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Optimal Stopping of Markov Processes:
Hilbert Space Theory, Approximation
Algorithms, and an Application to Pricing
High-Dimensional Financial Derivatives

John N. Tsitsiklis,Fellow, IEEE and Benjamin Van Roy

Abstract—The authors develop a theory characterizing optimal restrictive class of problems relative to those captured by
stopping times for discrete-time ergodic Markov processes with Shiryaev’s analysis, but we employ a new line of analysis that
discounted rewards. The theory differs from prior work by its o545 to a simple characterization of optimal stopping times

view of per-stage and terminal reward functions as elements of d ti tantly the d | t of imati
a certain Hilbert space. In addition to a streamlined analysis and, most iImportantly, the development of approximation

establishing existence and uniqueness of a solution to Bellman’s@lgorithms. Furthermore, this line of analysis can be applied
equation, this approach provides an elegant framework for the to other classes of optimal stopping problems, though the full
study of approximate_solu_tions. In particular, the author_s propose extent of its breadth is not yet known.

a stochastic approximation algorithm that tunes weights of a In addition to providing a means for addressing large-scale

linear combination of basis functions in order to approximate a timal st . bl th imati lqorith
value function. They prove that this algorithm converges (almost optimal stopping problems, the approximation algorithm we

surely) and that the limit of convergence has some desirable develop plays a significant role in the broader context of
properties. The utility of the approximation method is illustrated ~ stochastic control. In particular, the algorithm exemplifies
via a computational case study involving the pricing of a path- simulation-based optimization techniques from the field of
dependent financial derivative security that gives rise t0 an ey rg-dynamic programming, pioneered by Barto, Sutton [17],
optimal stopping problem with a 100-dimensional state space. and Watkins [22] that have been successfully applied to a va-
Index Terms—Complex systems, curse of dimensionality, dy- riety of large-scale stochastic control problems; see Bertsekas
namic programming, function approximation, optimal stopping,  anq Tsitsiklis [6]. The practical success of these algorithms
stochastic approximation. . . " .
is not fully explained by existing theory, and our analysis
represents progress toward an improved understanding. In
I. INTRODUCTION particular, we prove the first convergence result involving the
guse of a variant of temporal-difference learning [17] to tune

HE PROBLEM of optimal stopping is that of determining->* ! ' ' )
weights of general basis functions in order to approximately

an appropriate time at which to terminate a proce

in order to maximize expected rewards. Examples arise $RIV€ @ control problem. _ _
This paper is organized as follows. The next section defines

sequential analysis, the timing of a purchase or sale of an ) ! ) .
asset, and the analysis of financial derivatives. In this paplte class of problems we consider (involving ergodic Markov

we introduce a class of optimal stopping problems, providepéocesses W|th_ d|scoqnted rewa_trds). and develops some basic
characterization of optimal stopping times, and develop a cofR€0ry concerning optimal stopping times and optimal rewards
putational method for approximating solutions to problems f¢" Such problems. Section Iil introduces and analyzes the ap-
which classical methods become intractable. To illustrate tREPXimation algorithm. A computational case-study involving
method, we present a computational case study involving ¢ Pricing of a_flnanmal denyatwe mstrument_ls described
pricing of a (fictitious) high-dimensional financial derivativd” Section IV. Finally, extensions and connections between
instrument. the ideas in this paper and the neuro-dynamic programming
Shiryaev [16] provides a fairly comprehensive treatme@nd _relnforcem_en_t learning !|terature are discussed in aclos_lng
of optimal stopping problems. Under each of a sequenE@Ct'on' A preliminary version of some of the results of this
of increasingly general assumptions, he characterizes optifRPe"; for the case of a finite state space, have been presented

stopping times and optimal rewards. We consider a ratH8r[20] and are also included in [6].
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assumptions are not, as they are designed to accommodateany A € B(R%) and any timet. Therefore, for any Borel
the study of approximations, which will be the subject ofunction.J : R¢ — R that is either nonnegative or absolutely
Section Il integrable with respect t&’(x,, -), we have

A. Assumptions and Main Result ElJ(z1) | Bl = /J(y)P(wt,dy).

We consider a stochastic process |t =0,1,2,---} that
evolves in a state spade?, defined on a probability space
(Q, F,P). Each random variable, is measurable with respect
to the Borelo-algebra associated with*, which is denoted _
by B(R¢). We denote ther-algebra of events generated by the (PI)(z) = / JW)P(x, dy).
random variableqxg,x, -+, a¢} by Fy C F.

We define a stopping time to be a random variablthat
takes on values if0,1,2,---,00} and satisfies{w € Q |

< for all finite £. Th f all h
céﬁ;b_le?ised];tnoct)erzdabylfmtseintce Weesre]:;\/cg gefﬁwue(iﬂt r;nggm this is a unique invariant distribution. We define a Hilbert
' I eLo(n) of real-valued functions of®¢ with inner product
the o-algebra generated byzo, x4, - - -, 21 }, the stopping time SpaceL; - ] 5
is determined solely by the already available samples of thé /)= = ElJ(20)J(20)] and norm||J[|x = /E[J*(z0)].

stochastic process. In particular, we do not consider stoppi-ﬁ is Hilbert space plays a central role in our analysis, and its

times that may be influenced by random events other than #¢ 1S the main feature that distinguishes our analysis from
stochastic process itself. This preclusion is not necessary R§FVious work on optimal stopping. To avoid confusion of
our analysis, but it is introduced to simplify the exposition. €duality in the sense df(x) with pointwise equality, we will

An optimal stopping problem is defined by the probabilitgmploy the notation/ aclm J to convey the former notion,
space(Q2, F,P), stochastic proces§z; | t = 0,1,2,---}, whereas/ = J will represent the latter.
reward functionsg : ¢ — R and G : R¢ — R associated Our second assumption ensures that the per-stage and ter-
with continuation and termination, and a discount factor minal reward functions are in the Hilbert space of interest.
The expected reward associated with a stopping timis Assumption 2:The reward functiong andG are inLo(w).
defined by Our final assumption is that future rewards are discounted.

Assumption 3:The discount factory is in (0,1).

