UCLA
UCLA Previously Published Works

Title

Branch and bound computation of the minimum norm of a linear fractional transformation
over a structured set

Permalink
https://escholarship.org/uc/item/39c8129g
Journal

IEEE Transactions on Automatic Control, 45(2)

ISSN
0018-9286

Authors

M'Closkey, R
Packard, A
Sipila, J

Publication Date
2000

DOI
10.1109/9.839968

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3gc8129q
https://escholarship.org
http://www.cdlib.org/

100

Branch and Bound Computation of the Minimum
Norm of a Linear Fractional Transformation over a

Structured Set

Robert M’Closkey, Andy Packard, and Jaime Sipila

Abstract— The minimum norm of a linear fractional transfor-
mation (LFT) over a structured set is computed using a branch
and bound algorithm. This is a global optimization problem due
to the possibility of local minima. Several computationally effi-
cient lower bounds for the minimum norm of the LFT are devel-
oped and it is demonstrated that the success of the optimization,
as measured by time-to-converge, largely depends on the quality

of these bounds.

Index Terms: branch and bound, fixed-structure synthesis,

convex optimization

I. INTRODUCTION
Branch and bound algorithms have been proposed for solving
a wide variety of global optimization problems that arise in sys-
tem theory. In [1], [5], [2], both robustness analysis of control
systems and controller design are addressed from this perspec-
tive. In [7] branch and bound is used to improve the mixed p
upper bound. The present paper is concerned with determining

Tuin(Ba) = aoin 5(FL(M,A)), (1)

where A is a structured set of real parameters defined as

A = {diag [011r,,...,0sIr,]: 0; ER, },

and

Ba ={A€A:FA) <1},

R. M’Closkey and J. Sipila are with the Mechanical and Aerospace Engineering
Department, University of California, Los Angeles, CA 90095-1597 USA.

A. Packard is with the Department of Mechanical Engineering, University of
California, Berkeley, CA 94720 USA.

is the closed unit ball in A. This notation is standard in the
structured singular value literature [8]. The matrix M is parti-

tioned as

My Mo
M = ,

Mz Moo

and Fr(-,-) is the linear fractional transformation defined as
Fr(M,A) = My + Mi>A(I — M2 A) ™" M.

It is assumed that the dimensions of A and M are such that

the linear fractional transformation is defined.

An application of (1) is in the design of fixed-structure con-
trollers to minimize the closed-loop Hs norm of a linear system.

In this case we wish to compute
i (1P (M, A) o, (2)

where M represents the linear system dynamics and Ba is a
normalized set of control gains or design parameters. Applica-
tions of the branch and bound algorithm to this problem, and
other problems with different design objectives, may be found
in [4], [2]. Our recent paper [9] contains details on computing (2)

using the bounds presently developed.

Due to the structured nature of A, (1) may contain multi-
ple local minima. Furthermore, simple examples show that the
minimum norm may be achieved at the interior of Ba and so
various schemes which check edges or vertices of the parameter
set are not applicable. The main focus of the paper is the devel-
opment of new lower bounds for (1) which improves the perfor-
mance of the branch and bound algorithm. We also explore the
trade-off between the computation time expended in calculat-
ing the bounds versus the quality of the bounds. This trade-off

has already been recognized as important in references [1] and



[7]. Section II and the Appendix briefly review the branch and
bound algorithm. Section III develops new lower bounds for (1)
and Section IV applies these results in some computational ex-

periments.

II. BRANCH AND BOUND ALGORITHM

The standard branch and bound algorithm is used to esti-
mate the global minimum of (Fr(M,A)) : R® — R over the
s-dimensional “cube” Ba (note that there are s parameters §;
confined to the interval [—1,1]).

For a given sub-cube Q C Ba, the algorithm requires upper

and lower bounds, denoted @1, and P, respectively, for

Puin(Q) = min 5(F (M, A)),

The functions @), and &, satisfy

D15(Q) < Priin(Q) < Pun(Q).

