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On the Simultaneous Stabilization of
Three or More Plants

Christophe Fonte, Michel Zasadzinski, Christine Bernier-Kazantsev
and Mohamed Darouach

Abstract

In this paper, the problem of the simultaneous stabilization of three multivariable plants is
addressed. We consider the general case where the existence of a unit controller cannot be used as
a sufficient condition to guarantee the existence of a simultaneous controller for three multivariable
plants. The sufficient conditions given in this paper lead to a constructive controller design to
stabilize simultaneously three multivariable plants. A generalization is proposed for stabilizing
simultaneously n multivariable plants.

Keywords

Simultaneous stabilization, Strong stabilization, Parity interlacing property, Youla parametriza-
tion.

Notations :
R[s] : Set of matrices whose elements are proper rational functions

with real coefficients.
RH∞ : Set of matrices whose elements are proper

and stable rational functions.
U : Set of unit matrices over RH∞.
r.c.f. : Right coprime factorization of matrices over RH∞.
l.c.f. : Left coprime factorization of matrices over RH∞.
‖ . ‖ : RH∞ norm ([1], p 22).

I. Introduction

The Youla parametrization has its origin some decades ago (see [2]) and has been success-
fully used to solve many theoretical problems in automatic control, like the simultaneous
stabilizing controller design [3], [4], [5].

The simultaneous stabilization problem of two plants was shown in [6] to be equivalent
to the stabilization of a fictitious plant by a stable controller. The stabilization of a plant
by a stable controller, called strong stabilization, is fully solved by Youla et al. who
provide necessary and sufficient conditions in [2]. Unlike the situation which exists for two
plants, no tractable necessary and sufficient condition exists that guarantees the existence
of a simultaneous stabilizing compensator for three or more linear systems. Only some
sufficient conditions and some necessary conditions are given in [7], [8], [9], [10].

In [9], Wang et al. give sufficient conditions for the existence of a simultaneous com-
pensator if, among three generalized differences between the plants to be simultaneously
stabilized, two generalized differences must be a unit (see Definition 1 for the concept of
generalized difference between three plants).

In [10], Wei introduces a new property, called “even interlacing property”, to show that
the stabilization of a plant by a stable controller having no real unstable zero is a special
case of the stabilization of three plants.
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In [7], [8], Blondel et al. prove that the simultaneous stabilization problem of three
plants is equivalent to stabilizing a fictitious plant by a unit controller if one of the three
generalized differences (see Definition 1) is a unit. They point out that, in this case, the
even interlacing property is not sufficient to ensure that a plant may be stabilized by a unit
controller. Blondel et al. in [7], [8] also show that the even interlacing property is necessary
and sufficient for the existence of a stable compensator and an inverse stable compensator
that both stabilize a monovariable plant or, equivalently, that the even interlacing property
is necessary and sufficient for the existence of a bistable controller providing a closed-loop
with no pole on the positive real axis.

The main purpose of this paper is to study the simultaneous stabilization problem of
three or more multivariable plants, without the assumption that one of the generalized
differences between the plants is a unit. The paper is organized as follows. In section II
we present some preliminaries on the Youla parametrization and existing results on the
simultaneous stabilization of two and three plants are also reviewed. Section III presents
our main results which concern the existence conditions of simultaneous compensators for
three multivariable plants in the case where no generalized difference between the plants
must be a unit. These existence conditions, which are sufficient, are expressed in terms of
Q-parameters. The proposed results are illustrated by a numerical example and a design
procedure is given to compute simultaneous compensators for three systems. Finally the
given approach for three plants is extended to the simultaneous stabilization of n plants.

II. Preliminaries and definitions

A. Youla parametrization and simultaneous stabilization of two plants

Consider (N,D) and (D̃, Ñ) to be an r.c.f. and an l.c.f. over RH∞ respectively of a
linear time-invariant plant P (i.e. P = ND−1 = D̃−1Ñ). Then, for any controller C that
stabilizes P , there exist proper stable rational matrices X, Y , X̃ and Ỹ such that

[
Y X

−Ñ D̃

][
D −X̃

N Ỹ

]
=

[
I 0
0 I

]
(1)

and [
D X̃

−N Ỹ

] [
Y −X

Ñ D̃

]
=

[
I 0
0 I

]
(2)

where (X̃, Ỹ ) and (Y, X) are an r.c.f. and an l.c.f. of a compensator C which stabilizes P .
Denote (XN + Y D) by Φ(C,P ) and (ÑX̃ + D̃Ỹ ) by Φ̃(C,P ). The set of all stabilizing
compensators of P and the set of all proper plants stabilized by a given compensator C
can be defined as follows :
i) the set of all compensators that stabilize P ∈ R[s] is given by Λ1(P ) :

