrices and generalized Fourier analysis. These new tech-
hence the theoretical justification for an approximation likeiques are considered to be of interest in their own right, as
(53), which is derived on the basis of [37, eq. (57)], is ithey would appear to have potential for application beyond the
these cases problematic. particular system identification setting considered here.

On the other hand, using the methods of this paper, attentionThe final advantage of the methods pursued here are that
is focussed on the asymptotic nature of (47) which convergi®ey permit an explicit formulation (28), (25) for the term

Var {G(c, 0%))
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K, (w,w) revealing how fixed poles affect variability; incollection. This is the first time a result like (53) has been
previous work it has been implicit in a state-space constructiestablished for this case of “fixed denominator” modeling, all
[37]. Indeed, by the recognition here that this teffy(w,w) the preceding work [25], [44], [45], [37] either applying only
affecting variability is a reproducing kernel, and hence uniquiar open-loop situations, or when considering closed-loop data
a closed form expression for the equivalent term in [37] {22], applies only for the very rare case of the true noise model
provided for the first time. being H(g) = 1.

It remains to comment on the undermodeling-induge@.) To illustrate the efficacy of Theorem V.2, consider the
term in the derivation of (53). Firstly, note that with its omissimulation conditions of Section Il altered so that the closed-
sion é(w) = 0 in Theorem V.1 so that the frequency respondeop scenario of a proportional controller of galti = 1 is
estimates at different frequencies are asymptotically uncoriavolved and that furthermore the reference sigfal} has
lated. Note also, that it can be argued that disregar8ifig) spectrum®,.(w) = 0.25/(1.25 — cosw) and the measurement
is reasonable, since if one assumes for the sake of simpliagilgise has spectrun®,(w) = (1.36 — 1.2cosw)/(1.16 —
that E{yr L 2.(07) 2 (07)} = E{ppE YE{2(07) 2 (67)}  0.8cosw). The sample average and theoretical variabilities
then using Lemma A.1 and assumifig,(67)} is a stationary given by (1) and (53) for this situation where eight poles in the
stochastic process model structure are not at the origin are shown in Fig. 5. As in

A, = M(|G — GEM)202) Section I, the new approximation (53) shown as the dashed
noT A o u line provides a more informative approximation to the true

so that use of (33) provides variability (solid line) than does the pre-existing approximation
, , (1). Note that in using Theorem V.2 to form the (dashed line)
[[AR]]2 < ||G(e?) — G(7%,62)||oo| | (W) |2 - approximation in Fig. 5, it was assumed that (since the model

structure was considered “rich” and there were no common
parameters between dynamics and noise model) there was
162 ()] < ||G(7°) = G, 67)|oo| | D00 |11/ P oo negligible bias error, and hence tht 4. (w) ~ @, (w).
An interesting point is that the simulation producing Fig. 5
Since it will be proved in Lemma VI.1 that the right-hand sidepecifically violated the Gaussian assumptions that Theorem
of this inequality tends to zero, theoretical justification whicky.2 was derived under by using uniformly distributed random
has not been provided in some previous works of neglectipgocesses. This robustness of the result to violations of the
the 6,,(w) term is provided. assumptions it was derived under is considered encouraging
In fact, this can be made more rigorous in such a way tfom the viewpoint of its practical utility.
even address the closed-loop case, but at the cost of more
restrictive assumptions.
Theorem V.2:Under the restriction that bot{w,} and VI. BIAS ERROR WITH FIXED
{e;} are Gaussian-distributed zero mean stationary stochastic DENOMINATOR MODEL STRUCTURE

processes, then the results of Theorem V.1 and CorOIIaryHaving guantified the variance error involved with using

V.1 hold even for closed-loop data collection and with thfhe structure (16), the paper now turns to the question of

§(w) term guaranteed to be identically zero provided that ”?fﬁantifying the bias error, again by a strategy of considering

substitution the equivalent but more tractable orthonormal reparameter-

B, (w) — D(w,67) ization (27). First, a key motivation for a model structure
such as (16) is the intuitive belief that for fixed any un-

is made in the statements of Theorem V.1 and Corollary V.dermodeling associated with lack of model structure richness

Here &.(w,67) is to be interpreted as the spectral density @fan be decreased by choosing polgs} in D,(z) close

the prediction error residual sequenjeg(6™)} defined in (6) to the true poles{y;} in the underlying true systert(z).

evaluated at™ = 67, the latter being defined in (8). The following theorem justifies this intuition by use of the

Proof: The assumption of open-loop data collection onlghristoffel-Darboux formula (30).
manifests itself in the proofs of Theorem V.1 and Corollary Theorem VI.1: Supposé&7( =) has partial fraction expansion
V.1 by allowing the splitting of (35) into two terms in (36), the

In this case, using (49)

first of which can have Lemma A.1 applied to it to conclude mel
that Q,, ~ M, (®,®,) + A, asn — oo whereA,, accounts Gz)=> —
for the second undermodeling-induced term in (36). However, im0 F T

under Gaussian assumptions, and regardless of whether or

not the data is collected in open loop, then instead of thjghere all the poles satisfly,; | < 1. Put @n(z) as the best,
strategy Lemma A.2 may be applied directly to establish thgpproximation toG(z) with respect to the: basis functions
Qn ~ My (2u(w)®u(w,07)) asn — oo (with A, ~ 0). The (B, B;,--- B,_1}. Then

rest of the proofs of Theorem V.1 and Corollary V.1 then go

through unchanged. [ | m—1 ‘ n—l; _¢
Therefore, in the Gaussian case, the new approximation |G(ij) — G,,,(ej“)| < Z /'wOév/ H Vi Sk |
(53), which contains the pre-existing one (1) as a special oo 1 TS I S

