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|. INTRODUCTION

p P
K. J. Astrom and B. WittenmarkComputer Controlled Systems En- fila) = fio + Z o fij, g(a) = go + Z o?g;.
glewood Cliffs, NJ: Prentice-Hall, 1984. i=1 =1
In these descriptionsf;;, g; for i, j = 0,---,p are known
matrices. The true value of the unknown parameter is denoted by
ay = (O«’g), ) a/g)

The least squares estimation @f from the observation of
(Xt, Uy, t€10,T)

is determined by minimizing the formal quadratic functional

T ) d !
/ <X”> =3 file)x Y - g(ou)U)

=1
d
x L (X @D _ 3™ f(a)x 0D - g(qw> - X' Lx@
=1

dt
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where L is a positive semidefinite matrix. Prime denotes the transethod is more general in the sense that it applies to the case when
position of vectors and matrices. The undefined teff) LX) is  the differentiation is subjected to white noise. This generalization

cancelled, and\ (¥ dt = dX (=Y in (3). has the following motivation.
By minimizing (3), the following family of equations for the least It is known (see, e.g., [3]) that a stationary Gaussian process
squares estimate* (1) = (o« (T), ---, «*P(T')) of ay is obtained: (X (¢),t € R) with the spectral density

h

P T d ' ~
Z %/ <Z fi.jX("'—U-I-ng) fA) = [(iA)F — ad(iX)dT... — al|2
0 i=1

= can be represented as a solution of the stochastic differential equation

d
% L(Z fth(h—l) +gkU> dm*k(T) Ax =N — (alX(o) + 22X Foeeet adX(dﬂ)) dt + Vh dW
h=1
1 T d ! (9)
_ — Z f"X(i_1)+(1'Lr B} ) ) . )
T/ L. 77 where (W (t), t > 0) is a standard Wiener process. Equation (9) is
=t 4 a particular case of (1). More generally, a Gaussian process with a
% L<dY(d1) _ (Z fIOX(hfl) +goU) dt) rational spectral density
h=1 FO) = [BLGA) T e 4 DTN 4 b
Jj=1--,d (4) ’ TGN — ad(GA)ITE — o — o2
It is assumed in [2] that discrete observationg &f(¢),¢ € [0,T])  satisfies (9) whereX(¢), i = 0, ---, d — 1, denote the random

and (U (), t € [0,T1]) with the uniform sampling interval > 0 are  processes satisfying

only available yielding the observed random variables (i-1) )
dXU7Y = XO gt 4+ g, dw, i=1,--,d=1
X s =X (m6),

— — with
Um,s =U(mb), m=0,---, N+n. (5) t _
The notatior’ is used to include the case when the produet)U () B =1, B = b 4 Z Bjatt I
depends only on some coordinateslof It is assumed that all of J=1
these coordinates are observed. Thus, it is important to consider the following generalization of

To approximate (4) using only random variables in (5), a substityt), (2)
tion for the derivativesX“)(mé) by the forward differences (i—1 . (i
dXU"V() = XD @) dt+dw(t),  i=1,---,d—1 (10)
Di.X-m = Diile - Diile o / ‘
° ( ' e 5>/ ’ where (WO (t), -, WD), W), t > 0) is ad - n-
i=1,2---,d-1 (6)  dimensional Wiener process with local variance maffix

is performed and some numerical integration formulas are used to
evaluate the integrals. Denoting by Il. PARAMETER ESTIMATION

Assume that (1) and (10) are satisfied with= «o, and let the
¢-dimensional processU(t), t > 0) be the solution of the linear

the estimate so obtained by these substitutions it is desirable that$fRehastic differential equation
consistency property dU(4) = cU(H) dt + dWo(t),  U(0) = Us

lim lim dns = ao (") wherec is a constant matrix, and, (1), t > 0) is ag-dimensional

. - . Lo . ... Wiener process with local variance matfix that is independent of
is satisfied. In this expressiolimy—. dns denotes the limit in (), WO (), - WD (1), £ > 0).

