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Linear Dynamically Varying LQ Control of Nonlinear
Systems over Compact Sets

Stephan Bohacek and Edmond A. Jonckheere

Abstract—Linear-quadratic controllers for tracking natural
and composite trajectories of nonlinear dynamical systems evo-
luting over compact sets are developed. Typically, such systems
exhibit “complicated dynamics,” i.e., have nontrivial recurrence.
The controllers, which use small perturbations of the nominal
dynamics as input actuators, are based on modeling the tracking
error as a linear dynamically varying (LDV) system. Necessary
and sufficient conditions for the existence of such a controller
are linked to the existence of a bounded solution to a functional
algebraic Riccati equation (FARE). It is shown that, despite the
lack of continuity of the asymptotic trajectory relative to initial
conditions, the cost to stabilize about the trajectory, as given by
the solution to the FARE, is continuous. An ergodic theory method
for solving the FARE is presented. Furthermore, it is shown that
wrapping the LDV controller around the nonlinear system secures
a stable tracking dynamics. Finally, an example of controlling the
Hénon map to follow an aperiodic orbit is presented.

Index Terms—Chaos, discrete-time Riccati equations,
linear-quadratic control, nonlinear systems, time-varying
systems, tracking, uncertain systems.

I. INTRODUCTION

A TYPICAL feature of nonlinear dynamical systems run-
ning over compact sets is that their phase portraits exhibit

a variety of trajectories ranging from the trivial periodic orbits to
the nonperiodic transitive orbits [18]. Sensitive dependence on
initial conditions and other parameters [23] allows a preselected
trajectory to be tracked—despite offset in initial conditions, ex-
traneous disturbances and uncertainty on the dynamics—via a
cheap control that acts as a small perturbation of the nominal
dynamics. To formalize the above ideas, define the nominal and
perturbed dynamics, respectively, as

(1)

(2)

In the above, is the desired trajectory and
is the state of the system under control , which

is taken to be a small perturbation of the nominal dynamics,viz.,
. The dynamics are differentiable,viz.,
and the motion is restricted to a compact
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-invariant ( ) subset of . The broad objective is to
find a control such that .

This paper develops a controller of the form
, where the feedback is designed, for

every , from a linear approximation of around
, and the gain is “scheduled” so as to force to

follow the desired trajectory . This is a specialized version
of the LPV scheme [20], [3], where the parameter vector
, instead of being uncertain, is dynamically modeled. This

justifies the terminology oflinear dynamically varying (LDV)
control.

An unusual feature of the LDV controller viewed as a
tracking controller is that the gain is spatially varying and
defined all over . As the first and most generic application,
given anarbitrary desired trajectory ,
evaluating along the trajectory yields
the time-varying controller that makes the nonlinear
system asymp-
totically track . More importantly, the
globally defined controller becomes fully motivated in
those specialized applications where there is a need to quickly
adapt the tracking controller to a new reference trajectory
without recomputing a new time-varying controller along the
new trajectory. Specifically, having reached ,
one could track the trajectory starting at

by switching from
to . As shown in [6], switching among natural
trajectories allows for such broader control objectives as
targeting and periodic orbit avoidance. In orbital mechanics,
switching among free orbits proved instrumental in NASA’s
experiment that involved steering a decommissioned satellite
to a rendezvous with the Giaccobini–Zinner comet [11]. Along
the related line of application of the X-33 program, there
is a need to adapt the spacecraft controller to a change of
launch-to-landing trajectory in case of failure and/or a change
of landing site [15], [17].

The controller exists if and only if a solution to afunc-
tional algebraic Riccati equation (FARE) linking and
exists. The mathematical difficulty with this functional equation
is to prove that the relevant solution is continuous, in which case

is continuous.
Typically there is no closed form solution to the FARE. How-

ever, dynamical systems on compact sets, subject to some mild
additional conditions, are known to have such ergodic proper-
ties as recurrence and transitivity [18], which can be put into use
to construct an approximate solution of arbitrary accuracy.

