
Model Reduction of Finite State Machines by

Contraction

Alessandro Giua

Dip. di Ingegneria Elettrica ed Elettronica, Università di Cagliari,

Piazza d’Armi, 09123 Cagliari, Italy

Phone: +39-070-675-5892 – Fax: +39-070-675-5900 – Email: giua@diee.unica.it

Abstract

The paper discusses an approach to the model reduction of discrete event systems repre-

sented by finite state machines.

A set of good reduced order approximations of a deterministic finite state machine M can

be efficiently computed by looking at its contractions, i.e., finite state machines constructed

from M by merging two states. In some particular case, it is also possible to prove that

the approximations thus constructed are infimal, in the sense that there do not exist better

approximations with the same number of states.

The paper also defines a merit function to choose, among a set of approximations, the

best one with respect to a given observed behavior.

Published as:

A. Giua, ”Model Reduction of Finite State Machines by Contractions,” IEEE Trans. on Auto-

matic Control, Vol. 46, No. 5, pp. 797–801, May 2001.

1

1 Introduction

Model reduction techniques have been used in control theory to approximate high order systems

with simpler ones that still capture the behavior of the original complex systems.

In this paper we consider the same problem in the framework of discrete event systems [7]. In

particular, a discrete event system will be modeled by a finite state machine (FSM) and its

behavior will be given by the language generated.

A reduced order approximation of a minimal deterministic FSMM with n states is a deterministic

FSM M ′ with n′ < n states such that L(M ′) ⊃ L(M). Let M ′ be an approximation of order

n′ of M ; we say that M ′ is infimal if there does not exist another approximation M ′′ of order

n′′ ≤ n′ such that L(M ′) ⊃ L(M ′′) ⊃ L(M).

Computing infimal approximations is a complex task. The paper shows how a set of good

— but possibly not infimal — approximations of a given minimal deterministic FSM M can be

computed efficiently by looking at contractions of M , i.e., FSMs constructed from M by merging

2 states. In some particular case, it can also be proven that all approximations in the set thus

constructed are infimal.

The paper also discusses how, given a set of approximations of a FMS M , it is possible to define

a merit function to choose the best approximation with respect to a given observed behavior

Lo ⊆ L(M).

The two requirements of having a small order model and a tight language approximation are

conflicting. The procedure presented in this paper can be recursively applied, starting with a

given FSM and computing contractions until a satisfactory trade-off between order of the model

and degree of language approximation is reached.

The proposed approach is particularly useful in the case of systems composed of interconnected

subsystems. It is well know that composing the FMS modules that describe the different sub-

systems — e.g., using the concurrent composition operator [7] — the number of states of the

resulting overall model grows exponentially. The reduction of even a few states in each FMS

module may lead to a significant simplification of the resulting overall model.

The paper is structured as follows. In Section II the notation used is presented. In Section III

contractions are defined and their properties are studied. In Section IV an efficient algorithm for

computing a set of good reduced order approximations by contraction is presented. In Section V

a quantitative measure to choose the best among a set of reduced order approximations is given.

2 Background

A finite state machine [3, 4] is a 5-tuple M = (Q,Σ, δ, q0, F), where: Q is a finite state set, Σ

is a finite alphabet of symbols, δ : Q × Σ → 2Q is the transition relation, q0 ∈ Q is the initial

state, F ⊆ Q is a set of final states. The transition relation δ is usually extended to apply to a

2

state and a string, rather than a state and a symbol.

Let w = a1a2 · · · ar ∈ Σ∗ and q′ ∈ δ(q, w). Then the following is a legal move of M : m(q, w) =

q[a1〉q1[a2〉 · · · qr−1[ar〉q′ = q[w〉q′ and we define mQ(q, w) = {q1, · · · , qr−1}.

A finite state machine is said to be deterministic (DFSM) if the transition relation is such that

δ(q, a) is a singleton set or is not defined.

The language generated by a FSM M is the set of all strings w generated with a move that

starts from the initial state and reaches a final state, i.e.,

L(M) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}.