probability, which under appropriate hypotheses is a nonrando 0 describe the evolution of the entire model, introduce the state

quantity. dntq . : .
In [4] and [6] it is noted that the forward and backward Euleﬁfggsrfiﬁg gcir dingigdtézepréizgsd;é H that are described in

approximations cannot be used, but it is shown how to modify the
approximation for the highest derivative to satisfy (7). In [6] a specific x© (t)

dﬁ’\’é = (&j\"bw B d’{”\fﬁ)

approximation of the delta operator is given for the sampled data. It :
is shown in [1] forrn = 2 and in [2] forn > 2 that (7) does not hold X(t) = X“".” ¢
unless a correction term is introduced into the equationsafo U(t)( )
or unless (6) is modified. A numerical differentiation formula that 0o I 0 - 0 o0
determines estimates satisfying (7) is given. In this note, a different
method is given for the numerical evaluation of (4) that satisfies (7). 0o 0 I - 0 0
The method is based only on the random variables (5) and it employs F= 0 0 0 I 0
together with (6) the backward differences P S
BX, s =(Xm—1.6 — Xm.,s)/6 0o 0o 0 --- 0 ¢
iv i—1 _ pi—ly Hy O
B }xm1 § (B X, 1,68 B AXNL 5)/5- (8) H = < 0 ho ) (11)

While the method in [2] estimated the difference from the Casehere[ denotes the identity matrix i” . and
of continuous observations, the method presented here exploits \%e y '
infinitesimal properties of the covariance function of the process. The fi = filao), i=1,---,4d, g =glao).
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It easily follows that Proof: From the theory of linear stochastic systems, it follows

that foré > 0
dX(t) = FX(t)dt + dW(t),  X(0) = X,

>

e k
where(W(t),t > 0) is ad - n + ¢-dimensional Wiener process with R(%) = <Z i FL7R> (19)
local variance matrixH . k=0 1
The following assumption is made.
Assumption 1: F is a stable matrix. where (A4);; denotes the block:;; of the matrix A using the
This assumption implies that(¢) has a limiting Gaussian distri- partitioning in (11). Consequently,
bution ast — oo with zero mean and variance matfi which is
the solution of the Lyapunov equation Ry = (F*R)1. E=0,1,---. (20)

FR+RF' + H = 0. (12) Obviously, Ry = 711, and performing successive multiplications on

R by F, it follows that
The partition ofR into the blocksr;; as y

R=(r) (13) Ry =721, -+, Ra—1 = 7a1.
as introduced in (11) is used. Furthermore, using (18), it follows that
The matrix on the left-hand side of the system of equations (4)
that acts om*(T) can be written as (FHIRLi = (Fd’lF“lR)M = Ruy;. (21)
I
<*/ XIFJ’LFkth> Hence
T /o '
for j,k =1,---, p where Ry
F]V:(fljﬂ"'afdjvgj)a J=1-,p FR= R
d
By Assumption 1, this family of matrices indexed & > 0 Crdia wor CTdf1dt

converges (in quadratic mean) As > to the matrix . . .
ges (in g ) B oc This equality yields (18) fo = 0.

Q = (tr(F;LF:R)) (14) By the Lyapunov equation (12)

for j,k =1, ---, p wheretr( ) denotes the trace operator. Crgpr, ;= —r;H, di1 = —Td41, j+1» j=1, -, d+1.
Assumption 1 and the assumption of nonsingularitg)ajuarantee
the consistency of the familyn™(T'), T > 0) asT — oc, thatis,  Consequently,

1’1520 o (T) =g a.s. Ck”d+1,1 _ (_1)k7‘d+1,k+1, k=1,---,d—1. (22)

The discrete approximation of (4) presented here leads in the limijt . .
to a different system of equations. The associated matrix has a fcr)wrﬁ'ng (21) and (22), it follows that
similar to (14) with the matrixR in (12) replaced by a matrix¥

which is defined subsequently. While the methods introduced in [2] Ravk =(F(F'R)
estimated the difference from the case of the continuous observations, Ry,
the method presented here exploits the infinitesimal properties of the | F :
covariance function. k
C Td41,1 a1

For 6 > 0 define .
=fikRe 4+ faRavr—1 + gc ras1, 1.
R(8) = lim EX(t+ X () (15)
- This equality and (22) yield (18) fok =1, ---, d — 1. O
and thus Consider next the observed random variables (5), and note that it

, , follows from (6) and (8), respectively, that
R(=6) = R(8)' = lim EX(t—6)X(t)".