We define an operatoP, mapping a function/ to a new
function PJ, by

Since the process is stationary, there exists a probability
measurer : B(R4) +— [0, 1] such thatProb[z; € A] = 7(A)
for any A € B(R¢) and any timet. Ergodicity implies that

T—1 : . . .
E Z atgla) + " G(zy) We W|_II provide a_the(_)rem that characterizes value functions
—~ and optimal stopping times for the class of problems under

consideration. However, before doing so, let us introduce some
whereG(z,) is taken to bé) if = = co. An optimal stopping useful notation. We define an operatbrby

time 7* is one that satisfies
TJ = max{G,g+ aPJ}

T —1
E| > a'g(z) +a” G(z-) where themax denotes pointwise maximization. This is the
t=0 so-called “dynamic programming operator,” specialized to the
1 case of an optimal stopping problem. To each stopping time
= flclrb)E > atg@) + o Glas)|. 7, we associate a value functiaff defined by
t=0
T—1
Certain conditions ensure that an optimal stopping time exists.  J7(z) = F Z a'g(zy) +a" G(xy) | wo = x|
When such conditions are met, the optimal stopping problem t=0

IS \t/f\}at of fm?r][g anfoptlmal sto;:_plng '[t;lm'?.d fine the cl B(Ecausey and@ are inLs(w), J7 is also an element dfo(7)
¢ now stale a Tew assumptions that define the class g any 7. Hence, a stopping time* is optimal if and only if

optimal stopping problems that will be addressed in this paper.

Our first assumption places restrictions on the underlying E[J7 (x0)] = sup E[J7 (20)]-
stochastic process. reU

Assumption 1:The proces§z, [t =0,1,2, -} is ergodic |t is not hard to show that optimality in this sense corresponds
and Markov. to pointwise optimality for all elements of some setd with

By ergodicity, we mean that the process is stationary ang 4y — 1. However, this fact will not be used in our analysis.
every invariant random variable of the process is almost surelyThe main results of this section are captured by the follow-
equal to a constant. Hence, expectatiofi§] are always g theorem.

with respect to a stationary distribution (e.gs[/(x0)] =  Theorem 1:Under Assumptions 1-3, the following state-
E[J(z;)] for any functionJ and anyt). The Markov condition 1 ants hold.

corresponds to the existence of a transition probability kernel . I . o
P : R x B(RY) — [0, 1] satisfying 1) There exists a functiod* € L,(x) uniquely satisfying

Problziy: € A | F] = Pz, A) 7= g
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2) The stopping time *, defined by Proof: We have

™ = min{t | G(z;) = J*(x1)} T*T —T*J||x < ||aPJ — aPJ||x

. , N o <alld—J|~
is an optimal stopping time. (The minimum of an empty <af I

set is taken to bec.) where the final inequality follows from Lemma 1.

3) The function™ is equal toJ* [in the sense of,()]. Recall thatJ* uniquely satisfies/* ae(m) T.J*, or written
o differently
B. Preliminaries -
Our first lemma establishes that the operaftois a nonex- J* =" max{G, g+ aPJ"}.

pansion inLy(r).

. This equation can also be rewritten as
Lemma 1: Under Assumption 1, we have d

J*(z)
_ {G(w), it G(z) 2 g(z) + (aPJ*)(2)
Proof: The proof of the lemma involves Jensen's in- | g(#) + (aPJ*)(x), otherwise
equality and the Tonelli-Fubini theorem. In particular, for an¥|most surely with respect to. Note that for almost alk: (a

1Pz < (| J]lx; VI € La(m).

J € Ly(m), we have setA € B(RY) with 7(A) = 1), G(z) 2 g(z) + (aPJ*)(x)
|IPJ|2 = E[(PJ)*(x0)] if and only if G(x) = J*(x). Hence,J* satisfies
= E[(E[J(z1) | zo])?] T*(z) = {G(x), if G(a) =z J*(x)
< E[E[J*(z1) | zo]] g(z) + (aPJ*)(x), otherwise
= B[ (x)] almost surely with respect te, or more conciselyJ* oelr)
=713 L 7+ J*. SinceT* is a contraction, it has a unique fixed point
in Lo(7), and this fixed point is/*. O

The following lemma establishes th&tis a contraction on
LQ(W).

Lemma 2: Under Assumptions 1-3, the operafbisatisfies C. Proof of Theorem 1

Part 1) of the result follows from Lemma 2. As for Part 3),

170 = T|lx < allJ = Ty VT € La(r). we have
Proof: For any scalarg;, c;, andcs I (@) = G(x), if G(z) > J*(z)
~ g(x) + («PJ7 )(x), otherwise
| max{eci, 3} — max{cs,ca}| < |er — el B (T*JT*)(a:)

y -
It follows that for any= € % and J, J € Ly(r) and sincel™ is a contraction with fixed poinf* (Lemma 3),

(TT) (@) = (TT)(@)| < a|(PJ)(2) — (PJT)(2)]. it follows that

Given this fact, the result easily follows from Lemma 10 g7
The fact thatl’ is a contraction implies that it has a unique

fixed point inJ* € Lo(w) (by unique here, we mean unlque

up to the equivalence classesof(n)). This establishes part

1) of the theorem. sup E[J7 (zo)]

Let J* denote the fixed point df’. Let us define a second 7€V

We are left with the task of proving Part 2). For any
nonnegative integen, we have

torT* b >
operators™ by < sup E[J @)l + E| 3 o (lg(a)| + |G ar)])
G(x), if G(x) > J*(x), Tey t=n

(T J)(z) = {g(x) + (aPJ)(z), otherwise = sup E[J ™" (z0)] + —nE[|g(a:o)| + |G(zo)]
reu

Note thatT™* is the dynamic programming operator corre-
( y prog g op < sup E[J7"(z0)] + a"C
el

sponding to the case of a fixed policy, namely, the policy

corresponding to the stopping timé defined in the statement

of the above theorem.) The following lemma establishes tHQf Some scala’ that is independent of, where the equality
T+ is also a contraction, and furthermore, the fixed point ¢pllows from the Tonelli—Fubini theorem and stationarity. By

this contraction is equal td* (in the sense ofa()). arguments standard to the theory of finite-horizon dynamic
Lemma 3: Under Assumptions 1-3, the operafbt satis- Programming
fies sup JN(z) = (T"G)(x), V& e R

_ _ _ el
|70 =TT < alld = Jllx, VI, J € Lo(m). o |
(This equality is simply saying that the optimal reward for an

