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Optimal Stopping of Markov Processes:
Hilbert Space Theory, Approximation

Algorithms, and an Application to Pricing
High-Dimensional Financial Derivatives

John N. Tsitsiklis,Fellow, IEEE, and Benjamin Van Roy

Abstract—The authors develop a theory characterizing optimal
stopping times for discrete-time ergodic Markov processes with
discounted rewards. The theory differs from prior work by its
view of per-stage and terminal reward functions as elements of
a certain Hilbert space. In addition to a streamlined analysis
establishing existence and uniqueness of a solution to Bellman’s
equation, this approach provides an elegant framework for the
study of approximate solutions. In particular, the authors propose
a stochastic approximation algorithm that tunes weights of a
linear combination of basis functions in order to approximate a
value function. They prove that this algorithm converges (almost
surely) and that the limit of convergence has some desirable
properties. The utility of the approximation method is illustrated
via a computational case study involving the pricing of a path-
dependent financial derivative security that gives rise to an
optimal stopping problem with a 100-dimensional state space.

Index Terms—Complex systems, curse of dimensionality, dy-
namic programming, function approximation, optimal stopping,
stochastic approximation.

I. INTRODUCTION

T HE PROBLEM of optimal stopping is that of determining
an appropriate time at which to terminate a process

in order to maximize expected rewards. Examples arise in
sequential analysis, the timing of a purchase or sale of an
asset, and the analysis of financial derivatives. In this paper,
we introduce a class of optimal stopping problems, provide a
characterization of optimal stopping times, and develop a com-
putational method for approximating solutions to problems for
which classical methods become intractable. To illustrate the
method, we present a computational case study involving the
pricing of a (fictitious) high-dimensional financial derivative
instrument.

Shiryaev [16] provides a fairly comprehensive treatment
of optimal stopping problems. Under each of a sequence
of increasingly general assumptions, he characterizes optimal
stopping times and optimal rewards. We consider a rather
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restrictive class of problems relative to those captured by
Shiryaev’s analysis, but we employ a new line of analysis that
leads to a simple characterization of optimal stopping times
and, most importantly, the development of approximation
algorithms. Furthermore, this line of analysis can be applied
to other classes of optimal stopping problems, though the full
extent of its breadth is not yet known.

In addition to providing a means for addressing large-scale
optimal stopping problems, the approximation algorithm we
develop plays a significant role in the broader context of
stochastic control. In particular, the algorithm exemplifies
simulation-based optimization techniques from the field of
neuro-dynamic programming, pioneered by Barto, Sutton [17],
and Watkins [22] that have been successfully applied to a va-
riety of large-scale stochastic control problems; see Bertsekas
and Tsitsiklis [6]. The practical success of these algorithms
is not fully explained by existing theory, and our analysis
represents progress toward an improved understanding. In
particular, we prove the first convergence result involving the
use of a variant of temporal-difference learning [17] to tune
weights of general basis functions in order to approximately
solve a control problem.

This paper is organized as follows. The next section defines
the class of problems we consider (involving ergodic Markov
processes with discounted rewards) and develops some basic
theory concerning optimal stopping times and optimal rewards
for such problems. Section III introduces and analyzes the ap-
proximation algorithm. A computational case-study involving
the pricing of a financial derivative instrument is described
in Section IV. Finally, extensions and connections between
the ideas in this paper and the neuro-dynamic programming
and reinforcement learning literature are discussed in a closing
section. A preliminary version of some of the results of this
paper, for the case of a finite state space, have been presented
in [20] and are also included in [6].

II. A N OPTIMAL STOPPINGPROBLEM AND ITS SOLUTION

In this section, we define a class of optimal stopping
problems involving stochastic processes that are Markov
and ergodic, and we present an analysis that characterizes
corresponding value functions and optimal stopping times.
Though the results of this section are standard in flavor, the
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assumptions are not, as they are designed to accommodate
the study of approximations, which will be the subject of
Section III.

A. Assumptions and Main Result

We consider a stochastic process that
evolves in a state space , defined on a probability space

. Each random variable is measurable with respect
to the Borel -algebra associated with , which is denoted
by . We denote the -algebra of events generated by the
random variables by .