The paper proceeds as follows. Section II formalizes the
tracking control problem of interest and shows how the tracking
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error can be approximated as an LDV system. Section III for-
mally develops LDV systems and the optimal linear-quadratic
controllers for this class of systems. Section IV shows that
these linear controllers are suitable for robustly stabilizing the
nonlinear systems. Section V develops numerical techniques
to compute the solution of the FARE. Section VI gives an
example. Finally, the Appendix provides the proofs of the
technical results.

II. L INEAR DYNAMICALLY VARYING TRACKING ERROR

DYNAMICS

Define the tracking error

Then, we obtain

The first degree Taylor approximation of around
and yields

(3)
where

and accounts for nonlinear terms, to be
specific, since

(4)

where

(5)

and

(6)

Since and is compact, if and are bounded,
then is uniformly
continuous in and for . In particular, for any

, there exists a such that if , , then
for .

Therefore, and can be made as
small as necessary by limiting the size ofand .

If and are small, the error dynamics can be approximated
as

(7)

This is a linear system with coefficient matricesand that
vary as varies. Since varies according to the dynam-
ical equation (1), such an interconnection as (1) and (3) is called
an LDV system.

LDV and linear parametrically varying (LPV) system can
be unified under the so-called linear set-valued dynamically
varying (LSVDV) systems characterized by aset-valuedmap
[17]. LDV and LPV [5], [4] systems are the two extremes, the
former characterized by the fact that is reduced to a point,
the latter characterized by . Somewhere between the
two extremes lies the case of slow systems characterized by

, [25], [3]. Under this condition,
it is customary to postulate the existence of an analytic map

such that for
from which stability follows. Here, instead ofpostulating
analyticity or any other convenient property of some solution to
an inequality, we provecontinuity of the solution to a relevant
equation[see (44)].

III. L INEAR DYNAMICALLY VARYING SYSTEMS AND

CONTROLS

Before controllers for LDV systems can be developed, such
systems must be formalized and the relevant stability and de-
tectability concepts must be defined. For the purpose of control,
an LDV system is defined as follows:

with

and (8)

where
continuous map;
compact and -invariant;

,
,
, and

functions that need not be
continuous;

state of the dynamical
system;
state of the linear system;
control input;
output to be controlled.

It is assumed that both states and are known at time
point .

It is often assumed that the system coefficient matrices, ,
and are continuous. We refer to such systems ascontin-

uousLDV systems. In Section II, it was assumed that
and and were defined to be the matrices of partial deriva-
tives of , so that and were continuous. Thus, the tracking
error dynamics associated with system (1) and (2) can be ap-
proximated by acontinuousLDV system. However, if a feed-
back is used to stabilize a continuous LDV
system, then the resulting closed-loop system is a continuous
LDV system only if is continuous. Although this paper will
focus on continuous LDV systems, we cannota priori assume
that the stabilizing feedback is continuous. Therefore, the defi-
nition of an LDV system should allow for discontinuous coeffi-
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cient matrices. Another motivation for allowing discontinuous
LDV systems is to define a class large enough to encompass
jump linear systems as discussed in [9].

From a mathematical perspective, a linear dynamically
varying system is a family of linear time-varying systems
indexed by the initial condition . If is a fixed point,
then the linear system with index is time-invariant. If

is a periodic point, the linear system with index is a
periodically varying linear system. If is an aperiodic point,
the linear system is a linear time-varying system.

Since a linear dynamically varying system is an uncountable
collection of linear time-varying systems, the concept of sta-
bility is slightly more complex in the dynamically varying case
than it is in the time-varying case.

