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A Convergence Analysis of Generalized Hill Climbing Algorithms
Kelly A. Sullivan

(ABSTRACT)

Generalized hill climbing (GHC) algorithms provide a unifying framework for describing
several discrete optimization problem local search heuristics, including simulated annealing
and tabu search. A necessary and a sufficient convergence condition for GHC algorithms are

presented.

The convergence conditions presented in this dissertation are based upon a new iteration
classification scheme for GHC algorithms. The convergence theory for particular formula-
tions of GHC algorithms is presented and the implications discussed. Examples are provided
to illustrate the relationship between the new convergence conditions and previously existing
convergence conditions in the literature. The contributions of the necessary and the sufficient
convergence conditions for GHC algorithms are discussed and future research endeavors are

suggested.

This work received support from the Air Force Office of Scientific Research (F49620-95-1-
0124, F49620-98-1-0111, F49620-98-1-0432).
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Chapter 1

Introduction

1.1 Motivation

Discrete optimization (minimization) problems model many real-world systems. This creates
the need to analyze and solve such problems quickly and efficiently. Discrete optimization
problems can be defined by a countably finite set of solutions, as well as an objective function
value assigned to each solution. Solving a discrete optimization problem requires finding

solutions that globally optimize the objective function.

Many discrete optimization problems are NP-hard [43], hence a polynomial time algorithm
does not exists that can solve such problems, unless P=NP. One method of finding global
optima of a discrete optimization problem is complete enumeration over the entire solution
space. However, if the solution space is large, then limited computing time and the associ-
ated computational costs cause complete enumeration to be highly inefficient. A significant
amount of research attention continues to be focused on developing new heuristics to ob-
tain approximate or near-optimal solutions to NP-hard discrete optimization problems in a

reasonable amount of computing time.

Local search heuristics have enjoyed wide success and popularity in addressing discrete op-
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timization problems, though there are associated disadvantages. For example, many local
search heuristics are unable to state how close a particular solution is to a global optimum.
Furthermore, such heuristics are often problem-specific, focusing on exploiting particular
problem characteristics [62, 77]. In an attempt to resolve these issues, new, more effective
and flexible local search heuristics are being developed to address NP-hard discrete optimiza-
tion problems [3, 93]. Moreover, theoretical results are needed to determine the effectiveness
of and provide performance measures for local search heuristics when applied to a specific
discrete optimization problem. Such theoretical results include convergence conditions, ini-
tial parameter settings, recommended stopping criteria, and measures for the most effective

local search heuristic given a fixed computing budget.

1.2 Research Goals

Several local search heuristics fall under the category of hill climbing algorithms. Such
algorithms strive to escape local optima by accepting inferior solutions in an effort to reach
a global optimum. Typically, restrictions are placed on the acceptance of an inferior solution

to deter these algorithms from randomly searching the entire solution space [93].

Hill climbing algorithms that address intractable discrete optimization problems can be mod-
eled using the generalized hill climbing algorithm framework [71, 72, 73]. The generalized hill
climbing (GHC) algorithm framework encompasses many local search heuristics, including
simulated annealing (SA) [76] and tabu search (TS) [46, 51], two widely applied hill climbing
algorithms. SA is based upon an analogous relationship between discrete optimization and
the physical annealing process. In the annealing process the energy of a system changes
according to a cooling schedule until it converges to a steady (i.e., frozen) state. TS is an
intelligent search technique guided by adaptive or flexible memory structures. Omne such
memory structure is the tabu list, which records recently visited solutions as unacceptable

for a specified number of iterations. The GHC algorithm allows visits to inferior solutions
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according to a random (non-negative) hill climbing variable. The choice of this hill climbing
random variable defines the acceptance probability function, which subsequently uniquely

defines the GHC algorithm.

The popularity of SA has inspired several questions on the convergence of the algorithm.
Much of the existing convergence theory of SA fixes the hill climbing variable as an expo-
nential random variable. A convergence theory that addresses a more general hill climbing
variable is introduced by Anily and Federgruen [5], but their sufficient condition for con-
vergence is restrictive and can be difficult to verify. Furthermore, Anily and Federgruen
do not present computational results comparing the performance of various hill climbing

variables [68].

Johnson [71] and Johnson and Jacobson [73] provide sufficient convergence conditions for a
general hill climbing variable. Their convergence result relaxes the previous sufficient condi-
tions in the literature (predominantly in the SA literature). They also provide computational
results that evaluate the finite-time performance of the GHC algorithm with different hill

climbing variables.

The existing convergence theory of GHC algorithms provides sufficient convergence condi-
tions for the algorithm when applied to a particular discrete optimization problem. The
purpose of this research is to develop a new convergence theory for GHC algorithms that

provides an alternative to the existing convergence theory.

1.3 Generalized Hill Climbing Algorithms

To describe the GHC algorithm framework, several definitions are needed. Define the solution
space, €2, to be the set of all solutions for a discrete optimization (minimization) problem,
where || is assumed to be finite. Define a non-negative objective function ¢ :  — R
that assigns a real value to each element of the solution space. The neighborhood function

n:Q — 2% where n(i) C Q for all i € Q, is an important component of the GHC algorithm.
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The neighborhood function determines adjacent solutions for all solutions in the solution
space and a probability generating function determines a particular neighboring solution to

be generated at each iteration.

GHC algorithms (depicted in pseudo-code in Figure 1.1) are initialized with a solution i € €,
having objective function value ¢;. The total number of outer loop iterations K, the total
number of inner loop iterations N(k), k = 1,2,..., K, and a set of hill climbing random

variables Ry (i,7), 4,7 € Q, j € n(i) must all be specified.

The candidate solution j is chosen (generated) from among the set of neighbors of the current
solution ¢, defined by n(i). The probability of generating a candidate solution j among the

neighbors of solution ¢ at outer loop iteration k is gfj, where

Yogh=1, for ieQ, k=12,... K. (1.1)

jen(i)

The candidate solution j becomes the current solution according to the hill climbing random

variable, which is uniquely defined by R(i,j), 1,5 € Q, j €n(i), k=1,..., K.

Initialization: specify the neighborhood function n and select an initial solution ¢ € €2
Set the outer loop counter k =1
While iteration k£ < K:
Set the inner loop counter n =1
While n < N(k):
Generate j € (i) according to probability g
Calculate the change in objective function value A;; = ¢; — ¢;
Accept solution j (i <= j) if Ri(Z,75) > Ay
n<n+l1
k<k+1

Figure 1.1: The Generalized Hill Climbing Algorithm
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1.4 Research Questions

Two research questions are investigated:

1. What are necessary/sufficient conditions on the transition probabilities between solu-
tions of the solution space €2, such that a GHC algorithm will converge in probability

to the set of globally optimal solutions?

2. How do these necessary /sufficient convergence conditions for GHC algorithms compare

to existing convergence conditions in the literature?



Chapter 2

Literature Review

This chapter presents an overview of the literature pertaining to local search heuristics.
The particular heuristics discussed are simulated annealing, threshold accepting, the nois-
ing method, tabu search, genetic algorithms, and generalized hill climbing algorithms. The
history and development of each heuristic are described; their theoretical results and appli-

cations are also discussed.

2.1 Simulated Annealing

2.1.1 History and Development

Simulated annealing (SA) is motivated by an algorithm from statistical thermodynamics
developed by Metropolis et al. [82] that simulates the cooling of material in a heat bath —
known as annealing. Annealing is a thermal process that finds low energy states of solids.
The annealing process initially melts a crystalline solid and then reduces the temperature
slowly, spending a great deal of time at temperatures close to the freezing point. When a
solid melts to a liquid, the particles are randomly arranged. When the liquid cools back into

a solid state, the structural properties of the cooled solid depend upon the rate of cooling.

6
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If the liquid cools too quickly, the resulting crystal contains imperfections. On the other
hand, a slow cooling schedule allows the solid to obtain its ground state, where the particles
are arranged in a lattice that achieves a minimum energy configuration. The Metropolis
algorithm simulates the change in energy of a system under a particular cooling schedule,

until convergence to a steady (i.e., frozen) state occurs.

The laws of thermodynamics state that the probability of an increase in energy of magnitude
A at a specific temperature ¢ is p(A) = exp(_ﬂ—f) where (3 is the Boltzmann constant. At
iteration k, the Metropolis algorithm generates a new solution j through a small displacement
of a particle in the present solution ¢ and calculates the consequent energy change, A;;. The
new solution j is accepted as the current solution according to the following probability,

known as the Metropolis criterion,
P{Accept solution j as new solution} = (2.1)

where t; is the temperature parameter at iteration k, such that
ty >0 for all k and lim t;, =0 (2.2)
k—4o00

The algorithm follows a carefully designed cooling schedule of temperatures. At each tem-
perature, a large number of iterations is carried out such that the solid can reach thermal

equilibrium.