We define a stopping time to be a random variablethat
takes on values in and satisfies

for all finite . The set of all such random
variables is denoted by . Since we have defined to be
the -algebra generated by , the stopping time
is determined solely by the already available samples of the
stochastic process. In particular, we do not consider stopping
times that may be influenced by random events other than the
stochastic process itself. This preclusion is not necessary for
our analysis, but it is introduced to simplify the exposition.

An optimal stopping problem is defined by the probability
space , stochastic process ,
reward functions and associated
with continuation and termination, and a discount factor.
The expected reward associated with a stopping timeis
defined by

where is taken to be if . An optimal stopping
time is one that satisfies

Certain conditions ensure that an optimal stopping time exists.
When such conditions are met, the optimal stopping problem
is that of finding an optimal stopping time.

We now state a few assumptions that define the class of
optimal stopping problems that will be addressed in this paper.
Our first assumption places restrictions on the underlying
stochastic process.

Assumption 1:The process is ergodic
and Markov.

By ergodicity, we mean that the process is stationary and
every invariant random variable of the process is almost surely
equal to a constant. Hence, expectations are always
with respect to a stationary distribution (e.g.,

for any function and any ). The Markov condition
corresponds to the existence of a transition probability kernel

satisfying

for any and any time . Therefore, for any Borel
function that is either nonnegative or absolutely
integrable with respect to , we have

We define an operator , mapping a function to a new
function , by

Since the process is stationary, there exists a probability
measure such that
for any and any time . Ergodicity implies that
this is a unique invariant distribution. We define a Hilbert
space of real-valued functions on with inner product

and .
This Hilbert space plays a central role in our analysis, and its
use is the main feature that distinguishes our analysis from
previous work on optimal stopping. To avoid confusion of
equality in the sense of with pointwise equality, we will

employ the notation to convey the former notion,
whereas will represent the latter.

Our second assumption ensures that the per-stage and ter-
minal reward functions are in the Hilbert space of interest.

Assumption 2:The reward functions and are in .
Our final assumption is that future rewards are discounted.
Assumption 3:The discount factor is in .
We will provide a theorem that characterizes value functions

and optimal stopping times for the class of problems under
consideration. However, before doing so, let us introduce some
useful notation. We define an operatorby

where the denotes pointwise maximization. This is the
so-called “dynamic programming operator,” specialized to the
case of an optimal stopping problem. To each stopping time
, we associate a value function defined by

Because and are in is also an element of
for any . Hence, a stopping time is optimal if and only if

It is not hard to show that optimality in this sense corresponds
to pointwise optimality for all elements of some set with

. However, this fact will not be used in our analysis.
The main results of this section are captured by the follow-

ing theorem.
Theorem 1: Under Assumptions 1–3, the following state-

ments hold.

1) There exists a function uniquely satisfying
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2) The stopping time , defined by

is an optimal stopping time. (The minimum of an empty
set is taken to be .)

3) The function is equal to [in the sense of ].

B. Preliminaries

Our first lemma establishes that the operatoris a nonex-
pansion in .

Lemma 1: Under Assumption 1, we have

Proof: The proof of the lemma involves Jensen’s in-
equality and the Tonelli–Fubini theorem. In particular, for any

, we have

The following lemma establishes thatis a contraction on
.

Lemma 2: Under Assumptions 1–3, the operatorsatisfies

Proof: For any scalars and

It follows that for any and

Given this fact, the result easily follows from Lemma 1.
The fact that is a contraction implies that it has a unique

fixed point in (by unique here, we mean unique
up to the equivalence classes of ). This establishes part
1) of the theorem.

Let denote the fixed point of . Let us define a second
operator by

if
otherwise

(Note that is the dynamic programming operator corre-
sponding to the case of a fixed policy, namely, the policy
corresponding to the stopping time defined in the statement
of the above theorem.) The following lemma establishes that

is also a contraction, and furthermore, the fixed point of
this contraction is equal to (in the sense of ).

Lemma 3: Under Assumptions 1–3, the operator satis-
fies

Furthermore, is the unique fixed point of .

Proof: We have

where the final inequality follows from Lemma 1.