Definition 1: The linear dynamically varying system (8) is
uniformly exponentially stableif for , there exist an

and a such that for all

System (8) isexponentially stableif for and for each
, there exist an and a

such that for all and

System (8) isasymptotically stableif for , any
and any

Thus, a linear dynamically varying system is exponentially
stable if every linear system in the family of linear systems
indexed by is exponentially stable. The parameters,
and , remain constant along a positive trajectory; i.e.,

, but may vary discontinuously across different
trajectories. Another difficulty with this stability concept is
that it is possible that while for
some sequence , in which case the system is
exponentially stable, but not uniformly exponentially stable.

In the case ofcontinuousLDV systems, asymptotic, exponen-
tial, and uniform exponential stability are equivalent.

Proposition 1: Assume that the function is
continuous and is compact. Then asymptotic, exponential and
uniformly exponential stability are equivalent.

Proof: The proof is withheld until the Appendix.
Note that for general time-varying systems, exponential sta-

bility and asymptotic stability are not equivalent. However, in
the case of continuous LDVs, continuity and compactness lead
to the equivalence of these two forms of stability.

Since uniformly exponentially stable systems are inherently
more robust than exponentially stable systems, it is preferable to
remain within the confines of continuous LDV systems. Thus,
when synthesizing a feedback for controlling a continuous LDV
system, it is important to ensure that the feedback is not only
asymptotically stabilizing, but also continuous. However, to
maintain generality, an LDV system is considered stabilizable

if there exists an exponentially stabilizing feedback, that is as
follows.

Definition 2: System (8) is stabilizable if there exists a, not
necessarily continuous, function such that
for all and for all ,
and the system

is exponentially stable, that is, there exist and
such that

where the factors of the matrix product are taken in the proper
order.

Thus, the feedback that exists via the definition of stabiliz-
ability may not be uniformly bounded nor even continuous in

. A feedback that is uniformly bounded and making the
closed-loop system uniformly exponentially stable will be said
to be uniformly stabilizing.

Along with stabilizability, a detectability concept is needed.
Definition 3: System (8) is uniformly detectable if there ex-

ists a, not necessarily continuous, function such
that for , and the system

is uniformly exponentially stable. That is, there exist an
and a such that for all ,

.
The conditions of stabilizability and uniform detectability, re-

quired to secure existence of an LDV controller, are slightly
asymmetric. However, as can easily be shown by a duality argu-
ment, if the function is invertible, then uniform detectability
can be weakened to detectability, which isexactlythe dual of
stabilizability.

Since stabilizability depends on, , and , we will say that
the triple is stabilizable to mean that system (8) is sta-
bilizable. Similarly, we say that the triple is uniformly
detectable to mean that system (8) is uniformly detectable.

Under the following assumptions, the existence of a uni-
formly stabilizing continuous linear dynamically varying
quadratic controller is proved.

Assumption 1:The functions ,
and are such that is uniformly

detectable.
Assumption 2:The functions ,

and are such that is stabilizable.
Assumption 3:The functions , , , , and are contin-

uous, is compact and for all .
Our main result can now be formulated.
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Theorem 1: Suppose Assumptions 1, 2 and 3 hold. Then
there exists a unique, bounded solution to the
FARE

(9)

such that , and the feedback

(10)

uniformly exponentially stabilizes system (8). For ,
this feedback minimizes

and is a uniformly continuous function.
Conversely, if Assumptions 1 and 3 hold and if there exists

a bounded solution, , to (9) such that , then
system (8) is stabilizable and is continuous. In this case, if

solves the finite-horizon Riccati equation, i.e.,

(11)

with

then uniformly in .
Proof: The proof of this theorem is in the Appendix.

Remark 1: Stabilizability is a rather weak assumption. In-
deed, stabilizability merely assumes that every trajectory is sta-
bilizable. Given this obviously necessary condition, it is inter-
esting to observe that continuity and compactness are all that
are needed to prove the existence of a continuous and uniformly
stabilizing controller.