Λ1(P ) := {Cg ∈ R[s] / Φ(Cg, P ) ∈ U , Φ̃(Cg, P ) ∈ U}, (3)

ii) the set of all plants stabilized by a given compensator C is given by Λ2(C) :

Λ2(C) := {Pg ∈ R[s] / Φ(C,Pg) ∈ U , Φ̃(C,Pg) ∈ U}. (4)

Assume that relations (1) and (2) hold, then by using a free parameter Q ∈ RH∞, we
have the two following sets : the set of all stabilizing controllers for a nominal plant [1]
and the set of all plants stabilizable by a given controller.



i) For all Cg ∈ Λ1(P ), there exist free parameters Q ∈ RH∞, Q̃ ∈ RH∞ and V ∈ U ,
Ṽ ∈ U such that

(Yg, Xg) = (V Y −QÑ, V X + QD̃) (5)

(X̃g, Ỹg) = (X̃Ṽ + DQ̃, Ỹ Ṽ −NQ̃) (6)

where (Yg, Xg) and (X̃g, Ỹg) are any l.c.f. and r.c.f. of Cg satisfying det(V Y − QÑ) $= 0
and det(Ỹ Ṽ −NQ̃) $= 0.
ii) For all Pg ∈ Λ2(C), there exist free parameters Q ∈ RH∞, Q̃ ∈ RH∞ and V ∈ U ,
Ṽ ∈ U such that

(Ng, Dg) = (NV + Ỹ Q, DV − X̃Q) (7)

(D̃g, Ñg) = (Ṽ D̃ − Q̃X, Ṽ Ñ + Q̃Y ) (8)

where (Ng, Dg) and (D̃g, Ñg) are any r.c.f. and l.c.f. of Pg satisfying det(DV − X̃Q) $= 0
and det(Ṽ D̃ − Q̃X) $= 0.

Recall that a proper plant is strongly stabilizable if it is stabilizable with stable com-
pensators (see [1], [2]), and a system satisfies the parity interlacing property (p.i.p.) if
and only if it has an even number (counting multiplicities) of poles between each pair of
blocking zeros on the extended positive real axis (see [1], [2]). One of the immediate and
interesting consequences of the above result are the existence conditions of a simultaneous
compensator for two plants.

Theorem 1: (Necessary and sufficient condition for the simultaneous stabilization of two
plants) [1], [6], Let Pi ∈ R[s], Pj ∈ R[s] be two plants. Pi and Pj are described by their
associated r.c.f. and l.c.f. (Ni, Di), (Nj , Dj) and (D̃i, Ñi), (D̃j , Ñj) respectively. Let Ci

be any compensator in Λ1(Pi). Ci is described by an l.c.f. given by (Yi, Xi). The plants
Pi and Pj are simultaneously stabilizable by a controller Csij if and only if there exists
Qsij ∈ RH∞ such that

(Φ(Ci, Pj) + Qsij∆ij) ∈ U with det(Yi −QsijÑi) $= 0 (9)

where ∆ij is the generalized difference between the two plants Pi and Pj defined as

∆ij = D̃iNj − ÑiDj . (10)
The generalized difference ∆ij depends on the chosen factorization of the plants Pi and

Pj . However, ∆ij verifies the following property : the unstable zeros of ∆ij do not depend
on the choice of the plant factorization. Notice that if the plants Pi and Pj are stable,
then the generalized difference ∆ij in (10) can be written as ∆ij = Pj − Pi since Dj and
D̃i can be chosen as Dj = I and D̃i = I.

From the above theorem, note that there exists Qsij ∈ RH∞ given by (9) if and only
if the fictitious plant of r.c.f. (∆ij , Φ(Ci, Pj)) verifies the p.i.p. Substituting Qsij into (5)
with V = I, then the simultaneous stabilizing compensator Csij has an l.c.f. (Ysij , Xsij)
given by

(Ysij , Xsij) = (Yi −QsijÑi, Xi + QsijD̃i). (11)

An immediate consequence of the p.i.p. is that if a monovariable strongly stabilizable
plant with strongly stabilizable inverse is given then this plant satisfies the even interlacing
property, denoted e.i.p. The e.i.p. is defined as follows [3], [10] : a monovariable system
satisfies the even interlacing property if and only if it has an even number (counting
multiplicities) of poles between each pair of zeros and an even number of zeros (counting
multiplicities) between each pair of poles on the extended positive real axis.



B. Some results from the literature on the simultaneous stabilization of three plants

In the litterature some papers treat the problem of the simultaneous stabilization of n
SISO plants with particular constraints, (for example, see [11] for the stabilization of n
plants with a stable compensator). In this part, our recalls are limited to three plants and
general results are given in this case.

