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Abstract

This paper generalizes recent Lyapunov constructions for a cascade of two nonlinear systems
one of which is stable rather than asymptotically stable. A new a cross term construction in
the Lyapunov function allows us to replace earlier growth conditions by a necessary boundedness
condition. This method is instrumental in the global stabilization of feedforward systems and new
stabilization results are derived from the generalized construction.
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1 Introduction

This paper further contributes to the construction of Lyapunov functions for stable cascade systems
and its applications to global stabilization results. The motivations for constructing Lyapunov func-
tions for uncontrolled systems which are stable but not asymptotically stable go back to the work by
Jacobson [1] and Jurdjevic and Quinn [3], where the Lyapunov function for the uncontrolled system
is then employed to design a “damping” controller, that is, a feedback which adds extra dissipation
to achieve asymptotic stability.

New such constructions appeared in the recent works [2, 4, 5] on the stabilization of feedfoward
systems using a recursive forwarding design. These Lyapunov techniques followed earlier results by
Teel [13, 14] on the stabilization of feedforward systems, based on input-output methods [15] (see
also [12] for an application of this approach to the problem of the global asymptotic stabilization by
bounded feedback of null controllable linear systems).



Instrumental to the forwarding designs of [2, 4, 5] is the construction of a Lyapunov function for
the cascade system

(20){ £ =al6) /

for which the following is assumed:

(A1) the equilibrium & = 0 of £ = a(¢) is globally asymptotically stable (GAS) and locally exponen-
tially stable (LES). A Lyapunov function U(£) is known such that L,U(£) < 0 for all £.

(A2) the equilibrium z = 0 of 2 = f(z) is globally stable (GS) and a positive definite radially
unbounded function W (z) is known such that LW (z) <0 for all z.

The stability assumption for 2 = f(z) differs from the asymptotic stability assumed in earlier
stabilization results for cascade systems (see [6, 9, 10, 11]) where the sum of the Lyapunov functions
W(z) and U (£) is used as a Lyapunov function for the cascade system. This “composite” Lyapunov
approach fails in the present case because LW (z) is in general not negative definite.

The approach initiated in [2] employs a more general Lyapunov function

(2,€) € R™ x R™

Vo(z,8) = W(z) +¥(2,¢) +U(E) (1.1)

where the “cross-term” U(z,¢) is constructed in such a way that Vj(z,£) is nonincreasing along
the solutions of (Xy). In [2], this construction is accomplished under the following two additional
assumptions:

(A3) there exist constants ¢; > 0 and ¢z > 0 such that : |[z|| > ¢ = H%—Vg(z)H z|| < coaW(2).

(A1) |9z, < mEDN=] + y2(IEll), with v1 and e differentiable positive functions.

These growth assumptions provide a sufficient condition for the boundedness of all solutions of
(30). They are also used in the construction of the cross-term to ensure that the Lyapunov function
Vo(z,€) is continuous, positive definite and radially unbounded. However, the assumptions (A3) and
(A4) are not necessary to ensure the global boundedness of the solutions and the question therefore
arises whether a cross-term construction can still be achieved under weaker assumptions.

The main contribution of this paper is to show, in Section 2, that the (sufficient) assumptions
(A3) and (A4) can be replaced by the (necessary) assumption

(A3bis) All solutions of (Xg) exist for all ¢ > 0 and no solution goes unbounded as t — oo.

The replacement of assumptions (A3) and (A4) by (A3bis) requires modification of the cross-term
construction performed in [2]. This is illustrated by a simple example in Section 2. The more general
construction introduced in the present paper exploits the available flexibility in the choice of the
cross-term ¥(z,¢).

Our Lyapunov construction is also valid for the more general cascade

§= a(&z)v a(07z) =0

provided that the equilibrium & = 0 of € = a(¢, 2) is GAS and LES uniformly in 2.

The new assumption (A3bis) is the weakest possible assumption to allow for a Lyapunov con-
struction but it is of practical use only if boundedness of the solutions can be verified independently
from the solutions. This requires a boundedness criterion, such as, for instance, the previous assump-
tions (A3) and (A4). In the second part of the paper, we provide a new boundedness criterion which



generalizes assumptions (A3) and (A4). As an application, we obtain a new global stabilization result
for the cascade:

{ 2= f(2) +(2,8) + 9(z Ou, $(2,0) =0
é-: u?

in which the growth of ¢(z,£) with respect to the variable z is assumed to be polynomial whereas a
linear growth is imposed in [2].