Remark 2: The continuity of the cost is counterintuitive in
the case where is sensitively dependent on initial conditions.
It is easily seen that the general time-varying infinite-horizon
optimal quadratic cost is continuous with respect to the uniform
topology, that is, if is the optimal infinite-horizon quadratic
cost associated with and is the
optimal cost associated with and if

is small, then is small. We say that has sensitive
dependence on initial conditions if there exists an such
that for all and , there exist a , ,
and a such that . Hence, if
has sensitivity to initial conditions, then

may remain bounded from below for arbitrarily small .
Thus, the time-varying system

is discontinuous in and standard continuity results from time-
varying control cannot be applied. Surprisingly, despite the fact
that the distance between the time-varying systems indexed by

and remains bounded from below, Theorem 1 implies that
can be made small by taking small enough.

In particular, this continuity implies that the cost of stabilizing a
periodic orbit is nearly the same as the cost to stabilize a nearby
aperiodic one, whereas general time-varying results seem to
imply that the cost of stabilizing these different orbits may be
very different.

Remark 3: When evaluated along a particular trajectory, the
FARE and hence the controller become time-invariant, periodi-
cally varying or time-varying depending on whether the trajec-
tory is fixed, periodic or aperiodic, respectively.

IV. STABILITY AND ROBUSTNESS OFNONLINEAR SYSTEMS

WITH LDV CONTROLLERS

Here, we address the issue as to whether the LDV quadratic
controller, guaranteed to stabilize the LDV system, also stabi-
lizes the nonlinear system.

With the feedback given by Theorem 1 in place, the nonlinear
system (3) becomes

(12)

where and are given by (5) and (6). By Theorem 1,

is uniformly exponentially stable. Thus, by [24, Th. 24.7],
there exists an such that if

, then system (12) is uni-
formly exponentially stable. If we define

if

otherwise
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then

is uniformly exponentially stable. In this case, there exists a
such that

(13)

for all . It was shown in Section II that
and can be

made arbitrarily small by limiting the size of and .
Since is continuous, is continuous, and since is
compact, there exists a bound such that .
Thus, there exists an such that if and

, then

Therefore, if

then and and thus

and

By uniqueness of the solution to a difference equation, we con-
clude that if , with

(14)

then and system (12) is uniformly exponentially
stable.

Remark 4: For and bounded, the nonlinearity termin
(12) is clearly a bounded feedback wrapped around the LDV
plant, so that the natural way to reduce the effect of, and am-
plify the domain of attraction, is an design. This approach
is pursued in [6] and [7].

V. EXPLOITING ERGODICITY TO SOLVE THE FUNCTIONAL

ALGEBRAIC RICCATI EQUATION (FARE)

Many methods can be devised to solve the FARE. Here we
investigate, in detail, a method based on the ergodic property of
recurrence; other methods include the jump linear approxima-
tion [1], [9], [10], and the method based on iterating the Riccati
recursion (11).

A. Solving FARE Over Recurrent Set

For notational convenience, define the Riccati map

With this notation, the FARE can be written .

By definition, the point is recurrentif for an arbitrary
, there exists an such that
. Let denote the set of recurrent points. Since is

invariant ( ), the FARE can be restricted to
, and, furthermore, the solution can be extended by

continuity from to . Recall that for a generic class
of diffeomorphisms, is the largest set where nontransient
behavior occurs [18].

Take . Since is continuous, for , there exists
a such that . It follows that

If we define

we have

and . Replacing with in the above yields
the approximate equation for

(15)

It turns out that , and are “close.”
Theorem 2: Assume that is a diffeomorphism and is

structurally stable [8]. Let be a recurrent point and let .
Then there exists a such that implies
that where solves the FARE and solves
(15).

Proof: The definition of the structural stability of
and the proof of this theorem are given in the Appendix.