At each iteration, a bounding strategy is used with the upper
and lower bounds to select the next parameter interval to divide.
A continuity condition is imposed to guarantee convergence of
the algorithm: let len(Q) represent the length of the longest

edge of Q, then for all € > 0 there exists § > 0 such that

vQ C Qinit, len(Q) <6 = ¢ub(Q) - @lb(g) S €. (3)

The branch and bound algorithm is repeated in the Appendix
for completeness. Proof of algorithm convergence when the con-
tinuity condition is satisfied may be found in [2]. This refer-
ence also provides a thorough introduction to the application of
branch and bound to control problems.

The performance of the algorithm is strongly influenced by

the quality of the bounds, and, since we are attempting to
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minimize ¢(Fr (M, A)), we will demonstrate that a tight lower

bound is essential for good algorithm performance.

III. BOUNDS FOR ®nin(Ba)

This section develops bounds for ®min(Ba). If the parameter
set is not the unit ball, then an initial scaling and loop shifting
may be performed so we need only consider the case when the
parameter set is Ba. We also assume that Fr(M,A) is well-
posed for all A € Ba.

In the computational experiments of Section IV, an upper
bound is obtained by choosing N random perturbations, A; €
Ba,i=1,...,N and setting

®,p(Ba) =min{a(Fr(M,A;)):i=1,...,N} (4)
Other approaches include evaluating 6(Fr (M, A)) at the cube
midpoint or corners. Our choice is justified in Section IV.

Several additional quantities are defined to facilitate the de-
velopment of lower bounds for (1). Let u and v be the left
and right singular vectors of Mj; corresponding to its maxi-
mum singular value and denote the maximum singular values
of M;; as &ij, 4,j = 1,2. We may assume that 11 # 0, oth-

erwise ®min(Ba) = 0 by choosing A = 0. Define the following

matrices
0 Mo
My :=
M1 Mo
g11 U*Mlz
My =
M21V Mzz
0 U*Mlz
Muv o =
M21V Mzz
1 1 *
— ——u'M
[—1] 011 g11 12
My, =
1 M 1 *
— v My — =— Msyvu*" M
| 71, M2t 22 = 77 Mo21 12
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0 —;U*Mlz

1 M 1 *
- v Msy — =—Msyvu M
7. M2 22 — 77 M21 12

The “0” in Mo, Muv,0 and M5, indicates that the (1,1) sub-

uv,0

matrix is replaced with a matrix of zeros with appropriate di-
mension.

A series of inequalities that bound (1) from below are stated

Lemma 1: Assume I — Moo A is invertible for all A € Ba.

Assume further
o > AHGI%XA o (Fr(Muv,0,A)). (5)
Under these conditions

min & (F(M,A))

A€EBA
-1
_ 1]
> [AnengAU (FL(Muv ,A))] (6)
1 [-1] -
Z [5_u + AnengAU (FL(Muv,oaA))] (7)
> o1 — Aﬂelgiﬁ(FL(Muv,oy A)) (8)
2 o = max 7 (Fu(Mo, A)) 9)
o11 — 6172521 if 22 <1
> s (10)
—00 if G20 >1

The expressions in (6), (7), (8) exploit the “directionality” of
Mi; in the LFT by pre- and post-multiplication with its max-
imum singular vectors. This choice is not necessarily optimal

but often gives much better results than (9) or (10).

Remark. Condition (5) is required for well-posedness of (6)
and (7). If (5) is not satisfied then (6) and (7) are not defined
and in this case (8), (9) and (10) yield useless negative bounds

for ming , G (FrL(M,A)).

Proof. The first assumption guarantees that Fr(M,A),

Fr(Mo,A), Fr.(Muv,A) and Fr(Muy,0,A) are well-posed for

A € Ba. The second assumption guarantees that

0 1
FL 7FL(Muv,07A)
1 L
g11
0 U*M12
=F A

1 *
M21V Mzz - Elevu M12

is well-posed for A € Ba. Thus [I — (M2 — &ITvau*Mlz)A]
is invertible for all A € Ba and so Fr(Miy"7,A) and
FL(MIE;,%,A) are well-posed. For any unit vectors u and v,

G(Fr(M,A)) > |u"Fr(M,A)v|, so with the particular choice

of u and v as the singular vectors corresponding to a(Mi1):

Anin a(Fr(M,A))

> min |u'Fr(M,A)v|
AEBA

= min |Fr(Muv,A)]

A€EBA
~ [-1] -t
= min HFL(Muv ,A)H
A€EBA
-1
— | max ‘FL(ML;”,A)H
|A€BA
) . .
A F A |
_AEBA o11 ’
1 —1
> [+ max \FL(Mizlé,A)\] ,
LO11  A€BAa ’

where we have used the fact that Fi,(Muy, A) = (FL(ME, A)) !