B.1 General case

Before tackling the simultaneous stabilization problem of three plants, let us define the
generalized differences between three systems.

Definition 1 (Generalized differences between three systems) Let Pi ∈ R[s], Pj ∈ R[s]
and Pk ∈ R[s] be three plants. The plants Pi, Pj and Pk are described by their associated
r.c.f. (Ni, Di), (Nj , Dj) and (Nk, Dk) respectively, and by their l.c.f. (D̃i, Ñi), (D̃j , Ñj) and
(D̃k, Ñk) respectively. The generalized differences between these three plants are defined
by

∆ij = D̃iNj − ÑiDj , ∆jk = D̃jNk − ÑjDk, ∆ik = D̃iNk − ÑiDk. (12)
A necessary and sufficient condition for simultaneously stabilizing three plants is given

by the following theorem, but this condition is intractable [8].
Theorem 2: (Necessary and sufficient condition for the simultaneous stabilization of

three plants) [8], [10], Let Pi ∈ R[s], Pj ∈ R[s] and Pk ∈ R[s] be three plants. Assume
that Pi, Pj and Pk have no common intersection in the extended right half plane. The
plants Pi, Pj and Pk are simultaneously stabilizable if and only if there exist three unit
matrices Uij , Ujk and Uik such that

∆ijUij + ∆jkUjk + ∆ikUik = 0. (13)
Let us now describe different cases according to whether Uij , Ujk and Uik are units or not

and begin by considering a special case under which the determination of a simultaneous
controller for three plants is easily tractable.

B.2 Assume that ∆jk $∈ U , ∆ik $∈ U and ∆ij ∈ U

In [7], [8], the authors consider the restrictive case where ∆ij ∈ U . They have shown
that the existence of a simultaneous compensator for three monovariable plants when one
generalized difference is a unit (i.e. ∆ij ∈ U , see (12)), is equivalent to showing the
existence of a bistable compensator for the fictitious plant of r.c.f. (∆jk,∆ik). This result
is recalled in the following theorem.

Theorem 3: (Relation between simultaneous stabilization of three plants and unit con-
trollers) [7], [8], Assume that ∆ij ∈ U , then the monovariable plants Pi, Pj and Pk are
simultaneously stabilizable if and only if the fictitious plant of r.c.f. (∆jk,∆ik) is stabiliz-
able by a unit controller.

In [7], [8], [10], it is stated that the examination of the e.i.p. is not sufficient for the
existence of a unit controller as shown in the following theorem.

Lemma 1 (Even interlacing property) [8], [10] A monovariable plant P is stabilizable
by a compensator that has no zero on the positive real axis and that has stable poles if
and only if P verifies the e.i.p.

Indeed, as pointed out by Blondel et al. [7], a plant that satisfies the e.i.p. is stabilizable
by a stable controller and by an inverse stable controller but may not be stabilizable by a
unit controller.

In [7], [8] it is shown that there exists a unit controller that “R+-stabilizes P” if and
only if P verifies the e.i.p., where the notion of “R+-stabilizability” is defined as follows :
a monovariable plant P ∈ R[s] is “R+-stabilizable” if there exists a compensator C such
that the four transfer functions PC(1 + PC)−1, P (1 + PC)−1, C(1 + PC)−1, (1 + PC)−1



have no poles on the extended positive real axis. Therefore the e.i.p. guarantees the
existence of a unit controller which gives no closed-loop pole on the extended positive real
axis but this property does not guarantee the existence of a unit controller that stabilizes
a plant with no unstable closed-loop mode in the complex plane.

III. Main results

A. Simultaneous stabilization of three plants when ∆jk, ∆ik and ∆ij are not necessary in
U

Now consider, for multivariable plants, the general case where ∆jk, ∆ik and ∆ij are
not necessary in U . To derive the existence conditions for the simultaneous stabilization
of three plants, two p.i.p. are examined as in section II-B.2 and a new condition is
introduced in order to constrain a Youla parameter to satisfy a relationship in U . Therefore
a simultaneous compensator for three plants will be obtained by two euclidean divisions in
RH∞ with the remainders belonging to U , and the simultaneous compensator is an affine
function of the quotients of these two successive divisions.