Furthermore JJ* € Lo(n) is the unique fixed point of ™. n-horizon problem is obtained by applyingiterations of the
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dynamic programming recursion.) It is easy to see #af, A. The Approximation Algorithm

and therefore alseup, ¢, /7""(-), is measurable. It follows |, o analysis of optimal stopping problems, the function
that J* played a central role in characterizing an optimal stopping
time and the rewards it would generate. The algorithm we will
develop approximates a different, but closely related, function

o o ()*, defined by
Combining this with the bound asup_ -, E[J7 (x0)], we have

sup E[J7(20)] < E[(T"G)(x0)] + «"C.

sup ELI™(20)] < E [sup JM"(%)} = B(T"G)(zo))

TelU TelU

Q" =g+aPJ". (1)

Functions of this type were first employed by Watkins in
Since T is a contraction onLy(7) (Lemma 2), T"G conjunction with higQ-learning algorithm [22]. Intuitively, for

converges to/* in the sense of.(r). It follows that each state:, Q*(x) represents the optimal attainable reward,
_ starting at state, = z, if stopping times are constrained to be
lim E[(T"G)(x0)] = E[J"(20)] greater than zero. An optimal stopping time can be generated

according to
and we therefore have
* = min{t | G(x,) > Q*(x,)}.
sup E[J7 (xo)] T {t| Gar) 2 Q" (z4)}

v _ Note that this is equivalent to the generation of an optimal
< lim E[(T"G)(xo)] = E[J*(x0)] = E[J7 (0)]- stopping time based on a value functioff, since J* =
o ] . max{G, Q*} and therefore
Hence, the stopping time* is optimal. |
min{t | G(zy) > J*(2)}
ll. AN APPROXIMATION SCHEME = min{t | G(z¢) > max{G(x1), Q" (w¢) }}
In addition to establishing the existence of an optimal =min{t | G(z:) 2 Q" (x)}-

stopping time, Theorem 1 offers an approach to obtaining

one. In particular, the functio* can be found by solving . Our approximation algorithm employs a set of basis func-

the equation tions </>_1,---,</>;( € Ly(n) tha’F are hand—cra_fted prior to
execution. To condense notation, let us define an operator
9 g ¢ : RE — Lo(n) by &r = 5:1 r(k)¢r, for any vector

of weights» = (7(1),---,7(K)). Also, let ¢(x) € RX be
and then used to generate an optimal stopping time. Howewiise vector of basis function values, evaluatedzatso that
for most problems, it is not possible to derive a “closed-form{®r)(z) = ¢ (x)r.
solution to this equation. In this event, one may resort to The algorithm is initialized with a weight vector, =
the discretization of a relevant portion 8 and then use (ro(1),---,7o(K)) € R¥. During the simulation of a trajec-
numerical algorithms to approximat& over this discretized tory {x; | ¢ = 0,1,2,---} of the Markov chain, the algorithm
space. Unfortunately, this approach becomes infeasiblé agenerates a sequence of weight vectprs | ¢t = 1,2,---}
grows, since the number of points in the discretized spaaecording to
grows exponentially with the dimension. This phenomenon,
known as the “curse of dimensionality,” plagues the field of t+1 = "t +y(ae)(g(e)
stochastic control and gives rise to the need for parsimonious + amax{(®r)(w41), G(@e41) } — (2re) (1)) (2)

approximation schemes.

One approach to approximation involves selecting a S\e(pere eachy, is a positive scalar step size. One (heuristic) in-
of basis functions{gy, : % — R | k = 1,2,---,K} and terpretation of this update equation is as one that tries to make
vt - ) ) )

computing weights(1), - - -, #(k) € ® such that the weighted (€ @pproximateQ-value (@r)(z;) closer to an ‘improved

combinationS %  +(k)b. is “close” to J*. Much like the aPProximation’s(z;)+a max{(®r:)(xi+1), G(z:41)}. In this
Ination_y,—, (k) | ven 8ntext,¢(azt),which is equal to the gradient of the aproximate

context of statistical regression, the basis functions sho% | ith t 1o th ioht ” direction |
be selected based on engineering intuition and/or analy gralue with respect to the weights, provides a direction in

concerning the form of the functiow®, while numerical wﬁlch to alter the parameter vector, and this direction is scaled

algorithms may be used to generate appropriate weights. AIQ& the dlfferen(;e between the current anq |mpr0\{§d approx-
similarly with linear regression, a good choice of basis funér—nat'on' We will prove that, under certaT cond|t|_ons, the
tions is critical for accurate approximations. In this section, *quence‘t converges to a _vect(_)ri, ar_ld " approximates
introduce an algorithm for computing basis function weight§ - Furthermore, the stopping tim given by
and provide an analysis of its behavior. # = min{t | G(z) > (Br*)(z)}

We begin by presenting our algorithm and a theorem that es-
tablishes certain desirable properties. Sections 1lI-B and lll-@pproximates the performance of.
provide the analysis required to prove this theorem. OurlLet us now introduce our assumptions so that we can
algorithm is stochastic and relies in a fundamental way on th@mally state results concerning the approximation algorithm.
use of a simulated trajectory, as is discussed in Section IlI-Dur first assumption pertains to the basis functions.
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Assumption 4: 4) Let 7 be defined by

1) The basis functiong,, - - -, ¢ are linearly independent. 7 = min{t | Gle) > (&r*)(w:))

2) For eachk, the basis functiorpy, is in La(7). -

The requirement of linear independence is not truly neces-  Then
sary, but simplifies the exposition. The assumption that the " . 2 N N
basis functions are i () limits their rate of growth and is B[ (wo)] = B[ (x0)] < (1— a)mHHQ ~ Q-
essential to the convergence of the algorithm.

Our next assumption requires that the Markov chain exhib
a certain “degree of stability” and that certain functions do n
grow to quickly. (We usd|-|| to denote the Euclidean norm
on finite-dimensional spaces.)

Assumption 5:

1) For any positive scalay, there exists a scalar, such
that for all x and ¢

ote that the bounds provided by parts 3) and 4) involve a term
Q* —Q*||-. This term represents the smallest approximation
error (in terms of| - || =) that can be achieved given the choice
of basis functions. Hence, as the subspace spanned by the
basis functions comes closer @, the error generated by
the algorithm diminishes to zero and the performance of the
resulting stopping time approaches optimality.

E[l+ ||lz|? | zo = z] < pag(1+ ||z||9). B. Preliminaries

Our next lemma establishes thatis a contraction inL ()
and thatQ* is its fixed point.