Recall that uniquely satisfies , or written
differently

This equation can also be rewritten as

if
otherwise

almost surely with respect to. Note that for almost all (a
set with ),
if and only if . Hence, satisfies

if
otherwise

almost surely with respect to, or more concisely,
. Since is a contraction, it has a unique fixed point

in , and this fixed point is .

C. Proof of Theorem 1

Part 1) of the result follows from Lemma 2. As for Part 3),
we have

if
otherwise

and since is a contraction with fixed point (Lemma 3),
it follows that

We are left with the task of proving Part 2). For any
nonnegative integer , we have

for some scalar that is independent of, where the equality
follows from the Tonelli–Fubini theorem and stationarity. By
arguments standard to the theory of finite-horizon dynamic
programming

(This equality is simply saying that the optimal reward for an
-horizon problem is obtained by applyingiterations of the
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dynamic programming recursion.) It is easy to see that ,
and therefore also , is measurable. It follows
that

Combining this with the bound on , we have

Since is a contraction on (Lemma 2),
converges to in the sense of . It follows that

and we therefore have

Hence, the stopping time is optimal.

III. A N APPROXIMATION SCHEME

In addition to establishing the existence of an optimal
stopping time, Theorem 1 offers an approach to obtaining
one. In particular, the function can be found by solving
the equation

and then used to generate an optimal stopping time. However,
for most problems, it is not possible to derive a “closed-form”
solution to this equation. In this event, one may resort to
the discretization of a relevant portion of and then use
numerical algorithms to approximate over this discretized
space. Unfortunately, this approach becomes infeasible as
grows, since the number of points in the discretized space
grows exponentially with the dimension. This phenomenon,
known as the “curse of dimensionality,” plagues the field of
stochastic control and gives rise to the need for parsimonious
approximation schemes.

One approach to approximation involves selecting a set
of basis functions and
computing weights such that the weighted
combination is “close” to . Much like the
context of statistical regression, the basis functions should
be selected based on engineering intuition and/or analysis
concerning the form of the function , while numerical
algorithms may be used to generate appropriate weights. Also,
similarly with linear regression, a good choice of basis func-
tions is critical for accurate approximations. In this section, we
introduce an algorithm for computing basis function weights
and provide an analysis of its behavior.

We begin by presenting our algorithm and a theorem that es-
tablishes certain desirable properties. Sections III-B and III-C
provide the analysis required to prove this theorem. Our
algorithm is stochastic and relies in a fundamental way on the
use of a simulated trajectory, as is discussed in Section III-D.

A. The Approximation Algorithm

In our analysis of optimal stopping problems, the function
played a central role in characterizing an optimal stopping

time and the rewards it would generate. The algorithm we will
develop approximates a different, but closely related, function

, defined by

(1)

Functions of this type were first employed by Watkins in
conjunction with his -learning algorithm [22]. Intuitively, for
each state represents the optimal attainable reward,
starting at state , if stopping times are constrained to be
greater than zero. An optimal stopping time can be generated
according to

Note that this is equivalent to the generation of an optimal
stopping time based on a value function , since

and therefore

Our approximation algorithm employs a set of basis func-
tions that are hand-crafted prior to
execution. To condense notation, let us define an operator

by , for any vector
of weights . Also, let be
the vector of basis function values, evaluated at, so that

.
The algorithm is initialized with a weight vector

. During the simulation of a trajec-
tory of the Markov chain, the algorithm
generates a sequence of weight vectors
according to

(2)

where each is a positive scalar step size. One (heuristic) in-
terpretation of this update equation is as one that tries to make
the approximate -value closer to an “improved
approximation” . In this
context, , which is equal to the gradient of the aproximate

-value with respect to the weights, provides a direction in
which to alter the parameter vector, and this direction is scaled
by the difference between the current and improved approx-
imation. We will prove that, under certain conditions, the
sequence converges to a vector , and approximates

. Furthermore, the stopping time, given by

approximates the performance of.
Let us now introduce our assumptions so that we can

formally state results concerning the approximation algorithm.
Our first assumption pertains to the basis functions.
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Assumption 4:

1) The basis functions are linearly independent.
2) For each , the basis function is in .