FIR case, is shown theoretically to hold for closed-loop data (58)
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- Sample Variances vs Theory

Sample Var
Extended Theory
Existing Theory

-3 -2

10°

1 0 1

Frequency (normalised)

Fig. 5. FIR with eight poles away from origin; closed-loop data collection and a non-Gaussian (uniformly) distributed process.

Proof: Takey € D. Then since(1/z) is analytic inD
the use of Cauchy’s integral theorem provides

G(l/p) = %jﬁwi(%/;)dz

Note that this bound is tight in the sense that if per-
fect knowledge of the poles of/(») is available (so that
Vi, k: & = ;) then the upper bound is zero. The interpreta-
tion of the result is that the convergence of the expansion (27)
to the underlying systen¥(q) can be very much faster than

Also, by use of the defining property (29) of the reproducingyat of the special cases of FIR, Laguerre, or two-parameter

kernel

———dt

R n—1 1
Gat1/i) = 3 Bul1/ 5 ¢ coBED T

Using a change of variable = t~' then leads to

1 n—1 N\ d»
%72@(1/2) <;Bk(1/u)8k(1/z)> -

G(1/p) =

so that using the Christoffel-Darboux Formula (30)
G(1/p) = Ga(1/p)

_ /wn(l/u)j{ G(1/2)pn(1/2) dz
2mj T Z— W z
_ pen(1/p) [ G(2)en(2)
— 72 et g (59)

Then by using (59) and Cauchy’s residue theorem
G(1/p) = Gn(1/)

m—1

S () ()

n—1
% =&k

,EO <1 —€z> *
= 1on(1/ ) %_:1 <1 _a,”> 1:[1 <%)

=0 k=0

Writing yo = re=/“ with |r| < 1, letting » — 1 and using the
triangle inequality then gives the result. [ |

Kautz expansions if reasonable gueségés} of the poles of
G(g) can be made. This is so since

% =&k
1— &z

is analytic onD and of modulus 1 on the boundaff of

D. Therefore, by the maximum modulus theorem, the factor
(60) with z = ~; that appears times in the bound (58) is of
modulus less than one, and hence the bound (58) decreases
geometrically with model order; the geometric rate will
depend on the error terfy; — &;| in the guess; in the true

pole position-;.

A bound similar to that of Theorem VI.1 is given, using
completely different methods related to the new theory of
“Hambo” transforms in [15]. However, it is less explicit
since it contains a constant scaling factor for which the only
information available is that it is finite.

The significance of Theorem VI.1 in the context of quantify-
ing the undermodeling-induced error in an estimated frequency
response is realized by noting that

™
arg min { /
enC R _x

so that for{«;} white (®,(w) = constant), the expression
(58) is a quantification of the asymptotic undermodeling-
induced estimation error.

Although (58) appears to be the most explicit statement
that can be made about undermodeling-induced error, it is

(60)

o =

|G(ej‘“') — G(ej“", 9")|2<I>“,(w) dw}
(61)
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possible to draw further conclusions that apply also whdmence the frequency response estimate will converge to the
®,,(w) is not white. For example, it is shown in [31] that therue one provided the expansion coefficients in (62) decrease
frequency response magnitude is on average (over frequersyfficiently quickly so that

underestimated in the sense that

™ . ™ . lim n el = 0.
| lse mpewde < [ 6P do Jg 3l

{=n

—T —T

Equation (61) may also be used to bound the bias error;§[t|1IS is satisfied, for example, iti(z) is stable and finite
imensional. In this case a simple argument using Cauchy’s

estimatingG(e/*) by noting that since, under the condition residue theorem shows that there existslac 1 and & <
Y (1 — &) = oo the {B;} are complete inH. then it o0
( [S]) = o0 (Br} P (1), such that|s,| < Kn‘.

may be expanded as

w Z 67 By (¢ + Zsz (e7). (62) VII. A.RX T YPE MODEL STRUCTURES '
Although the fixed denominator model structure (16) and its
eneralization (54), (55) have many practical advantages such
s relevance to “identification for control” ideas [1], [40], [27],
[33] and the requirement of only simple and robust numerical
procedures for the calculation (&R [44], [37], they suffer
from the drawback of relying on prior knowledge of pole

|G(e?) — G(e7*,67)| location.