Note that the above definitions are slightly different from classic definitions of automata but are

consistent with the modern discrete event systems terminology. As an example, in the classic

definition of deterministic automata it is required that δ(q, a) be defined for all q ∈ Q and for

all a ∈ Σ.

Note also that in the discrete event system approach [7] there are usually two different notions

of languages. The marked behavior is identical to the language L(M) defined above. The closed

behavior is defined as the set of strings generated with a move that starts from the initial state

and reaches any state of M . Without any loss of generality, the paper will only consider marked

languages, since any closed language can be considered as a marked language if one lets the set

of final states F be identical to the set of all states Q.

A DFSM M = (Q,Σ, δ, q0, F) with n states is said to be minimal [5, 6] if there does not exist

a DFSM M ′ = (Q′,Σ, δ′, q0′ , F
′) with n′ < n states such that L(M ′) = L(M). Note that in

the classic definition of minimal FSM there is always a ”dump” state that can be reached by

all strings that cannot be continued into a string in L(M). Since we do not require that δ(q, a)

be defined for all q ∈ Q and for all a ∈ Σ, a minimal DFSM according to our definition will be

reachable (i.e., there is a path from q0 to any other state) and coreachable (i.e., there is a path

from any state q to a state in F).

Let M be a minimal DFSM with n states. It is not possible to find a DFSM M ′ with n′ < n

states that generates L(M). However, we can look for an M ′ with n′ < n states that generates

L(M ′) ⊃ L(M) as a way to approximate M .

Definition 1. Let M = (Q,Σ, δ, q0, F) be a minimal DFSM with n states.

• A language La ⊆ Σ∗ is an approximation of L(M) if La ⊃ L(M).

• An approximation La is order na implementable if there exists a minimal DFSM Ma with

na < n states such that La = L(Ma). We also say that Ma implements La and that it is

an approximation of order na of M .

• An order na implementable approximation La of L(M) is infimal if there does not exist

another DFSM M ′ with n′ ≤ na states such that La ⊃ L(M ′) ⊃ L(M). If Ma implements

La, we say that Ma is an infimal approximation of order na of M .

3

Infimal approximations of a minimal DFSM M are the best approximations, in the sense that,

compatibly with the state space size limitation, their behavior contains the behavior of M and

is as close as possible to it.

3 Contractions

Given a minimal DFSM M with n states how can one find an infimal approximation of order

n′ < n? One possibility is that of computing all DFSMs with n′ states over the same alphabet

Σ of M and of looking for those that satisfy the definition of infimal approximations. However,

this approach is clearly infeasible in light of the following proposition.

Proposition 1. There are (n′ + 1)m·n
′ · 2n′

different DFSMs with n′ states and alphabet Σ of

cardinality m.

Proof: According to the definition of DFSM given in the previous section, for all q ∈ Q and all

a ∈ Σ there are n′ + 1 possible choices of δ(q, a), keeping in mind that it may be undefined.

Thus there are (n′+ 1)m·n
′

different possible choices of δ. Finally since F is a subset of Q, there

are 2n
′

different possible choices of F .

We will explore the possibility of using contractions, whose structure can be easily computed,

as means of finding approximations of a given minimal DFSM M .

Definition 2. Let M = (Q,Σ, δ, q0, F) be a DFSM and let qi, qj ∈ Q, with qi 6= qj. The (i, j)-

contraction of M is the FSM Mi,j obtained from M by merging states qi and qj. Formally,

Mi,j = (Q′,Σ, δ′, q′0, F
′), where:

• the state set is Q′ = Q ∪ {qnew} \ {qi, qj}.

• the transition relation is

δ′(q, a) =


δ(q, a), if q ∈ Q ∩Q′ ∧ δ(q, a) ∈ Q ∩Q′;
qnew, if q ∈ Q ∩Q′ ∧ δ(q, a) ∈ {qi, qj};
δ(qi, a) ∪ δ(qj , a), if q = qnew ∧ δ(qi, a) ∪ δ(qj , a) ⊆ Q ∩Q′;
δ(qi, a) ∪ δ(qj , a) ∪ {qnew} \ {qi, qj}, otherwise.