The requirement of linear independence is not truly neces-
sary, but simplifies the exposition. The assumption that the
basis functions are in limits their rate of growth and is
essential to the convergence of the algorithm.

Our next assumption requires that the Markov chain exhibits
a certain “degree of stability” and that certain functions do not
grow to quickly. (We use to denote the Euclidean norm
on finite-dimensional spaces.)

Assumption 5:

1) For any positive scalar, there exists a scalar such
that for all and

2) There exist scalars such that, for any function
satisfying , for some scalars
and

3) There exist scalars and such that for all
, and

.

Our final assumption places constraints on the sequence of
step sizes. Such constraints are fairly standard to stochastic
approximation algorithms.

Assumption 6:The step sizes are nonincreasing and
predetermined (chosen prior to execution of the algorithm).
Furthermore, they satisfy , and .

Before stating our results concerning the behavior of the
algorithm, let us introduce some notation that will make the
statement concise. We define a “projection operator”that
projects onto the subspace of . In
particular, for any function , let

We define an additional operator by

(3)

for any .
The main result of this section follows.
Theorem 2: Under Assumptions 1–6, the following hold.

1) The approximation algorithm converges almost surely.
2) The limit of convergence is the unique solution of

the equation

3) Furthermore, satisfies

4) Let be defined by

Then

Note that the bounds provided by parts 3) and 4) involve a term
. This term represents the smallest approximation

error (in terms of ) that can be achieved given the choice
of basis functions. Hence, as the subspace spanned by the
basis functions comes closer to , the error generated by
the algorithm diminishes to zero and the performance of the
resulting stopping time approaches optimality.

B. Preliminaries

Our next lemma establishes thatis a contraction in
and that is its fixed point.

Lemma 4: Under Assumptions 1–3, the operatorsatisfies

Furthermore, is the unique fixed point of in .
Proof: For any , we have

where the first inequality follows from Lemma 1 and the
second makes use of the fact

for any scalars , and . Hence, is a contraction on
. It follows that has a unique fixed point. By Theorem

1, we have

and therefore, is the fixed point.
The next lemma establishes that the composition is a

contraction on and that its fixed point is equal to
for a unique . The lemma also places a bound on
the magnitude of the approximation error . We will
later establish that this vector is the limit of convergence of
our approximation algorithm.

Lemma 5: Under Assumptions 1–4, the composition
satisfies

Furthermore has a unique fixed point of the form for
a unique vector , and this vector satisfies
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Proof: Since is a nonexpansion in (by virtue of
being a projection operator), we have

by Lemma 4. Since the range of is the same as that
of , the fixed point of is of the form for some

. Furthermore, because the basis functions are linearly
independent, this fixed point is associated with a unique.

Note that by the orthogonality properties of projections,
we have . Using also the
Pythagorean theorem and Lemma 4, we have

and it follows that

Given (which would be obtained by running the algo-
rithm on a simulated trajectory), we define a stopping time

. Let us define operators
and by

if
otherwise

and

(4)

The next lemma establishes thatis a contraction on
with a fixed point .

Lemma 6: Under Assumptions 1–4, for any

Furthermore, is the unique fixed point of .
Proof: For any , we have

where the first inequality follows from Lemma 1.
To prove that is the fixed point, observe that

if
otherwise

if
otherwise

Therefore

as desired.

The next lemma places a bound on the loss in performance
incurred when using the stopping timeinstead of an optimal
stopping time.

Lemma 7: Under Assumptions 1–4, the stopping time
satisfies

Proof: By stationarity and Jensen’s inequality, we have

Recall that and . We therefore
have

Hence, it is sufficient to place a bound on .
It is easy to show that [compare

definitions (3) and (4)]. Using this fact, the triangle inequality,

the equality (Lemma 4), and the equality

(Lemma 6), we have

and it follows that

where the final inequality follows from Lemma 5. Finally, we
obtain

We now continue with the analysis of the stochastic algo-
rithm. Let us define a stochastic process
taking on values in where . It is easy to see
that is ergodic and Markov (recall that, by our definition,
ergodic processes are stationary). Furthermore, the iteration
given by (2) can be rewritten as

for a function given by

for any and . We define a function
by
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(Note that this is an expectation over for a fixed . It
is easy to show that the random variable is abso-
lutely integrable and is well-defined as a consequence
of Assumption 5.) Note that each component can be
represented in terms of an inner product according to

where the definition of the operator is used.
Lemma 8: Under Assumptions 1–4, we have

and

Proof: For any , we have

where the final equality follows becauseprojects onto the
range of , and the range of is therefore orthogonal
to that of . Since is the fixed point of , Lemma 5
implies that