(see [10]). These inequalities establish (6) > (7).

The following is derived from F, (Ml[;,”, A):

1
Ly (MY, A)

11 uv,0?

=011 + FL(Muv,O;A)-

This relation may be rearranged to

5’11FL(M[_1] A)

uv,0’

S P (M A)

11 uv,0’

= —Fr(Muv,0,A).



This last expression is used to show the remaining inequalities.

Suppose that maxaea ‘FL(M[_I] A)‘ is achieved at Ao,

uv,0»

then

-1
[L + maxaeB, ‘FL(MIE;,IA; A) H

G11

. . -
{—_ + ‘FL(MLV}A,AO)H
o11

5’11|FL(M[_1]

uv,0’

Ao)
2 L (M, o)
F11FL (M1, Ao)

. FL(M[fl] Ao)

11 uv,0’

g11 —

A%

o11 — |FL (MUV,07 A0)|

> 011 — max |FL(MUV,0,A)|
A€EB A

\%

o1 — AHEI%)Z a(Fr (Mo, A)).

Thus, (7) > (8) > (9) are established. The last inequality,

namely (9) > (10), follows from

max (Fr(Mo,A)) <

Jfnax max & (Fr (Mo, A))

AEC?*q
A<t

012021
1—a9

when 2o < 1. R

The expressions (6) through (9) each contain a term of the

form

Joax o(Fr(M, A)),

(11)

where M is an appropriate matrix. Lower bounds for (6)—(9)
are developed by replacing (11) with its upper bound computed

using the structure singular value theory (see [8]). Toward this
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end, define two sets of scaling matrices that commute with A

D = {diag [D1,...,Ds]: D; € C""*"i D; = D} > 0}
G = {diag [G1,...,Gs]: G; € C"" | G; =G;}.
Define

Yo 1= inf{'y >0:info [jG(I—}- Gz)*%
G

D,

+(I+ )t DLNIDA] < 1}, (12)

where

0 L 0

DL— v R DR— v , DeD
0 D 0 D!

. 0 0

G = , GeG, j=+-1
0 G

With o so defined we have

Joax 5(FL(M,A)) < 7o.

For notational clarity, an additional subscript is used in 7o
to indicate the equation from which it was derived, i.e.,

Yo.6) > maxa(Fr (MY, A)), o, > maxa(Fr (ML, A)),

uv,0?

etc. Thus, 7o) is computed with M = Ml[;,l], Yo,(7y With

M= M1

uv,0’

7Y0,(8) with M = Muv,O, and 70,(9) with M = Mp.

The following lower bounds are computed for (6) through (9)

[ max & <FL(M},;1], A))] - >

A€BA

L (12) feasible
(13)

0 (12) infeasible

-1
{L + max &(FL(MI[;,,I(]),A)>] >

o11 A€EBA
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(12) feasible

Bery = ;
0 (12) infeasible
(14)
011 — max E'(FL(MUV,(),A)) >
AEBA
max{a11 —Yo,(s),0} (12) feasible
Bsy = ;
0 (12) infeasible
(15)
o1 — AHGI%XAE' (Fr (Mo, A)) >
(
F11 — Yo,9) (12) feasible
,8(9) = s (16)
—00 (12) infeasible
\
(
o11 — % if 600 <1
/H(IO) = (17)
—00 if 302 >1
\

Interestingly, By to B(1oy satisfy the same ordering as (6) to

(10). This is stated in the following lemma.

Lemma 2: Compute () through 30y according to (13)

through (17). Then

By = By = Bsy = By = Boy-

Any of these bounds may be chosen as @, for use in the
branch and bound algorithm. These lower bounds and the up-
per bound (4) satisfy the continuity condition (3). The proof of

this fact is in the Appendix.