Lemma 4: Under Assumptions 1-3, the operafoisatisfies

o 1FQ = FQllx < ollQ = Qllx,  YQ,Q € Ly(m).
Z |E[J(2¢) | wo = 2] = B[] (zo]]] FurthermoreQ* is the unique fixed point of” in Ly ().
t=0

<

2) There exist scalar€';, ¢; such that, for any functiory
satisfying|.J(x)| < Cz(1 + ||=||%), for some scalar€,
and g

CLCo(1 + ||z]|7 %) Vo € Re Proof: For anyQ.Q € Ly(w), we have
1C , ) - 7
|IFQ — FQl|x = of|Pmax{G,Q} — Pmax{G, Q}||~

3) There exist scalar€ and ¢ such that for allz € R¢, < G - G0
l9(x)] < OO+ z]9), |G)| < ¢ + |z]*), and < affmax{G, QF — max{G, Q}~
o)l < O+ [|=||?). <all@-Qllx

Our final assumption places constraints on the sequencendlere the first inequality follows from Lemma 1 and the
step sizes. Such constraints are fairly standard to stochaséeond makes use of the fact
approximation algorithms.

Assumption 6:The step sizesy, are nonincreasing and

predetermined (chosen prior to execution of the algorithmyr any scalars;, e, and ;. Hence,F is a contraction on

Furthermore, they satisfy>;” v = oo, and 3372, 7/ < oo.  L,(x). It follows thatF has a unique fixed point. By Theorem
Before stating our results concerning the behavior of the e have

algorithm, let us introduce some notation that will make the )
statement concise. We define a “projection operatdrthat J="TJ*

projects onto the subspadebr | r € RE} of La(w). In g+ aPJ* aeg)ngaPmax{G,ngaPJ*}
particular, for any function) € La(n), let

Q= argmin ||Q— Q||

| max{cy, c3} — max{ea, c3}| < |e1 — e2]

Q" = g+ aPmax{G,Q"}

Qe{dr|reRK} Q* aeéﬁ) FWCJNb
We define an additional operatdt by and therefore* is the fixed point. O
The next lemma establishes that the composilibfi is a
FQ =g+ aPmax{G,Q} (3 contraction onL.() and that its fixed point is equal ®*
for any Q € La(n). for a uniquer* € RX. The lemma also p*laces*a bound on
The main result of this section follows. the magnitude of the approximation erdr* — Q*. We will

Theorem 2: Under Assumptions 1-6, the following hold. later establish that this vector is the limit of convergence of
our approximation algorithm.

Y- Lemma 5: Under Assumptions 1-4, the compositi@h¥
satisfies

[EQ —FQ|lx < o|Q = Qllx,  YQ,Q € La(r).

FurthermordlF has a unique fixed point of the fordw* for

1) The approximation algorithm converges almost surel
2) The limit of convergence™ is the unique solution of
the equation

F(er) “E) .

3) Furthermorey* satisfies a unique vector* € R, and this vector satisfies
9" = Q"lle € = IQ" - @' 9" = Q"lle € =5 Q" - "
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Proof: Sincell is a nonexpansion it (7) (by virtue of
being a projection operator), we have

[IFQ —NFQ||x < [[FQ - FQl» < allQ — Q|

1845

The next lemma places a bound on the loss in performance
incurred when using the stopping tintenstead of an optimal
stopping time.

Lemma 7: Under Assumptions 1-4, the stopping tinie

by Lemma 4. Since the range dl is the same as thatsatisfies

of @, the fixed point ofIIF is of the form ®r* for some

2

+* € R¥. Furthermore, because the basis functions are linearfyl?” (#0)] = E[/"(@0)] < (1- a)m”HQ ~

independent, this fixed point is associated with a unigue

Note that by the orthogonality properties of projections,

Proof: By stationarity and Jensen’s inequality, we have

we have <(I)7* — 1IQ*, 11Q* — Q*>ﬂ— = 0. Using also the E[J*(a?o)] _ E[J‘F(aio)] _ E[(PJ*)(.I())] _ E[(PJ‘F)(QZ())]

Pythagorean theorem and Lemma 4, we have
[@r — Q|2 = [|&r* — LIQ"[|Z + [[HQ" — Q|2
= [LFer* — Q™7 + I1Q* — Q|12
< |Fer* - Q|17 + 1Q" - Q7|
< e - Q12 +|1Q" - Q*|7
and it follows that

|2 = Qs < =

1
S MO = @l

< |E[(PT*)(wo)] — E[(PJ7)(x0)]]
<||PJ* = PJ7||5.

Recall thatQ* = g+« P.J* andQ = g+ aP.J7. We therefore
have

ElJ*(x0)] = E[J7 (w0)] < éll(g +aPJ?) = (g+aPJ7)|x
= 2@ ~ Q-

«

Given * (which would be obtained by running the algoHence, it is sufficient to place a bound 4" — Q.
rithm on a simulated trajectory), we define a stopping time It is easy to show thatt'(¢r*) = F(®r*) [compare

7 = min{t | G(z;) > (®7*)(x¢)}. Let us define operatord
and F' by

G(),

(HQ)(z) = {Q(x)’ it Glz) > (0r*)(x)

otherwise
and
FQ =g+ aPHQ. (4)

The next lemma establishes thidtis a contraction oL, ()
with a fixed pointQ = g + aPJ7. B
Lemma 6: Under Assumptions 1-4, for an, @ € La(w)
1FQ = FQllx < al|Q — Q.
Furthermore = g + a{’ﬁ is the unique fixed point of".
Proof: For any@, @ € Lo(n), we have
1£Q = FQllx = (9 + «PHQ) — (9 + aPHQ)|x
<allHQ - HQ||
< af|max{G, Q — Q}|~
<oflQ - Q=

where the first inequality follows from Lemma 1.

definitions (3) and (4)]. Using this fact, the triangle inequality,
the equality FQ* aelm) Q* (Lemma 4), and the equality

FO “Y) O (Lemma 6), we have

1" = Qllx < 1Q" = F(@r) | +1Q = F(®r)|«
< of|@F = &rtflx + ol|@ — 277
< 20)|Q° = 2r¥lx + | Q" = Q<

and it follows that

* 3 20 * *
1" = 0l < 2o — ).,
< (1—a)—1\/——a2HQ — Q||

where the final inequality follows from Lemma 5. Finally, we
obtain

- 2
E[J* —E[J7 < — Q" — Q|].
O
We now continue with the analysis of the stochastic algo-
rithm. Let us define a stochastic procdss | ¢t =0,1,2,---}