Using the Cauchy–Schwartz inequality together with this fact,
we obtain

By Assumption 4-1), for any , we have
. Since , the first part of the result follows.
As for the second part, we have to complete the proof, thus

we have

We now state without proof a result concerning stochastic
approximation, which will be used in the proof of Theorem 2.
This is a special case of a general result on stochastic approx-
imation algorithms [3, Th. 17, p. 239]. It is straightforward to
check that all of the assumptions in the result of [3] follow
from the assumptions imposed in the result below. We do not

show here the assumptions of [3] because the list is long and
would require a lot in terms of new notation. However, we
note that in our setting here, the potential function that
would be required to satisfy the assumptions of the theorem
from [3] is given by .

Theorem 3: Consider a process taking values in ,
initialized with an arbitrary vector , that evolves according to

for some , where we have the following.

1) is a (stationary) ergodic Markov
process taking values in .

2) For any positive scalar, there exists a scalar such
that , for any time

and .
3) The (predetermined) step size sequenceis nonincreas-

ing and satisfies and .
4) There exist scalars and such that

5) There exist scalars and such that

6) There exists a scalar such that

7) There exist scalars and such that

8) There exists some such that ,
for all , and . Then, almost surely
converges to .

C. Proof of Theorem 2

We will prove Part 1) of Theorem 2 by establishing that the
conditions of Theorem 3 are valid. Conditions 1) and 2) pertain
to the dynamics of the process . The former
condition follows easily from Assumption 1, while the latter is
a consequence of Assumption 5-1). Condition 3), concerning
the step size sequence, is the same as Assumption 6.

To establish validity of Condition 4), for any and
, we have
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Condition 4) then easily follows from the polynomial bounds
of Assumption 5-3). Given that Condition 4) is valid, Condi-
tion 5) follows from Assumptions 5-1) and 5-2) in a straight-
forward manner. (Using these assumptions, it is easy to show
that a condition analogous to Assumption 5-2) holds for
functions of that are bounded by polynomials
in and .)

Let us now address Conditions 6) and 7). We first note that
for any , and , we have

It then follows from the polynomial bounds of
Assumption 5-3) that there exist scalars and such
that for any , and

Validity of Condition 6) follows. Finally, it follows from
Assumptions 5-1) and 5-2) that there exist scalars
and such that for any and

This establishes Condition 7).
Validity of Condition 8) is assured by Lemma 8. This

completes the proof for Part 1) of the theorem. To wrap up the
proof, Parts 2) and 3) of the theorem follow from Lemma 5,
while Part 4) is established by Lemma 7.

D. On the Importance of Simulated Trajectories

The approximation algorithm we analyzed can be thought of
as a variant of the temporal-difference learning, also known as

, with the parameter set to zero. The algorithm
approximates the value function for an autonomous system
using an iteration of the form

which replaces the term from the
algorithm we have proposed with . Intuitively,
this is like applying our algorithm to a stopping problem for
which the reward for stopping is always a large negative
number, making stopping undesirable.

An interesting characteristic of temporal-difference learning,
first conjectured by Sutton [18] and later elucidated by the
analysis of Tsitsiklis and Van Roy [19], is that the use of
simulated trajectories is critical for convergence. The same is
true for the algorithm proposed in the current paper. Consider,
for example, an algorithm that, on eachth step, samples a state

according to a probability measure

and a state according to ,
and updates the weight vector according to

(5)

Such an algorithm does not generally converge. We refer the
reader to Tsitsiklis and Van Roy [19] for a more detailed
discussion of this phenomenon.