GJ
{=n
Using this notation, the following bias error bound can bg
obtained.
Lemma VI.1: Suppose that7(z) € H>(T) so that the
coefficientsk, in (62) are well defined. Then

max,, B, (w) A common strategy for avoiding this drawback is to estimate
< <”m + 1) X max |Br(w) the pole locations of7(¢) while still involving a predictor
. - that is linear ind™ so that the advantage of simple numerical
'Z|W|' w.p.1. requirements for findingdy, is retained. This is done by
— employing the model structure
Proof: The method of proof is identical to that employed ¢, gny — B(2.¢") Hig g — Pl 63
: ; ) (¢.0") = _— (¢.0") = - (63)
by Wahlberg in [44]. Expression (61) characterif&sas the A(g, 0™) Alq, 0m)
solution to where
R,.07 = E{éxuyr}- Alg) =ao+ arq+azq® + -+ an_1¢" T+ q"

_ 2 n—1
Using this and defining the sequente,} as B(g) =bo +b1g +b2q” + - +bnsg

oo with
w éz—: KZBZ(Q)UIIC 0" = [ao, b07 ai, b17 Ty Gn-1, bn—l]T
being the vector of parameters to be estimated Bpdy) is
. as previously defined in (17).
1167 — 67112 < | Ry, ||2]|E{dr2k }H 2- Here the dynamics and noise model share paramet#s in
As is well known, this can lead to bias if the model structure
is not rich enough [46], [20]. The motivation for including

gives

But by Parseval's theorem

I — the D,,(¢) term in the noise model is to avoid this bias by
[Edbnzitlm = ZW/ B (¢7) Be(¢7) @ (w) . allowing H(q, %) ~ H(q) for some#” while simultaneously,
t=n through zeros ofB(q, 87) cancelling parts ofA(g, 67) that
Now, using the triangle inequality, the Cauchy—Schwarz ipertain only to H(q,6%), achieving sufficient flexibility for

equality, and using (33) to bourj{iz;!|| provides G(q,07) = G(g).

Most commonly the model structure (63) appears with the

167 — 67|, < n max, &, (w) Z |l choice &, = 0 in which case it is known as the “equation

min,, &, ( error” or sometimes “ARX” model structure and for which the

analysis of Ljung [22] provides, using the definition (12), the

But from (62) well-known result (which holds, when at least asymptotically

|G(e%) — G(e?*,67)] in n, the true system is in the model set)
i jw on n jw gn — jw g
< max |Bk(ef‘“)| <||9n — 60| + Z |W|>- Cov {1l(e’, 0%} ~ N02|H(@J 790)|2‘1’< Y, o).
0<k<
{=n (64)
. Here
As mentioned for the particular case of Laguerre models .
studied in [44], this indicates that as — oo then 67 will Be(womy 2 | Tul) P (@)

converge to the expansion coefficients given in (62) and Puc(omy(w)  Pe(ony(w)
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x 10°° Variance of ARX estimate of G vs existing and extended Theory
3 RN | SRS | T T T
—_— ARX Variability
- = - Extended Theory
----- Exisiting Theory
25K . - -
o
1.5+
1F :
0.5
[e) il 1 i 1
107° 107 107" 10° 10’

Frequency (normalised)
Fig. 6. Conventional ARX estimation with all noise model zeros at the origin. This is a comparison of the Monte Carlo estimate of sample varlability (so

line) with (dash—dot line) the approximate expression (64). Note that this last line obscures a dashed line which is the new approximation €7&rbecaus
the case of all poles at the origin the pre-existing approximation (64) and the new one (79) are identical.

is the spectral density of the two-dimensional vector signah the basis ofV = 10000 observed open-loop input—output

¢ (8™) defined as measurements, the former being white Gaussian noise with
spectral densityd, (w) = 0.25/(1.25 — cosw) and the latter
G(6™) 2 L Ebet")} being corrupted by white Gaussian noise of varianée=
t

0.001. Suppose also that all fixed noise model zerp&s} in
The importance of the latter, as will become clear in a momed?,.(¢) are chosen at the origin, so that a true ARX structure is
is to allow [by use of (5)] the prediction error gradief(6™) employed. Note that in this example, and all the rest following

to be expressed as in this section, the bias error in the estimation process is
o negligible, and hence the variance error will represent the
P (07) = die (6") = H Yq, 0™ (g, 6™)¢(0™) total estimation error. In any event, since bdth= 10000
e . . andn = 8 can reasonably be considered large [22], then the
II'(q,6™) 2 dG(q, 6 )’ dH(q,60") . (65) approximation (64) for the variance error could be expected
dgn e to be accurate, and indeed it appears to be so when shown

Since this strategy of avoiding bias can lead to overparans the dash-dot line in Fig. 6, with the sample average (over
terization of G(g,8"), the degree of which depends on how00 Monte Carlo simulations) estimate of the true variability
many extra terms ip(g, ) are required for modelingf (¢), P€ing shown as the solid line.
there is great importance in choosing the zefé¢g} not, in Hovye_ver, if three noise model zeros are moved_ away from
fact, all at the origin but as close as possible to where tHee origin to be at; = {0.8,0.8,0.8}, then the ensuing com-
true zeroes of (¢) are believed to lie. For example, H(g) Parison of the theoretical (dash—dot line) approximation (64)
has a zero near the unit circle, an AR expansiopa(q, ) and the Monte Carlo estimate (solid line) of true variability
accounting for this zero will need to be of quite high orger Shown in Fig. 7 shows much less agreement. Continuing, by
before it is accurate [39]. choosing six noise model zeros away from the origifiéat =

