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A Note on Sampling and Parameter Estimation
in Linear Stochastic Systems

T. E. Duncan, P. Mandl, and B. Pasik-Duncan

Abstract— Numerical differentiation formulas that yield consistent
least squares parameter estimates from sampled observations of linear,
time invariant higher order systems have been introduced previously
by Duncan et al. The formulas given by Duncan et al. have the same
limiting system of equations as in the continuous time case. The formula
presented in this note can be characterized as preserving asymptotically
a partial integration rule. It leads to limiting equations for the parameter
estimates that are different from the continuous case, but they again imply
consistency. The numerical differentiation formulas given here can be
used for an arbitrary linear system, which is not the case in the previous
paper by Duncan et al.

Index Terms—Estimation, linear stochastic systems, numerical diffier-
entiation for stochastic systems, sampling.

I. INTRODUCTION

In a previous paper by the authors [2], the following parame-
ter estimation problem in linear stochastic differential equations is
considered. Let(X(t); t � 0) be ann-dimensional process satisfying

dX
(d�1)(t) =

d

i=1

fi(�)X
(i�1)(t) + g(�)U(t) dt+ dW (t)

(1)

where

X
(i)(t) =

d

dt
X

(i�1)(t); i = 1; 2; � � � ; d� 1

X
(0)(t) =X(t) (2)

where(U(t); t � 0) is a nonanticipative input process,(W (t); t �
0) is ann-dimensional Wiener process with the local variance matrix
h; � = (�1; � � � ; �p) is a p-dimensional unknown parameter

fi(�) = fi0 +

p

j=1

�
j
fij ; g(�) = g0 +

p

j=1

�
j
gj :

In these descriptions,fij ; gj for i; j = 0; � � � ; p are known
matrices. The true value of the unknown parameter is denoted by
�0 = (�10; � � � ; �

p
0).

The least squares estimation of�0 from the observation of

(Xt; Ut; t 2 [0; T ])

is determined by minimizing the formal quadratic functional

T

0

X
(d)

�

d

i=1

fi(�)X
(i�1)

� g(�)U

0

� L X
(d)

�

d

i=1

fi(�)X
(i�1)

� g(�)U �X
(d)0

LX
(d)

dt

(3)
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whereL is a positive semidefinite matrix. Prime denotes the trans-
position of vectors and matrices. The undefined termX(d)0LX(d) is
cancelled, andX(d) dt = dX(d�1) in (3).

By minimizing (3), the following family of equations for the least
squares estimate��(T ) = (��1(T ); � � � ; ��p(T )) of �0 is obtained:

p

k=1

1

T

T

0

d

i=1

fijX
(i�1) + gjU

0

� L

d

h=1

fhkX
(h�1) + gkU dt��k(T )

=
1

T

T

0

d

i=1

fijX
(i�1) + gjU

0

� L dX(d�1) �
d

h=1

fh0X
(h�1) + g0U dt

j = 1; � � � ; d: (4)

It is assumed in [2] that discrete observations of(X(t); t 2 [0; T ])
and(U(t); t 2 [0; T ]) with the uniform sampling interval� > 0 are
only available yielding the observed random variables

Xm; � =X(m�);

Um; � =U(m�); m = 0; � � � ; N + n: (5)

The notationU is used to include the case when the productg(�)U(t)
depends only on some coordinates ofU . It is assumed that all of
these coordinates are observed.

To approximate (4) using only random variables in (5), a substitu-
tion for the derivativesX(i)(m�) by the forward differences

DiXm;� = Di�1Xm+1; � �Di�1Xm;� �;

i = 1; 2; � � � ; d� 1 (6)

is performed and some numerical integration formulas are used to
evaluate the integrals. Denoting by

�̂N� = �̂1N�; � � � ; �̂pN�

the estimate so obtained by these substitutions it is desirable that the
consistency property

lim
�!0

lim
N!1

�̂N� = �0 (7)

is satisfied. In this expressionlimN!1 �̂N� denotes the limit in
probability, which under appropriate hypotheses is a nonrandom
quantity.