IV. PRICING FINANCIAL DERIVATIVES

In this section, we illustrate the steps required in applying
our algorithm by describing a simple case study. The prob-
lem is representative of high-dimensional derivatives pricing
problems arising in the rapidly growing structured products
(a.k.a. “exotics”) industry [14]. Our approach involving the
approximation of a value function is similar in spirit to the
earlier experimental work of Barraquand and Martineau [2].
However, the algorithm employed in that study is different
from ours, and the approximations were comprised of piece-
wise constant functions.

Another notable approach to approximating solutions of
optimal stopping problems that arise in derivatives pricing is
the “stochastic mesh” methods of Broadie and Glasserman
[8], [9]. These methods can be thought of as variants of
Rust’s algorithm [15], which like traditional grid techniques,
approximates values at points in a mesh over the state space.
The innovation of Rust’s approach, however, is that the mesh
includes a tractable collection of randomly sampled states,
rather than the intractable grid that would arise in standard
state space discretization. Unfortunately, when the state space
is high-dimensional, except for cases that satisfy restrictive
assumptions as those presented in [15], the randomly sampled
states may not generally be sufficiently representative for
effective value function approximation.

We will begin by providing some background and references
to standard material on derivatives pricing. Section IV-B then
introduces the particular security we consider and a related
optimal stopping problem. Section IV-C presents the perfor-
mance of some simple stopping strategies. Finally, the selec-
tion of basis functions and computational results generated by
our approximation algorithm are discussed in Section IV-D.

A. Background

Financial derivative securities (or derivatives, for short)
are contracts that promise payoffs contingent on the future
prices of basic assets such as stocks, bonds, and commodities.
Certain types of derivatives, such as put and call options,
are in popular demand and traded alongside stocks in large
exchanges. Other more exotic derivatives are tailored by banks
and other financial intermediaries in order to suit specialized
needs of various institutions and are sold in “over-the-counter”
markets.

When there is a fixed date at which payments are made and
certain common simplified models of stock price movements
and trading are employed, it is possible to devise a hedging
strategy that perfectly replicates the payoffs of a derivative
security. Hence, the initial investment required to operate this
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hedging strategy must be equal to the value of the security.
This approach to replication and valuation, introduced by
Black and Scholes [7] and Merton [13] and presented in its
definitive form by Harrison and Kreps [10] and Harrison and
Pliska [11], has met wide application and is the subject of
much subsequent research.

When there is a possibility of early exercise (i.e., the
contract holder can decide at any time to terminate the contract
and receive payments based on prevailing market conditions),
the value of the derivative security depends on how the
client chooses a time to exercise. Given that the bank cannot
control the client’s behavior, it must prepare for the worst
by assuming that the client will employ an exercising strategy
that maximizes the value of the security. Pricing the derivative
security in this context generally requires solving an optimal
stopping problem.

In the next few sections, we present one fictitious derivative
security that leads to a high-dimensional optimal stopping
problem, and we employ the algorithm we have developed in
order to approximate its price. Our focus here is to demonstrate
the use of the algorithm, rather than to solve a real-world
problem. Hence, we employ very simple models and ignore
details that may be required in order to make the problem
realistic.

B. Problem Formulation

The financial derivative instrument we will consider gener-
ates payoffs that are contingent on prices of a single stock. At
the end of any given day, the holder may opt to exercise. At
the time of exercise, the contract is terminated, and a payoff is
received in an amount equal to the current price of the stock
divided by the price prevailing 100 days beforehand.

We will employ a standard continuous-time economic model
involving a stochastic stock price process and deterministic
returns generated by short-term bonds. Given this model,
under certain technical conditions, it is possible to replicate
derivative securities that are contingent on the stock price
process by rebalancing a portfolio of stocks and bonds. This
portfolio needs only an initial investment and is self-financing
thereafter. Hence, to preclude arbitrage, the price of the deriva-
tive security must be equal to the initial investment required
by such a portfolio. Karatzas [12] provides a comprehensive
treatment of this pricing methodology in the case where early
exercising is allowed. In particular, the value of the security is
equal to the optimal reward for a particular optimal stopping
problem. The framework of [12] does not explicitly capture
our problem at hand (the framework allows early exercise at
any positive time, while our security can only be exercised at
the end of each day), but the extension is immediate. Since our
motivation is to demonstrate the use of our algorithm, rather
than dwelling on the steps required to formally reduce pricing
to an optimal stopping problem, we will simply present the
underlying economic model and the optimal stopping problem
it leads to, omitting the technicalities needed to formally
connect the two.