- 1 7\
Lemma 1: Let Assumption 1 be satisfied. For> 0 the following D' Xoo =5 > (-1t <k>)&m+r—k,5 (23)
equality is satisfied: k=0
- 1 E k{4 -
o 6k BqAX-nz,ﬁ = Z (_1) < ’>AX7rz—q+k,§- (24)
R(6) =) 77 B (16) b = k
k=0
Lemma 2: Let Assumption 1 be satisfied. Fors = 0, 1, ---,
where . PR o
the following equality is satisfied:
Ry =7y, 1, E=0,1,---,d-1 (17) N
Ri=fiRi—a+ foRigi—a+ -+ faRayr—1— . —_— — syl
b =f1Ri—a+ foRiy1-a faRayr—1-a lim lim v Z D"X . sB*X,, s = Rrys. (25)

+ (=) grasisp1—a.  k=d, d+1,---,2d—1. (18) R
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Proof: Using the Law of Large Numbers and (15), (19) ittfrom (29) and (12) it follows that
follows that, forj, k = 0,1, ---,
.y riv1i = (FR)ji

1 (K)o =7 it i=1,-,d=1;j=d+1,---,d+gq
111111 ¥ Zk Xritj, s X _ k6= (e R)M.
m so that,
From (20), (23), and (24), it follows that )
N (=1)"Picot1, dfidv = Tigl, d+1 = Tit1, @
Jim 7 ZD X sB X, s which yields (26).
1 . . Similarly, to verify (27), it follows as in (30) that
() (- 1)'®) :
. " lim i DX, U,
— (PR + 000 fy i, 7 2 DT
= Rr+s + O(é)- — (_1>”(FFI_UR)1,d+1+U — (_1)"(FR)d—1v’d+1+u~
From this equality, (22) follows. O

Forv = 0, the last term in the equality coincides with the right-hand

Recall thatl (¢) is formed by those coordinates Bf(t) for which side of (26). For > 0, it follows from (12) that

g(a)U(t) depends. Further denote
. _ e !
rim = lim EXCTV0T(),  i=1,d (FR)4—ot1, ato (fR)‘””’ e
t—o0 Td4v41, d—v+1

P = lim EUMTU(t), et drest

row = lim EU(t ()" =—(FR)a—v, atvt1-
Note thatry; = riz, rgu = 7z Repeating this argument, it follows that
Lemma 3: Let Assumption 1 be satisfied. Le¥(t) be r-times (PR _ (FR
differentiable and’(¢) be s-times differentiable (in quadratic mean), (=1)(FR)4—v, dr14+v = (FR)d, a11
and letr +s > d — 1. Then which establishes (27). O
1 = Now the discrete observation version of (4) is introduced by letting
i lm  —= Z D' X, sUpn s = i1, 7 i=0,---,d—1 the estimateins Of oo be the solution of
: m=0
N—1
26 Bi-
LS (S st
112}) ng}loo N ZO DXy sUpe s = frrvm+ -+ + faraw + gram. me0 =L
R (27) X L(Z fthhile-,é +gkbvm,r‘i>df\76
h=1
Proof: Without loss of generality, it can be assumed that the N-1 N !
coordinates of/(¢) are described in the following way: V Z Z fij B X s+ giUm, s
T m=0 \i=1

v = (0w, 0w, . T, v ) @8) :
- X L(Dd)(m76 - Z thDhile,E - gOLrwru&) (31)
where T (t) denotes the derivative of orderof T7(¢), and U'* () h=1