For completeness, we mention that stability results have been recently obtained in [7, 8] for
nonautonomous extensions of (Xy) under growth assumptions similar to (A3)(A4).

Notations.

1. A C° function v : IRt — IRT is said to belong to class K if it is strictly increasing and
7(0) = 0.

2. We denote by (2(s),£(s)) the solution of ($g) at time ¢ = s with initial conditions (2(0),£(0)) =
(5,6) € R™ x ™

3. State vector z is defined by x = (z,£).

2 Lyapunov functions for stable cascades

2.1 Construction of the cross-term

We will construct a Lyapunov function of the form (1.1) for (¥y) under the sole assumption that no
solution of (¥y) is unbounded. The time-derivative of V;, along the solutions of (¥y) is:

Vo=LiW + LyW + 0 + LU (2.2)

The terms LyW and L,U are non positive. This implies that Vo is non positive if the cross-term
U(z,&) satisfies .
v+ Ly,W <0 (2.3)

In particular, this inequality holds for all ¥ such that
U(z,6) = —LyW (2,6) = 7(2, O]l = —dy(2,6) , ¥(2,0)=0 (2.4)
where 7 is any positive function. We then have
Vo(2,6) < LW (2) = v(=z )€l + LU () <0

We deduce from (2.4) that U is the line-integral of the function ¢, along the solution of (3¢) which
starts at (z,€) :

V(€)= BEO.E0) = [ (35),E)) ds (2:5)

The following theorem shows that the integral is well defined and that the resulting V; is a
Lyapunov function for (Xg).

Theorem 1 (Lyapunov function with a cross-term)
Assume that ¢, in (2.4) is continuous. Under the assumptions (A1), (A2) and (A3bis), the following
holds:

(i) ¥(z,&) exists and is continuous in R"* x IR"¢;

(ii) Vo(z,&) is positive definite;



(iii) If the function y(z,£) is chosen in such a way that

U(z,&) > —x(El]), V2 (2.6)

where « is a positive continuous function, then Vj(z,£) is radially unbounded. In particular,
(2.6) is ensured with the choice

LyW(z,¢)

Y€)= (LeW)s =4 Il
0 it LyW(z,¢&) >0

if LyW(z,¢) <0

(iv) Vo(z,€) is nonincreasing along the solutions of (X)), i.e. the cascade is globally stable.

Proof: The proof is a generalization of Theorem 1 in [2] where only the particular case v = 0 is
treated.

Proof of (i). The existence and the continuity of ¥ are proven as in [2].

Proof of (ii). Evaluating W along the solutions of (3j) yields:

W(z =
) )+ o 1)

It follows that for all ¢ > 0:

W)+ [ 6,0, E6Nds = WEW) — [ LW L)

+ /. 7(2(5), ()€ (s)llds

Taking the limit for ¢ — oo, we obtain

W(z) + (z6) = Jim W(( / LW 0
+ [T E6DIE) s |

Since each term of the right hand side of (2.9) is positive, the function W (z) + ¥(z,§) is positive.
It follows that

Vo(z,€) = U() = 0 (2.10)

So if Vo(z,£) = 0 then £ = 0. But Vy(z,0) = W(z). So if V(2,0) = 0 then W(z) = 0, which in turn
implies that z = 0. This proves that 1} is positive definite.
Proof of (iii). By (2.10) we have:

lim Vp(z,€) = +o0 (2.11)
llEll—>+o00

So to check that Vp is radially unbounded, it is sufficient to show that whenever ||£]| is bounded, Vj
tends to infinity as ||z]| — oo. With (2.6), the result follows, because Vy(z,&) > W (2)+U (&) —x(||€]])
and W (z) is radially unbounded.