• the initial state is q′0 =

{
q0, if q0 ∈ Q ∩Q′;
qnew, otherwise.

• the set of final states is F ′ =

{
F, if F ⊆ Q′;
F ∪ {qnew} \ {qi, qj}, otherwise.

Note that Mi,j may well be non-deterministic even if M is a DFSM. In Figure 1 it is shown a

DFSM M and its three possible contractions. M0,1 is non-deterministic and non-minimal; M0,2

and M1,2 are deterministic and minimal.

Let us consider some properties of contractions.

4

a

q0 q1 q2

a

b

a

qnew q1

a

a,b

a,b

qnew q2

a

q0

a

b qnew

M M0,1

M0,2
M1,2

Figure 1: A FSM M and its contractions.

Lemma 1. Let M = (Q,Σ, δ, q0, F) be a DFSM and let Mi,j = (Q′,Σ, δ′, q′0, F
′) be its (i, j)-

contraction. Then

L(Mi,j) = L(M) ∪
[(
Li
0 ∪ L

j
0

)
L∗i,j (Li ∪ Lj)

]
where: 

Lk
h = {w ∈ Σ∗ | δ(qh, w) = qk; qi, qj 6∈ mQ(qh, w)},

Lh = {w ∈ Σ∗ | δ(qh, w) ∈ F ; qi, qj 6∈ mQ(qh, w)},
Li,j =

(
Li
i ∪ L

j
i ∪ Li

j ∪ L
j
j

)
.

Proof: We will just give a sketch of the proof. First note that from the definition of contraction,

it follows that for all w such that qnew 6∈ mQ′(q′0, w):

δ′(q′0, w) = qnew ⇐⇒ w ∈
(
Li
0 ∪ L

j
0

)
,

and for all w such that qnew 6∈ mQ′(qnew, w):

δ′(qnew, w) = qnew ⇐⇒ w ∈ Li,j ,

δ′(qnew, w) ∈ F ′ ⇐⇒ w ∈ (Li ∪ Lj) .

Since a word w ∈ L(Mi,j) is generated either with a move m(q′0, w) = q′0[w〉q′f ∈ F ′, where

qnew 6∈ mQ′(q′0, w), or with a move m(q′0, w) = q′0[w0〉qnew · · · [wr−1〉qnew[wr〉q′f ∈ F ′, where

qnew 6∈ mQ′(q′0, w0) and for all k > 0, qnew 6∈ mQ′(qnew, wk), it is possible to prove the result of

the lemma.

Proposition 2. Let M = (Q,Σ, δ, q0, F) be a DFSM and let Mi,j = (Q′,Σ, δ′, q′0, F
′) be its

(i, j)-contraction. Then L(Mi,j) ⊇ L(M). Also if M is a minimal DFSM then L(Mi,j) ⊃ L(M).

Proof: The fact that L(Mi,j) ⊇ L(M) trivially follows from Lemma 1.

5

a

q0 q1 qnew

a
a

M M0,1

Figure 2: A non-minimal FSM M and its contraction.

If M is minimal, then states qi and qj are distinguishable, i.e., there must exist a string wi such

that, say, δ(qi, wi) is in F while δ(qj , wi) is not defined or is not in F . Now, let w0,j be a string

such that δ(q0, w0,j) = qj . Then w0,jwi 6∈ L(M) while by Lemma 1 w0,jwi ∈ L0,jLi ⊆ L(Mi,j).

According to the above proposition, the languages generated by contractions of a DFSM M are

approximations of L(M).

Example 1. The requirement that M be minimal in Proposition 2 can be explained by the

following example. Figure 2 shows a DFSM M that is not minimal and its contraction M0,1. It

can be seen that L(M) = L(M0,1) = a∗.