Clearly, an approximate solution to the FARE is given by the
fixed point of (15), which can be found as follows. Sinceis a
diffeomorphism, is invertible for all , and if we define

then it can be shown [12] that

and

(16)

where

Equation (16) can be solved by finding asuch that

where is the span of . This invariant subspace problem
can be solved by the usual methods.
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Fig. 1. FeedbackF = [F F ] for the Hénon map. The plots show that the feedback is continuous in�. A plot of the attractor of the Hénon map in the
(� ; � ; �6) plane is included for reference.

VI. EXAMPLE

In the following, an LDV controller is devised for the Hénon
system. The Hénon system is defined as

where is the control input. In this example, and
. For these parameter values and , it is known that the

Hénon map has an attractor, that is, there exists an open set
such that for all .

This attractor is the crescent-shaped object shown in Fig. 1.
Define the associated LDV system by

(17)

(18)

Numerical simulation [23] indicates that is transitive,
that is, for almost every , the trajectory
enters every -neighborhood of every point for every

.Therefore, iterating the time-varying Riccati equation
(11) from a transitive point yields an approximate. In this

way, the gain is obtained and the closed-loop
tracking error dynamics becomes

(19)

where

(20)

Fig. 1 shows the feedback gain,, for the LDV system (19).
Note that the feedback is continuous on, the attractor of the
Hénon map.

The objective in this example is to control the Hénon system
so as to follow an aperiodic orbit described by

with . Since the controlled
system is only locally stable, control cannot begin until time

when and is
the initial tracking error bound that ensures stability as defined
in Section IV. Computer simulations indicate that the Hénon
map is not distal and that is ergodic [21]. Since

: has positive measure, the Poincaré
recurrence theorem [18] on implies that for almost every
initial condition , we have
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Fig. 2. Tracking:' (solid line) and� (dotted line) are shown. At timek = 0, k'(0)� �(0)k is small enough for the control to be safely turned on. Once the
control is turned on,' tracks�.

for some . For , control force is applied via the control
law , where is given by the LDV quadratic
control method of Section III.

Figs. 2 and 3 show the controlled trajectory, , the de-
sired trajectory, , and the tracking error,

. At time index 0, the error is small enough to safely turn
the control on (i.e., ) and tracks the desired trajec-
tory. After the control is applied the error may increase beyond

. Extensive simulation imply that if

the system remains stable, where the scaling factors account for
the fact that and .

An example of controlling the Hénon map to avoid its fixed
point is available in [6].

VII. CONCLUSION

LDV controllers for tracking natural and composite trajecto-
ries of nonlinear dynamical systems running over compact sets
have been developed. The necessary and sufficient conditions
for the existence of such controllers are rather weak and are
equivalent to the existence of a bounded positive semidefinite
solution to the FARE. If the dynamical system has adequate er-
godic properties, there are many techniques for computing the
solution to the FARE.

The LDV theory complements the popular LPV/gain sched-
uling theory by focusing on the extreme case ofknown pa-
rameter dynamics. Mathematically, the LMI of LPV design is
pushed to the extreme situation of an equation linking the values
of the solution for two successive values of the parameters, with
the inescapable problem of proving continuity of the solution.
Such equations, referred to as functional, are indeed notorious
for generating badly behaved solutions, so that the LDV limit to
the LPV theory was due to involve some mathematical difficul-
ties.

It is hoped that the LSVDV theory, along with its contin-
uous-time and counterparts [16], [6], [7] will emerge as
a unification of the various gain scheduling concepts.

APPENDIX

Since a linear dynamically varying system is a collection of
time-varying systems, the following time-varying Lyapunov
stability theorem will prove useful.

Proposition 2: Assume is uniformly detectable.
Then there exists an and a such that
for and any

if and only if there exists a sequence with
and such

that

(22)
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Fig. 3. Tracking error: At timek = 0, the tracking error (solid line) is small enough, i.e.,k'(0)� �(0)k < R , whereR = 0:15. Hence, control
is initiated atk = 0. However, the tracking error exceedsR for the next few time steps. This is acceptable, and the tracking error converges to zero.