In [4] and [6] it is noted that the forward and backward Euler
approximations cannot be used, but it is shown how to modify the
approximation for the highest derivative to satisfy (7). In [6] a specific
approximation of the delta operator is given for the sampled data. It
is shown in [1] forn = 2 and in [2] forn � 2 that (7) does not hold
unless a correction term is introduced into the equations for�̂N�

or unless (6) is modified. A numerical differentiation formula that
determines estimates satisfying (7) is given. In this note, a different
method is given for the numerical evaluation of (4) that satisfies (7).
The method is based only on the random variables (5) and it employs
together with (6) the backward differences

BXm; � =(Xm�1; � �Xm; �)=�

BiXm;� = Bi�1Xm�1; � �Bi�1Xm;� �: (8)

While the method in [2] estimated the difference from the case
of continuous observations, the method presented here exploits the
infinitesimal properties of the covariance function of the process. The

method is more general in the sense that it applies to the case when
the differentiation is subjected to white noise. This generalization
has the following motivation.

It is known (see, e.g., [3]) that a stationary Gaussian process
(X(t); t 2 ) with the spectral density

f(�) =
h

j(i�)d � �d(i�)d�1 � � � � �1j2
can be represented as a solution of the stochastic differential equation

dX(d�1) = �1X(0) + �2X(1) + � � �+ �dX(d�1) dt+
p
h dW

(9)

where(W (t); t � 0) is a standard Wiener process. Equation (9) is
a particular case of (1). More generally, a Gaussian process with a
rational spectral density

f(�) =
jbd(i�)d�1 + � � �+ b2i�+ b1j2
j(i�)d � �d(i�)d�1 � � � � � �1j2

satisfies (9) whereX(i)(t); i = 0; � � � ; d � 1, denote the random
processes satisfying

dX(i�1) = X(i) dt+ �i dW; i = 1; � � � ; d� 1

with

�1 = bd; �i = bd+1�i +

i�1

j=1

�j�
d+1�j+i:

Thus, it is important to consider the following generalization of
(1), (2)

dX(i�1)(t) = X(i)(t)dt+ dW (i)(t); i = 1; � � � ; d� 1 (10)

where ((W (1)(t); � � � ; W (d�1)(t);W (t))0; t � 0) is a d � n-
dimensional Wiener process with local variance matrixH0.

II. PARAMETER ESTIMATION

Assume that (1) and (10) are satisfied with� = �0, and let the
q-dimensional process(U(t); t � 0) be the solution of the linear
stochastic differential equation

dU(t) = cU(t) dt+ dW0(t); U(0) = U0

wherec is a constant matrix, and(W0(t); t � 0) is a q-dimensional
Wiener process with local variance matrixh0 that is independent of
(W (t); W (1)(t); � � � ; W (d�1)(t); t � 0).

To describe the evolution of the entire model, introduce the state
vector (t) 2 dn+q and the matricesF; H that are described in
block form according to the partition of

(t) =

X(0)(t)
...

X(d�1)(t)
U(t)

F =

0 I 0 � � � 0 0
0 0 I � � � 0 0
� � � � � � � � � � � � � � � � � �
0 0 0 � � � I 0
f1 f2 f3 � � � fd g
0 0 0 � � � 0 c

H =
H0 0
0 h0

(11)

whereI denotes the identity matrix inn, and

fi = fi(�0); i = 1; � � � ; d; g = g(�0):
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It easily follows that

d (t) = F (t)dt+ d (t); X(0) = X0

where( (t); t � 0) is ad � n+ q-dimensional Wiener process with
local variance matrixH.