To prove that) = g+aPJ7 is the fixed point, observe thattaking on values itR*? wherez, = (1, z:11). Itis easy to see

(HQ)(z) = (H(g +aPJ7))(x)
G(x), i G(z) = (2r7)(2),

{Q(x), otherwise
_ [Gl), if G(z) = (@r*)(x)
T \glx) + (aPJT)(z), otherwise
= ]‘F(.’L’).
Therefore
FQ=g+aPHQ=g+aP] =Q
as desired. O

that 2, is ergodic and Markov (recall that, by our definition,
ergodic processes are stationary). Furthermore, the iteration
given by (2) can be rewritten as

reg1 =7 + sz, 7e)
for a functions : ®%¢ x RE — RX given by
s(z,7) = ¢(x)(g(x) + amax{(Pr)(y), G(y)} — (¢r)(z))

for anyr andz = (x,%). We define a functiors : R — RE
by
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(Note that this is an expectation oves for a fixed ». It show here the assumptions of [3] because the list is long and
is easy to show that the random variablez,r) is abso- would require a lot in terms of new notation. However, we
lutely integrable ands(r) is well-defined as a consequencaote that in our setting here, the potential functid) that

of Assumption 5.) Note that each componen{») can be would be required to satisfy the assumptions of the theorem

represented in terms of an inner product according to from [3] is given byU(r) = ||r — r*||%
N ) Theorem 3: Consider a process, taking values inRk%,
51(r) = El¢r(z0)(9(z0) + amax{(r)(z1), G(z1)} initialized with an arbitrary vector, that evolves according to
— (®7)(x0))]
= Elpn(w0)(9(0) + aBlmax{(®r)(z1), G(a1)} | 0] reer =7t wes(an )
= (@7)(0))] for somes : R?¢ x RE — RE where we have the following.
= El¢r(z0)(9(zo) + P> max{®r, G}(zo) 1) {z |t =0,1,2,---} is a (stationary) ergodic Markov
— (®r)(20))] process taking values i#?<.
_ . . 2) For any positive scalag, there exists a scalat, such
= (¢p, FOr — 7, 4>
(P, I'@r = 1) that E[1 + ||z ]| | z0 = 2] < pg(1+|2]|9), for any time
where the definition of the operatdt is used. t andz € R,
Lemma 8: Under Assumptions 1-4, we have 3) The (predetermined) step size sequepds nonincreas-
e . ing and satisfie$ ;v = co andd_ ;=7 < oo.
(r—r")'s(r) <0, vr#r 4) There exist scalar§€’ and ¢ such that
and
l[s(z,7)Il < C(L+ ) |[9), Yz,
s(r*) = 0.

5) There exist scalar€ and ¢ such that
Proof: For anyr, we have

K Z | Els(zt,7) | 20 = 2] — E[s(z0,7)]||
(= Y s(r) = S (k) = 7 (6)) by, Fr — 1),
Pt S CA+IrDA+ =9, Yz,
= (®r — &r*, FOr — &r),
={(Pr — &r*,(I — I FOr + I[IF®r — &r)
= (07 — Or* IIFOr — ) | E[s(20,7)] — E[s(z0,P)|[| < Cllr — 7|,  Vr, 7

6) There exists a scala¥ such that

where the final equality follows becausk projects onto the  7) There exist scalar€ and ¢ such that

range of®, and the range off — II) is therefore orthogonal

to that of ®. Since®r* is the fixed point oflI1F', Lemma 5 Z | E[s(ze,7) — 8(2,7) | 20 = 2] — E[s(20,7) — 5(z0,7)]]|
implies that

|IF®r — &r*||; < of|®r — &), S Cllr = 7| +1[=l17),  Vz,77

Using the Cauchy—Schwartz inequality together with this fact, 8) There exists some* € R* such thats(r)/(r —+*) < 0,
we obtain for all » # »*, ands(»*) = 0. Then,r, almost surely

converges to-*.
(Pr — &r*, IIEDr — Or),

= (07 — 7", (IIFOr — Or*) 4 (07" — Or)) C. Proof of Theorem 2
< @7 — @77 - [[ILFPr — &7 || — || @1 — @3 We will prove Part 1) of Theorem 2 by establishing that the
< (a—1)||&r — &r*|2. conditions of Theorem 3 are valid. Conditions 1) and 2) pertain

] . . to the dynamics of the process = (x4, z141). The former
By Assumption 4-1), for any # r*, we havel|®r —®r*[|= #  condition follows easily from Assumption 1, while the latter is

0. Sincear < 1, the first part of the result follows. a consequence of Assumption 5-1). Condition 3), concerning
As for the second part, we have to complete the proof, thiss step size sequence, is the same as Assumption 6.

we have To establish validity of Condition 4), for any and » =
56 (1) = (¢, FOr* — Or*) = (g, IFOr* — op*) = 0.  (#:9), we have

0 [s(z, )l = ll¢(=)(g(x) + amax{(®r)(y), G(y)}
We now state without proof a result concerning stochastic —(®r)(x))]|
approximation, which will be used in the proof of Theorem 2. < |l¢@)I(|lg(z)] + (|l )]]]I7]
This is a special case of a general result on stochastic approx- + 16D + @D
imation algorithms [3, Th. 17, p. 239]. It is straightforward to
check that all of the assumptions in the result of [3] follow < @) IClg(=)] + | Gy)))
from the assumptions imposed in the result below. We do not + ||| (llp@)]] + () ID]|7]]-



TSITSIKLIS AND VAN ROY: OPTIMAL STOPPING OF MARKOV PROCESSES 1847

Condition 4) then easily follows from the polynomial boundand a state;, € ®* according toProb[y; € A] = P(y:, A),
of Assumption 5-3). Given that Condition 4) is valid, Condiand updates the weight vector according to

tion 5) follows from Assumptions 5-1) and 5-2) in a straight-

forward manner. (Using these assumptions, it is easy to show '+t =~ "t +nd(u)o(ve)

that a condition analogous to Assumption 5-2) holds for + amax{G(g), (2r) (@)} — (Pre)(we))-  (5)

functions ofz, = (x,2+1) that are bounded by polynomialsg,,ch an algorithm does not generally converge. We refer the

in 2, and ,4.1.) = _ reader to Tsitsiklis and Van Roy [19] for a more detailed
Let us now address Conditions 6) and 7). We first note thé‘i%cussion of this phenomenon.