Furthermore, if (22) is satisfied, then and can be taken
to only depend on the bound and on and in the
definition of uniform detectability.

Proof: For fixed, the resulting LDV system is a linear
time-varying system. Thus, the theorem is simply a statement
regarding the stability of linear time-varying systems and can
be found in [14].

Corollary 1: Assume is uniformly detectable.
Then there exist an and a such that

if and only if there exists a uniformly bounded function
with such that for all

(23)

Proof: Since is uniformly bounded and the system is
uniformly detectable, Proposition 2 can be applied at each

.

A. Proof of Proposition 1

Proof: Clearly, uniformly exponential stability implies
exponential stability, which implies asymptotic stability. It
remains to be shown that asymptotic stability implies uniformly
exponential stability. Define such that

We claim that

(24)

Suppose this is not true, i.e., . Define
. Then as and there is

a sequence such that for and
is monotone increasing to infinity. Since is compact

and is continuous in , there exists a such that
. Since is compact, contains a

convergent subsequence . Thus

for all (25)

Since the system is asymptotically stable, if , then
. Thus, there exists a such that

. Since , is continuous in
. Thus, there is a such that implies

that . Since , there
exists an such that if then ,

and . It follows that
. However,

so that

which implies that

This contradicts equation (25). Thus, the claim (24) is true.
Since the system is asymptotically stable, for any , if

then . Thus, there is an such
that if , then , where is given
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by equation (24). With , is continuous
in . Thus, there exists a such that if

, then .
Therefore, , which implies that for

(26)

Since , the set
is an open covering of . Since is compact, there exists a finite
subcovering, i.e., is an open
covering and is a finite set. Set . For
all , there exists a such that .
Thus, by (26)

for

and

for

Define and by

Let with ; then

B. Proof of Theorem 1

The first, and most difficult, problem is to show that stabiliz-
ability implies that there exists a uniformly bounded that
solves the functional Riccati equation (9). The second problem
is to show that uniform detectability and a uniformly bounded

that solves (9) imply that the optimal control (10) is uni-
formly stabilizing and is continuous.

To show that stabilizability implies existence of a solution to
(9), the finite horizon time-varying linear-quadratic controller
will be examined. By stabilizability, for each initial condition

, this controller will be shown to exist and to be bounded along
the trajectory . This in turn will imply that the infinite-
horizon time-varying Riccati equation is actually of the form
(9). Finally, it will be shown that the solution to (9) is uniformly
bounded.

To show that a solution of (9) implies uniform stabilizability,
standard techniques will be employed to show that the LDV con-
troller is uniformly stabilizing. Lemma 5 will show that the pos-
itive semi-definite solution to (9) is unique. Finally, Lemma 6
will show that the positive–semidefinite solution to (9) is contin-
uous and the finite-horizon solution to the time-varying Riccati

equation (27) converges uniformly to the positive semi-definite
solution to (9).

Lemma 1: If assumptions 1 and 2 hold and and are
bounded, then for each and , there exists an
optimal control , where
is given by equations (31) and (32). Furthermore, this control is
exponentially stabilizing and for each , the cost of this
feedback given by (31) is finite.

Proof: Define the finite-horizon cost-to-go

Dynamic programming arguments show that

where

(27)

subject to the terminal condition

(28)

By Assumption 2, system (8) is stabilizable. Thus,
there exists a sequence of suboptimal feedback matrices

such that, if

(29)

then . The definition of
stabilizability implies that , where

. Furthermore, and are continuous and,
therefore, bounded as , .
Thus, with the suboptimal feedback in place and , it
is not hard to show that the cost can be bounded as

(30)

Similarly, the cost-to-go can be bounded as

where is given by (29). Clearly is monotone in-
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creasing and bounded as , so

exists. Therefore, allowing in (27) yields

(31)

For , define

(32)

To prove that this feedback is exponentially stabilizing, observe
that by standard manipulation we get

(33)

Furthermore

is uniformly detectable, since

is uniformly exponentially stable for the output injection feed-
back given by the uniform detectability assumption. Since

is bounded, Theorem 2 applied to (33) implies that
the closed-loop system is exponentially stable.