The following assumption is made.
Assumption 1:F is a stable matrix.
This assumption implies that(t) has a limiting Gaussian distri-

bution ast ! 1 with zero mean and variance matrix, which is
the solution of the Lyapunov equation

F + F
0 +H = 0: (12)

The partition of into the blocksrij as

= (rij) (13)

as introduced in (11) is used.
The matrix on the left-hand side of the system of equations (4)

that acts on��(T ) can be written as

1

T

T

0

0

F
0

jLFk dt

for j; k = 1; � � � ; p where

Fj = (f1j ; � � � ; fdj ; gj); j = 1; � � � ; p:

By Assumption 1, this family of matrices indexed byT > 0
converges (in quadratic mean) asT ! 1 to the matrix

Q = (tr(F 0jLFk )) (14)

for j; k = 1; � � � ; p wheretr( ) denotes the trace operator.
Assumption 1 and the assumption of nonsingularity ofQ guarantee

the consistency of the family(��(T ); T > 0) asT !1, that is,

lim
T!1

�
�(T ) = �0 a.s.

The discrete approximation of (4) presented here leads in the limit
to a different system of equations. The associated matrix has a form
similar to (14) with the matrix in (12) replaced by a matrixS
which is defined subsequently. While the methods introduced in [2]
estimated the difference from the case of the continuous observations,
the method presented here exploits the infinitesimal properties of the
covariance function.

For � > 0 define

R(�) = lim
t!1

EX(t+ �)X(t)0 (15)

and thus

R(��) = R(�)0 = lim
t!1

EX(t� �)X(t)0:

Lemma 1: Let Assumption 1 be satisfied. For� > 0 the following
equality is satisfied:

R(�) =

1

k=0

�k

k!
Rk (16)

where

Rk = rk+1; 1; k = 0; 1; � � � ; d� 1 (17)

Rk = f1Rk�d + f2Rk+1�d + � � �+ fdRd+k�1�d

+ (�1)kgrd+1;k+1�d; k = d; d+ 1; � � � ; 2d� 1: (18)

Proof: From the theory of linear stochastic systems, it follows
that for � > 0

R(�) =

1

k=0

�k

k!
F
k

11

(19)

where (A)ij denotes the blockaij of the matrix A using the
partitioning in (11). Consequently,

Rk = (F k )11; k = 0; 1; � � � : (20)

Obviously,R0 = r11, and performing successive multiplications on
by F , it follows that

R1 = r21; � � � ; Rd�1 = rd1:

Furthermore, using (18), it follows that

F
j+1

d1
= F

d�1
F
j+1

11

= Rd+j : (21)

Hence,

F =

R1 � � �
...
Rd � � �

crd+1;1 � � � crd+1;d+1

:

This equality yields (18) fork = 0.
By the Lyapunov equation (12)

crd+1; j = �r
0

j+1; d+1 = �rd+1; j+1; j = 1; � � � ; d+ 1:

Consequently,

c
k
rd+1; 1 = (�1)krd+1; k+1; k = 1; � � � ; d� 1: (22)

Using (21) and (22), it follows that

Rd+k =(F (F k ))d1

= F

Rk � � �
...

ckrd+1;1 � � �
d1

= f1Rk + � � �+ fdRd+k�1 + gc
k
rd+1; 1:

This equality and (22) yield (18) fork = 1; � � � ; d� 1.
Consider next the observed random variables (5), and note that it

follows from (6) and (8), respectively, that

D
r
Xm;� =

1

�r

r

k=0

(�1)k
r

k
Xm+r�k; � (23)

B
q
Xm;� =

1

�q

q

k=0

(�1)k
q

k
Xm�q+k; �: (24)

Lemma 2: Let Assumption 1 be satisfied. Forr; s = 0; 1; � � � ;
the following equality is satisfied:

lim
�!0

lim
N!1

1

N

N�r

m=s

D
r
Xm;�B

s
X
0

m;� = Rr+s: (25)
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Proof: Using the Law of Large Numbers and (15), (19) it
follows that, for j; k = 0; 1; � � � ;

lim
N!1

1

N

N�j

m=k

Xm+j; �X
0

m�k; � = e
(j+k)�F

11
:

From (20), (23), and (24), it follows that

lim
N!1

1

N

N�r

m=s

D
r
Xm;�B

s
X
0

m;�

=
1

�r+s
e
�F
� I

r

e
�F
� I

s

11

= (F r+s )11 +O(�)