for any », ¥, and z, we have

|s(z,7) — s(z,7)|] IV. PRICING FINANCIAL DERIVATIVES
= [|¢(x) (e max{(Pr)(y), G(y)} In this section, we illustrate the steps required in applying
— amax{(®7F)(y), G(y)} — (Br)(z) + (27)(z))]| our algorithm by describing a simple case study. The prob-

lem is representative of high-dimensional derivatives pricing
problems arising in the rapidly growing structured products

< afl¢(x)|l| max{' (y)r, G(u)}

— max{¢'(y)7, G(y)} + [|¢(2)[l|¢' (z)r — ¢'(2)7| (a.k.a. “exotics”) industry [14]. Our approach involving the
< af|lp@)|||¢’ (v)r — ¢ (W)7] + [|¢()]| |7 — 7] approximation of a value function is similar in spirit to the
< allp@ |l e@)l||7 = 7| + [|()]2 || — 7. earlier experimental work of Barraquand and Martineau [2].

However, the algorithm employed in that study is different
It then follows from the polynomial bounds offrom ours, and the approximations were comprised of piece-
Assumption 5-3) that there exist scalafs and ¢» such wise constant functions.
that for anyr, 7, and z Another notable approach to approximating solutions of
_ _ optimal stopping problems that arise in derivatives pricing is
stz 7) = s(z, 7l < Callr = 73+ [[=%)- thpe “stochapsrt)icgm%sh” methods of Broadie and Glr;ssergman
Validity of Condition 6) follows. Finally, it follows from [8], [9]. These methods can be thought of as variants of
Assumptions 5-1) and 5-2) that there exist scaléysq;, C», Rust’s algorithm [15], which like traditional grid techniques,

and ¢-, such that for any, ¥, and = approximates values at points in a mesh over the state space.
0o The innovation of Rust’'s approach, however, is that the mesh
Z |E[s(ze,7) — 8(z,7) | 20 = 2] — E[s(20,7) includes a tractable collection of randomly sampled states,
—o rather than the intractable grid that would arise in standard
— 5(20,P)]|| < CLCu]lr — 7I|(1 + ||2]|2%2). state space discretization. Unfortunately, when the state space
is high-dimensional, except for cases that satisfy restrictive
This establishes Condition 7). assumptions as those presented in [15], the randomly sampled

Validity of Condition 8) is assured by Lemma 8. Thisstates may not generally be sufficiently representative for
completes the proof for Part 1) of the theorem. To wrap up tRfective value function approximation.

proof, Parts 2) and 3) of the theorem follow from Lemma 5, we will begin by providing some background and references

while Part 4) is established by Lemma 7. to standard material on derivatives pricing. Section IV-B then
. _ . introduces the particular security we consider and a related
D. On the Importance of Simulated Trajectories optimal stopping problem. Section IV-C presents the perfor-

The approximation algorithm we analyzed can be thought Bfance of some simple stopping strategies. Finally, the selec-
as a variant of the temporal-difference learning, also known #@n of basis functions and computational results generated by
TD()), with the parametek set to zero. Th&'D(0) algorithm our approximation algorithm are discussed in Section IV-D.
approximates the value function for an autonomous system
using an iteration of the form A. Background

L . Rz Financial derivative securities (or derivatives, for short)
revt = vt @9z +al®ro)(zin) = (€r)(e) are contracts that promise payoffs contingent on the future
which replaces the termax{(®r;)(x:+1), G(z:+1)} from the prices of basic assets such as stocks, bonds, and commodities.
algorithm we have proposed witt®r;)(x:41). Intuitively, Certain types of derivatives, such as put and call options,
this is like applying our algorithm to a stopping problem foare in popular demand and traded alongside stocks in large
which the reward7(x) for stopping is always a large negativeexchanges. Other more exotic derivatives are tailored by banks
number, making stopping undesirable. and other financial intermediaries in order to suit specialized
An interesting characteristic of temporal-difference learningeeds of various institutions and are sold in “over-the-counter”

first conjectured by Sutton [18] and later elucidated by thmarkets.

analysis of Tsitsiklis and Van Roy [19], is that the use of When there is a fixed date at which payments are made and
simulated trajectories is critical for convergence. The samedsrtain common simplified models of stock price movements

true for the algorithm proposed in the current paper. Considand trading are employed, it is possible to devise a hedging
for example, an algorithm that, on eaith step, samples a statestrategy that perfectly replicates the payoffs of a derivative

y: € R according to a probability measure B(R?) — [0,1] security. Hence, the initial investment required to operate this
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hedging strategy must be equal to the value of the securiBach unit of time is taken to be a day, and the security can be
This approach to replication and valuation, introduced ksxercised at timese {0,1,2,---}. We model the stock price
Black and Scholes [7] and Merton [13] and presented in ifgocess{p; | t > —100} as a geometric Brownian motion
definitive form by Harrison and Kreps [10] and Harrison and
Pliska [11], has met wide application and is the subject of ¢ ¢
much subsequent research. Pt = p-100 + /S 1ps ds + /S
When there is a possibility of early exercise (i.e., the
contract holder can decide at any time to terminate the contré@t some positive scalarg_iqo, 4, and ¢ and a standard
and receive payments based on prevailing market condition8jpwnian motionw,. The payoff received by the security
the value of the derivative security depends on how thwlder is equal top./p,_100 Wherer > 0 is the time of
client chooses a time to exercise. Given that the bank caneagrcise. Note that we consider negative times because the
control the client’'s behavior, it must prepare for the worsttock prices up to 100 days prior to the date of issue may
by assuming that the client will employ an exercising stratedgfluence the payoff of the security. We assume that there is a
that maximizes the value of the security. Pricing the derivativ®nstant continuously compounded short-term interestgate
security in this context generally requires solving an optiméi other words,D, dollars invested in the money market at

ops dw,

=—-100 =—100

stopping problem. time O grows to a value
In the next few sections, we present one fictitious derivative
security that leads to a high-dimensional optimal stopping Dy = Doe

problem, and we employ the algorithm we have developed in

order to approximate its price. Our focus here is to demonstratetime ¢.