A main purpose of this section is to highlight that unfortui0-8,0.8,0.8,0.7,0.7,0.7}, the results of this choice shown in
nately (and in resonance with the fixed denominator case)f#- 8 indicate that now the approximation between (dash—dot
according to this motivation thé¢; } are not all chosen at thein€) the theoretical approximation (64) and (solid line) the
origin, then the approximation (64) can be quite inaccurat%??'mated Frue variability is so poor as to be considered very
even for large model order and data length. uninformative. o o

This perhaps unexpected phenomenon can be illustrated it contrast, the dashed line in Figs. 6-8 (which, in Fig. 6)
a fashion similar to that of Section Il by considering the leait €dual to and hence obscured by the dash-dot line) remains

squares method (7) and an= Sth-order ARX-like structure & good approximation regardless of the fixed zero position.
(63) for the estimation of theAstrom system” This line is in fact the new approximation to be derived in

_ this section, and again in resonance with the preceding fixed
G(q) = q¢+05 7 H(g) =1 denominator analysis, it involves replacing théerm in (64)
¢* —1.5¢+0.7 with a term K,,(w,w). Since the latter in fact equals for
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x10°° Variance of ARX estimate of G vs existing and extended Theory
3 T T T T T T T T
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- - — Extended Theory
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Fig. 7. ARX-type structure with three noise model zeros not at the origin; comparison of Monte Carlo estimate of sample variability (solid line) with
(dash-dot line) the approximate expression (64) and (dashed line) the new approximation (79).

_3

x 10 ¢ Variance of ARX estimate of G vs existing and extended Theory
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=== Exisiting Theory
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Fig. 8. ARX-type structure with six noise model zeros not at the origin.

all the zeros at the origin, the original approximation (64) iormulated as the requirement that with,(¢) defined as in

encompassed as a special case. (18), ans x s matrix of transfer function (¢, #™) exists such
Also in accordance with the previous analysis, the improvébat
approximation shown in Figs. 6—8 is obtained by reparameter- IU(q,6™) = [[n(q) ® L) Z(q, 6™) (66)

izing the model structure into an equivalent orthonormal form ) _ _ _
which is tractable to analysis using the new generalized Fourfépere the dimensions will be made clear in a moment
and Toeplitz results of [35] presented in Section V. by e_xample _anc@ denotes the Kr_onecker tensor produpt of
It is, of course, first necessary to establish the theoreti plrices Qeflned for am x n ”.‘a”'x A and anf x p matrix
; : : - to provide then? x mp matrix A @ B as
genesis of the inaccuracy phenomenon illustrated in Figs. 6=8,
and for this purpose it is necessary to give a brief synopsis of anB  apB - apB
the methods used in [22] to derive (64). AoB 2 “2.13 anB - “273
The conditions assumed there which are salient to the model : :
structure are that it satisfy what is called a “shift” property am1B  am2B - amnB



1400 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 7, JULY 1999

Furthermore, it is argued in [22] that assuming t#atis such it is valid to conclude increasing accuracy with increasing
thatG(q,07) = G(q), H(q,07) = H(q) (that is, it is assumed and hence pass from (69), (70).

that the true system is in the model set) then with the ToeplitzTherefore, in order to provide the improved approximation
matrix definition (18), (20) extended to block-Toeplitz matriceshown in Figs. 6-8 for the case of many zeros/®f(q) not

via at the origin, the challenge is to mimic this invariant to
Al [T behavior of the underlying Fourier reconstructed function.
T.(F) = %/ Ln(w) @ LIF (W)} (w)©I,]do (67)  Asin Section V, this is achieved by using the observation

that, asymptotically inn, the frequency response properties
to handles x s multivariable spectral densitieB(w), then Of estimates are invariant to (injective) changes in model
using known results on the asymptotic nature of block-Toepligiructure, so that instead of the ARX-like structure (63) the

matrices [49], [14] equivalent orthonormally parameterized model structure
Py~ 0T, (H(, 05) [2(,05)c(w,67) Glg,0") = ﬁ%i
ARG v
as (68) = = B
—_—
o = > tBi(a) [1 - > aBi(g) (71)
so that recognizing implicit Céso means and employing k=0 ’1‘:0
classical results from Fourier analysis via (14), it is argued w1 _ -
in [22] that for largen the following approximations are valid (26" = Alg,0m) 1= Z axB.(q) (72)
(some abuse of notation is made in the interests of readability): r=0
A is considered, whether or not the actual implementation em-
n (@) =n LI (7%, 07)]* P, IT' (7, 67) ploys this or the more natural form (63).
n

. . The advantage of the orthonormally parameterized form
~n 2N (W) (w) @ 1] (71), (72) is that with the generalized definition (32) Tor(q),
x 02T, (| Ho(w)|? [Zo(w) P (w, 07) Z2 ()] ™) it satisfies a generalized shift property (again witk: 2)

Fn W IS Zo W 69 / n n
~ 02|:I£(w)(|2)Z(§>(w)][Zo((w))¢<(w, VA (w)]fl . T(q,6") = [Fn(g) © L] Z(0,6")
- Z,(w) (70) where now

=’ |H (", 05) 20 (w, 67) —Glq,05)H(q,05) —H(q.6;)

Z(Qv 90) = H(q, 9(7)1) 0 (73)

where in progressing to the last line, invertibility & (w)

has been assumed. is (by the assumption of true system lying in the model class)
However, for the model structure (63), it is easily showidependendf « for any choice of{¢y}.