Approximately thirty years after this initial formulation, the Metropolis algorithm was mod-
ified and applied to discrete optimization problems by Kirkpatrick et al. [76] and, indepen-
dently, by Cerny [16]. They draw analogies between the physical cooling process and discrete
optimization problems, as described in Table 2.1. They show that a discrete optimization
algorithm can be created by randomly searching the neighborhood of the current solution
for a new solution via a neighborhood function and computing the change in the objective

function. An inferior solution is accepted according to the probability given in (2.1). The
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Table 2.1: Analogies Between Physical Cooling Process and Discrete Optimization Problems

Thermodynamic Simulation || Discrete Optimization
System States Feasible Solutions
Energy Cost
Change of State Neighboring Solution
Temperature Control Parameter
Frozen State Heuristic Solution

temperature parameter and the amount of increase in the objective function influence the
extent to which the algorithm hill climbs. When the temperature is high, the algorithm
is likely to accept all solutions, hence hill climb, while a low temperature only allows the

acceptance of better quality solutions.

2.1.2 Theoretical Results

Numerous theoretical convergence results of SA have been published since Kirkpatrick [76]
proposed the application of the annealing algorithm to discrete optimization problems. The
SA algorithm can be modeled using Markov chain analysis. Theoretical results exist for
the algorithm modeled as either a homogeneous Markov chain or an inhomogeneous Markov
chain. These results show that generic and problem-specific decisions within the algorithm
need to be made in order to guarantee convergence. In addition, there has been much research
on the statistical behavior of the algorithm, including such issues as determining suitable

objective functions, neighborhood functions, and parameters for the cooling schedule [93].

Homogeneous Markov Chain Models

When the temperature parameter t; is kept constant for a sufficient number of iterations, the

probability of moving from one solution to another at iteration £ fixed may be represented
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using a transition matrix, P*, where the transition probability of moving from solution i to
solution 7, PZ’;, depends only on ¢ and j, for all 7,5 € €). This representation corresponds

to a homogeneous Markov chain and is used by Aarts and van Laarhoven [2], Duque-Anton
[34], Faigle and Kern [36], Faigle and Schrader [38], Granville et al. [55], Lundy and Mees
[81], and Schuur [100].

This homogeneous Markov chain model representation has a unique stationary probability *
at iteration k, for all i € Q. All of the SA proofs of convergence based on the homogeneous

Markov chain require the sufficient condition of weak reversibility (also known as detailed

balance) [95], defined as

kpk _ _kpk
m, By = m; Py,

for all i,5,€ Q, and all iterations k. (2.3)
A necessary condition for reversibility is multiplicativity [95], defined as
a’;;j(Ahj) = aii(Ahi)aZ(Aij>, for all iterations k, (2.4)

where af,(Ay;) is the probability of accepting the transition from solution h to solution i at

iteration k. Reversibility (2.3) is guaranteed when

1. the transition matrix P* is symmetric, and

2. the acceptance probability function is expressed in an exponential form or the multi-

plicative condition (2.4) is satisfied.

The multiplicative condition (2.4) is required for all the homogeneous proofs of convergence
in the literature. Both Aarts and van Laarhoven [2] and Lundy and Mees [81] present
proofs of convergence for the SA algorithm that require a symmetric transition matrix P*
and the multiplicative condition for the acceptance function. Rossier et al. [96] represent
the acceptance function as a ratio of the stationary probabilities. They also partition the
solution space into blocks and require that the transition probabilities be symmetric among

blocks. Faigle and Shrader [38] and Faigle and Kern [36] describe a graph theoretic approach
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that relaxes the transition probability condition of symmetry, though condition (2.4) is still

required.

Granville et al. [55] apply the SA algorithm for the filtering of binary images. They use
an acceptance function based on the probability of the current solution, rather than on the
objective function of the candidate solution. A proof of asymptotic convergence is presented,
but the proof does not show that the set of globally optimal solutions are asymptotically
uniformly distributed. Duque-Anton [34] uses a homogeneous Markov chain representation to
obtain an efficient method to construct neighborhood functions and transition probabilities
for SA. His method assigns equivalent configurations to the same equivalence class and the
algorithm searches these equivalence classes, including the optimal configuration equivalence
class. Schuur [100] presents a description for the class of acceptance functions that yields

detailed balance for any symmetric transition matrix P*.

Inhomogeneous Markov Chain Models

If the temperature parameter ¢, is not kept constant, but rather reduced after a certain
number of iterations, the SA algorithm can be modeled as a sequence of homogeneous Markov
chains of finite length, or as an inhomogeneous Markov chain, where the probabilities of the
transition matrix, P*, are dependent on the number of iterations already executed. The
inhomogeneous Markov chain approach is used by Anily and Federgruen [5], Belisle [9],
Borkar [12], Chiang and Chow [20, 21], Connors and Kumar [24], Gidas [45], Hajek [58],
Mitra et al. [83], and Trouve [110].

Mitra et al. [83] present a convergence proof that requires the conditions of weak and strong
ergodicity [66, 101]. They also find a bound on the distance between the actual solution
probability distribution and the optimal solution probability distribution after a finite num-
ber of iterations. Anily and Federgruen [5] implement more general acceptance probability
functions into the SA algorithm and present a proof of convergence. The general acceptance

functions must allow the acceptance of an inferior solution with a positive probability and
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must be bounded and asymptotically monotone. Hajek [58] provides necessary and sufficient
conditions for convergence. He derives a cooling schedule, dependent on the shape of the

objective function over the neighborhood function, given by

C

D) (25)

L,

where k is the iteration number. He shows that if ¢ is greater than or equal to the depth of
the deepest local minimum which is not a global minimum, then asymptotic convergence is

guaranteed.

Connors and Kumar [24] employ a concept called orders of recurrence to substantiate Hajek’s
necessary and sufficient conditions. Their SA inhomogeneous Markov chain converges in a
Cesaro sense to the set of solutions having the largest recurrence orders. Similar to the theory
of Connors and Kumar [24], Borkar [12] proves that a SA inhomogeneous Markov chain
converges in a Cesaro sense by redefining the recurrence orders “pathwise” and exploiting a
convergence/oscillation dichotomy result for martingales. Belisle [9] introduces an adaptive,
rather than deterministic, cooling schedule and presents a convergence result consistent with
that of Hajek [58]. Trouve [110] uses a inhomogeneous Markov chain approach to decompose
the solution space into cycles. He proposes an algorithm that computes a cycle decomposition

that may be useful when studying the exact asymptotic behavior of SA on small state spaces.

Generic Decisions

The generic decisions for the SA algorithm involve the cooling schedule and the stopping
criterion. The cooling schedule consists of an initial temperature, ¢y, a temperature function
that determines how to reduce the temperature, and a stopping criterion. It is believed that
if schedules cool over the same range of temperatures at approximately the same rate, then
the choice of cooling schedules does not greatly effect the performance of the SA algorithm.
Moreover, the best parameters for a cooling schedule are determined through extensive

experimentation when first applying SA [74, 75, 93].
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Lundy and Mees [81] suggest a cooling schedule where the algorithm executes only one
iteration at each temperature, but reduces the temperature very slowly. At iteration k, their
temperature reduction function takes the form

_ lp—1
1+ Bty

where tg is defined as the initial temperature and [ is a suitably small value.

72 (2.6)

Hajek [58] develops a cooling schedule (2.5) that reduces the temperature at such a slow rate
that the schedule is not feasible in practice. Also, Hajek’s cooling schedule has not proven

to be very useful since the depth of local optima is difficult to estimate.

Aarts and Korst [1] develop a cooling schedule that guarantees that the final distribution of
the system will be sufficiently close to the stationary distribution (i.e., quasi-equilibrium).
After starting with an initial temperature ty, the temperature is reduced at iteration k

according to the formula

le1
tr—1 In(1+A)
304,

th (2.7)

14
where o0y, , is the standard deviation of the objective function values at temperature ¢_;.
This particular cooling schedule is slower than cooling schedules actually implemented in

practice, hence leads to large run times.

Although SA theory suggests that the temperature should decrease to zero before the algo-
rithm stops, as the temperature approaches zero, the small probability of accepting an uphill
move is indistinguishable from zero. Hence, there is no need to decrease the temperature to
zero before stopping the algorithm. It is best to stop the algorithm when the probability
that the algorithm will escape from the current solution to a superior solution is small. In
order to find a solution that is within € of the global optimum with probability 6, Lundy

and Mees [81] recommend stopping the algorithm when

fo<—
k=m0 1D

0
where (2 is the solution space. Of course, the simplest stopping criterion is to stop the

(2.8)

algorithm after a specified number of iterations are executed. This simple rule needs to be
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carefully fine-tuned against other parameters, such as the temperature parameter, so that

the SA algorithm converges to the global optimum at the fastest rate possible.