We model time as a continuous variable and
assume that the derivative security is issued at time .

Each unit of time is taken to be a day, and the security can be
exercised at times . We model the stock price
process as a geometric Brownian motion

for some positive scalars , , and and a standard
Brownian motion . The payoff received by the security
holder is equal to where is the time of
exercise. Note that we consider negative times because the
stock prices up to 100 days prior to the date of issue may
influence the payoff of the security. We assume that there is a
constant continuously compounded short-term interest rate.
In other words, dollars invested in the money market at
time 0 grows to a value

at time .
We will now characterize the price of the derivative security

in a way that gives rise to a related optimal stopping problem.
Let be a stochastic process that evolves
according to

Define a discrete-time process taking
values in , with

Intuitively, the th component of represents the
amount a one-dollar investment made in the stock at time

would grow to at time if the stock price
followed . It is easy to see that this process

is Markov. Furthermore, it is ergodic since, for
any , the random variables and
are independent and identically distributed. Letting

, and

the value of the derivative security is given by

If is an optimal stopping time, we have

for almost every . Hence, given an optimal stopping time,
we can price the security by evaluating an expectation, possi-
bly through use of Monte Carlo simulation. However, because
the state space is so large, it is unlikely that we will be able
to compute an optimal stopping time. Instead, we must resort
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Fig. 1. Expected reward as a function of threshold. The values plotted are estimates generated by averaging rewards obtained over 10 000 simulated
trajectories, each initialized according to the steady-state distribution and terminated according to the stopping time dictated by the thresholding strategy.
The dashed lines represent confidence bounds generated by estimating the standard deviation of each sample mean, and adding/subtracting twice this
estimate to/from the sample mean.

to generating a suboptimal stopping timeand computing

as an approximation to the security price. Note that this
approximation is a lower bound for the true price. The ap-
proximation generally improves with the performance of the
optimal stopping strategy. In the next two sections, we present
computational results involving the selection of stopping times
for this problem and the assessment of their performance. In
the particular example we will consider, we use the settings

and (the value of the drift is
inconsequential). Intuitively, these choices correspond to a
stock with a daily volatility of 2% and an annual interest rate
of about 10% (assuming that interest only compounds while
the market is open).

C. A Thresholding Strategy

In order to provide a baseline against which we can compare
the performance of our approximation algorithm, let us first
discuss the performance of a simple heuristic stopping strategy.
In particular, consider the stopping time

for a scalar threshold . We define the
performance of such a stopping time in terms of the expected
reward . In the context of our pricing problem, this
quantity represents the average price of the derivative security
(averaged over possible initial states). Expected rewards gen-
erated by various threshold values are presented in Fig. 1. The
optimal expected reward over the thresholds tried was 1.238.

It is clear that a thresholding strategy is not optimal. For
instance, if we know that there was a large slump and recovery

in the process within the past 100 days, we should
probably wait until we are about 100 days past the low point
in order to reap potential benefits. However, the thresholding
strategy, which relies exclusively on the ratio betweenand

, cannot exploit such information.
What is not clear is thedegreeto which the thresholding

strategy can be improved. In particular, it may seem that
events in which such a strategy makes significantly inadequate
decisions are rare, and it therefore might be sufficient, for
practical purposes, to limit attention to thresholding strategies.
In the next section, we rebut this hypothesis by generating a
substantially superior stopping time using our approximation
methodology.

D. Using the Approximation Algorithm

Perhaps the most important step prior to applying our
approximation algorithm is selecting an appropriate set of basis
functions. Though analysis can sometimes help, this task is
largely an art form, and the process of basis function selection
typically entails repetitive trial and error.

We were fortunate in that our first choice of basis functions
for the problem at hand delivered promising results relative to
thresholding strategies. To generate some perspective, along
with describing the basis functions, we will provide brief
discussions concerning our (heuristic) rationale for selecting
them. The first two basis functions were simply a constant
function and the reward function .
Next, thinking that it might be important to know the maximal
and minimal returns over the past 100 days, and how long
ago they occurred, we constructed the following four basis
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functions:

Note that the basis functions involve constant scaling factors
and/or offsets. The purpose of these transformations is to
maintain the ranges of basis function values within the same
regime. Though this is not required for convergence of our
algorithm, it can speed up the process significantly.