First, sufficient conditions for the simultaneous stabilization of three plants are given.
Theorem 4 (Sufficient conditions for stabilizing three plants simultaneously) Consider three

plants Pi, Pj and Pk described by the r.c.f. (Ni, Di), (Nj , Dj), (Nk, Dk) and the l.c.f.
(D̃i, Ñi), (D̃j , Ñj), (D̃k, Ñk) respectively. Assume that
i) The plants Pi and Pj are simultaneously stabilizable by a compensator Csij described
by the associated l.c.f. and r.c.f. given by (Ysij , Xsij), (X̃sij , Ỹsij), respectively.
Notice that condition i) ensures the existence of a parameter Q̃i ∈ RH∞ satisfying the
following relations

Φ̃(Csij , Pj)−1D̃j = Φ̃(Csij , Pi)−1D̃i − Q̃iXsij , (14)

Φ̃(Csij , Pj)−1Ñj = Φ̃(Csij , Pi)−1Ñi + Q̃iYsij . (15)

ii) There exists Qsjk ∈ RH∞ such that

(Φ(Csij , Pk) + Qsjk∆jk) ∈ U with det(Ysij −QsjkÑj) $= 0, (16)

(I −QsjkΦ̃(Csij , Pj)Q̃i) ∈ U (17)

where the parameter Q̃i satisfies (14)-(15).
Then the plants Pi, Pj and Pk are simultaneously stabilizable.

Proof: Under assumption i), the plants Pi and Pj are simultaneously stabilizable,
i.e. there exists Qsij ∈ RH∞ such that (see Theorem 1)

(Φ(Ci, Pj) + Qsij∆ij) ∈ U with det(Yi −QsijÑi) $= 0 (18)

where Ci is any compensator belonging to Λ1(Pi) and is defined by the l.c.f. (Yi, Xi).
A simultaneous compensator Csij for these two plants may be described by the l.c.f.
(Ysij , Xsij) given by

(Ysij , Xsij) = (Yi −QsijÑi, Xi + QsijD̃i) (19)

where Qsij ∈ RH∞. Denote by (X̃sij , Ỹsij) an r.c.f. of this simultaneous compensator Csij .

Now consider assumption ii). Then there exists Qsjk ∈ RH∞ such that relation
(16) holds. Relation (16) is equivalent to assuming that the fictitious plant of r.c.f.
(∆jk, Φ(Csij , Pk)) verifies the p.i.p. Therefore the plants Pj and Pk are simultaneously



stabilizable. Since Csij belongs to Λ1(Pj), a simultaneous compensator Csjk stabilizing Pj

and Pk may be described by the following l.c.f.

(Ysjk, Xsjk) = (Ysij −QsjkÑj , Xsij + QsjkD̃j). (20)

Since the compensator Csij stabilizes the plants Pi and Pj , i.e. Pi ∈ Λ2(Csij) and
Pj ∈ Λ2(Csij), there exists Q̃i ∈ RH∞ such that relations (14) and (15) hold. Inserting
(14) and (15) in relation (20) gives

Ysjk = (I −QsjkΦ̃(Csij , Pj)Q̃i)Ysij −QsjkΦ̃(Csij , Pj)Φ̃(Csij , Pi)−1Ñi, (21)

Xsjk = (I −QsjkΦ̃(Csij , Pj)Q̃i)Xsij + QsjkΦ̃(Csij , Pj)Φ̃(Csij , Pi)−1D̃i. (22)

Using (17), the controller of l.c.f. (Ysjk, Xsjk) that stabilizes simultaneously Pj and Pk

also stabilizes Pi.
According to assumption ii) of Theorem 4, the problem to be solved can be stated as

follows : find Qsjk ∈ RH∞ such that both (16) and (17) are simultaneously satisfied. A
simple condition on Qsjk is proposed in the following lemma in order to verify (17).

Lemma 2: If there exists Qsjk ∈ RH∞ such that ‖Qsjk‖ < β−1 with ‖Φ̃(Csij , Pj)Q̃i‖ = β

and Q̃i ∈ RH∞, then (I −QsjkΦ̃(Csij , Pj)Q̃i) ∈ U .
Proof: Assume that ‖Qsjk‖ < β−1 and ‖Φ̃(Csij , Pj)Q̃i‖ = β, then the following

inequality
‖Qsjk‖‖Φ̃(Csij , Pj)Q̃i‖ < 1 (23)

holds. Now consider the expression (I −QsjkΦ̃(Csij , Pj)Q̃i) and define U1 = I and U2 =
(I −QsjkΦ̃(Csij , Pj)Q̃i), then we have ‖U1 − U2‖ < 1. From [1] (pp 22-23), ‖U1 − U2‖ <

‖U−1
1 ‖ implies (I −QsjkΦ̃(Csij , Pj)Q̃i) ∈ U .
From assumption i) of Theorem 4, we have Φ̃(Csij , Pj) ∈ U where Csij is a simultaneous

stabilizing compensator for Pi and Pj which can be determined using a method proposed
in [1], [5], [6].