Problem-Specific Decisions

When applying SA to a particular discrete optimization problem, there exists problem-
specific decisions concerning how to define the neighborhood function and the objective
function. Furthermore, the solution space for any given problem must be clearly defined.
Once the solution space is set, the neighborhood function and the objective function are

defined such that the SA algorithm can be implemented.

It has been suggested that the size of the neighborhood influences the efficiency of the SA
algorithm [84]. There are several different views regarding the optimal size of a neighborhood.
Cheh et al. [19] demonstrate that a small neighborhood size is beneficial for some problems.
However, Yao [114] suggests that a large neighborhood size improves the performance of SA.
Goldstein and Waterman [53] state that a neighborhood size that is too small or too large
can hinder the performance of the algorithm. A neighborhood size that is too small can lead
to slow (or even no) convergence. On the other hand, a neighborhood size that is too large
can lead to premature convergence. Given Hajek’s [58] result, it is not surprising that the
best neighborhood function imposes a “smooth” topology over the solution space rather than
a “spiky” topology, where there are many deep local minima. In an effort to resolve these
neighborhood function issues, Fleischer [40] and Fleischer and Jacobson [41] model SA as a
Markov information source. By applying information theoretic concepts, they show that the
neighborhood function can affect the information rate or level of total uncertainty associated
with SA. Fleischer [40] shows that as the level of entropy of the associated Markov chain

increases, the finite-time performance of the SA algorithm improves.

It is important to choose the neighborhood function and the objective function so that the
value of a solution can be easily computed. Every objective function is unique to the problem

being analyzed. The objective function is an important factor in the effectiveness of the SA
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algorithm, but a suitable objective function is not always obvious. When the solution space
does not consist entirely of feasible solutions, a penalty function can be integrated into the
objective function; a penalty function is useful when comparing two infeasible solutions to

determine which one is closer to feasibility.

2.1.3 Applications

The SA algorithm has been applied to numerous intractable discrete optimization problems.
Examples of these include flowshop sequencing [90], DNA mapping [53], and image processing
[44]. The SA algorithm has also been applied to a variety of classical discrete optimization
problems. Johnson et al. [74, 75] address the graph partitioning, graph coloring, number
partitioning, and traveling salesman problems using SA. They apply various cooling schedules
and neighborhood functions, where the results are compared with results from other heuristic
techniques. Several other classical problems are investigated by Connolly [25] (quadratic

assignment problem) and Dowsland [31] (the Steiner problem).

The existing applications of SA in a variety of areas demonstrate the robustness of the
algorithm. In general, the SA algorithm is easy to implement, can be applied to most discrete
optimization problems, and usually provides acceptable solutions. The main drawback of

the SA algorithm is the excessively long run time needed for convergence to global optima.

2.2 Threshold Accepting

2.2.1 History and Development

Threshold accepting (TA), proposed by Dueck and Scheuer [33] and independently by Moscato
and Fontanari [85], follows the same structure as SA; the acceptance criteria for new solu-

tions is what distinguishes the two algorithms. TA adopts a simpler deterministic acceptance
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criteria, defined by a threshold parameter. The probability of accepting a transition to an
inferior solution j from the current solution ¢ at iteration k is given by

0, if A;; >
P{Accept solution j as new solution} = J B> Qr (2.9)

Lodf Ay < Qg
where (), is the value of the threshold parameter at iteration k.

Several modifications to the TA algorithm exist. Freisleben and Schulte [42] present a parallel
adaptive TA algorithm. They partition the traveling salesman problem into subproblems and
use an adaptive TA algorithm to solve the subproblems in parallel. Dueck [32] introduces
the great deluge algorithm and the record-to-record travel algorithm with principles taken
from the general TA algorithm. Both of these modified algorithms differ from the original
TA algorithm in their acceptance criteria for inferior solutions. Dueck concludes that the
new algorithms perform as well as the original TA algorithm. A TA strategy called Old
Bachelor Acceptance (OBA) is proposed by Hu et al. [65]. The OBA approach differs from
the original TA algorithm in three ways:

1. the method is specifically motivated by the practicality of a prescribed time constraint
2. the threshold schedule is self-tuning

3. the threshold schedule is non-monotone and negative threshold values are permitted.

Under this formulation, the original TA algorithm becomes a special case of the OBA method.
They conclude that the OBA approach to discrete optimization problems may outperform
other hill climbing algorithms under computing time constraints. Lin et al. [80] present
an adaptive TA algorithm that uses recent search performance to guide the algorithm’s
future performance. Their computational results for three scheduling problems show that TA
algorithms perform as good (or sometimes better) than SA with respect to solution quality
and average computational time. Nissen and Paul [86] introduce a threshold function into

the TA algorithm, similar to the cooling schedule of SA, and analyze the performance.
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2.2.2 Theoretical Results

Despite the similarities between SA and TA, research concerning the theory of TA is quite
scarce. Dueck and Scheuer [33] claim that their TA algorithm produces superior results
to those of SA with respect to the run time and the number of “new configuration choice
steps.” A convergence result is derived by Althofer and Koschnick [4]. They demonstrate
that, in some sense, each execution of SA lies within the convex hull of a set of TA executions
and conclude that TA is provably good; this convergence result is weaker than convergence
results for SA. Jacobson and Yiicesan [69] prove that if Q; — 0 as k — —+o0o, then TA does

not converge to the set of global optima.

2.2.3 Applications

The TA algorithm has been quite successful in applications due to the ease of implementation
and faster execution time (compared to SA). However, the number of applications which have
used TA is small compared to SA. Scheermesser and Bryngdahl [99] present an application
of the TA algorithm to a digital halftoning problem. The TA algorithm is successfully
applied by Chipman and Winker [22] to solve a problem concerning econometric models and
by Lidia and Carr [78] to solve a magnet sorting problem. Lin et al. [80] apply the TA
algorithm to three scheduling problems, while Nissen and Paul [86] apply their modified TA
algorithm to the quadratic assignment problem. Winker and Fang [113] use TA to evaluate

the discrepancy of a given set of points.
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2.3 The Noising Method

2.3.1 History and Development

Charon and Hudry [17] propose the noising method based on a simple descent algorithm. To
implement the noising method, the solution space is altered by adding noise to the problem’s
objective function values. The amount of noise added decreases as the algorithm proceeds.
At the last iteration, no noise is added and the final solution reported is the best solution

obtained during the execution of the algorithm.

2.3.2 Theoretical Results

There has been no published research regarding the theory of the noising method. Charon
and Hudry [17] postulate that the algorithm performs as good as (or even better than) SA,

but there are no theoretical results to substantiate their claim.

2.3.3 Applications

Published applications of the noising method are as scarce as the theoretical results. There
exists literature on the algorithm applied to the clique partitioning problem [17] and to the
problem of constructing covering nodes [18]. Charon and Hudry [17] have results, yet to
be published, on the application of the noising method to the traveling salesman problem
and a specific voting theory problem. Sudhakar and Murthy [104] apply a modified noising
method to the graph partitioning problem. Their results show that for this particular graph
partitioning problem, the modified noising method outperforms the original noising method

and SA, with regard to run time and the quality of solutions obtained.
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2.4 Tabu Search

2.4.1 History and Development

Tabu search (TS) is introduced and described by Glover [46] and Glover and Laguna [51],
and independently by Hansen [59] . The algorithm can be described as an intelligent search
technique guided by adaptive or flexible memory structures. Similar to SA and TA, inferior
solutions to the current solution may be accepted when applying TS; but, unlike SA and
TA, TS uses historical information gathered through memory structures [46] to guide the
algorithm to global optima. The memory structures allow TS to intensify or diversify the

search (when necessary) in an effort to escape local optima.

The short-term memory structure in the algorithm is the tabu list. The tabu list, of length
T, characterizes the solutions visited in the last T iterations and classifies these solutions
as tabu. The purpose of the tabu list is to prevent the algorithm from cycling back to a
recently visited solution. After a new solution is generated, the tabu status is evaluated. If
the new solution is not tabu, it is accepted as the current solution, even if it is an inferior
solution. On the other hand, a tabu solution is only accepted if it satisfies the predefined
aspiration criteria. A common aspiration criterion used for overriding the tabu status consists
of allowing a tabu solution to become the current solution if it is the best solution to date.
There are also long-term memory structures that can be incorporated into TS [49]. For
example, the frequency of previously visited solutions can be used to drive TS into regions
not previously visited. There are many other suggestions of how to refine the TS algorithm

and exploit its flexible memory structures [48, 49].