[22] that with the elements in the vecté¥* grouped into ~ TO make this more precise, it is necessary to expand

n blocks each of dimensioe = 2 and each of the form (31) to the definition of a generalized block-Toeplitz matrix

07 = [ax,b]7, then the corresponding(q,6") of (66) is depending on am x s dimensional positive definite matrix-

given as valued functionF(w) as
Z(q,07) = D1(q) _G(qﬁ 9(7;)1;{1()(]’ o) —HQE)q, ") | M,(F) 2 % /_ i [[h(w) @ LIF(W) [T (w) © 1] dw

(74)
Therefore, when evaluated @} it is better labeled a&,(w,n)

since if all the ¢, are chosen away from the origin therwhereT',(g) is the generalized form (32). Also, using the
via the D, 1(¢) term, the magnitude of the transfer functiorassumption that (at least asymptoticallyras— co) the true
components ofZ(c’,67) all depend onn. In this case system is in the model set [22], thep(67) = ¢, so that using
the Fourier convergence argument allowing the progressi(8b), (10), (11) and Parseval's theorem
from (69), (70) is problematic since the matrix-valued func- e om Nkl e m
tion [Z,(w, n)®¢(w, 07)Z*(w,n)]~* whosenth-order Fourier R, :Mn<Z(GJ ,06)8¢(w, 05) 27 (¢! ’90)>
reconstruction is implicit in (69), cannot be guaranteed to |H (7, 62)]
converge a® increases since the function possibly (depending Qn =0’R,
on how many zeros ob,,(¢) are not at the origin) becomes
less smooth with increasing.

In the strict ARX case originally analyzed in [22] there is (as P, =o*R_*
illustrated in Fig. 6) no problem since in this instance, with all gy Z(e5% 0D (w, B7) Z*(cI%, 67
the zeros at the originD,(¢’*)| = |¢/*™)| = 1 so that by the =o0"M, < ’ °|H(Cjw’ 90”)|2 — )
assumption of the true system being in the model class, then e
the function Z,(w)®.(w, 82)Z%(w) being implicitly Fourier However, by Lemma A.5 the same equivalence (45) shown
reconstructed in (69) is invariant to increasingso that indeed in [35] to hold for generalized Toeplitz matrices can also

and therefore
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be shown to hold for generalized block Toeplitz matrices. IH,(w)|?[Z,(w)®¢(w,07)Z%(w)]™t  then gives (since

particular, using the definition (74) Z(e/%,67) is invertible)
-t (2L 0w, 02) 2" (¢ 67) lm An()
" |H (e, 00) ] n—oo Ky(w,w)
~ Mo (|H (e 07)2[Z (5, 07D (w, B7) = [Ho(w)[* 2] (w) [Zo ()P (w, 05) 25 ()] ™ Zo(w)
A e (75) = o |H (<, 0207 (w, 67). (762)
asn — oo where here the definition of the equivalence is u

extended from that of (39), (40) to being that (75) implies that Corollary VII..1: Under the same cor)ditions as the previous
theorem, but with a strengthened requirement B{af } < oc,

lim K, N w,w)[[(w) © LM (F~Y) — M7 (F)] then
X [Mn(F~Y) = MY [Ca(w) © L] = 0 N jw gn
(M (F7) ()" [Cn(w) @ L] e o) Cov {II(e?*, 7))
component-wise and for all € [—=,#]. Therefore, again Bu(w) Duo(w)] ™
using the reasoning in (41), then from (14) use of the or- =2,(W) | g W)  o? : (77)
thonormal reparameterization idea means that instead of (69) e
the following expression is considered: Proof: The proof follows from the previous theorem
using the methods in [20, Appendix 9B]. [ |
lim _Aalw) The essential points of Theorem VII.1 and Corollary VII.1
n—o0 Kp(w,w) that discriminates them from previous corresponding results
— lim 1 ZH ) () ® L] [22] is that the asymptotic exprqssion (76a) implicitly involvgs
n—oo K, (w,w) generalized Fourier reconstruction of a matrix-valued function
X My (|H o (w)2[Zo(w)@¢ (w, 07) Z2 (w)] ) |Ho ()2 [Zo(w) P (w, 07) 2% (w)]~ which is invariant to n,
(||é"’ —6n () regardless of whether fixed noise model zeros are chosen at

X [[p(w) @ ] Z,(w) + AN = o1l ) (76) the origin or not. In this case, and unlike the analysis leading
Kn(w,w) to (64), it can be expected that the approximation between the

Asymptotic inn analysis of this expression then provides whagft-hand side of (76a) and its asymptotic value on the right-

are the last main technical results of the paper. hand side of (76a) will monotonically improve with increasing
Theorem VII.1: With ér& calculated via (7) using the model” again regardless of the location of the fixed noise model

structures (63), (71), (72) or any other equivalent structure wifl§r0S.