contains the rest of the coordinates. Then the matricés, have for j = 1, ..., d. To guarantee the consistencydfs as N — oo

the form andé — 0, a matrix@ that is analogous t& in (14) is introduced by
0 I 0o --- 0 replacingR by a matrixS. Let Ro, - - -, Roa—1s Fat+1,1s ***» Vd+1,4d
o o o I --- 0 be given by (13), (17), and (18). Define
e Reo R, o Raa man
¢ Ry Rs cee Rd 72, d41
hU:<() ;1) (29) S:=| ... . (32)
0 . Rg_1 Ry cee de 1 Td, d+1
From the partition of the matricelR, F, etc., into block matrices a Pd+1,1 Tdy1,2 =00 Td4l,d Tdtl,d+1

finer partition is also employed, with indicésj =d +1, ---, d + The matrix() is given in the following assumption.
s+ 2 referring to the components of (28). In partlculﬁf = Tid4i, Assumption 2: The matrix

it =1,---,d.
Consider (26). Letv < s be such that — v > r. Using partial Q= (tr(F;LE:S)), jok=1--,p (33)
summation ifv > 0 it follows that ) .
N is nonsingular.
lm  lim 1Y Z DX, sU. & Theorgm 1: Let Assumptions 1 and 2 be_ satisfi_ed, an(_ﬁ@tg be
§—0 N—oo N £~ ' ' the solution of (31). Let X (¢), t > 0) be r-times differentiable and
1 N—1 (U(t), t > 0) be s-times differentiable (in quadratic mean), and let
= lim lim Z DX, sB Ty s r+s>d—1. Then
—0 N—oo 1

m=0
i , Li li ANs = Q. 34
= (=1D)(F'" "R)1,a4140 = (=1)"ricog1 at140-  (30) 61—% Ninéo ans=do (34)



2124 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 11, NOVEMBER 1999

Convergence of the Estimator
0 T T T T T T T

a=0.5 b=2.0
alphat=-4.25 alpha2=-1.0

-5 1 1 1 1 1 f i

0 50 100 150 200 250 300 350 400

Fig. 1 Convergence of the estimator.

Proof: It is sufficient to prove that the system of equationsBy Lemma 1, the first two sums in the square bracket equals
which is obtained by performing the two passages to the limit, that Z Ravi 1 f
is, N — o0 and§ — 0 in (31), has the unique solutiof. L
If N - >~ andé — 0 in (31), then the following family of linear ’

equations for the estimate... o is obtained by Lemmas 2 and 3. Consequently, (37) is equal to the right-hand side of (35). U]

The quadratic mean differentiability of a process is determined by

P . . the differentiability of its covariance function
Dol LD furBRurioafiy + ) fukraud) Example: Let (X(t), ¢+ € R) be a stationary Gaussian process
k=1 b h with the covariance function
—alé -
+Z grraifi; + gm'mg;>>&§oo R(8) = Roe 1! cos bs (38)
: where a, b are positive, unknown constants. The spectral density

corresponding to (38) is
=tr| L ZRrI+i—1fl{j+(flr1ﬁ+"'+fd7'rlﬁ+gkrﬁ)g;’ P g to (38)
lix + VaZ + b2)?

‘(AN =2 ] - .
/ / / F) = 2Rt o T + (39)
- Z FroRnyiafij = Z gkrifi = Z gorwifij | |- Furthermore, it follows from (38) or (39) that
j=1, -, p. (35) dX = X dat + gy dw
. A . _ dX® = af X dt + a3 XY dt + By dW
It is seen that) is the matrix of the left hand side for the system o T + 02
(35) so this system of equations has a unique solution by Assumptighere
2 ap =—(a® +b%), ar =—2a (40)
It only remains to verify that (35) is satisfied with
,31 =/ QR()(I,, ,32 =V QRD(I( Vv (12 + b2 - Za) (41)

Al _ 1 AD _ D
Qoo = Aoy "7y Mg = Q- (36)