Therefore the assumption i) of Theorem 4 and relations (16) and (23) can be easily
reformulated in order to derive a simultaneous controller for three plants with the same
conditions.

Lemma 3 (Simultaneous controller for three plants) Consider three plants Pi, Pj and
Pk described by the r.c.f. (Ni, Di), (Nj , Dj), (Nk, Dk) and the l.c.f. (D̃i, Ñi), (D̃j , Ñj),(D̃k, Ñk)
respectively and consider the two following assumptions :
i) there exists a compensator Csij ∈ Λ1(Pi) ∩ Λ1(Pj),
ii) there exists Qsjk ∈ RH∞ satisfying (16) such that ‖Qsjk‖‖Φ̃(Csij , Pj)Q̃i‖ < 1 where
Q̃i ∈ RH∞ satisfies (14)-(15).

Then, the three plants Pi, Pj and Pk have a simultaneous stabilizing compensator Csjk

described by the following l.c.f. (Ysjk, Xsjk)

(Ysjk, Xsjk) = (Ysij −QsjkÑj , Xsij + QsjkD̃j) (24)

where det(Ysij −QsjkÑj) $= 0 and (Ysij , Xsij) is an l.c.f. of Csij .
Proof: Obvious from Theorem 4 and Lemma 2.

B. Illustrative example

In order to illustrate the conditions given in Theorem 4 and Lemma 3, we consider
example 2 of [11].



Let Pi, Pj and Pk be three proper plants

Pi =
−s + 2

(s2 − 1)(s + 2)
, Pj =

−s + 2
s2(s + 2)

, Pk =
−s + 2

(s2 + 1)(s + 2)

with the following r.c.f. and l.c.f.

(Ni, Di) =
(
−s + 2
(s + h)2

,
(s2 − 1)(s + 2)

(s + h)2

)
, (D̃i, Ñi) =

(
(s2 − 1)(s + 2)

(s + h)2
,
−s + 2)
(s + h)2

)
,

(Nj , Dj) =
(
−s + 2
(s + h)2

,
s2(s + 2)
(s + h)2

)
, (D̃j , Ñj) =

(
s2(s + 2)
(s + h)2

,
−s + 2
(s + h)2

)
,

(Nk, Dk) =
(
−s + 2
(s + h)2

,
(s2 + 1)(s + 2)

(s + h)2

)
, (D̃k, Ñk) =

(
(s2 + 1)(s + 2)

(s + h)2
,
−s + 2
(s + 3)2

)

where h = 2.12.
The plant Pi is stabilized by the controller Ci of l.c.f.

(Yi, Xi) =
(

121s2 + 364s + 244
(s + b1)2

,
s2 + 8s + 150

(s + b1)2

)
with b1 = 0.02.

The rational functions ∆ij , ∆jk and Φ(Ci, Pi), Φ(Ci, Pj) are given by

∆ij =
s2 − 4

100× (0.01s6 + 0.1272s5 + 0.67416s4 + 1.9056256s3 + 3.029944704s2 + 2.5693931s + 0.9078522318)
,

∆jk =
s2 − 4

100× (0.01s6 + 0.1272s5 + 0.67416s4 + 1.9056256s3 + 3.029944704s2 + 2.5693931s + 0.9078522318)
,

and

Φ(Ci, Pi) =
s5 + 10s4 + 44s3 + 168s2 + 318s + 188

s5 + 6.4s4 + 13.738s3 + 10.07s2 + 0.3865184s + 0.0038112512
∈ U,

Φ(Ci, Pj) =
s5 + 10s4 + 45s3 + 178s2 + 484s + 488

s5 + 6.4s4 + 13.738s3 + 10.07s2 + 0.3865184s + 0.0038112512
/∈ U.

The fictitious plant of r.c.f. (∆ij , Φ(Ci, Pj)) verifies the p.i.p., then the plants Pi and Pj

are simultaneously stabilizable. A simultaneous compensator Csij stabilizing the plants
Pi and Pj is given by the following l.c.f. and r.c.f.

(Ysij , Xsij) =
(

121s2 + 364s + 244
(s + b2)2

,
3s2 + 24s + 196

(s + b2)2

)
,

(X̃sij , Ỹsij) =
(

3s2 + 24s + 196
(s + b2)2

,
121s2 + 364s + 244

(s + b2)2

)

where b2 = 0.002. Then we obtain

Φ(Csij , Pi) =
3s5 + 30s4 + 120s3 + 240s2 + 240s + 96

s5 + 6.364s4 + 13.508644s3 + 9.5820862s2 + 0.0381664448s + 0.000038112512
∈ U,

Φ(Csij , Pj) =
3s5 + 30s4 + 123s3 + 270s2 + 484s + 488

s5 + 6.364s4 + 13.508644s3 + 9.5820862s2 + 0.0381664448s + 0.000038112512
∈ U,

Φ(Csij , Pk) =
3s5 + 30s4 + 126s3 + 300s2 + 728s + 880

s5 + 6.364s4 + 13.508644s3 + 9.5820862s2 + 0.0381664448s + 0.000038112512
$∈ U,

Φ̃(Csij , Pj) = Φ(Csij , Pj) and Φ̃(Csij , Pi) = Φ(Csij , Pi).