= Rr+s +O(�):

From this equality, (22) follows.
Recall thatU(t) is formed by those coordinates ofU(t) for which

g(�)U(t) depends. Further denote

riu = lim
t!1

EX
(i�1)(t)U(t)0; i = 1; � � � ; d

ruu = lim
t!1

EU(t)U(t)0;

ruu = lim
t!1

EU(t)U(t)0:

Note thatrui = r0iu; ruu = r0uu.
Lemma 3: Let Assumption 1 be satisfied. LetX(t) be r-times

differentiable andU(t) bes-times differentiable (in quadratic mean),
and let r + s � d � 1. Then

lim
�!0

lim
N!1

1

N

N�1

m=0

D
i
Xm;�U

0

m; � = ri+1; u; i = 0; � � � ; d� 1

(26)

lim
�!0

lim
N!1

1

N

N�1

m=0

D
d
Xm; �U

0

m; � = f1r1u + � � �+ fdrdu + gruu:

(27)

Proof: Without loss of generality, it can be assumed that the
coordinates ofU(t) are described in the following way:

U(t) = U(t); U
(1)

(t); � � � ; U
(s)

(t); U�(t) (28)

whereU
(i)

(t) denotes the derivative of orderi of U(t), andU�(t)
contains the rest of the coordinates. Then the matricesc; h0 have
the form

c =

0 I 0 � � � 0
0 0 I � � � 0
� � � � � � � � � � � � � � �

c�

h0 =
0 0
0 h�

: (29)

From the partition of the matrices; F; etc., into block matrices a
finer partition is also employed, with indicesi; j = d+ 1; � � � ; d+
s+2 referring to the components of (28). In particular,riu = rid+1;

i = 1; � � � ; d.
Consider (26). Letv � s be such thati � v � r. Using partial

summation ifv > 0 it follows that

lim
�!0

lim
N!1

1

N

N�1

m=0

D
i
Xm;�U

0

m; �

= lim
�!0

lim
N!1

1

N

N�1

m=0

D
i�v

Xm; �B
v
U
0

m; �

= (�1)v(F i�v )1; d+1+v = (�1)vri�v+1; d+1+v : (30)

From (29) and (12) it follows that

rj+1;i =(F )ji

=�rj; i+1; i = 1; � � � ; d� 1; j = d+ 1; � � � ; d+ q

so that,

(�1)vri�v+1; d+1+v = ri+1; d+1 = ri+1; u

which yields (26).
Similarly, to verify (27), it follows as in (30) that

lim
�!0

lim
N!1

1

N

N�1

m=0

D
d
Xm;�U

0

m; �

= (�1)v(Fd�v )1; d+1+v = (�1)v(F )d�v; d+1+v:

For v = 0, the last term in the equality coincides with the right-hand
side of (26). Forv > 0, it follows from (12) that

(F )d�v+1; d+v =�(F )0d+v; d�v+1

=�r0d+v+1; d�v+1

=�rd�v+1; d+v+1

=�(F )d�v; d+v+1:

Repeating this argument, it follows that

(�1)v(F )d�v; d+1+v = (F )d; d+1

which establishes (27).
Now the discrete observation version of (4) is introduced by letting

the estimatê�N� of �0 be the solution of

p

k=1

1

N

N�1

m=0

d

i=1

fijB
i�1

Xm;� + gjUm;�

0

� L

d

h=1

fhkD
h�1

Xm;� + gkUm; � �̂
k
N�

=
1

N

N�1

m=0

d

i=1

fijB
i�1

Xm;� + gjUm; �

0

� L D
d
Xm;� �

d

h=1

fh0D
h�1

Xm;� � g0Um; � (31)

for j = 1; � � � ; d. To guarantee the consistency of�̂N� asN ! 1

and� ! 0, a matrixQ̂ that is analogous toQ in (14) is introduced by
replacing by a matrixS. LetR0; � � � ; R2d�1; rd+1; 1; � � � ; rd+1; d
be given by (13), (17), and (18). Define