Various choices for the function y(z,§) in (2.4) ensure the condition (2.6), therefore guaranteeing
that Vp is radially unbounded. The simplest choice is:

_ LyW(z,¢)
V(2,€) = (LyW)y = €]
0 if LyW(z,&) >0

it LyW(z,¢) <0



The resulting ¢, = (LyW )4 is continuous and the cross-term only integrates the positive part of
LyW, that is

(&) = [ (LW)aE(e). E)ids 2 0 (212)
Proof of (). Vo(z,€) < 0 by construction. Global stability follows from (i) and (is). 0

In [2], only the choice v = 0 is considered and Theorem 1 is proven under two additional assump-
tions (see Section 2) which guarantee global boundedness of the solutions of (3(). Without these
extra assumptions, a choice v # 0 is in general necessary to guarantee radial unboundedness of 1},
as illustrated by the following example.

Example 1 The system

{Z — _2352
£ = —¢

satisfies the assumptions on (Xy) with the Lyapunov function W(z) = 32% and U(€) = $¢2. The
choice v = 0 results in

] 22— g2
VRO = T
and
22 2
Wo(z,&) = Tresz + &

which is not radially unbounded. On the other hand, the choice ¢, = (L, W) results in ¥ = 0 and
Vo =W + U is a Lyapunov function for the cascade.
2.2 Smoothness of the cross-term

In [2], C* differentiability of the cross-term W in the case v = 0 is established under the following
extra assumption on z = f(z).

(A5) The vector field f has the form :

(o))
Fyzy + fa(z1, 22) 22

Furthermore, f2(0,29) =0, the equilibrium zy = 0 of 21 = f1(z1) is GAS, and the system Zo = Fyzo
is Lyapunov stable.

If v is not identically equal to zero, this differentiability property is unchanged provided that the
function ¢, in (2.4) is differentiable. This is not so with the choice ¢, = (L, W), which, in general,
is only continuous. A smooth construction is provided by the following proposition.

Proposition 1 Assume that W (z), U(), and 1(z,&) are smooth functions. Then a function -y such
that (2.6) holds can always be selected to be smooth.

Proof. To ensure the smoothness of ¢,, we choose v in the form :

(2,6 = T|z)?)lE] (2.13)



where [ is a positive smooth nondecreasing function to be determined and where z is the full state
vector (see Notation). Condition (2.6) then becomes

|7 Eaw s + [T TEIEIDIE) s > (il (2.14)
We prove in Appendix 6 the following fact :

Fact 1 There exist a smooth function y; € K and a constant A > 0 such that

Ly W ((5))] < m(ll=l)e €]l
Moreover, v1 and X can be determined explicitly, provided that W, U, ¢ are known.

By integrating, we obtain the lower bound

(H D

/ LW (#(s))ds > — 20200 (2.15)

To obtain a lower bound for the second term of (2.14), we employ the estimate

|E(s) 1> > [|[*e= > lelDs (2.16)
where 75(.) is a smooth strictly positive and increasing function. We prove this inequality in Appendix
7. Using it, we have ||Z(s)]|? > @ for all s € |0, %] and hence,

In2

[T TIPS > Dol

2
el (217)

Using the lower bounds (2.15) and (2.17), we replace (2.14) by

1
Nl e = 205 e e >
(Il
This inequality is satisfied if we choose I'(.) and &(.) such that
(el In? iy
AL~ rlol) 2l <

which holds if we choose x(||£||) = & > 0 constant and I'(.) a smooth function which satisfies

(el 22l
() = (TR

This choice in (2.13) ensures (2.6), which ends the proof. O

3 Growth conditions for global stability

3.1 A particular class of stable cascade systems

In [2], global stability of (¥¢) is proved under the assumptions (A3) and (A4). Considering the more
general cascade

5= f(2) +(2,€), ¥(2,0)=0
{ £ =alt,2), a(0,2) =0 (3.18)

we now relax the linear growth assumption (A4) as follows:



(A4’) The function (z,£) satisfies a polynomial growth assumption

3k > 10 [z Ol < Tr(llEDll=* + Ta(ligl) (3.19)

with Ty and Ty differentiable functions of class K. Moreover, there exist ¢, > 1 and a C' function
Us (&) positive definite and radially unbounded such that

1,61l > e1 = LaUs(2,6) < =3Il = (€= (3.20)

where 3 and 4 are positive definite continuous functions. Note that Assumption (A4’) reduces to
(Ad) if k= 1.