The fictitious system of r.c.f. (∆jk, Φ(Csij , Pk)) verifies the p.i.p., then the plants Pj

and Pk are simultaneously stabilizable. A simultaneous compensator Csjk for the plants
Pi, Pj and Pk may be given by the following l.c.f. (Ysjk, Xsjk)

(Ysjk, Xsjk) =
(

121s2 + 364s + 244
(s + b3)2

,
s2 + 8s + 196

(s + b3)2

)

with b3 = 2.
Now, check the conditions given in Theorem 4 and Lemma 3. From relations (14) and

(15), the parameter Q̃i = num eQi

den eQi
∈ RH∞ is described by

numQ̃i =10−6 × (−0.00121s14 − 0.01904088s13 − 0.12562643864s12 − 0.43189118766752s11−
0.70695953507366s10 + 0.14363944483332s9 + 3.11582587574160s8 + 6.58260695694717s7+

6.96868317943686s6 + 3.88504718354848s5 + 0.91686645989331s4 + 0.00718064110044s3+

0.00002138818727s2 + 0.00000002841531s + 0.00000000001418),

denQ̃i =0.00000001089s18 + 0.00000038908080s17 + 0.00000656953344s16 + 0.00006969367924s15+

0.00052142267802s14 + 0.00292939778408s13 + 0.01285222706199s12 + 0.04520044035703s11+

0.12966297409078s10 + 0.30651357256270s9 + 0.59923797995720s8 + 0.96587197317616s7+

1.27079188617297s6 + 1.34115061962108s5 + 1.10549389334584s4 + 0.68374711641405s3+

0.29762694764684s2 + 0.08108827713292s + 0.01037757897121.

The Youla parameter Qsjk = numQsjk

denQsjk
∈ RH∞ in relation (24) is given by

numQsjk =(0.0000242s15 + 0.0007195208s14 + 0.0093898969928s13 + 0.0720199905065s12+

0.36425726318596s11 + 1.28579351965368s10 + 3.25798828355052s9 + 5.98281208585831s8+

7.91323087555328s7 + 7.35888298073673s6 + 4.57058349123792s5 + 1.70440681248100s4+

0.29030342414984s3 + 0.00114090648634s2 + 0.00000113416164s),

denQsjk =0.0000003s15 + 0.0000078012s14 + 0.0001092312012s13 + 0.0009964368312s12+

0.0063040844368s11 + 0.028896604384s10 + 0.09991711080040s9 + 0.2686297218856s8+

0.5687949208064s7 + 0.9439231593216s6 + 1.2009784756864s5 + 1.1127606050048s4+

0.6681166608384s3 + 0.193174351872s2 + 0.00076471552s + 0.00000076206080

and satisfies relation (16) with

(Φ(Csij , Pk)+Qsjk∆jk) =
s5 + 10s4 + 92s3 + 280s2 + 696s + 880

s5 + 10.36s4 + 42.9232s3 + 88.900928s2 + 92.045312s + 38.112512
∈ U.

With the above values of Q̃i and Qsjk, the condition (23) holds, i.e.

‖Qsjk‖‖Φ̃(Csij , Pj)Q̃i‖ = 0.858 < 1,

and relation (17) is satisfied.

C. A design procedure for the simultaneous stabilization of three plants

A tractable solution to the problem of designing controllers that stabilize three plants
(established in Lemma 3) which can be used to obtain a computational framework, is
given by the following algorithm :
i) Choose (Yi, Xi) an l.c.f. of a given controller Ci ∈ Λ1(Pi).



ii) Compute ∆ij and check if the plant of r.c.f. (∆ij , Φ(Ci, Pj)) verifies the p.i.p.
iii) Compute the simultaneous compensator Csij described by the l.c.f. (Ysij , Xsij).
iv) Compute ∆jk and check if the plant of r.c.f. (∆jk, Φ(Csij , Pk)) verifies the p.i.p.
v) Determine Q̃i satisfying (14) and (15).
vi) Find Qsjk satisfying relations (16) and (23).
vii) Compute the simultaneous compensator Csjk described by the l.c.f. (Ysjk, Xsjk) given
by (24).