the same fixed noise model zerdés } all chosen to lie within ~ AS @ consequence of this, the suggestion of this paper is that

the unit diskD, then in the limit asN — oo an improved approximation for the variability of ARX-type
o model structure estimates is obtained from (52) by assum-
m(G(e{“,Q?\’r) - G(eff,%”) ) 3/\/(0 Ap(w)) ing that for finite N and n convergence has approximately
H(e?™, 0y) — H(e?*, 67) ’ converged in (76a) so that
where WithK, (w, w) = K, (c'“,¢*) given by (28) and under ¢, (LL(e7, 67)) ~ iéu(w)égl(w, 6K, (w,w). (78)
the assumption that eventually, for large enoughhe true ' - N
system is in the model set, then In particular, if the data is collected in open-lo@p,.(w) = 0)
- then
o Anw) O (w) Dulw)]
b e~ 29 er () o2 ’ o 1, ()2
e Cov {G(™. 000} ~ 5oy 2 1B (79)
Proof: It has already been established in (13) that with " k=0
the definition of the composite transfer matrix (12) and
VNI, 67) — TI(e?™, 67)] 2 N (0, Ay, asN o H(*,gm)]2 =t
[ (C ]\) (C o)]_> ( (w)) — 00 COV{H(CJL",QKT)}% | ( ~ o)| Z|Bk(eju,)|2 (80)
where (76) gives an asymptotic im expression for k=0

(\n(w)/Kn(w,w). Becau;e of the Kronecker product termgnich explicitly shows, via th&yZ2 |By(c7%) 2 = K, (w,w)
in (76), the result (50) is not applicable. However, LemMmgrm how the choice of fixed zerds,} in the noise model
A.3 shows that forf’(w) an arbitrary regular multivariable jnfluences the sensitivity of the final transfer function estima-

spectral density, then (50) may be extended to tion to measurement noise; again, see Fig. 4. Note that as per
. 1 . the previous section on fixed denominator model structures,
lim ————— I (w) @ L]M,(F)[I'n(w) @ ] = F(w)  these new expressions contain the results for equation error

n—oo K, (w,w) . - :
structures presented in [22] as a special casg&, aE 0 since

component-wise inF(w) and where M, (F) is defined the latter impliess.}_ |By(¢/“)|? = n so that (78) becomes
by (67). Applying this result to (76) withF(w) = (64).
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To conclude this section, it is interesting to note twto the shift operator model (63) with fixed noise model zeros
important cases where fixed-zero noise models in ARX struget at the origin, but at the locations, = A&y + 1. The
tures are implicitly involved, albeit via alternate motivationamost accurate quantification of the variability of the ensuing
Firstly, consider the case of employing a standard ARX operator-based estimates will therefore by given by the
structure save that, in the interests of concentrating attentioew approximation (78). Thegeoperator inspired asymptotic
on certain frequency regions [46], the common practice wériability issues were first prescienced in [10].
data prefiltering is employed in such a way that [denoting the
filtering action by the transfer functiofi(¢)] the ARX model
structure being employed becomes VIIl. CONCLUSION

Alq, ") F(q)y: = B(q, ") F(q)ur + es. This paper has provided an exposition of the previously
unsuspected intrinsic nature of orthonormal bases in the study

In this case, if the filte"(g) is all pole of the formF"(¢) = ¢ certain least squares estimation problems. In works [25],

1/D,(q) then this model structure is clearly identical to th 2], and [20] preceding this paper, the bases have been
model structure (63) with fixed-zero noise model and for whi

. N L esent in the special form corresponding §¢ = 0 of
it was shown in Figs. 7-8 that the approximation (64) can be ¢#*) = e=4*n s that they have been hidden since then

quite poor if the number of prefilter poles is an appreciabﬁ; (e5)|? = |e=9*"2 = 1. However, as shown for the
proportion of the model order. This leads to the conclusion t "t time here in a completely generai setting, they become

Whe_never all-pole prgfilters are usgd with ARX structures, th%’bparent for certain structures with fixed pole or zero terms
the improved approximation (78) is preferable. where| D, (¢7“)|2 # 1, and hence whose changing nature with
Finally, in the interests of numerical conditioning when sangpect to increasing cannot be ignored in arguments that are
pling well beyo”‘?' the Nqust rate, the so-calletidperator” asymptotic inn. This paper has shown that the analytic key to
model structure is an option [30], [7]_' Such structures, Wh%?rcumventing this difficulty is to develop and apply results
in equation error form as presented in [30], appear as ¢ generalize certain Fourier convergence and asymptotic
A(6,0™) B(6,6™) Toeplitz matrix properties to the case of an underlying general
D, () g = D, () rational orthonormal basis, of which the classical trigonometric

h ith A l to th i iod i dsi basis{c~/“"} is a special case.
where wi equal fo the sampling period In Secondsis As a final comment, it is important to acknowledge that the

Ut + € (81)

defined as orthonormal basis ideas used in this paper have a very long
s 2 g-1 history. The study of the formulation (25) in mathematical

A literature can be traced back at least as far as [28], [42],

and and the engineering applications (25) seem to originate in
A(8) =ao + a16 + as8® + -+ an_1 6" L+ 6" [17], although it clear that Wiener was aware of the practical

relevance of (25) somewhat earlier [19]. In more recent times,

_ 2 . n—1
B(q) =bo + 18 +b26" + -+ by 16 the list of works employing specialized “Laguerre” or “two-

with parameter Kautz” forms of (25) is immense, but a partial
n ) list for readers interested in further investigations includes

Dy(8) = [J(6 — &) [29], [4], [38], [36], [26], [44], [45], [37), [15], [6], [36],
k=1 [18]. However, a key feature discriminating this latter work

. o N from that in the current paper is that in pre-existing studies
and now theg; are chosen to all lie in the disD = {z € he orthonormal bases were explored asraplementational

C: |z +1/A| <1/A}. Aside from numerical considerations,oniion while here, they have been employed purely as an
another dividend of using this model structure is that SiNGfhalysistool, and this tool is applicable to model structures

the 6 operator is the Euler differencing approximation t@n4t are notb initio formulated in terms of them.
the differentiation operator, the ensuing estimates can be

interpreted as an approximation of the underlying continuous-
time system. Again, this depends on sampling well beyond
the Nyquist rate [32].