Example 2. Not all languages generated by contractions are infimal approximations. Consider

the minimal DFSM M in Figure 1 and its three contractions. The language generated by M0,1

is L(M0,1) = Σ∗, i.e., it is a superset of the languages generated by the contractions M0,2 and

M1,2. In this case, however, it is possible to prove that M0,2 and M1,2 are the only infimal

approximations of M of order 2. To prove this one may construct all approximations of M of

order 2.

Example 3. Not all infimal approximations of order n−1 of a minimal DFSM M with n states

are contractions. Consider the DFSM M with 4 states and the DFSM M ′ with 3 states in

Figure 3. M ′ is an approximation of M since L(M ′) ⊃ L(M) but it can be easily checked that

it is not a contraction, because its language is not a superset of any contraction of M . Hence,

there exists an infimal approximation of M of order 3 that is not a contraction. Note, however,

that in this case it can also be shown that for all qi, qj , L(Mi,j) is not a superset of L(M ′).

Hence one cannot conclude that the contractions of M are not infimal approximations.

Contractions are good candidates for infimal approximations of a minimal DFSM M . There are

some cases in which it is possible to prove that any implementable approximation of L(M) is a

superset of a language generated by some contraction of L(M).

Theorem 1. Let M = (Q,Σ, δ, q0, F) be a minimal DFSM with n states and let M ′ = (Q′,Σ, δ′, q′0, F
′)

be a minimal DFSM with n′ < n such that L(M ′) ⊃ L(M). Let h : Q → 2Q
′

be the mapping

defined by 
q′0 ∈ h(q0);

q′ ∈ h(q), if q̃ ′ ∈ h(q̃) ∧ δ(q̃, a) = q

∧δ′(q̃ ′, a) = q′.

6

q0
b

q2

q1

q3
d

ca

e

q'0 b

q'2

q'1

d,e

c,e
a

M M'

Figure 3: A minimal FSM M with 4 states and an approximation of order 3.

If h(q) is a singleton set for all q ∈ Q then there exists an (i, j)-contraction of M such that

L(M ′) ⊇ L(Mi,j) ⊃ L(M).

Proof: Since h(q) is a singleton set and n > n′, there must exist two states qi, qj ∈ Q such that

h(qi) = h(qj) = q′. Then it is possible to prove that L(M ′) ⊇ L(Mi,j).

In fact, by the definition of h and the fact that L(M ′) ⊃ L(M) it follows that if δ(q, w) = q̃ then

δ′(h(q), w) = h(q̃) while h(F) ⊂ F ′.

Hence with the notation of Lemma 1

∀w ∈ Li
0 ∪ L

j
0, δ

′(q′0, w) = q′,

∀w ∈ Li
i ∪ L

j
i ∪ L

i
j ∪ L

j
j , δ

′(q′, w) = q′,

∀w ∈ Li ∪ Lj , δ
′(q′, w) ∈ F ′,

and any string in the set L(Mi,j), whose expression is given in Lemma 1, can also be generated

by M ′.

Note 1. There are DFSMs M such that, regardless of the structure of M ′, the image of h(q),

as defined in the above theorem, is a singleton set. As an example, let M be a DFSM with

a tree-like graph. Since there is only one path from the initial state to any other state and

since M ′ is deterministic, h(q) can only assume a single value. Thus, for this class of DFSMs it

follows from Theorem 1 that if all languages generated by contractions are implementable then

all infimal approximations of order n− 1 of L(M) are contractions.

The author’s feeling is that the implementable languages generated by contractions of a minimal

DFSM M are almost always infimal approximations of L(M) because no counterexample has

been found to disprove the following conjecture.

Conjecture 1. Let M be a minimal DFSM. Let

L = {L(Mi,j) |6 ∃Mh,k 3 L(Mi,j) ⊃ L(Mh,k)}.

Then all implementable languages in L are infimal approximations of L(M).

7

q0 q1 q2

a a
M

Figure 4: A minimal DFSM M in Example 4.

4 Implementing an approximation

In the above section we have seen how to construct approximations of the language generated

by a given minimal DFSM M by looking at its contractions.