S :=

R0 R1 � � � Rd�1 r1; d+1
R1 R2 � � � Rd r2; d+1
� � � � � � � � � � � � � � �

Rd�1 Rd � � � R2d�1 rd; d+1
rd+1; 1 rd+1; 2 � � � rd+1; d rd+1; d+1

: (32)

The matrixQ̂ is given in the following assumption.
Assumption 2:The matrix

Q̂ := (tr(F 0jLFkS)); j; k = 1; � � � ; p (33)

is nonsingular.
Theorem 1: Let Assumptions 1 and 2 be satisfied, and let�̂N� be

the solution of (31). Let(X(t); t � 0) be r-times differentiable and
(U(t); t � 0) be s-times differentiable (in quadratic mean), and let
r + s � d � 1. Then

lim
�!0

lim
N!1

�̂N� = �0: (34)



2124 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 11, NOVEMBER 1999

Fig. 1 Convergence of the estimator.

Proof: It is sufficient to prove that the system of equations,
which is obtained by performing the two passages to the limit, that
is, N ! 1 and� ! 0 in (31), has the unique solution�0.

If N !1 and� ! 0 in (31), then the following family of linear
equations for the estimatê�1; 0 is obtained by Lemmas 2 and 3.

p

k=1

tr L

h; i

fhkRh+i�2f
0
ij +

h

fhkrhug
0
j

+
i

gkruif
0
ij + gkruug

0
j �̂

k
10

= tr L

i

Rd+i�1f
0
ij + (f1r1u + � � �+ fdrdu + gkruu)g

0
j

�
i

fh0Rh+i�2f
0
ij �

i

gkruif
0
ij �

i

g0ruif
0
ij ;

j = 1; � � � ; p: (35)

It is seen thatQ̂ is the matrix of the left hand side for the system
(35) so this system of equations has a unique solution by Assumption
2.

It only remains to verify that (35) is satisfied with

�̂
1
10 = �

1
0; � � � ; �̂p

10 = �
p
0: (36)

Inserting the values in (36) into the left-hand side of (35) and
recalling thatfh = fh(�0); g = g(�0), the left-hand side of (35) is

tr L

h; i

fhRh+i�1f
0
ij +

i

gruifij

+
h

fhrhug
0
j + gruug

0
j ; j = 1; � � � ; p: (37)

By Lemma 1, the first two sums in the square bracket equals

i

Rd+i�1f
0
ij :

Consequently, (37) is equal to the right-hand side of (35).
The quadratic mean differentiability of a process is determined by

the differentiability of its covariance function
Example: Let (X(t); t 2 ) be a stationary Gaussian process

with the covariance function

R(�) = R0e
�aj�j cos b� (38)

where a; b are positive, unknown constants. The spectral density
corresponding to (38) is

f(�) = 2R0a
ji�+

p
a2 + b2j2

j(i�)2 + 2ai�+ a2 + b2j2 : (39)

Furthermore, it follows from (38) or (39) that

dX = X
(1)

dt+ �1 dW

dX
(1) = �

1
0X dt+ �

2
0X

(1)
dt+ �2 dW

where

�
1
0 =�(a2 + b

2);

�1 = 2R0a;

�
2
0 =�2a

�2 =
p
2R0a(

p
a2 + b2 � 2a):

(40)

(41)

The parameter�0 = (�10; �
2
0) is estimated by (4) and (35) and�21

is estimated by the quadratic variation of(X(t); t � 0). Estimates
of a; b andR0 are obtained from (40) and (41). ExpandingR(�) in
terms of � it follows that

R(�) = R0 1� aj�j + 1
2
(a2 � b

2)�2 + 1
6
(3ab2 � a

3)j�j3 + � � � :
Letting L = I in (3), it is expressed as

T

0

X
(2) � �

1
X � �

2
X

(1)
2

� X
(2)

2

dt
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so (4) is

1

T

T

0

(X)2 dt ��1(T ) +
1

T

T

0

XX
(1)

dt�
�2(T )