Proposition 2 Under Assumptions (A1), (A2), (A3), and (A}’), the cascade (3.18) is globally
stable. Moreover, the function

Vo(2,8) = W(z) +¥(2,¢) +U(E) (3.21)
is radially unbounded regardless of the choice of v in (2.4).

Proof. Because Vj(z,&) > U () and U(.) is radially unbounded, it is sufficient to prove that for all £

Hzﬁﬂ@(W(z) + U(2,€)) = +o00 (3.22)
or, using (2.8), that :
t
ol oo (ti‘ﬂo {W(z(t)) - /0 LfW(z(s))dsD — 40 (3.23)

Assumptions (A3) and (A4’) imply the existence of positive constants ¢, ¢, and g3 such that

- =tav = |2 i
> || G| (EuEmian +raién)
> = (|| 5|1+ ) (TrEmizE + o)
> —(2W(2) +as) (TL(IENIENE + (1)

Using inequality (3.20) of Assumption (A4’), let U3(&) = 0U2(§) x1(s)ds be a positive definite and
radially unbounded function such that

1) > e1 = Us = xa U2 () Lala @) < — (Tu(IEN 215" + To(EID)

Then we have ' ) )
W—LW > = [Ti(llElel ™ +Ta(l€D)] [0 (2) + 5]

+x1(U2(8)) LaUs(2,€) (02 W (2) + gs]

So, with I's = ¢ [Flc’ffl + Fz] and ¢4 = g—;’, we obtain :
W= LW > [=T3(I€ll) + U] W (2) + au]

Defining ) .
p(t) := =T3(IE@)]) + ¢2Us



we have p(t) <0 for all ¢ > 0 and

00 0o ~
[ b0t = = [T Ta(IE @D = a:Ua(6) > ~Ta(lE]) (3.2
for some I'y € K. We now integrate the inequality
W > p(t)(W +q1) + LW

to obtain ) -
W) + qi > edo PO (W (2) 4 q0) + /0 eJs PO L W (2(s))ds

Because L;W < 0 and exp([! p(r)dr) <1 for all s < t, we have

WD) + a1 > el "B W () + g) + / LW (%(s))ds

and hence
t

WD)~ [ LW Es 2 BTN ) 1 ) —

This inequality holds for all ¢ > 0. Taking the limit as ¢ — 0o, we use (3.24) to conclude

lim W(:(0)) — | T LW (Es)ds > e D W (2) + q4) — g

t—o00

Because W (z) is radially unbounded, the right-hand side is unbounded for each £ as ||z|| = co. This
concludes the proof. O

3.2 A stabilization result

A stabilization result will now be deduced from Proposition 2 for the system

{ 2= f(2) + h(z,6) + g(z,6)u, h(z,0)=0
é-: u?

for which we assume in addition to (A2), (A3) and (A5), that h(z, ) satisfies the polynomial growth
property (3.19) and g(z, £) satisfies a linear growth property:

lg(z, ) < sa(IEID1Iz]] + w2(l1€]])

(3.25)

where the k; are positive functions (not necessarily zero at zero).
The preliminary feedback

u = azf) = —(L+|ll"1e (3.26)

transforms (3.25) into the cascade

z= f(Z) + h(Z,f) +9(Z7£)a('27£)
{ E=— (142" 20

and global stability of the equilibrium (z,&) = (0,0) follows from Proposition 2. ((Al) and (A4’) are
satisfied with U(¢) = £[/¢]|?). By Theorem 1 and Proposition 2, the Lyapunov function Vy(z,¢) is
differentiable, positive definite, radially unbounded, and nonincreasing along the solutions of (3.27).



To achieve global asymptotic stability of the equilibrium (z,£) = (0,0), we enhance the negativity
of Vi by augmenting the control law (3.26) in the form

A%

u = a(z,f) + v = a(z,§) — 8—§(z7§)

_ M

0 (2,€)g(2,¢)

to obtain - - )
0 + S 00(:9) <0

This inequality and the LaSalle Invariance Principle imply that (z,£) = (0,0) is globally asymptoti-
cally stable when z = 0 is the unique solution of

W < =+ el - (

i = f(2)
5e(%0) = 52(2,0)9(2,0) = 0

We illustrated the above stabilization procedure in the following example which violates the linear
growth assumption (A4) required in [2].