Remark 5: This lemma is nothing more than the infinite
horizon, time-varying linear-quadratic control along a trajec-
tory (for more details on time-varying optimal control see [2]
or [13]). However, we have not shown that the closed loop
system isuniformlyexponentially stable.

The above lemma implies that for all

exists and is finite, although we have not yet proved that it is
uniformly bounded. Therefore, is a function .
This function is a solution to a FARE.

Lemma 2: If Assumptions 1 and 2 hold, the function

satisfies

(34)

Proof: Direct manipulation of (31).
As we show below, there is a bound on that

does not depend on or , that is, is uniformly
bounded. This feature of stabilizable continuous LDV systems
is surprising. It means that, although the stabilizability assump-
tion only implies that there exists a controller with possibly
unbounded cost, the compactness and continuity assumptions
of LDV systems imply that there exists a control such that the
cost to stabilize any trajectory is uniformly bounded.

Lemma 3: If Assumptions 1, 2, and 3 hold, then
is uniformly bounded.

Proof: Suppose is not uniformly bounded.
Define . Since ,

is continuous in . Since is compact, there exists
a such that . Since, by our
supposition, , the sequence is such
that . Since is compact, there exists
a subsequence, , such that . Define

. Then ; thus, for all
, .

By Lemma 1, for all . In par-
ticular, . Furthermore, it is assumed that

monotonically as . Thus, there
exists an such that, if then

(35)

Lemma 1 implies that the closed-loop system is exponentially
stable. Thus, with the feedback in place, there is a such
that for , we have . Define

(36)

where the factors of the product are taken in the correct order.
Then is the state transition matrix using the feedback

. When the feedback in not optimal. However,
when , the feedback is optimal and

Since , is continuous in . Since ,
there exists an such that if , then

Thus

(37)

Define

(38)
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Thus
is the finite-horizon cost using the feedback matrix

. This is the optimal cost when and ,
so that . Since

, is continuous in . Thus, there exists an
such that implies that

which implies that

(39)

Set and let be such that
and . Equations (35)

and (39) imply that

Thus

(40)

Now, if we do not use the optimal control for the firststeps,
our cost must be at least as high as the optimal cost, that is, [re-
calling is the cost with initial conditions

and using control for time steps]

or

or

(41)

Thus, combining (37), (40), and (41) yields

(42)

Thus, the contracting hypothesis leads to

On the other hand, we obviously have

Thus, there is a clear contradiction between the above two in-
equalities. Therefore, is uniformly bounded.

Lemmas 1–3 show that stabilizability implies that there exists
a uniformly bounded solution to the functional equation (34).

Now we show the converse. That is, if solves (34) and
is bounded, then the LDV system (8) is stabilizable. In fact, it is
uniformly stabilizable and is continuous.

With the solution to (34), we construct the optimal feed-
back

(43)

and we prove the following.
Lemma 4: Suppose Assumptions 1 and 3 hold, and

is a uniformly bounded solution to the func-
tional algebraic Riccati equation (34) such that .
If , where is given by (43), then the
resulting closed-loop system is uniformly exponentially stable.
Therefore, system (8) is stabilizable.

Proof: Standard manipulation shows that

(44)

where

is uniformly detectable. Since is uniformly bounded, Corol-
lary 1 implies that the closed-loop system is uniformly expo-
nentially stable.

Remark 6: If Assumptions 1, 2, and 3 hold, Lemmas 1–3
imply that there exists a solution to (34) such that

. Thus, Lemma 4 implies that the resulting closed-loop
system is uniformly exponentially stable.