Several authors have modified the TS algorithm. Glover [47] introduces a probabilistic
acceptance function into the TS algorithm. Battiti and Tecchiolli [7] propose a reactive TS,
which reacts to the occurrence of cycles by adjusting the size of the tabu list throughout the
search. Initially the size of the tabu list is set to one. If the algorithm repeatedly appears

to be visiting previously visited solutions (i.e., cycles), then the tabu list increases in length,
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hence promoting diversification of the search. Furthermore, if no cycles are observed for a
sufficient period of time, then the tabu list is decreased, hence promoting intensification of the
search. Glover [50] presents a hybrid of SA; TA and TS, termed tabu thresholding. Glover’s
tabu thresholding algorithm consists of two phases, the Improving Phase and the Mixed
Phase. The Improving Phase applies a local search method to the solution space, resulting
in a local optimum. Conversely, the Mixed Phase allows the acceptance of inferior solutions.
The algorithm moves back and forth between the two phases. The number of iterations the
algorithm spends in the Mixed Phase is determined by a random or deterministic threshold

schedule. Computational results for tabu thresholding are not reported.

2.4.2 Theoretical Results

Similar to TA and the noising method, very little published theoretical work has been re-
ported for TS. Faigle and Kern [37] provide a convergence result for a probabilistic version
of T'S. Probabilistic T'S incorporates the acceptance function of SA into the TS framework.
Faigle and Kern [37] prove that probabilistic TS converges asymptotically by using method-
ology employed in a previous SA proof of convergence [36]. Similarly, Tian et al. [109]
introduce the acceptance criteria of SA into the framework of T'S. They show that this new
stochastic TS converges asymptotically to the global optima, where the rate of convergence

is faster than that of SA.

2.4.3 Applications

TS has been applied to numerous discrete optimization problems, with most of these ap-
plications occurring over the past ten years. The popularity of T'S can be attributed to its
efficiency and flexibility. Widmer and Hertz (1989) were amongst the first to implement
TS to address scheduling problems. Scheduling continues to provide a fruitful area for the

application of T'S. Other applications explored by TS include problems in flow shop sequenc-



Kelly A. Sullivan Chapter 2. Literature Review 20

ing [106], transportation [89], layout and circuit design [107], probabilistic logic and expert

systems [70, 60], telecommunications [88], graphs [61], and neural networks [29].

2.5 Genetic Algorithms

2.5.1 History and Development

Genetic algorithms (GA) are an adaptive heuristic search technique based on evolutionary
concepts of natural selection and genetics. The first concrete research on GA was published
by Holland [63] and contains much of the initial theory. GA were first proposed by Holland
and his colleagues at the University of Michigan during the 1960’s and 1970’s. Initially,
the research focused on the area of artificial intelligence and function optimization. Only
recently has the research turned toward operations research applications, such as discrete
optimization problems. Within the past several years, GA emerged as a very versatile and
efficient method to address discrete optimization problems; this development has resulted in

an increasing amount of research devoted to the application, practice, and theory of GA.

GA seek optimal solutions to complex problems by combining sections of existing solutions,
similar to how offspring are genetically reproduced. Genetic operators, such as crossover
and mutation, are performed on the solutions. Crossover consists of exchanging sections
of existing solutions. Mutation consists of randomly modifying an existing solution (e.g.,
a permutation of its sections). At each iteration, GA maintain a population of current
solutions (corresponding to parents) whose objective function values are known. Solutions
from this population are chosen to crossover (corresponding to mating) with each other. This
crossover operation is performed randomly and/or based on the objective function values of
the current solutions. The crossover operation produces new solutions (corresponding to
offspring); after applying mutation, the resulting solutions become the current population.

This process is repeated until a stopping criterion is satisfied. Several types of crossover and
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mutation operators exist; the choice of these operators significantly impacts the performance

of the algorithm [26, 93].

2.5.2 Theoretical Results

Much of the current GA theory is based on the initial theory presented by Holland [63]; his
fundamental theorem is the Schema Theorem, where the term schema refers to the similar
beneficial parts among solutions. The schema theorem states that individual solutions with
good, low order schema should be evaluated and allowed to crossover in an exponentially
increasing number of successive populations. Schaffer [98] analyzes the schema theorem and
how it is affected by the solutions chosen to crossover. Bridges and Goldberg [13] extend
the Schema Theorem by calculating the expected number of a given schema in the solution

space.

It is important for GA to converge to global optima at an acceptable rate. Research conducted
on the convergence of GA has focused on one of the following two issues (Patnaik and Srinivas

[103]):

1. finite versus infinite populations

2. homogeneous versus inhomogeneous convergence.

The current focus of GA convergence theory research is on the parameters of the algorithm,
such as population size and mutation probabilities, and how these parameters should be
set such that the algorithm converges to a global optimum at a rate of convergence that is

greater than a predetermined bound.

Grefenstette [56] proposes optimal control parameters that enable GA to balance the ex-
ploitation of previously sampled regions and the exploration of new regions in the solution
space. DeJong and Spears [30] perform a similar analysis on the control parameters, but

base their results on a large population size (100 solutions versus the 30 solution population
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of Grefenstette); due to the larger population, they report different optimal control param-
eters. A convergence analysis of GA is presented by Eiben et al. [35]; the authors use a
Markov chain analysis to obtain a unifying theory for GA and SA. Davis [27] and Davis and
Principe [28] present a convergence theory based on the convergence of SA. Nix and Vose
[87] and Vose [111] demonstrate how their defined GA can be modeled as a Markov chain
and Liepins [79] uses a homogeneous Markov chain model to prove global convergence for
a specific type of GA. Horn [64] applies finite Markov chain analysis for GA with niching.
A finite Markov chain analysis is also used by Rudolph [97] to analyze the convergence of
canonical GA. Barrios et al. [6] develop a convergence theory using a Walsh expansion of the
objective function. Vose [112] presents a convergence theory of GA that concerns a logarith-
mic convergence rate. Thierens and Goldberg [108] model the convergence of different GA
selection schemes by applying concepts of normal distribution theory. Cerf [14, 15] employs
concepts from Freidlin-Wentzell theory (i.e., the study of random perturbations of dynamical
systems) to show asymptotic convergence for a modified GA. By modeling GA as a random
perturbation of a simple selection scheme, Cerf proves convergence to the global optimum
in terms of the population size. Suzuki [105] uses a Markov chain analysis to model GA and
computes a convergence rate in terms of the mutation probability for GA that employs the
modified elitist strategy (i.e., the solution with the best objective value of the current popu-
lation remains in the next population). Since the inception of GA by Holland, the quantity
and quality of research conducted in the field has been increasing. Much of the existing
GA convergence theory is directed towards particular algorithm formulations. Therefore,
the main issues in the investigation of GA are the need for theoretical results regarding

convergence of a general GA formulation and how the algorithm executes.

2.5.3 Applications

The number of successful applications of GA in the literature suggests that GA are a powerful

and robust optimization technique, since the crossover and mutation operators enable GA
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to quickly and effectively search the solution space. GA have been successfully applied
to numerous discrete optimization problems, such as the traveling salesman problem [57],
sequencing and scheduling problems [8, 92], graph coloring [26], knapsack problem [39, 52],
set covering problem [94], and the bin packing problem [91]. As reported by Srinivas and
Patnaik [103], the versatility of GA allows for applications in other diverse areas, such as

music generation, machine learning, and genetic synthesis.

2.6 Generalized Hill Climbing Algorithms

2.6.1 History and Development

The general acceptance probability model, generalized hill climbing (GHC) algorithms, is
introduced by Johnson [71] and Johnson and Jacobson [72, 73]. They propose a hill climbing
algorithm that describes several local search heuristics, based on the choice of the hill climb-
ing random variable. SA, TA, TS, Monte Carlo search, local search, and Weibull accepting
[71] are all particular GHC algorithms, defined uniquely through the hill climbing random
variable. Pseudo-code for GHC algorithms is presented in Figure 1.1.

The GHC algorithm accepts a transition at outer loop iteration k from the current solution

¢ to an inferior solution j according to the following probability

1 Ry(i,j) = Ay
P{Accept solution j as new solution} = (2.10)

0 otherwise

where Ry (i, 7) is the value of the hill climbing random variable for i, j € Q, j € n(i) at outer
loop iteration k. Using this representation (2.10), if R(i,7) = —tiIn(u), i,5 € Q, 7 € n(i),
where 1, is a temperature parameter and u is a U(0, 1) random variable, the resulting GHC
algorithm is SA (see (2.1)). If R(i,j) = Qk, 3,J € Q, j € n(i), where Qi is a non-negative
real constant, the resulting GHC algorithm is TA (see (2.9)). If Ri(i,j) = +o0, i,j € Q,
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j € n(i) = Q, the resulting GHC algorithm is Monte Carlo search (i.e., all new solutions
are accepted, even if the new solution is inferior). If Ri(i,5) = 0, 4,5 € Q, j € n(i),
the resulting GHC algorithm is local search (i.e., only improving solutions are accepted). If
Ri(i,§) = tp(—=In(u))=, i, 7 € Q, j € n(i), where t; is a temperature parameter, u is a U(0, 1)
random variable and o > 0 is a shape parameter, the resulting GHC algorithm is Weibull
accepting, since Ry(4, ) is distributed Weibull with mean ¢,I'(1 + (1)). If Ry(i, j) = 400,
i,j€Q,7€n(i),forj¢ L, and Ri(i,j) = —oo, for j € L, where L is a tabu list of solutions,
the resulting GHC algorithms is TS. In fact, defining Ry(7,j), 4,7 € Q, j € n(i), to be any

random variable results in a unique GHC algorithm.