the use of the algorithm, rather than to solve a real-world We will now characterize the price of the derivative security
problem. Hence, we employ very simple models and ignoi® a way that gives rise to a related optimal stopping problem.
details that may be required in order to make the problebet {y, | ¢ > —100} be a stochastic process that evolves
realistic. according to

dﬁt = pﬁt dt + O']at dwt.
B. Problem Formulation

The financial derivative instrument we will consider genefP€fine a discrete-time procegs:; | ¢ = 0,1,2,-- -} taking
ates payoffs that are contingent on prices of a single stock. Y@lues in R19, with
the end of any given day, the holder may opt to exercise. At ~ ~ ~ ,
the time of exercise, the contract is terminated, and a payoff is T, = <f’t—99 7 f’f—% - Dbt ) .
received in an amount equal to the current price of the stock DPt—100" Pt—100 Dt—100
divided by the price prevailing 100 days beforehand. . ) )

We will employ a standard continuous-time economic mod#jtuitively, the ith componenta, (i) of x; represents the
involving a stochastic stock price process and determinisfiount a one-dollar investment made in the stock at time
returns generated by short-term bonds. Given this modér- 100 would grow to at timet — 100 + ¢ if the stock price
under certain technical conditions, it is possible to replicaf@/lowed {p:}. It is easy to see that this procegs; | ¢ =
derivative securities that are contingent on the stock priel>2:---} is Markov. Furthermore, it is ergodic since, for
process by rebalancing a portfolio of stocks and bonds. TH8Y ¢ € {0,1,2,---}, the random variables; and x; 100
portfolio needs only an initial investment and is self-financing'® independent and identically distributed. Letting= ¢™*,
thereafter. Hence, to preclude arbitrage, the price of the deri (x) = =(100), and
tive security must be equal to the initial investment required ,
by such a portfolio. Karatzas [12] provides a comprehensive = <p—99 (Poos B )
treatment of this pricing methodology in the case where early P—100 P-100 P—100
exercising is allowed. In particular, the value of the security is o o
equal to the optimal reward for a particular optimal stopping'€ value of the derivative security is given by
problem. The framework of [12] does not explicitly capture
our problem at hand (the framework allows early exercise at
any positive time, while our security can only be exercised at
the end of each day), but the extension is immediate. Since outf +* is an optimal stopping time, we have
motivation is to demonstrate the use of our algorithm, rather
than dwelling on the steps required to formally reduce pricing Elo™ G(zr) |zo=12] = sup Elo"G(z-) | zo = 2]
to an optimal stopping problem, we will simply present the ey
underlying economic model and the optimal stopping problefar almost everyz,. Hence, given an optimal stopping time,
it leads to, omitting the technicalities needed to formallwe can price the security by evaluating an expectation, possi-
connect the two. bly through use of Monte Carlo simulation. However, because

We model time as a continuous variable [—100,00) and the state space is so large, it is unlikely that we will be able
assume that the derivative security is issued at time 0. to compute an optimal stopping time. Instead, we must resort

sup E[a"G(z,) | zo = z].
Tl
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Fig. 1. Expected reward as a function of threshold. The values plotted are estimates generated by averaging rewards obtained over 10000 simulated
trajectories, each initialized according to the steady-state distribution and terminated according to the stopping time dictated by thiaghsesiedy.

The dashed lines represent confidence bounds generated by estimating the standard deviation of each sample mean, and adding/subtracting twice this
estimate to/from the sample mean.

to generating a suboptimal stopping tirfieand computing  in the process{p;} within the past 100 days, we should
= probably wait until we are about 100 days past the low point
Ela” G(z) | wo = ] in order to reap potential benefits. However, the thresholding
as an approximation to the security price. Note that thslstrategy, which relies exclusively on the ratio betwgerand

PR ; _100, cannot exploit such information.
approximation is a lower bound for the true price. The aﬁ’! V\ll(;?at is not clegr is thelegreeto which the thresholding

proximation generally improves with the performance of the

optimal stopping strategy. In the next two sections, we presesr%c[ategy can be improved. In particular, it may seem that

computational results involving the selection of stopping timeeventS in which such a strategy makes significantly inadequate

for this problem and the assessment of their performamce.qs%CISIonS are rare, and it therefore might be sufficient, for

the particular example we will consider, we use the settin%atﬁt:zlegfrspeocii)sr; tsvgn:gﬁﬁﬂtif%to;?r::ihsof'nge?;?i?r:esé
o = 0.02 and p = 0.0004 (the value of the drifty is ' yp ¥ 9

inconsequential). Intuitively, these choices correspond toSL.@J\bSt""m""l"y superior stopping time using our approximation

stock with a daily volatility of 2% and an annual interest ratgnethodology.

of about 10% (assuming that interest only compounds while
the market is open). D. Using the Approximation Algorithm

) Perhaps the most important step prior to applying our
C. A Thresholding Strategy approximation algorithm is selecting an appropriate set of basis

In order to provide a baseline against which we can compdtactions. Though analysis can sometimes help, this task is
the performance of our approximation algorithm, let us firséargely an art form, and the process of basis function selection
discuss the performance of a simple heuristic stopping stratetypically entails repetitive trial and error.
In particular, consider the stopping timez = min{¢ | We were fortunate in that our first choice of basis functions
G(z¢) > B} for a scalar threshold3 € R. We define the for the problem at hand delivered promising results relative to
performance of such a stopping time in terms of the expectééitesholding strategies. To generate some perspective, along
reward E[J77(x0)]. In the context of our pricing problem, thiswith describing the basis functions, we will provide brief
guantity represents the average price of the derivative secudigcussions concerning our (heuristic) rationale for selecting
(averaged over possible initial states). Expected rewards gdrem. The first two basis functions were simply a constant
erated by various threshold values are presented in Fig. 1. Thection ¢1(z) = 1 and the reward functio.(z) = G(z).
optimal expected reward over the thresholds tried was 1.238ext, thinking that it might be important to know the maximal

It is clear that a thresholding strategy is not optimal. F@and minimal returns over the past 100 days, and how long
instance, if we know that there was a large slump and recoveryo they occurred, we constructed the following four basis
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functions: 12
= 1 1) — 1
¢s(v) =, _min  2(2) il |
Pale) = g, o)~

1
¢5(x) = — argmin z(i) — 1
oV i=1,...,100
: ()1
= — argmax z(z) — 1.
o0 i:%---,loo

06}

Weight Values

Po(x)