=
1

T

T

0

X dX
(1) (42)

1

T

T

0

XX
(1)

dt�
�1(T ) +

1

T

T

0

X
(1)

2

dt �
�2(T )

=
1

T

T

0

X
(1)

dX
(1)

: (43)

In the limit asT ! 1, there are the two equations

R0�
�1(1)� aR0�

�2(1) = R0�
1
0 � aR0�

2
0 (44)

aR0�
�1(1) + r22�

�2(1) = �
1
0aR0 + �

2
0r22: (45)

For the discretized version (31) of (42), (43), the limit asN !1

and � ! 0 is different from (44), (45), specifically

R0�̂
1(1)� aR0�̂

2(1) = R0(a
2
� b

2) (46)

�aR0�̂
1(1) +R0(a

2
� b

2)�̂2(1) = R0(3ab
2
� a

3): (47)

The solution is�̂10 = �0.
The quadratic variation can be used to estimate�21 by

�̂
2
1 =

1

N�
m

(Xm+1;� �Xm;�)
2
:

A numerical example is described graphically (see Fig. 1) where
a = 0:5; b = 2:0, andR0 = 1 so that�1 = �4:25 and�2 = �1:0.
The convergence of family of estimates is relatively fast. If a longer
time interval is used, then the family of estimates for�1 are closer
to the true value.
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[5] T. Söderstr̈om, H. Fan, B. Carlsson, and S. Begi, “Least squares
parameter estimation of continuous-time ARX models from discrete-
time data,”IEEE Trans. Automat. Contr., vol. 42, pp. 659–673, 1997.
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Stochastic Control of Discrete Systems: A Separation
Principle for Wiener and Polynomial Systems

M. J. Grimble

Abstract—A new separation principle is established for systems rep-
resented in discrete frequency-domain Wiener or polynomial forms. The
LQG or HHH2 optimal controller can be realized using an observer based
structure estimating noise free output variables that are fed back through
a dynamic gain control block. Surprisingly, there are also two separation
principle theorems, depending upon the order in which theideal output
optimal control and the optimal observerproblems are solved.

Index Terms—Optimal control, polynomial systems, Wiener theory.

I. INTRODUCTION

The separation principle of stochastic optimal control theory has
often been utilized for systems represented in state equation form.
However, no such results have been established for systems repre-
sented in transfer-function or polynomial matrix form. The frequency
domain approach to optimal control and estimation was initiated by
Wiener [1], but two seminal contributions later established the main
tools for synthesis. These contributions were undertaken in the same
period by Youlaet al. [2] and by Kucera [3].

The separation principle that is well known in state-space LQG
synthesis was not used in the frequency-domain solutions, although
Kucera [4] provided independent solutions of the LQ state feedback
control and theKalman filtering problems. Thus, in this case, if
the polynomial models are related back to a system described in
state equation form, it is possible to use the polynomial solutions
to calculate the constant control and filter gains. The state-space
separation principle results can then be invoked to obtain the LQG
output feedback controller. Theseparation principlewas not, how-
ever, established in the polynomial setting. Moreover, there was
no attempt to generalize the results to the case where the control
law feedback included a reduced set of variables, such as plant
output estimates. The objective of the analysis that follows is to use
frequency domain models and analysis, to establish a new separation
principle result for systems represented in frequency domain matrix
fraction form.

II. POLYNOMIAL SYSTEM DESCRIPTION

The linear time-invariant discrete-time multivariable, finite-
dimensional system of interest is illustrated in Fig. 1. The noise free
system output sequence is denoted byfy(t)g, wherey(t) 2 Rr, and
the observations signal is denoted byfz(t)g. The white driving noise
signalsf�(t)g andfv(t)g represent the disturbance, and measurement
noise signals, respectively. These signals are statistically independent
and the covariance matrices(Rf > 0):

cov[�(t); �(�)] = Iq�t� and cov[v(t); v(�)] = Rf�t� : (1)
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