D. Simultaneous stabilization of n plants

In this section, a generalization of Theorem 4 is given for the simultaneous stabilization
of n plants.

Let P1 ∈ R[s], . . . , Pn−1 ∈ R[s], Pn ∈ R[s] described by their associated r.c.f. and
l.c.f.(N1, D1), . . . , (Nn−1, Dn−1), (Nn, Dn) and (D̃1, Ñ1), . . . , (D̃n−1, Ñn−1), (D̃n, Ñn)
respectively, and define ∆n = D̃n−1Nn − Ñn−1Dn.

Theorem 5 (Sufficient conditions for stabilizing n plants simultaneously) Consider n plants
P1, . . . , Pn−1, Pn described by their associated r.c.f. and l.c.f. (N1, D1), . . . , (Nn−1, Dn−1),
(Nn, Dn) and (D̃1, Ñ1), . . . , (D̃n−1, Ñn−1), (D̃n, Ñn) respectively. Assume that
i) The n−1 plants P1,. . . , Pn−1 are simultaneously stabilizable by a compensator C(1,...,n−1)

of l.c.f. (Y(1,...,n−1), X(1,...,n−1)) and r.c.f. (X̃(1,...,n−1), Ỹ(1,...,n−1)), respectively.
Note that condition i) ensures the existence of the parameters Q̃′

1, . . . , Q̃
′
n−3, Q̃

′
n−2 belong-

ing to RH∞ and satisfying the following expressions




D̃n−1 = Φ̃(C(1,...,n−1), Pn−1)

(
Φ̃(C(1,...,n−1), P1)−1D̃1 − Q̃′

1X(1,...,n−1)

)
,

Ñn−1 = Φ̃(C(1,...,n−1), Pn−1)
(
Φ̃(C(1,...,n−1), P1)−1Ñ1 + Q̃′

1Y(1,...,n−1)

)
,

...



D̃n−1 = Φ̃(C(1,...,n−1), Pn−1)

(
Φ̃(C(1,...,n−1), Pn−3)−1D̃n−3 − Q̃′

n−3X(1,...,n−1)

)
,

Ñn−1 = Φ̃(C(1,...,n−1), Pn−1)
(
Φ̃(C(1,...,n−1), Pn−3)−1Ñn−3 + Q̃′

n−3Y(1,...,n−1)

)
,





D̃n−1,= Φ̃(C(1,...,n−1), Pn−1)

(
Φ̃(C(1,...,n−1), Pn−2)−1D̃n−2 − Q̃′

n−2X(1,...,n−1)

)
,

Ñn−1 = Φ̃(C(1,...,n−1), Pn−1)
(
Φ̃(C(1,...,n−1), Pn−2)−1Ñn−2 + Q̃′

n−2Y(1,...,n−1)

)
.

ii) There exists Qn ∈ RH∞ such that
(
Φ(C(1,...,n−1), Pn) + Qn∆n

)
∈ U with det(Y(1,...,n−1) −QnÑn−1) $= 0 (25)

and

(I −QnΦ̃(C(1,...,n−1), Pn−1)Q′
1) ∈ U (26)

...
(I −QnΦ̃(C(1,...,n−1), Pn−1)Q′

n−3) ∈ U (27)

(I −QnΦ̃(C(1,...,n−1), Pn−1)Q′
n−2) ∈ U (28)

where the parameters Q̃′
1, . . . , Q̃

′
n−3, Q̃

′
n−2 are defined in i).

Then the n plants P1, . . . , Pn−1 and Pn are simultaneously stabilizable.
Proof: This theorem is proved by recurrence using the proof of Theorem 4.

i) Assume that the n− 1 plants P1, . . . , Pn−1 are simultaneously stabilizable by a com-
pensator C(1,...,n−1) described by an l.c.f. (Y(1,...,n−1), X(1,...,n−1)).



ii) Assume that there exists Qn ∈ RH∞ such that relation (25) holds, then the plants
Pn−1 and Pn are simultaneously stabilizable. Since C(1,...,n−1) belongs to Λ1(Pn−1), a
simultaneous compensator C(n−1,n) stabilizing Pn−1 and Pn may be described by the fol-
lowing l.c.f.

(Y(n−1,n), X(n−1,n)) = (Y(1,...,n−1) −QnÑn−1, X(1,...,n−1) + QnD̃n−1). (29)

First, use assumption i) and relation (28) to rewrite the l.c.f. (Y(n−1,n), X(n−1,n)) given
by (29) as an l.c.f. of a controller that stabilizes not only Pn−1 and Pn, but also stabilizes
Pn−2.