We have also noted that a contraction is not always deterministic. Thus, to implement a

contraction language we may have to convert a contraction Mi,j into a deterministic FSM. The

following examples will show several possible cases.

Example 4. In this example we consider contractions that are non-minimal. Consider the

minimal DFSM with 3 states in Figure 4. It is easy to see that all its contractions generate the

language L = a∗, that can be generated by a single state DFSM. Since all contractions of M

have 2 states they are not minimal. Note that M0,1 is non-deterministic, while M0,2 and M1,2

are deterministic.

Example 5. In this example we show that not all languages generated by contraction are

implementable. Consider the minimal DFSM M with 5 states in Figure 5. The contraction

M0,2 is not deterministic. When we compute the minimal DFSM that generates L(M0,2) we

obtain the DFSM MD
0,2 that has 6 states.

The following algorithm can be used to compute a set M of good approximations of a minimal

DFMS.

Algorithm 1. Let M be a minimal DFSM with n states.

1. Construct the set Mc of all contractions of M .

2. Let Mm be the set constructed as follows. For all contractions Mi,j ∈Mc:

(a) If Mi,j is deterministic let MD
i,j = Mi,j, else let MD

i,j be a DFSM equivalent to Mi,j.

(b) If MD
i,j is minimal let Mm

i,j = MD
i,j, else let Mm

i,j be a minimal DFSM equivalent to

MD
i,j.

(c) If the number of states of Mm
i,j is nm < n, let Mm

i,j ∈Mm.

3. Let M = {M ′ ∈ Mm |6∃M ′′ ∈ Mm 3 L(M ′) ⊃ L(M ′′)}. M is a set of approximations of

M of order less than n.

Some comments on the complexity of the algorithm.

In step 1, there are

(
n

2

)
=
n (n− 1)

2
contractions.

8

q0 q1

q2

q3

q4

d

b

a

e

a

b

c

M

qnew

q1

q4

q3

d

b a

e

a
c

M0,2

b

qnew

{qnew,q4}

q4

b a

b

a

MD
0,2

d

d

c
c

q1

q3
e

e

{q1,q3}

Figure 5: A DFSM M and its contraction M0,2 whose language cannot be implemented.

9

Step 2.(a) is the computationally hardest step. In fact, a DFSM MD equivalent to a non-

deterministic one M with n states may have up to 2n states [3]. This means that in general the

“determinization” cannot be done in polynomial time or space.

In step 2.(b), the “minimization” of a DFSM with n′ states can be done with an n′ log n′

algorithm given by Hopcroft [2].

In step 3, one can use the algorithm given in [1] page 144 to check if L(M1) ⊆ L(M2). If M1 has

n1 states and M2 has n2 states the complexity of the algorithm is n G(n), where n = n1 + n2
and G(n) ≤ 5 for n ≤ 265536.

5 Choosing the best approximation

In this section we consider the following problem. Given a set M of approximations of a given

minimal DFSM M and a finite set of observed strings Lo ⊆ L(M), choose among all FSMs in

M the best approximation relative to the observed behavior, i.e., the approximation M ′ that

maximizes a suitable function f(L0,M
′).

First of all, given M ′ = (Q′,Σ, δ′, q′0, F
′) we define two functions ν, µ : Q′ → IN . The first one is

such that ν(q′) = 1 if q′ ∈ F ′ (i.e., if it is a final state), else ν(q′) = 0. The second one is such

that µ(q′) = |{a ∈ Σ∗ | δ′(q′, a) is defined }|, i.e., it counts the number of events enabled at q′.

If we have no additional knowledge, we may assume that at each step while generating a string

w and being in a state q′, M ′ may choose with equal probability to accept the string generated

so far (if q′ is a final state) or to continue, executing one of the events enabled at q′. The total

number of choices at each state is thus ν(q′) + µ(q′).

Thus, let w = a1a2 · · · ar be generated by M ′ with the move

m(q′0, w) = q′0[a1〉q′1[a2〉 · · · q′r−1[ar〉q′r.