2.6.2 Theoretical Results

Theoretical results regarding the convergence of GHC algorithms are presented by Johnson
[71] and Johnson and Jacobson [72, 73]. Johnson and Jacobson [72] present a convergence
result for a particular class of GHC algorithms. The particular class of GHC algorithms
requires that the globally optimal objective function value be known. Johnson [71] and
Johnson and Jacobson [73] introduce the notion of paths, defined as a sequence of solutions
between global optimum and/or local optimum, where the intermediate solutions in the se-
quence are not global or local optima. Two paths can either be equivalent to each other or
distinct from each other. Two paths are equivalent to each other if all of the solutions visited
along both paths are identical and if the solutions are visited in the same order. A path
that is not equivalent to any other path is said to be distinct. From these definitions, path
probabilities are constructed. Using a homogeneous Markov chain representation without
reversibility (detailed balance), Johnson [71] and Johnson and Jacobson [73] present suffi-
cient convergence conditions for GHC algorithms. These sufficient conditions relax the most
general proof for convergence currently in the literature ([5]) since their theoretical results do
not require reversibility and exponentially distributed acceptance functions, often required

in past proofs of convergence. According to Johnson [71] and Johnson and Jacobson [73],
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SA and the noising method may converge if defined correctly. However, local search and TA
do not meet the sufficient conditions for convergence (though this does not imply that local

search and TA do not converge to the set of globally optimal solutions).

2.6.3 Applications

Though there are only a few applications under the GHC framework reported, specific GHC
formulations (i.e., SA, TA, TS) have been applied numerous times to a variety of discrete
optimization problems. Johnson [71] applies GHC algorithms to a flexible assembly system
design problem, a generic configuration space problem, and an Air Force manufacturing
process design problem. Jacobson et al. [67, 68] present more extensive results of GHC

algorithms applied to the same Air Force manufacturing process design problem.



Chapter 3

Background and Definitions

The first two sections of this chapter contain definitions, notation, and lemmas from matrix
theory and Markov chain theory that are applied in subsequent chapters. The third section
provides definitions needed to discuss GHC algorithms in greater depth and to introduce a
new iteration classification scheme. The final section describes the convergence results for

GHC algorithms in Johnson [71] and Johnson and Jacobson [73].

3.1 Matrix Definitions and Notation

To define irreducibility and aperiodicity for a matrix A, suppose A = [a;;] is an nxn stochastic

non-negative matrix, where A = [a@) Z(f)

i represents the probability of moving

|. The entry a

from state ¢ to state j after x transitions.

State j is said to be accessible from state i (i.e., 1 — j) if al(-f) > 0 for some z > 0. Two
states ¢ and j that are accessible from each other are said to communicate (i.e., i < j). The

matrix A is irreducible if for all 7,7 = 1,...,n, there exists a positive integer x such that
(z)

a;;’ = P{i — j in x transitions} >0 (i.e., all states communicate with each other).

A state ¢ is said to have period d if al(z-c) = 0 whenever c is not divisible by d and d is

26
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the greatest integer with this property. A state with period 1 is said to be aperiodic. An
irreducible matrix with all states aperiodic is said to be an aperiodic matrix. A non-negative
nxn matrix A is said to be reducible if its rows and columns can be rearranged simultaneously

so that the resulting matrix has the form

A Ap
A= (3.1)
0 A

where Ay and Agy are square matrices. Note that the eigenvalues of A are the eigenvalues

of All and AQQ [54]

Notation for matrices is now introduced. Suppose A = [a;;] and B = [b;;] are matrices of

order (m x n). Then
A>B if aj; > by for all 1=1,...,m, 7=1,...,n,

A>DB if aj; >by; forall i=1,...,m, j=1,...,n.

If wi,ws,...,w, are the eigenvalues of A (an n X n matrix), then
p(A) = max|w;|, for i=1,...,n,
(]

is called the spectral radius of A.

3.2 Matrix Lemmas

Berman and Plemmons [10] and Graham [54] present proofs of the following lemmas.
Lemma 3.1 If A > 0 is irreducible and B > 0, then A+B is irreducible.

Lemma 3.2 If 0 < B < A then p(B) < p(4).

Lemma 3.3 If 0< B <A, A# B, and A+ B is irreducible, then p(B) < p(A).
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Lemma 3.4 If p(A) < 1, then

+oo
(1= A" =Y (4,
q=1
Lemma 3.5 Consider a matriz A = [a;;] of order (n x n). If a; > 0 for alli =1,...,n,

then A is an aperiodic matrix.

3.3 Definitions for GHC Algorithms

The solution space of a discrete optimization problem, €2, can be decomposed into three

mutually exclusive sets:

1. G={G,Gy,...,G,}, the set of v global optima,
2. L=A{Ly,Ly,...,Ly\}, the set of A local (but not global) optima,

3. H={H,, Hy,...,Hy}, the set of ¢ hill solutions,

where ) =GULUH,GNL=GNH=HNL = (. Moreover, the neighborhood function
7 is defined such that for all g € G and all [ € L,

ng)\g € H and n(l)\l € H. (3.2)

Hence, (3.2) states that the neighborhoods of local and global optima contain only hill
solutions. The iterations of a GHC algorithm can be classified as either micro or macro
iterations. A micro iteration is an iteration that moves the algorithm from the current
solution either to an immediate neighbor or back to itself. A macro iteration moves the
algorithm from a global optimum or a local optimum to any global optimum or any local

optimum, passing only through elements of H.
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The iterations of a GHC algorithm can be modeled as a sequence of homogeneous discrete-
time Markov chains. This occurs when, for a fixed outer loop iteration k of the GHC
algorithm, Ry is kept constant for N (k) inner loop iterations before being changed. Note
that if N (k) represents the number of visits to elements of H between visits to elements
of L UG, at outer loop iteration k, then the outer loop iterations can be viewed as macro

iterations, and the inner loop iterations can be viewed as micro iterations.

For a fixed macro iteration k € Z*, the micro transition probability from the current solution

i to a new solution j is defined as

g Pr{Ri(i,§) > Ny} for all i €Q,jen(i),j#i

I
~
~—~
«w
w
~—

k .
Pi=19 1=y P J

0 otherwise

where gfj satisfies the condition in (1.1) and A;; is as defined in Figure 1.1. For a macro

iteration k (fixed), define the micro transition matriz P¥ as

k k k
PGG PGL PGH

P, = Pl Pl Piy (3.4)

Pl Piy P
where the entries of P represent the micro transition probabilities, as defined in (3.3),
between all solutions in the solution space. Without loss of generality, assume that the
micro transition matrix P¥ is irreducible, hence all states communicate for a finite macro
iteration k. The irreducibility of P* together with (1.1) and (3.3) guarantee that PF is
aperiodic, since for any two solutions 4,5 € Q, j € n(i), such that ¢; < ¢;, the micro
transition probability P;; > 0 for some macro iteration k, which is a sufficient criterion for

aperiodicity [23]. Note that for any two solutions i,5 € Q, j € n(i), such that ¢; > ¢,
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the micro transition probability lej = gfj > 0 (i.e., improving solutions when generated are
always accepted).

Without loss of generality for macro iteration k (fixed), assume that the probability the

GHC algorithm remains at a global or local optima is positive:

P&Gi>0 for all i=1,...,v, and

(3.5)
Pijj >0 for all 3=1,... )\
By definition, the rows of the micro transition matrix P¥ sum to one. Therefore,
ok SN G-
Pa,a, + > P, + > Pa,a, =1, (3.6)
= =1 j=1
o - N
> Pra, + ZPLTLJ- + Prog, =1, (3.7)
=1 =1 =1
and
= ok - N
> Pr.a, + > Py, + > Py, =1, (3.8)
1 =1 =1

j=
forq=1,....,v,r=1,...,\,;and s=1,...,¢.

3.4 Existing GHC Convergence Theory

This section presents the existing convergence theory for GHC algorithms. This convergence
theory, presented by Johnson [71] and Johnson and Jacobson [73], contains the most general
convergence results in the literature for GHC algorithms. The following convergence theory

is referenced when discussing the illustrative examples in Chapter 7.