In the ¢ operator case and in the absence of noise model

APPENDIX |
AUXILIARY RESULTS

knowledge, it is natural to simply choosB,(q) = g¢". Lemma A.1:Let {11} be a stationary stochastic process
However, when operating in & operator framework it is with associated covariance functié (7) and spectral density
not natural to make the specific equivalent choieg(s) = ®.(w) satisfying

(6+ 1/A)™, since a key philosophy underlying the useéof

operators is that of more closely approaching continuous-time 0 , 0

intuition, wherein the precise value df is incidental. Other ~ ®»(w) = > Ry(r)e™T, > IR,(r)| <0
considerations therefore come into play in the choice of the T=—00 T=—00

zeros of D, (6), for which [30] provides a discussion.
In this setting, attention is therefore focused on a modahd supposéu,} is a quasi-stationary process with associated
structure (81) which is (modulo numerical issues) equivalespectral densityp, (w). Then with, = T',,(¢)u, andT',,(q)
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defined by (32)

N—1N-—

Z Z E{T/)m/)m}E{l/kl/m}

k=0 m=0

™

F(w)F* ()P, ()P, (W) dw.

hm

27r

Proof: Without loss of generality assume, = 0 for
t <0 so that
N—1N-—
Jim = 5 ZE{wwm}E{w )
k=0 m=0
1 —1N-—
=Jm o5/ Z Z E{¢ntm}
k=0 m=0
. piwlk=—m) g
1 /7 N-1 N-1
= Jim 7/4 ‘I’”(‘“)T;N < ZEWW& |r|}>
Ry (r)
T .
Therefore, defining
1 N—-1
Ry(r) = lim Z E{rti_i }
k=0
1 ® .
=_— Lol (w)®(w)e ™7 dw
27 J_, '

1403

However, by the quasi-stationarity assumption{en}, then
limy_ oo Ry(7) = Ry(7). So for sufficiently largeN then
max|;|<n |[Ry(7) — Rn(7)| can be made arbitrarily small,
and since also by assumptiah. |R,.(7)| < oo, then the first
term in the above overbound tends to zero with increasing
N. For the second term, note that since by the assumption
that T, |R,(7)| < oo, thenlimsup__,_ |R,(7)| = 0 so that
for large enoughy, then sup, >y |R.(7)| can be made
arbitrarily small. As well, by the quasi-stationarity assumption
on{u.}, which implies that22 ___ R,,(7) exists component-
wise, thenlimsupy_ ., Xj->n [Ry(7)] = 0, which com-
pletes the proof. [ |
Lemma A.2: Suppose thaf{u.} and {e;} are both realiza-
tions of zero mean Gaussian distributed stationary stochastic
processes and the orthonormal model structure (27) is em-
ployed. Then regardless of whether the data is collected in
open or closed loop, and with no approximation caused by
neglecting an undermodeling-induced term, the matpix
defined in (11) obeys

Qn ~ My (04 (w)Pe(w, 07))

1Yo

asn — oo where the matrix formulationV/,, is defined in
(31) and®.(w,87) is the spectral density of the prediction
residuals{e,(#™)} defined in (6) and evaluated 4t = 67
defined in (31).

Proof: From the definition (11) after using the station-
arity assumption and the change of variable- £ + m and
regrouping terms

leads to (the absolute value inequalities following are to be

interpreted component-wise in the matrix quantities involved)

\% / T @B, ) do

N—-1N-1
Z > LR, )‘
k=0 m=0
1 g7 N-1
=5 / X% ( > Rw’(T)—RN(T)>
7=1—-N
+ Y R do
=N
N—1
< Y |Ry(7) = Ry (7)| R (7)]
7=1—-N
> Ry(nR
[TI=N
N-1
S (lirllil)]ir Rw(T)—RN(T)D Z |R,,(7')|
T=1—-N
+(sup |Ry,(r |
I7|=N |T|§>:N

N
B
= > E{twti_en(0)er-(6)}

where the properties of Ca® means have been used in
progressing to the last line. Using the Gaussianity assumption
and the formula for fourth moments of jointly Gaussian
random variables [43]

E{vntiren(07)er—-(65)}

= E{tptpi_YE{er(0)er - (67)}

+ E{vrer— (00 }E{WR -en(05)}

where use is made of the fact that by the definitiongpf
E{ywer(67)} = 0. Furthermore (suppressing the dependence
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on 8 and with 6(-) denoting Kronecker delta)

oo

> E{gni_ YE{eren—r}

T=—00

- Z Z E{vrpi  YE{eren ¢}6(£ —T)

b=—00 T=—00

S e JE{ere—d)
b=—00 T=—00
1 o
- Jw(é—-;—)
27T dw

= [ Z E{ynii_ye 77

T=—00

. Z E{Ekek,g}ej " dw

{=—o00
1 v
2m

T o
= M,(9,9.).