Before proceeding with the proof of Lemma 2, recall that the

Redheffer star product [10] of two matrices P and T is

Fr(P,Th1) Pio(I — T11Po2) ' T
S(P,T) := ,

To1 (I — PaoT11) ' Poy Fy (T, Px2)

where P and T are compatibly partitioned as

Pll
P =

P21

P12 Tll

T =
T21

Tl 2

P22 T22

The star product is well-posed when [I — P»,T1,] is invertible.
Furthermore if (P) < 1 and 6(7T") < 1 then 6(S(P,T)) < 1if
the connection is well-posed. These properties will be used in

the following proof.

Proof of Lemma 2

Proof of By > B(ry. Suppose that the computation of vy (7) is
feasible and 7y is computed according to (14) (if the computa-
tion of o, (7) is not feasible then By > B(7) is trivially satisfied).

Then there exist G € G and D € D such that 6(7T") < 1, where

0 0 1 0
T=j
0 G| lo T+GY):
1 0 1 0 1
+ \/70,(7) M[[];l(]) A/ 0,(7)
0 (I+G*) 2 0 D 0 D
Now, with the same D and G consider the matrix
0 0 1 0 1 0
W=y + *
0 G||o (I+6G*>2 0 (I+G*):
L 0 1 0
\/70’(7) <1+70.(71)°”11 ) ML \/70‘(7) (1+’o,(71)f”11 )
0 D 0 D!

With some effort, W may be manipulated into the following

representation

1 T1170,(7)
F117%0,(7) +1 F11%0,(7)+1
T1170,(7) 0
F117%0,(7) 1

The star product is well-posed since P»» = 0. By hypothesis

W =S8(P,T) where P =



a(T) <1, and it may be confirmed that
5’(P)El Vo1 > 0, Yo,(7) > 0.

Thus, 0(W) = &(S(P,T)) < 1. In light of the definition of 3),

the “performance” scaling employed in W,

1
Yo {1+ —,
Yo,(7)011

is an upper bound for the best value given by 7o, in (13).
Hence,

1 1 1

= > =
- 1
Yo,(7) (1 + 70,(7)511) Yo,y t

—— = By

g11

Proof of B(7y > B(s). Let 7o sy and B(s) be computed as in (15).
Note that 3(sy = 0 if either o, (sy is not defined or 11 < 7p,(s).
In these cases B(7y > B(s) is trivially satisfied. Thus we may
assume 011 > 7o,y > 0 without loss of generality. Now let

D € D and G € G be the associated scales such that 6(T) < 1

where
0 Of |1 0
T=yj
0 G|l |0 I+G> 2
1 0 —— —_—
+ 70.(8) Muv 0 70:(8)
0 I+G?*= 0 D 0 D!
Keeping D and G fixed, consider the scaled matrix
0 Of |1 0 1 0
W=y + *
0 G| lo I+G* 2 0 (I+G* 3
1-20.(8) 1-20.(8)
—011 911 _ a11 g11 0
Y0,(8) Ml[w,lg 70,(8) ,
0 D 0 D!

where we have used the fact that 1 > -y (s)/011 > 0. The star
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product may be used to represent W as

0 1- 126
W =S8(P,T), where P = o
\/W _Jo.(8)
511 G11

The star product is well-posed because 5(711) < 1 and 6(Ps2) =

72’% < 1. A calculation reveals that

7Y0,(8) >0

o11

5(P)=1 V1>

and since (7T") < 1 we conclude that (W) < 1.

Let 7p,(7) be computed in the definition of 3(7y. From the def-

inition of W with its associated performance scale the following

holds,
70,(8)
< .
Yo,(7) = — (1_ 0.®
o1\t T o
Thus,
1
By =T —F———
5 T 0.
> 1
=14 70,(8)
511 52, (1— 72,1(18))
T1170,(8)
—5 5 F11=F1170,(s)
— i —on 51170,(8
1 _ 2 ,(8)
+ 531-51170,(8)
=011 — Yo,(8)

Bis)-

Proof ofﬂ(g) > ﬂ(g). Compute ﬂ(g) and its corresponding o, (o).
Without loss of generality we may assume that the computation
of 70,9 > 0 is feasible. Then there exist D € D and G € G

such that (W) < 1 where
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L7 L7 0
+ I 0 1/ 70,(9) M 1/ 70,(9)
0 (I+G*)z 0 D 0 D!
Thus,
0 of |1 0
alj
0 G||0o (I+G? 2
1 0 1 1 1
+ v 70,(9) Muv,O 70.(9)
0 (I+G2)‘%J 0 D 0 D!
u* 0 v 0
=5 w
0 I 0 I
u* 0 v 0
<a a(W)a
0 I 0 I
<1