Lemma 5: Suppose Assumptions 1 and 3 hold. If a solution
to equation (34) exists with , ,

then it is unique.
Proof: By standard results of linear-quadratic control of

time-varying systems, the time-varying Riccati equation asso-
ciated with the linear time-varying system

is unique. Since the solution to the functional Riccati equa-
tion (34) coincides with the solution to the time-varying Riccati
equation, must also be unique.

Lemma 6: Suppose Assumptions 1 and 3 hold and there ex-
ists a solution to (34) such that . Suppose
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that there exists an such that
for all and . Then is uniformly continuous and

uniformly.
Proof: Suppose is not continuous. Then there exists a

, an with , an and a sequence
with , such that

for all (45)

or

for all (46)

Suppose (46) is true. Lemma 4 implies that the closed-loop
system is asymptotically stable. Thus, there exists an

such that , where is de-
fined by (36). Since , is continuous
in . Thus, there is an such that if ,

then ; thus,

. Likewise, is con-
tinuous in , where is defined by (38). Thus, there is
an such that if , then

. Set . If we use
the feedback for , and the optimal
feedback for , then the cost will be at least as large as
the optimal cost. That is

where the last inequality follows from (46). Thus,
, which is impossible. Thus, (46) must not

hold.
Similarly, suppose (45) holds. By Lemma 4,

for some and . Thus, there exists an

such that for all and , .
By Assumption 3, and are bounded from above andis
bounded from below. Thus, since , there exists a

such that for all . Therefore, con-
tains a convergent subsequence, . Let

. Similarly, there exists a sub-subsequence
such that exists. In this fashion, de-

fine for . Redefine to be the subsequence such
that for . Let

; then for .

Since , . Further-

more, since the feedback is not necessarily optimal

where the last inequality follows from (45). Thus, (45) must
be false. Therefore, is continuous. Since is compact,
is uniformly continuous.

Since is continuous, is continuous,
monotonically and is compact, it

follows that uniformly. For details, see
[19].

C. Proof of Theorem 2

We prove that for , there exists a such that if
for some , then , where

solves the FARE and solves (15). Since is recurrent, given
, there exists an such that . It

is assumed that is a diffeomorphism and that is struc-
turally stable, i.e., for there exists a such that
if then , where
is the Hausdorff metric and .
Note that if is attracting, then structural stability of
is a generic property [22]. Furthermore, the closure of the recur-
rent set of a hyperbolic system is structurally stable [18].

Lemma 7: Let be a diffeomorphism and be a recurrent
point. For any there exist an and a continuous
such that and .

Proof: Let be a connected compact set with .
implies that there exists asuch that , and

for

implies that (47)

Similarly, implies that there exists awith
such that for

implies that (48)

Now, since is recurrent, there exists an such
that . Thus relation (48) implies that

. Let be a smooth curve
connecting and such that if , then

and .
Let . The closing lemma
[22] implies that there exists a such that

1) for where is the
open -ball around ;

2) ; thus, ;
3) diam ,

diam .
Since diam , and , we have
diam . Since diam , rela-
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tion (47) implies that diam . It follows that
as desired.

Proposition 3: Let . Assume that the LDV system
induced by is stabilizable, is uniformly detectable,

for all , and and are continuous. Then,
for all , there exists a such that if

then

for all

and

for all

where
positive–semidefinite solution to the FARE induced by

;
solution induced by ;

-invariant set.
Proof: See [8].

The above proposition implies that if , and
is structurally stable, there exists a such that if

then . Set-
ting , Lemma 7 provides an such that there
exists an such that with . There-
fore, where solves the

FARE associated with the LDV system . Since
for , we have

, that is, solves (15) and
.
Remark 7: In numerical analysis language, Lemma 7 is the

numerical stability of the algorithm—the computed fixed point
is the exact fixed point for a nearby function. Proposition 3

is the numerical conditioning of the algorithm—a small pertur-
bation of the function results in a small perturbation of the
Riccati solution.
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