To present this convergence theory, several definitions are needed. The notion of a path is
defined to understand how a GHC algorithm searches the solution space €). A path from 1
to 7, denoted as i = j, for all 4,5 € L UG, is a sequence of solutions ly,ly,...,l; € 2 with

lo=1,lg=7,1l1,lo,...,lq-1 € H, and gl’fmlmJr1 >0 form=0,1,...,d — 1, and for all outer
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loop iterations k. The path probability between any two solutions ¢, 7 € L U G is defined as
P*(i = j).
Recall that the GHC algorithm is composed of an outer loop, indexed on k, and an inner
loop, indexed on n. Define IT¥ as the stationary probability vector for all solutions i € €,
for each k, as N(k) approaches infinity. Define §F as the vector of stationary probabilities
6F for all i € L U G such that )

11

= ——1
7 k-
>ieruc 1L

Theorem 3.1 provides sufficient conditions for the convergence of a GHC algorithm to the

set L UG, as k approaches infinity.

Theorem 3.1 Let (2, ¢) denote an instance of a discrete optimization problem. For a neigh-

borhood function n, let the generation probabilities gfj satisfy (1.1) and the conditions

(a) for all i,j € Q and all outer loop iterations k, there exists an integer d > 1 and a
corresponding sequence of solution lg,ly,ls, ... g € Q, with ly = i,lg = 7, and gfj >

0, m= 0,1,...,d— 1.

(b) limy—i gt >0 for all i, j, € Q,j € n(i).
Moreover, let the acceptance probabilities satisfy

(c) Pr{Ri(i,5) > Ay;} >0 for alli € Q,j € n(i), and all outer loop iterations k,

(d) ¢ < ¢; = limp_yo Pr{Ry(i,j) > Ay} = 0.

Then

lim OF =0 for all i€ H.
k——+o00

Proof:
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See Johnson and Jacobson [73].

¢

The following definitions are used to provide the sufficient convergence conditions in The-
orem 3.2. The path of minimum positive probability between any local (but not global)

optimum and any (local or global) optimum is defined to be
P*(Min_Path) = {P*(j = i)|j € L,i € (LUG), and P*(j =1i) >0 for all k}.

The path of maximum positive probability between any global optimum and any local (but

not global) optimum is defined to be
P*(Maxz_Path) = max{P*(i = j)|i € G,j € L}.

The maximal product of locally (but not globally) optimal solution equilibrium probabilities

and their associated path probabilities to other local (but not global) optima is defined as
P¥(Maz_Prod) = max{0; P*(j = q)|j,q € L,q # j,q ¢ n(j)}-

Theorem 3.2 provides sufficient conditions for the convergence of a GHC algorithm to the

set G as k approaches infinity.

Theorem 3.2 Under the conditions and assumptions of Theorem 3.1, if

(e) 535 P¥(Min_Path) = 40,
(f) 29 P*(Max_Path) < +o0,

(g) i P*(Maxz_Prod) < +oo,

then

. k .
kl_l&l@@ =0 for all j€ L.



Kelly A. Sullivan

Proof:

See Johnson and Jacobson [73].

¢
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Chapter 4

General Convergence Results

Chapter 4 provides necessary /sufficient convergence conditions for GHC algorithms. Section
4.1 expands on the concepts of the iteration classification scheme introduced in Section 3.2
(i.e., micro and macro iterations) for a GHC algorithm; this classification scheme provides
the foundation upon which the convergence conditions are developed. Section 4.2 presents
the necessary /sufficient convergence conditions. The implications of these convergence con-

ditions are discussed in Section 4.3.

4.1 Properties of the Iteration Classification Scheme

The following lemma proves that certain micro transition probabilities have value zero. The
values of these particular micro transition probabilities play an integral role in subsequent

lemmas and proofs.

Lemma 4.1 For macro iteration k (fized), the micro transition probability from a global

optimum to another global optimum, Pck;igj, i,j=1,...,7, 1 # j, or to any local optimum,
P&LT,Z' =1,...,7v, r=1,...,\, 1s zero. Similarly, the micro transition probability from
a local optimum to another local optimum, P}jTLS, r,s =1,...,\, r # s, or to any global

34
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optimum, PfTGi, t=1,...,7, r=1,..., )\, is zero.

Proof:
The result follows from (3.2).

¢

Lemma 4.2 presents a result for the matrix of micro transition probabilities between hill

solutions, P, that is used to prove Lemma 4.3.

Lemma 4.2 For macro iteration k (fixed), consider the irreducible and aperiodic micro

transition matriz P¥ (3.4). The matriz Pt,, a submatriz of Pt satisfies

(1= Phy) ' =S (Pl (4.1)

q=1

Proof:

Since the micro transition matrix P¥ is a stochastic matrix (i.e., P* is a non-negative matrix

and all of the rows of PX sum to one) the spectral radius of PF is one ([10]) (i.e., p(Pk) = 1).

Define the (7 + A+ @) x (7 + A + ¢) matrix PF as

00 0
Pi=loo o |- (4.2)
00 Phy

Since P¥ > 0 is an irreducible matrix (hence P¥ > 0), P¥ + PF is an irreducible matrix (by

Lemma 3.1).

Therefore,
Pt. Pk, P, 00 O
k k
Po=1| P, Pt PE, |21 0 0 O = Py

Pl Piir, Pi 0 0 Py
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Moreover, PF # PF since if not (i.e., Pf = P¥), then

Pk, Pk, Py 00 0
ph=| Pk, PE, P, =100 0 |,
P Phr Prp 0 0 Py

and the rows of the micro transition matrix P¥ no longer sum to one. This means that
P¥ cannot be a transition matrix of a Markov chain, which is a contradiction. Therefore,
P} # Pk,

In addition, since 0 < PF < P% PF £ P* and PF + P is an irreducible matrix, then by
Lemma 3.3

p(Py) < p(Py) = 1. (4-3)

The matrix Pf can be rewritten in the matrix form depicted in (3.1), where A;; = 0 and
Agy = PF,. Therefore, the matrix P is a reducible matrix, where the eigenvalues of PF are

the eigenvalues of the zero matrix (Ay;) and PY,. Therefore,

p(Py) = max{p(0), p(Pprp)}-

Since 0 < Pk ,;, then by Lemma 3.2,

p(0) < p(Prry),

hence
p(Priy) = p(Pr) < L.

The result follows from Lemma 3.4.

<

For macro iteration k (fixed), the macro transition matriz, Py, can now be defined such that
its entries represent the probability of a GHC algorithm moving from a global optimum or a
local optimum to any global optimum or any local optimum. Lemma 4.3 provides a closed

form expression for the macro transition matrix P%;.
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Lemma 4.3 For macro iteration k (fized), the (v + A) x (v + A\) macro transition matriz

Pk, is given by

k k k k

M¢é. q, M q, M, M¢.
k k k k

P]kw — MG»yGl G’YG’Y MG—YLl MG—YLX (4 4)

k k k k

M7 ¢, Mi.¢, Mi L, My 1,
k k k k

My, Mi.¢, M, 1, My 1,

where
MCkJiLT = Pck:iHTkPELM
M’Z,Gi = Pf,HTkaIG,
METLT = PETHTkPI’fIL, + Pf,L,a
METLS = PII?THTkPIIj[Lsa r# s,

k _ pk k pk k

k k gk pk o
MGZ-GJ- = Fo.nT PHGja i #
fori,j=1,....,vandr,s=1,...,\, where

Th = (I - PIIjIH)il'

Proof:

For macro iteration k (fixed), the probability of transitioning from a global optimum Gj,
t=1,...,7, to alocal optimum L,, r = 1,..., A, through ¢ hill solutions, ¢ = 1,2, ..., can

be expressed as

Pen(Pii)™ Prpy,.
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Therefore, the probability of transitioning from a global optimum G; to a local optimum L,
via at least one hill solution (i.e., the probability of a macro iteration) is

+00

> Phu(Phy)"™ ' Prip,, -

qg=1
To calculate the probability of a macro transition, Mél 1., between a global optimum G; and

a local optimum L,, the probability of moving from a global optimum G; to a local optimum

L, without moving through a hill (i.e., a micro iteration), Pck:i 1., must also be included.

Therefore, the probability of a macro transition between a global optimum G; and a local
optimum L, is

“+o0
ko k k \g—1 pk k
Mg, = > Pe.u(Pry)" Py, + Pa.p,-
q=1

The following macro transition probabilities similarly follow:

+o0o
—_— k k N\g—1 pk k
My o, = > Pr y(Pry) Py, + Pra,»
q=1

“+oo
ko k kg1 pk k
Mg,q, = > Péw(Pru) Pra; + Paia;s
g=1

“+oo
ko k k \g—1 pk k
My .= Z Pr o (Prrwr)* Prp, + Pror
g=1

fori,j=1,...,yand r,s=1,..., \.
Let
TF = (I — Phy)~ (4.5)

Lastly from Lemma 4.1 and Lemma 4.2, the macro transition probabilities can be rewritten
as

k _ k k pk
MGZ'LT - PGZHT PHLT ’
k _ k k pk
MLrGi - PLTHT PHGi’

kE_ pk okpk k
My .. =P yT Py, + Pr o,
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MIETLS = PLkTHTkPELSa r# s,
MéG = P(l'i'iHTkPI]fIGi + P&GN
M&Gj = PéiHTkPI]?IGja i 7 7,
fori,j=1,...,yand r,s=1,..., \.
O

Lemma 4.4 proves that the macro transition matrix P, is a stochastic matrix.