From the definition of 3(g) and 7o,y we have o, (s) < 70,(9), S0

Bsy = Bio)-

Proof of B9y > B(10)- Assume 522 < 1 otherwise the inequality
is trivially satisfied. The calculation of vy (gy is feasible in this

case. Now define

/N

Jo := inf {'y >0:info ﬁMoﬁA) < 1},
D

where
B L7 0
D= |V , d>0
0 dI

Note that 4o > 0 since 22 < 1. Also note that 4o > 7,(9) since
there are fewer degrees of freedom in the computation of 49 than
in the computation of 7y 9y. The D scaling in the computation
of 4y assumes a full complex block perturbation and since the

structured singular value is equal to its upper bound in this case

(see [8]), the following equality holds

4o = max 5’(FL(M0,A)).
AeCe*4
(A)<1

Singular value inequalities may be used to show

5(Fr(Mo,A)) < Z2ZL yA € ¢, 5(A) < 1.
1—02
Collecting these results
012021
< <
Yo,(9) S Yo = 1— 50

This establishes B9y > B(10). B

IV. COMPUTATIONAL RESULTS

Computation of 9, and hence ®1,(Ba) via (13) to (16), may
be formulated as the minimization of a linear functional sub-
ject to a linear matrix inequality constraint and is efficiently
computed using commercially available software packages. The
simulations in this paper implemented the branch and bound
algorithm and lower bounds using Matlab’s LMI Control Tool-
box [6].

The number of decision variables required in the computation
of B through By is constant, regardless of the choice of M.
The calculation of 310y, however, is computationally inexpen-
sive. Thus it is informative to compare the gap between these
bounds and their computation times. Figure 1 shows the aver-
aged (and normalized) values of B(g) to B(10y for 1000 random
M matrices. The matrices are scaled to ensure (I — MzzA)f1
exists for all A € Ba. The dimensions of the partitions of M

in these simulations are

My € C%% My € C8 My € C* My, € C5. (18)



The perturbation set contains six real parameters:

A = {diag[d1, d2,03,04,0512,06I2] : §; € R, |0;] <1}  (19)

The average values of 3(7) to B(10) are normalized with re-
spect to the average value of 3. In other words, for a given
M, the bounds are computed, then divided by the value of 3,
and finally averaged across all simulations with the 1000 ran-
dom matrices. For example, the chart shows that on average
Bs) yields a lower bound that is approximately half that of
Bs)- This gives a quantitative assessment of the gap between
the lower bounds. A bound whose computation is infeasible or
yields a negative number is taken to be zero for purposes of the
bar chart. In the majority of random cases used to compile the
chart, (Ms2) > 1so ﬂ(m) is zero. This lowers the average value
of B(10y to essentially zero. This comparison is slightly unfair to
B(10) since in the branch and bound search 3(;0) approaches the
other bounds from below and the gap between the bounds is
reduced as the algorithm progresses. The situation represented
in Figure 1, however, reflects the performance of the bounds at
the beginning of the branch and bound search.

The average computation times of the bounds are also shown
in Figure 1. Asin the case of the bounds, the computation times
are normalized with respect to the average execution time for
By The figure demonstrates that By is the tightest lower
bound and requires slightly less time to compute than 37
through B(). The figure also shows that 309y requires much
less computation than the other bounds but also gives a very
poor lower bound.

Figure 1 also shows that there is no incentive to use ((7),
B(s), or B(g) for @1, but a comparison between the performance
of the branch and bound routine using () or B109) for @i,

should be informative and will reveal the trade-off between a
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tight (but computationally expensive) lower bound and a crude

(but computationally cheap) lower bound.