We define a merit function

f(w,M ′) =

r∏
i=0

1

ν(q′i) + µ(q′i)
,

whose value is a measure of the likelihood that w is generated by M ′.

Example 6. Consider the DFSM M in Figure 1 and its two approximations M0,2, and M1,2.

The string w1 = (ab)ka is more likely to be generated by M1,2 since

f(w1,M0,2) =

(
1

2
· 1

3

)k

· 1

2
=

1

2 · 6k
,

while

f(w1,M1,2) =

(
1 · 1

3

)k

· 1 =
1

3k
.

10

On the contrary, the string w2 = aa2k for k > 1 is more likely to be generated by M0,2 since

f(w2,M0,2) =
1

2
·
(

1

3
· 1

2

)k

=
1

2 · 6k
,

while

f(w2,M1,2) = 1 ·
(

1

3
· 1

3

)k

=
1

9k
.

Next proposition shows that f is a good measure for choosing among approximations in the

sense that it tends to give higher rating to infimal approximations.

Proposition 3. Let M = (Q,Σ, δ, q0, F) and M ′ = (Q′,Σ, δ′, q′0, F
′) be DFSMs such that

L(M) ⊂ L(M ′). Then for all w ∈ L(M), f(w,M) ≥ f(w,M ′).

Proof: Let w = a1a2 · · · ar be generated by M with the move q0[a1〉q1 · · · [ar〉qr, and by M ′ with

the move q′0[a1〉q′1 · · · [ar〉q′r. Since L(M) ⊂ L(M ′), it follows that

• q′i ∈ F ′ if qi ∈ F , i.e., ν(q′i) ≥ ν(qi);

• δ(q′i, a) is defined if δ(qi, a) is defined, i.e., µ(q′i) ≥ µ(qi).

Hence f(w,M) ≥ f(w,M ′).

The merit function f can be extended to set of strings. If L ⊆ L(M ′), we define

f(L,M ′) =
∏
w∈L

f(w,M ′).

Thus, given a setM of approximations of a given minimal DFSM M and a finite set of observed

strings Lo, we say that the best approximation of M with respect to f and Lo is the DFSM

M ′ ∈M such that

f(Lo,M
′) = max

M ′′∈M
[f(Lo,M

′′)].

Different merit functions could be used if we assume that some knowledge on the probability of

occurrence of different events in Σ∗ is known.

6 Conclusions

The paper has presented introductory work on the model reduction of discrete event systems

represented by finite state machines.

It was shown how a set of good — but possibly not infimal — approximations of a given minimal

DFSM M can be computed efficiently by looking at contractions of M . In some particular case,

it is also possible to prove that the approximations thus constructed are infimal.

11

The paper has also discussed how, given a set of approximations of a FMS M , it is possible

to define a merit function to choose the best approximation with respect to a given observed

behavior Lo ⊆ L(M).

The approach presented in the paper leaves open some interesting problems. Firstly, we do not

know if the conjecture presented in Section 3 is true; it should be possible to prove it or to find

a counterexample to disprove it. Secondly, it may be interesting to try to apply the contraction

technique to other graphical models of discrete event systems such as Petri nets.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974.

[2] J.E. Hopcroft, “An n log n Algorithm for Minimizing the States in a Finite Automaton,”

The Theory of Machines and Computations, Z. Kohavi (Ed.), pp. 189–196, Academic Press,

1971.

[3] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computa-

tion, Addison-Wesley, 1979.

[4] H.R. Lewis, C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall,

1981.

[5] J. Myhill, “Finite Automata and the Representation of Events,” WADD TR-57-624, pp.

112–137, Wright Patterson AFB, Ohio.

[6] A. Nerode, “Linear Automaton Transformations,” Proceedings AMS , Vol. 9, pp. 541–544,

1958.

[7] P.J. Ramadge, W.M. Wonham, “The Control of Discrete Event Systems,” Proceedings

IEEE , Vol. 77, No. 1, pp. 81–98, January, 1989.

12