Using an identical line of argument

oo

> E{vwen_- E{$i_ e}

/ Z E{¢nen—rte T

T=—00
=)

. Z E{ei_,er}e’*t dw
f=—0c0

™

! /_7T Z E{¢ner_r e 97

T=—0C

oo

. Z E{¢fer_c}e ™ dw

{=—0c0
1 ™
=5 i} D (w)<1>7:$6 (w) dw

1 i A

=5 Lop() T ()02 (w)dw = X,..
™ ™

Now, in the case of all the pole&;} being real, then since

Bk(ejw) = Bk(e—j“")
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M, (®,®.)+ X,, and it has just been established thgt ~ 0
asn — oo, then@,, ~ M,(®,P.) asn — oo. ]

Lemma A.3:Let F'(w) be a continuous x s matrix-valued
function defined onM—=,x]. Then

. 1 N _

Lim m[rn(w) @ LM (F) [ (w) @ L] = F(w)
component-wise iF'(w) and where\/,,(F') is defined by (67)
with I',,(w) being the generalized form (32).

Proof: Using the algebraic properties of Kronecker ten-
sor product [3] and the definition (67) &, (F)

[[%() © LMy () () @ L]
=ww>®u[ [ mwe

FWWU@HM 00(w) @ 1]

:_/r*@M]()()HW
w)® I;]dA

:_/ I (w

Use of the result (50) on noting that the above expression is a

matrix made up of terms of the fordi! (w)M,, (F,,) ' (w)

with F,,,,,(\) being them, nth scalar entry off’(A) and with

M., (f) defined by (31), (32) then completes the proof. m
Lemma A.4: With the definition of the generalized Toeplitz

matrix being expanded to that of generalized block-Toeplitz

matrix by (74), then fo, G any s x s complex matrix-valued

functions which have entries which are Lipschitz continuous

of ordere >0

W2 @ F(\) dA.

lim K (w,@)(w) © L]

X [M(F)M(GQ) — M, (FG)]
Tn(w)@ L] =0 (A2)

are component-wise.
Proof: Using the formulation (74)

[Mn(F)M ® I ]]7 skt

T an? /_,T /_,T (w,0)Kn(o,A)
@

F(ANG(0)]rsgrr drdo

[ (w) X, (w)
R AT // ) Ko
|| || oo /w N
— = K, K, (- . dAd
S ko) | KO @l (= V] A o))y dXdo
However, in [35] it is shown that expressions of this form = Z/ Ky (w,0)Kn(o,A)
tend to zero with increasing provided all the poleq¢;} T
are chosen within the open digd. This same result can X [F(MN)]k,e[G(0)]e,s dX do
also be shown to hold for th¢¢,} being complex, but at s—1
the expense of considerably more involved arithmetic which (e, e) My (G ) U ()]s

is not appropriate to document here. Therefore, sidge—=

é=0
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Also, by a similar argument [8]

s—1

(M (FG)Cn(w) @ Ls]lrstn,e = Z[Mn(Fk,éGé,t)Fn(w)]r-

El

10
Therefore, defining\,, 2 M, (F)M,(G)—M,(FQG) leads to "
) © LIAL Ao (@) @ Ll .
n—1s—1 [12]

= Z Z ® I, ]]7 rs+k,p
r=0 k=0 [13]
(AP (w) @ Is]]rs+k,t [14]
Bl s

r=0 k,£,v=0

M (Fr, ) Min(Gep) — My (Fre, Gep)IUn (W)l [16]
X [Mn(Fr, ) Mn(Get) — Mu(Fre, Ged)|Un(w)]. a7

Now, whenp = ¢, then the scalar result (44) gives that
this expression divided by(,(w,w) tends to zero as — [1g]
oco. When p # ¢t it is first necessary to upper-bound the
above expression using the Cauchy-Schwarz inequality (2
|Ux ABT,, |2 < |I'% AA*L, |7 B* BT, | before again using the [20]
scalar result (44) to conclude that this overbound, and he
the expression of interest also tends to zero when divided y
K, (w,w) asn — .

Lemma A.5: With the property (A2) being understood agd??
the defining feature of the relationshid,,(I") ~ M,,(G) as
n — oo for generalized block-Toeplitz matrices defined by23]
(74), then forF'(w) any Lipschitz continuous matrix-valued

function that is invertible [24]
M7YF)~ M, (F7') asn — oo. [25]
Proof:
(26]
[7(w) © LM, (F) = My (F )] 271
X M (F) = My (F~O][C(w) © L] 28]
= [ (w) @ LI = My (F)Mo (F~H)]" M7 (F)

MHE) X 1 = My (F)Mo(F 7] [Cn(w) @ L]

(29]

However, by Lemma A4, (F)M,(F~*) ~ M,(I) = I as
n — oo S0 that use of the Cauchy—Schwarz inequality and t%]

bound||M,.(F~1)|| < ||F~||l-. completes the proof. m
[31]
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