Lemma 4.4 For macro iteration k (fized), consider the macro transition matriz Pk, in (4.4).

Then

v A
j=1 j=1
and
v A
S M, + M, =1 @)
j=1 j=1
fori=1,...,v andr=1,...,\. Therefore, all the rows of the macro transition matriz Py,
sum to one.
Proof:

The sum of the rows in P}, (4.4) can be expressed as

ot A ot A
7j=1 7j=1 7j=1 7j=1
and
2l A Y A
> METGJ- +> Mf,Lj => PETHTkPI]fIGj +> PETHTkPI]fILj +Pr (4.9)
7j=1 7j=1 7j=1 7j=1

fori=1,...,yand r =1,..., . First, (4.8) can be rewritten as

¥ A
jagﬂerkzz:}?g(ﬁ +_}%§ﬂ¥jﬁk§£:}ﬁng%_jagﬂ%

j=1 7j=1
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¥ A
= PngTk(ZPEGJ + Z PELj> + PgiGi

j=1 j=1

2 k A k

Y pk A pk
2 =1 Priya; + 251 Pryr,

J

From (3.8), this becomes

I Z?:l Pfl‘thj

¢ k
1 - szl PHQHJ' k

Peu(I = Pppy) ™! + Fec,

1— Z?:l P£I¢Hj

—_
—_

1
= P&H(I — Phy) ' - Phy) N P(]jyai = PCkJiH

— Z Pl + P,

¢
7j=1

+

k

+ Pt

K3 K3

(4.10)

Since P&Lj =0,7=1,...,\ and P&G_j =0,1+# 7, j=1,...,7 (Lemma 4.1), then

from (3.6), (4.10) equals one. (4.9) follows in a similar manner.

O

Lemma 4.5 provides bounds on the number of macro iterations executed within a fixed

number of micro iterations. This result is used in Lemma 4.6 to show that the macro

transition matrix P¥, is irreducible.
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Lemma 4.5 Consider a GHC algorithm execution consisting of a sequence of micro itera-
tions with macro iterations imbedded within these micro iterations. For macro iteration k
(fized), let o, 3 € L UG with Polfﬂ(z) > 0, for z > 0 micro iterations. If D is the number of

macro iterations executed within the given z micro iterations, then

1< D <z, a=[
(4.11)
1<D<z-1, a#p

Proof:

If a = 3, then since the GHC algorithm needs to hill climb in order to leave «, it is possible
that the algorithm never leaves the solution v during all z micro iterations. Therefore, the

maximum number of macro iterations executed during the z micro iterations is z (hence

D < z).

It is also possible that the first iteration takes the algorithm to a hill solution and the
algorithm continues to visit hill solutions until iteration z, when the algorithm returns to
solution a = 3. Therefore, the minimum number of macro iterations executed during the z

micro iterations is 1, hence D > 1. Therefore, 1 < D <z for a= (.

If a # 3, then for the GHC algorithm to move from « to 3 after z iterations, at least one hill
solution needs to be visited, since a and (3 cannot be neighbors. Therefore, the maximum

number of macro iterations executed during the z micro iterations is z — 1, hence D < z — 1.

Similar to the case where o = 3, the minimum number of macro iterations executed during

the z micro iterations is 1, hence D > 1. Therefore, 1 < D <z —1 for a# (.

<

Lemma 4.6 proves that the macro transition matrix P}, is irreducible. This result is used in

a subsequent proof.
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Lemma 4.6 For macro iteration k (fived), the macro transition matriz PY, (4.4) is irre-

ducible.

Proof:

For macro iteration k (fixed), let a, 3 € L U G. Since the micro transition matrix P is

irreducible and aperiodic, there exists a positive integer z such that
k(%)
Py >0
where z represents micro iterations. In other words,

P*{a — B in z micro iterations} > 0.

Suppose @ = (3. From Lemma 4.5, by conditioning on the number of macro iterations

executed during the z micro iterations,
P*{a — Bin z micro iterations} =
z
S~ P*{a — Bin z micro iterations|a — (3 in y macro iterations}x
y=1
P*{a — B in y macro iterations}
Therefore, there exists a positive integer 1 <y < z such that
Pk{a — [ in z micro iterations|a. — (3 in y macro iterations }x

P*{a — B in y macro iterations} > 0.

This means that for all o, 3 € LUG, o = 3, there exists a positive integer 1 < y < z such
that

P*{a — (3 in y macro iterations} > 0,

Suppose a # (. Similar to the above case, for all o, 3 € L UG and « # 3 there exists a

positive integer 1 <y < z — 1 such that P*{a — 3 in y macro iterations} > 0.
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Therefore, the macro transition matrix P¥, is irreducible.

%

Lemma 4.7 establishes the aperiodicity of the macro transition matrix. This result, in

conjunction with Lemma 4.6, is used in subsequent proofs.

Lemma 4.7 For macro iteration k (fized), the macro transition matriz PY, (4.4) is aperi-

odic.

Proof:
Recall from (3.5) that the micro transition probabilities PéiGi > 0,7 =1,...,7, and
Pijj > 0,5=1,...,\ Then
Mg =PhyTVPh G + Pl >0, i=1,...,y
and
Mp . =PrgT P + P >0, j=1,...,\
From Lemma 3.5, the macro transition matrix P}, is aperiodic.

¢

Lemma 4.8 establishes a property of the macro transition probabilities that is used in sub-

sequent proofs.

Lemma 4.8 For macro iteration k (fived) and a macro transition matriz PY,,

2
iirfaxﬂ,{z M&Lj} >0 and (4.12)
et

v
k
Zg%ax/\{]; My} > 0. (4.13)
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Proof:

Suppose that
A
k _
max {Z Me,r,} =0.

~~~~~ Y j=1

Then MéiLj =0foralli=1,...,yand j =1,..., )\ hence P¥ can be written as

All 0

k
Py = , (4.14)
Ay Ag
where
k k
MG1G1 MG1G7
All = )
k k
MGVG1 MQG7
k k k k
]\4L1G1 ]\4,;16;7 ]\4L1L1 ]\4L1LA
Agl = y and A22 = :
k k k k
MLXG1 MLAG7 MLXL] MLXLA

Rearranging the rows and columns of (4.14) so that the resulting matrix has the form

Agp Ay
0 Ay

shows that the macro transition matrix P%, is reducible (see (3.1)). This contradicts Lemma 4.6.

Therefore,
A
max {d_ ME 1> 0.
i=1,...,y = v
Similarly,
¥
k
iil%ax/\{g My} > 0.

~~~~~ j=1
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4.2 Main Results

For macro iteration k (fixed), both the irreducibility and aperiodicity of the macro transition
matrix P¥; guarantee the existence of unique stationary probabilities for the macro transition
matrix [71]. For the macro transition matrix, define the stationary probability of a global
optimum as Hgi, 1 =1,...,7v, and the stationary probability of a local optimum as H’Zj,
j = 1,...,A. The behavior of the stationary probabilities of the global optima and local
optima for macro iteration & (fixed) provide a means to measure the convergence of a GHC
algorithm. Lemma 4.9 provides a lower bound and an upper bound on the sum of the

stationary probabilities of the local optima.

Lemma 4.9 Consider a GHC algorithm with macro transition matriz Py, (Lemma 4.3) for
macro iteration k (fived). Then a lower bound for the sum of the stationary probabilities of

the local optima is

A Hk - min¢:17_,,,y{2§\:1 szHTkP]’;LJ} 4 1
> b>— PG Y ' v pk_Tkpk (4.15)
= mlnzzly.__’a’/{zljzl G H HLJ'} + maX2=1,...,)\{2j=l L;H HGJ'}
An upper bound for this sum is
i o < maxi:L,,,,y{Z?’ﬂ P(liHTkPgM} (4 16)
L; = I | |
5 M A BT Py} b min a (20 PhaT Pha,)

Proof:

For macro iteration k (fixed), the stationary probabilities of the global optima and the local

optima satisfy the equations

" = 11* Pk, (4.17)
Y A
SOIE, + > 1f =1, (4.18)
i=1 j=1

where

¥ = [g,,.... 0¢ 1, ... 15,] > 0.
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These equations can be written as

k _ v k sk X7k AsE -
I1¢, = Z4=1 HGJ-MGJ-GZ- + 251 HLJ-MLJ-G“ =1,y

1, = Y H&-M&-Lj + 0 leiMfiLja J=1l.. A

J
¥ E_ A k
i e, = 1= > =1 HLj

Since the rows of the macro transition matrix, Py, sum to one (Lemma 4.4), then summing

the stationary probability over all local optimum leads to

Z HéﬁMCkv'zLJ + Z Z leszng

Ay AA
j=11i=1 j=1li=1

A
SNk =
-t

J

A A A
M&Lﬂ +> (> MLkiLJ)

1 i=1 j=1

5
= > (I,
i=1

J

Therefore,
v A A

0= 30,3 M)~ ST 3 M) (4.19)

=1 i=1 j=1
If detailed balance (2.3) is required for the macro transition probabilities, then (4.19) follows.
However, (4.19) does not imply detailed balance. Therefore, (4.19) is a relaxation of the
detailed balance requirement of the macro transition probabilities (i.e., it is not necessary to

require the macro transition probabilities satisfy detailed balance).
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Equation (4.19) is used to obtain the lower bound and upper bound for the sum of stationary
probabilities of the local optima, Zf‘zl I1%

Lower Bound:

Since

=L,

for all » =1,...,~, then using (4.19)

gl A A Y
0= Z HG ZMGL Z HL ZMLG > | mln {Z MGL }ZHG Z(le ZMEGJ)
i=1 7j=1 i=1 7j=1 7j=1 = i=1 7j=1

.....