Note that the basis functions involve constant scaling factors
and/or offsets. The purpose of these transformations is to
maintain the ranges of basis function values within the same
regime. Though this is not required for convergence of our 0T 2 s 4 5 5 71 8 s 1w
algorithm, it can speed up the process significantly. torsters
As mentioned previously, if we invested one dollar in theig. 2. The evolution of weights during execution of the algorithm. The
stock at timet — 100 and the stock price followed the procesgalue of the security under the resulting strategy was 1.282.
{p:}, then the sequencg (1), - - -, x;:(100) represents the daily
values of the investment over the following 100-day periodvith a step size ofy, = 0.001. The evolution of the iterates
Conjecturing that the general shape of this 100-day samjseillustrated in Fig. 2.
path is of importance, we generated four basis functionsThe weight vector s resulting from our numerical pro-
aimed at summarizing its characteristics. These basis functig@slure was used to generate a stopping time: min{# |
represent inner products of the sample path with Legendméz:) = (®r10s)(x¢)}. The corresponding expected reward
polynomials of degrees one through four. In particular, letting[/” (z0)], estimated by averaging the results of 10 000 trajec-

j =i/50 — 1, we defined tories each initialized according to the steady-state distribution
00 . and terminated according to the stopping tifhewas 1.282
pr(z) = 1 x(i) —1 (the estimated standard deviation for this sample mean was
100 = V2 0.0022). This value is significantly greater than the expected
100 reward generated by the optimized threshold strategy of the
Ps(z) = 1_(1)0 x(4) g, previous section. In particular, we have
i;é E[J7 (z0) — J72 (20)] ~ 0.044.
do(x) = 1 (i) §<£ _ 1) As a parting note, we mention that each stopping time
100 «— 2\ 2 2 corresponds to an exercising strategy that the holder of the
| oo T 5B g security may follow, and/"(xo) represents the value of the
$ro(r) = — Zx(i) — <O" — _J)_ security undgr this exercising strategy. Hence, the difference
100 2\ 2 2 betweenF[J7 ()] and E[J77 (x)] implies that, on average

=1

So far, we have constructed basis functions in accordar{¥éth respect to the steady-state distributionaqg), the fair
with “features” of the state that might be pertinent to effectiverice of the security is about 4% higher when exercised
decision-making. Since our approximation of the value fun@ccording tor instead ofrz. In the event that a bank assumes
tion will be composed of a weighted sum of the basis function&at7p is optimal and charges a price 8f#(xo), an arbitrage
the nature of the relationship between these features @RPOrtunity may become available.
approximated values is restricted to linear. To capture more
complex tradeoffs between features, it is useful to consider V. CONCLUSION
nonlinear combinations of certain basis functions. For ourwe have introduced a theory and algorithm pertaining
problem, we constructed six additional basis functions using approximate solutions of optimal stopping problems. The
products of the original features. These basis functions atgorithm involves Hilbert space approximation of the value
given by function via a linear combination of user-selected basis func-

$11(z) = a(@)d3(x) tion_s and can be thought of as a “regressi_on method’i for

optimal stopping rather than statistical modeling. We believe
$12(2) = ¢2(2)Palw) that the methodology provides a systematic approach to deal-

P13(x) = ¢2(x)d7(x) ing with complex optimal stopping problems such as those

br4(x) = $2(x) () arising in the exotic derivatives trade, and our computational

b15(x) = o) o () study provides some preliminary support for thls_ view.

Though the algorithm and theory developed in this paper

$16(2) = d2(2)b10(2)- are useful in their own right, they represent contributions

Using our 16 basis functions, we generated a sequencet@fa broader context. In particular, our algorithms exemplify
parameters,r,-- -, 106 DY initializing each component of methods from the emerging fields of neuro-dynamic program-

ro t0 zero and iterating the update equation 1000000 timesng and reinforcement learning that have been successful in



TSITSIKLIS AND VAN ROY: OPTIMAL STOPPING OF MARKOV PROCESSES 1851

solving a variety of large-scale stochastic control problems [6].6] A. N. Shiryaev,Optimal Stopping Rules New York: Springer-Verlag,
We hope that ou.r treat.ment of optimal stop_pmg problems WPIL ] é9788 Sutton, “Learning to predict by the methods of temporal differ-
serve as a starting point for further analysis of methods wi ences,’Machine Learningvol. 3, pp. 9-44, 1988.

broader scope. [18] - » “On the virtues of linear learning and trajectory distributions,”

Indeed, many ideas in this paper were motivated by research 'é‘oﬂ?cig’gg”;?yif;°”w,‘ﬁ‘ﬁ§ F:n”;tgﬂtg?]pr‘é’g?aﬁggﬁmé";hggpmémﬂg
in neuro-dynamic programming and reinforcement learning.  cs-95-206, Carnegie Mellon Univ., Pittsburgh, PA 15213, 1995, p.
The benefits of switching the order of expectation and max[i:L-9 ES'N Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
mization by employing &-functions” instead of value func- . : L A X
tions Wereyfirst Irjecil)gr?izcged by Watkins [22] and Watkins and Islz;nl{\gg\;v.lth function approximation,JEEE Trans. Automat. Contr.
Dayan, [23]. The type of stochastic approximation update rul&l Advanycééﬁ)r?fmmrgﬁn?ﬂrl:gigi glroggtsig?r?l ;fosrigmgn 5&”522: in
that we use to tune weights of a linear combination of basis ;" Jordan, an;T. Petsche, Eds. Cambﬁdgg’ MA: MIT Press, 1997.
functions resembles temporal-difference methods originallgi] B. van Roy, “Learning and value function approximation in complex
proposed by Sutton [17], who also conjectured that the ugg, decsieg Piocsssss, Pnp, Sseraton. WL e 1%
of simulated trajectories in conjunction with such algorithms " gissertation, Univ. Cambridge, Cambridge, UK., 1989.
could be important for convergence [18]. This observation wé3] C. J. C. H. Watkins and P. Dayan()*learning,” Machine Learning
later formalized by Tsitsiklis and Van Roy [19], who analyzed VOl 8 Pp- 279-292, 1992.
temporal-difference methods and provided a counterexample
as discussed in Section IlI-A (a related counter-example has
also been proposed by Baird [1]). Bertsekas and Tsitsiklis
[6] summarize much work directed at understanding sut
algorithms.

Finally, we should mention that the line of analysis de
veloped in this paper extends easily to additional classes
optimal stopping problems. Several such extensions, inclt
ing those involving finite horizons, independent incremel
processes, and stopping games, are treated in [21].
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