The parametety, = (af,«3) is estimated by (4) and (35) angf

Inserting the values in (36) into the left-hand side of (35) ani§ estimated by the quadratic variation (O (#), # > 0). Estimates
recalling thatf, = f(ao), g = glao), the lef-hand side of (35) is Of @, b and Ro are obtained from (40) and (41). Expandifgs) in
terms of ¢ it follows that
tr (L

Z foBRnyir fl; + Z grai fis R(8) = Ro(1 — ald| + 5 (a = b")6" + 5 (3ab” — a”)[8]" + - -+).
ki ¢ Letting L = I in (3), it is expressed as

o 5 .
+Z .fhrh,ﬁg; + gruﬁg‘;} )7 .} = 17 ety D (37) / |:()((2) — GZ]X — 0,:2)((1)).‘ — (}((2))2:| dt
0

h
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so (4) is Stochastic Control of Discrete Systems: A Separation
Principle for Wiener and Polynomial Systems

1 /7 2 1 I (1) 2
l XV dta™ (T)+ = XX dto™(T
T/o (X)"dta™ ( )+T/o a™(T) M. J. Grimble

e
=7 / XdxW (42)
1 /T 0 1 /T 5 Abstract—A new separation principle is established for systems rep-
- / XX g™t (T) + = / (X(1)>“ dt a*2(T) resented in discrete frequency-domain Wiener or polynomial forms. The
T J, T J, LQG or H2 optimal controller can be realized using an observer based
1 (7 structure estimating noise free output variables that are fed back through
= = / XD gx®, (43) adynamic gain control block. Surprisingly, there are also two separation
T Jo principle theorems, depending upon the order in which theideal output
optimal control and the optimal observermproblems are solved.

In the limit asT — oc, there are the two equations Index Terms—Optimal control, polynomial systems, Wiener theory.

Roa*l(oo) — aRoa*z(oc) = Roaé — (I,Rooug (44)
aRoa™! (o0) + rggar*g(oc) = (Jiéa,Ro + (}zgrzg. (45) . INTRODUCTION
The separation principle of stochastic optimal control theory has
For the discretized version (31) of (42), (43), the limitsis— oo  ©Often been utilized for systems represented in state equation form.

and§ — 0 is different from (44), (45), specifically However, no such results have been established for systems repre-
sented in transfer-function or polynomial matrix form. The frequency
Roé' (oc) — aRoa* (o) = Ro(a”® — b?) (46) domain approach to optimal control and estimation was initiated by

Wiener [1], but two seminal contributions later established the main
tools for synthesis. These contributions were undertaken in the same
period by Youlaet al. [2] and by Kucera [3].

The separation principle that is well known in state-space LQG
synthesis was not used in the frequency-domain solutions, although
X 1 Kucera [4] provided independent solutions of the LQ state feedback
ﬂf = — Z(X,,,+1,5 - Xm,s)g. control and theKalman filtering problems. Thus, in this case, if

N6 . . .
m the polynomial models are related back to a system described in
] ] ) ] ) state equation form, it is possible to use the polynomial solutions

A numerical example is described graphically (see Fig. 1) whefg cajculate the constant control and filter gains. The state-space
a=0.5,b=2.0,andRo = 1 so thata, = —4.25 andas = —1.0.  geparation principle results can then be invoked to obtain the LQG
The convergence of family of estimates is relatively fast. If a |°“9?futput feedback controller. Theeparation principlewas not, how-
time interval is used, then the family of estimates far are closer gyer established in the polynomial setting. Moreover, there was
to the true value. no attempt to generalize the results to the case where the control

law feedback included a reduced set of variables, such as plant
ACKNOWLEDGMENT output estimates. The objective of the analysis that follows is to use
frequency domain models and analysis, to establish a new separation

The authors thank Y. Yan for performing the computations for therinciple result for systems represented in frequency domain matrix
numerical example. The authors also thank the referees for usdfdktion form.
comments that improved the note.

—aRoa' (00) + Ro(a® — b*)a” (o) = Ro(3ab® — a®).  (47)

The solution iSdeco = ap.
The quadratic variation can be used to estimzteby
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