Figure 2 summarizes the results of 1000 simulations of the
branch and bound algorithm with &y, = ﬂ(e) and ®,;, given
by (4). In the computation of ®,1,, N is chosen to be 40. The ob-
jective is to spend roughly equal time refining the upper bound
as it takes to compute the lower bound. A typical choice for @1,
is to calculate a(Fr(M,A)) at the mid-point of the parameter
set but by replacing this choice with (4) more effort is spent
on computing the upper bound. Our approach is heuristic but
we have noted modest savings in total computation time. The
random M’s in the branch and bound simulations have the di-
mensions given in (18) and (19). The search is terminated when
the global lower bound is greater than 90% of the global upper
bound. In other words, ®min is computed to within 10%. The
computation time and total number of iterations are displayed.
These figures reveal that the branch and bound performs effi-
ciently on most problems when ®y;, = B(). There are, however,
some exceptional cases for which the optimization requires much
longer computation time. The simulations were performed on a

400 MHz PC.

In contrast to the results with ), the performance of the
branch and bound algorithm is not satisfactory when &5, =
B(10) - A number of simulations were performed and all required
more than 12 hours of computation for convergence. Given
these excessive simulation times it was not possible to compile
statistics in the spirit of Figure 2 for this case. Even though the
computation time for 3(;oy is more than an order of magnitude
smaller that the computation time for B, the large number
of iterations required for convergence prohibits the use of the

algorithm for problems with more that a few parameters. The

bound S, though, gives an overall savings in computation
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time even though the bound itself takes longer to compute than

B(10y-

V. CONCLUSION

Branch and bound is a useful tool for solving certain control
analysis and design problems. The algorithm performance, how-
ever, depends on the quality of the bounds. This paper consid-
ered the computation of minae, Fr(M,A). Four new lower
bounds, that may be calculated via convex optimization, were
developed for this problem. Simulation results revealed that
tight bounds, though computationally expensive, are essential
for good algorithm performance and lead to a large savings in

total computation time.

APPENDIX

The standard branch and bound algorithm and notation is

taken from [2] and is reproduced below:

k=0

Lo ={Ba};
Lo = &,(Ba);
Uo = ®up(Ba);

while U, — Li, > €, {
choose Q € Ly, such that ®\, = Lg;
split Q along its longest edge into Qr and Qrr;

Lit1:= Ly —{Q}H U{Qr1, Q11 )}

L = 1 [0} 3
k1= mmin 1(Q);
Uk+1 = ngll?.;_l <I>ub(Q);

The iteration index is denoted by k, the list of cubes by Ly, the
lower bound by L and the upper bound by Uy, for ®min(Ba) at
the end of k iterations. The cube with the lowest lower bound
is split along its longest edge. This strategy seems to work

well in most cases although worst-case combinatoric behavior is

possible. See [2] for proofs of convergence of the algorithm.

Proof of continuity condition (3). Let aBa, denote a ball of

radius @ > 0 centered at Ap € Ba. The uniform continuity
condition can be proven by showing that for any ¢ > 0 there

exists an « such that

|<I>ub(OzBA0) — <I>1b(aBA0)| <e VYAp€eBa. (20)

The minimum norm of the LFT of M over the set aBa, is

Bmin(aBay) = min Fr(M,A),

AcA
F(A)<a

where

Mll M12

MZI M22

My 4 Mo Ao(I — MaoAo) ' My Mia(I — AgMaz)™t)

(I - M22A0)71M21 (- M22A0)71M22.

Singular values inequalities can be used to show that

5(1\7[12)_5( 21)

&, (aB <a(M S
b(a Ao)_a( 11)+a ]__ao'(MQZ)

Furthermore, if ®y3, is chosen as any of the bounds (13) to (17),

then for « sufficiently small

Pip(aBay) > a(Mi) — a%- (21)

The right hand side of (21) is merely B0y (the lowest of the



lower bounds) computed for a ball of size « instead of the unit

ball Ba. The gap between the bounds is

|(bub(aBA0) — <I>1b(OzBA0)| S 2aa

Now define
F12 = maX 6’(]\_412) = max o (M12(I— AMQQ)_I))
AgEBA AEBA
F21 = maX 6’(]\_421) = max o (([— MQQA)_1M21)
AgEBA AEBA
I'ss := max &(Mzz) = max & ((I— M22A)71M22) .

AgEBA AEBA

The I';; are well defined since Ba is compact and I — M2 A is

invertible for all A € Ba. Thus, it is possible to choose o > 0

such that (20) is satisfied since

['12T21

|Pub(@Ba,) — Pi(aBa,)| < 20

independent of Ag € Ba. H

(1]

[2]

[3]

[4]

[5]
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