Example 2 The system

(3.28)

o= (L+296+0(1+ 2416 + Ezu
E = u

where § € [—1,1] is an unknown parameter satisfies Assumptions (A2) and (A5) (the z-subsystem
is 2 = 0) but the growth of (1 + z*)¢ is polynomial rather than linear, causing the finite escape time
to infinity of some solutions when u = 0. To satisfy the growth assumption (A4’), we apply the
preliminary feedback

u = —(1+2Y 4w (3.29)

and obtain the cascade

(3.30)

o= (1424 —€22) +0(1 + 29 1€ + v
£ = —(1+2Y%+v

The choice z* rather than |23| in (3.29) is adopted to obtain an explicit solution for the cross-term.

When v = 0, the cascade (3.30) satisfies Assumptions (A1) to (A4’) with the Lyapunov functions
W() = 32, U = 3 (3.31)
Using the fact that
LyW = 2(1+2Y¢ — (14 29222 + 02(1 + 2762 < 2(1 + 296 + (1 + 1€
we define the cross-term by

U(z,8) = —¢y(2,8) = —2(1+2)¢ — (1+2)¢? (3.32)

Letting U(z,£) = F1(€)z + F»(€), we obtain by time differentiation :

U(z,6) = (142N [-F(&z+ Fi(&)(1 — &z) — Fy(¢)] ¢



By identifying this expression with (3.32), we obtain that F} and F, are solutions of :

Fl=—¢(F +1, F1(0)=0
F)=F +&, F,0)=0

which yields
£ 3 s
Fi(©) = [ expl (s> = Alds, () = [ [exn(=557) [explgrt)ar| s+ 5¢°

By construction, when v = 0, the time-derivative of V; along the solutions of (3.30) is Vp = —(1 +
21)€22% — (1 + 2*)€? < 0. To enhance its negativity, we employ the additional feedback

W A%

v=a(ng) = -5 -yt = —E - -2 - B0 - 2

and obtain Vg = —(1 + 24)§2z2 — (14 2462 — a2(2,€) < 0. Because Vp = 0 implies that £ = 0 and
a(z,0) = —z, the function Vj is negative definite, which proves the global asymptotic stability of the
equilibrium point (z,¢) = (0, 0).

4 Conclusion

We have generalized the cross-term constructions proposed in [2] in order to replace the sufficient
growth assumptions (A3)(A4) by the necessary assumption (A3bis). This generalization provides a
stabilization procedure in situations not covered by previous results.
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Proof of Fact 1

Since LyW (z,0) = 0 and both W and 1) are smooth, there exists £ of class K such that :

[LyW (2, 8)] < a(l[]])]|<]] (6.33)

Since £ = a(¢) is GAS/LES, there exist Q5 of class K and A > 0 such that :

€I < Q(iElhe™ , Vs >0 (6.34)

Since ¥y is globally stable, there exists (23 of class K such that :

1zl < Q(ll=]l) , Vs =0 (6.35)

Eventually, by combining (6.33), (6.34), (6.35), we deduce that :

LW (@ ()] < m(llzlDe™™lell , Vs 20 (6.36)

with ")/1(’[') = Ql(Qg(’r))Qg(’f‘)
Remark : The scalar functions 2; used in our proof can be explicitly determined from the data
v, W, U.
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7 Proof of inequality (2.16)

Since the functions f,, a are smooth and zero at the origin, we may determine an explicit expression
of a strictly positive function wy such that :

d||z(s)|? - -
— 2 —wlllze) ) )] (7.37)
Using Vj, we may determine an explicit formula of a strictly positive function ws such that :
I1Z(s)II” < wa(llz]]) , Vs > 0
So, we get :
d||z(s)|”
ds
By integrating this inequality, we can prove that (2.16) is satisfied with y2(s) = wi(wa(s)).

> —wi(w2(ll=N)lE ()] (7.38)
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