As mentioned previously, if we invested one dollar in the
stock at time and the stock price followed the process

, then the sequence represents the daily
values of the investment over the following 100-day period.
Conjecturing that the general shape of this 100-day sample
path is of importance, we generated four basis functions
aimed at summarizing its characteristics. These basis functions
represent inner products of the sample path with Legendre
polynomials of degrees one through four. In particular, letting

, we defined

So far, we have constructed basis functions in accordance
with “features” of the state that might be pertinent to effective
decision-making. Since our approximation of the value func-
tion will be composed of a weighted sum of the basis functions,
the nature of the relationship between these features and
approximated values is restricted to linear. To capture more
complex tradeoffs between features, it is useful to consider
nonlinear combinations of certain basis functions. For our
problem, we constructed six additional basis functions using
products of the original features. These basis functions are
given by

Using our 16 basis functions, we generated a sequence of
parameters by initializing each component of

to zero and iterating the update equation 1 000 000 times

Fig. 2. The evolution of weights during execution of the algorithm. The
value of the security under the resulting strategy was 1.282.

with a step size of . The evolution of the iterates
is illustrated in Fig. 2.

The weight vector resulting from our numerical pro-
cedure was used to generate a stopping time

. The corresponding expected reward
, estimated by averaging the results of 10 000 trajec-

tories each initialized according to the steady-state distribution
and terminated according to the stopping time, was 1.282
(the estimated standard deviation for this sample mean was
0.0022). This value is significantly greater than the expected
reward generated by the optimized threshold strategy of the
previous section. In particular, we have

As a parting note, we mention that each stopping time
corresponds to an exercising strategy that the holder of the
security may follow, and represents the value of the
security under this exercising strategy. Hence, the difference
between and implies that, on average
(with respect to the steady-state distribution of), the fair
price of the security is about 4% higher when exercised
according to instead of . In the event that a bank assumes
that is optimal and charges a price of , an arbitrage
opportunity may become available.

V. CONCLUSION

We have introduced a theory and algorithm pertaining
to approximate solutions of optimal stopping problems. The
algorithm involves Hilbert space approximation of the value
function via a linear combination of user-selected basis func-
tions and can be thought of as a “regression method” for
optimal stopping rather than statistical modeling. We believe
that the methodology provides a systematic approach to deal-
ing with complex optimal stopping problems such as those
arising in the exotic derivatives trade, and our computational
study provides some preliminary support for this view.

Though the algorithm and theory developed in this paper
are useful in their own right, they represent contributions
to a broader context. In particular, our algorithms exemplify
methods from the emerging fields of neuro-dynamic program-
ming and reinforcement learning that have been successful in
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solving a variety of large-scale stochastic control problems [6].
We hope that our treatment of optimal stopping problems will
serve as a starting point for further analysis of methods with
broader scope.

Indeed, many ideas in this paper were motivated by research
in neuro-dynamic programming and reinforcement learning.
The benefits of switching the order of expectation and maxi-
mization by employing “ -functions” instead of value func-
tions were first recognized by Watkins [22] and Watkins and
Dayan, [23]. The type of stochastic approximation update rule
that we use to tune weights of a linear combination of basis
functions resembles temporal-difference methods originally
proposed by Sutton [17], who also conjectured that the use
of simulated trajectories in conjunction with such algorithms
could be important for convergence [18]. This observation was
later formalized by Tsitsiklis and Van Roy [19], who analyzed
temporal-difference methods and provided a counterexample
as discussed in Section III-A (a related counter-example has
also been proposed by Baird [1]). Bertsekas and Tsitsiklis
[6] summarize much work directed at understanding such
algorithms.

Finally, we should mention that the line of analysis de-
veloped in this paper extends easily to additional classes of
optimal stopping problems. Several such extensions, includ-
ing those involving finite horizons, independent increment
processes, and stopping games, are treated in [21].
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