Since the compensator C(1,...,n−1) stabilizes the plants Pn−2 and Pn−1, (i.e. Pn−2 ∈
Λ2(C(1,...,n−1)) and Pn−1 ∈ Λ2(C(1,...,n−1))), there exists Q̃′

n−2 ∈ RH∞ such that the pair
(D̃n−1, Ñn−1) may be written as

D̃n−1 = Φ̃(C(1,...,n−1), Pn−1)
(
Φ̃(C(1,...,n−1), Pn−2)−1D̃n−2 − Q̃′

n−2X(1,...,n−1)

)
, (30)

Ñn−1 = Φ̃(C(1,...,n−1), Pn−1)
(
Φ̃(C(1,...,n−1), Pn−2)−1Ñn−2 + Q̃′

n−2Y(1,...,n−1)

)
. (31)

Inserting (30) and (31) in relation (29) gives

Y(n−1,n) =
(
I −QnΦ̃(C(1,...,n−1), Pn−1)Q̃′

n−2

)
Y(1,...,n−1)

− QnΦ̃(C(1,...,n−1), Pn−1)Φ̃(C(1,...,n−1), Pn−2)−1Ñn−2, (32)

X(n−1,n) =
(
I −QnΦ̃(C(1,...,n−1), Pn−1)Q̃′

n−2

)
X(1,...,n−1)

+ QnΦ̃(C(1,...,n−1), Pn−1)Φ̃(C(1,...,n−1), Pn−2)−1D̃n−2. (33)

Then using (28), the controller of l.c.f. (Y(n−1,n), X(n−1,n)) that stabilizes simultaneously
Pn−1 and Pn also stabilizes Pn−2.

Second, we use assumption i) and relation (27) to rewrite the l.c.f. (Y(n−1,n), X(n−1,n))
given by (29) as an l.c.f. of a controller that stabilizes not only Pn−1 and Pn, but also
stabilizes Pn−3.

Since the compensator C(1,...,n−1) stabilizes the plants Pn−3 and Pn−1, (i.e. Pn−3 ∈
Λ2(C(1,...,n−1)) and Pn−1 ∈ Λ2(C(1,...,n−1))), there exists Q̃′

n−3 ∈ RH∞ such that the pair
(D̃n−1, Ñn−1) may be written as

D̃n−1 = Φ̃(C(1,...,n−1), Pn−1)
(
Φ̃(C(1,...,n−1), Pn−3)−1D̃n−3 − Q̃′

n−3X(1,...,n−1)

)
, (34)

Ñn−1 = Φ̃(C(1,...,n−1), Pn−1)
(
Φ̃(C(1,...,n−1), Pn−3)−1Ñn−3 + Q̃′

n−3Y(1,...,n−1)

)
. (35)

Inserting (34) and (35) in relation (29) gives

Y(n−1,n) =
(
I −QnΦ̃(C(1,...,n−1), Pn−1)Q̃′

n−3

)
Y(1,...,n−1)

− QnΦ̃(C(1,...,n−1), Pn−1)Φ̃(C(1,...,n−1), Pn−3)−1Ñn−3, (36)

X(n−1,n) =
(
I −QnΦ̃(C(1,...,n−1), Pn−1)Q̃′

n−3

)
X(1,...,n−1)

+ QnΦ̃(C(1,...,n−1), Pn−1)Φ̃(C(1,...,n−1), Pn−3)−1D̃n−3. (37)

Then using (27), the controller of l.c.f. (Y(n−1,n), X(n−1,n)) that stabilizes simultaneously
Pn−1 and Pn also stabilizes Pn−3.



The same reasoning is applied to the plants Pn−4, . . . , P1. If the following conditions

(I −QnΦ̃(C(1,...,n−1), Pn−1)Q̃′
1) ∈ U (38)

...
(I −QnΦ̃(C(1,...,n−1), Pn−1)Q̃′

n−4) ∈ U (39)

hold where Q′
1, . . . , Q

′
n−4 belong to RH∞, then the controller of l.c.f. (Y(n−1,n), X(n−1,n))

that stabilizes simultaneously Pn−3, Pn−2, Pn−1 and Pn also stabilizes P1, . . ., Pn−4.
Consequently the controller of l.c.f. (Y(n−1,n), X(n−1,n)) stabilizes simultaneously P1,

. . ., Pn−1 and Pn.

IV. Conclusion

In this paper the problem of the simultaneous stabilization of three systems, using the
factorization approach and the Youla parametrization, has been considered. Sufficient
conditions have been given for the simultaneous stabilization of three plants without the
constraint that one of the three generalized differences is a unit. Using these conditions,
a constructive design has been derived to design a simultaneous stabilizing controller
for three plants and these sufficient conditions have been extended to the simultaneous
stabilization of n plants.
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