This inequality can be rewritten as

.....

Therefore,
mm {ZMGL}< mln {ZMGL}ZHk ZHL ZMLG
""""" =1 7=1
[ min_ {ZMGL}ZHL méx{ZMLG}ZH"“
A
= [ZH]Z] mm {ZMGL }+ max {ZMLG Ho
b it L et A
hence,
ink > min;—, 7{23 1 GL}
= mingy w{zg 1M(]§L b+ max—y A {X1 M G}

By substitution,

A
k> :
; " mingy A P, HTkPHL } + max;=1,.., ,\{Z  PEyT P}

Upper Bound:

Since

.....
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for all r = 1,...,~, then using (4.19)
- Xk < gk Lk < g
O Z HG Z MG L Z(HLZ Z MLZ'GJ') maX {Z MG L } Z HG Z(HLl Z MLZ'GJ')'
i=1 j=1 i=1 j=1 Loy i=1 j=1

This inequality can be rewritten as

A g
max {Z MGL H ZH L; Z(lele’Lﬂzaﬂ
Loy j=1 i=1

j=1
Therefore,
v
maX {ZMGL > max {ZMGL }an +Z HEZZMLG
> ga%{ZMGL}ZHL [ min, {ZMLG}ZHk
:[Zn’zi] max{ZMGLH min, {ZMLG}
i=1 Ly e
hence,

XA: HE- < maXi:L.w{Z?ﬂ Mck;Z-Lj} ‘
= maXi:l,-n,‘/{Z?:l M&Lj} + min;—y, 2 {>7; lejl.(;j}

X\ pk Tkpk
A maXi=1,.. {251 Po,nT " Pryp, }

<
;= ) k & Dk : v 3 Lpk U
i=1 maXi:l,...,v{Zj:1 PGiHT PHLJ-} + mmz’=1,...,k{2j=1 PLiHT PHGJ-}

To guarantee the convergence of a GHC algorithm to a global optimum, criteria for con-
vergence need to be established. The condition that the sum of the global stationary prob-
abilities converges to one and each local stationary probability converges to zero as macro
iteration k& — +o0o is a sufficient condition for the convergence in probability of a GHC

algorithms to a global optimum.

Theorem 4.1 provides necessary /sufficient conditions for the convergence in probability of a

GHC algorithm.
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Theorem 4.1

Under the conditions and assumptions of Lemma 4.9,

A) If
lim I} =0,i=1,...,A,
k—+oo
then . A k k pk
. min;—q .. V{ijl PGZ-HT PHLj} _
k—+oo | MaX;—1,.. /\{Z;ﬂ PIIZHTkaIGj}
B) If
. max;—i,..., 7{2?21 PclgiHTkaILj} =0
e e V{Z;\:l PC’“;iHTkPE{Lj} +ming—y, 2 {>] PﬂHT’“P]’f{Gj}
then
lim Hi:()??/:]_?.,A
k—4o0o0
Proof:

A) Assume that limj_ 4o IIf =0fori=1,... A\

Then, for all 0 < ¢; < %, there exists a positive integer K; such that HIZZ_ <eg¢ forall k> K;

and ¢ =1,...,\. By summing over all i,

A
> I, <€
i=1

MEDY, € =2 e,and 0 <€ < 1.

.....

A
< Z e <¢
: A = L —=

MiNj—1,..., V{ijl P(]f:iHTkale} + max;=, .., /\{237':1 PIIZHTkPII?IGj} i=1 7

for all £ > K.

After inverting both sides of this inequality, for all £ > K,
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mini, o {550 PEa T Ph,} + maxioy, \{S)o1 PEnT P} 1

: A k k — ¢’
mln¢:1,...,w{2jz1 PGiHTkPHLj} ,

M

maXi:l,...,A{Z}:l PﬂHTkPI];Gj}

- X pk _Tkpk
min—1, {370 Péu T Py, }

+1>

(T\\lp—l

?

maxi—1 \{¥] PEp T Pha,} 1

: X =
mlni:L...;y{ijl PCkT'iHTkPIng} ¢

_17

maXz’:l,...,A{Z}/zl PﬂHTkP]EIGj} 1—¢

; X -
m1n¢:1,,,,,~/{2j:1 P(’EiHTkaILj} ¢

Since max;—1,.. {2 /= PﬂHT’“PI’}Gj} > 0 (see (4.13)) it is valid to invert both sides of this

inequality, hence

. A k k pk
mlni:L,,,;y{Zj:l PG‘LHT PHLj} EI

max;—1, {2/ Pﬂ.HT"’PI’flgj} —1—¢’

where 0 < € < 1.

If

/

1—¢€’

5:

then for all 6 > 0 there exists an 0 < € < 1, hence there exists a positive integer K such

that A k k pk
mlni:L,,,;y{Zj:l PGZHT PHLj} < 5
max; (3] PErT P,y —
i=1,.., A\ 2uj=1 L L;H HG;

for all £k > K.

Therefore,
- minz-:l,,,,,y{z:?ﬂ Pck:,-HTkPﬁILj} _

koo maxizl,,,,,x{zzﬂ PLkiHTkaIGj}
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B) Assume that

0.

lim
k—+oo [ max;—;

<9

..........

forall £ > K.

Using the upper bound (4.16) for S, 1§ | =% II¥ < 4. Therefore, 11§ < 4 for all i =
1,2,...,\

This means that for all 6 > 0, there exists a positive integer K such that
Iy <6
forall k> K and i =1,..., A, hence,

lim I8 =0,i=1,...,\
k—4o00 ’

¢

Given a GHC algorithm applied to a solution space §2 with neighborhood function 7, Corol-
lary 4.1 provides a relaxed sufficient convergence condition that follows from Theorem 4.1if
for all macro iterations k, each local optimum of the solution space is able to reach at least

one global optimum by passing only through solutions of H.

Corollary 4.1

Under the conditions and assumptions of Lemma 4.9, suppose that a neighborhood function
n is defined such that the macro transition probabilities from all local optima to at least one

global optimum 1s positive. If

lim o
- Y E k ’
k—+oo | Min;—q A{Zj:l PLiHTkPHGj}

.....
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then
lim HL =0,1=1,..., A
k—4o0
Proof:
From Lemma 4.8 and under the given assumptions, for all 2 = 1,..., A,
M’Eigj >0, for at least one j=1,...,7.
Therefore,

mm {ZMLG}>O

~~~~~ j=1

or equivalently,

mln {Z PL HTkPHG }>0.

----- j=1

Therefore, for all 6 > 0, there exists a positive integer K such that

.....

lim
k—+co | min_; A{ZJ 1PL HTkPHG}

.....

¢

From (4.18), Y0 I, + >0, H’Zj = 1 at macro iteration k (fixed). Since there exists a
finite number of global and local optima, then limg_, | o H]Zj =0forall j=1,..., ], if and

only if limg o0 D7, Hgi = 1. This result, together with Theorem 4.1, provides a necessary

52

condition and a sufficient condition for the convergence of GHC algorithms, based on the

stationary probabilities of the local and global optima.
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4.3 Implications of Main Results

Given the macro transition matrix (4.4), when the sufficient convergence condition for the
macro transition probabilities in Corollary 4.1 is satisfied and the assumptions of Corol-
lary 4.1 hold, the set of global optima, G, must occur with probability one as macro iter-
ation k approaches positive infinity (since the equilibrium probabilities for any solution in
L approach zero). Intuitively, the sufficient convergence condition states that if the largest
probability of escaping any global optimum to a local optimum in a macro iteration con-
verges to zero faster than the smallest probability of escaping any local optimum to a global
optimum in a macro iteration, then the GHC algorithm converges to the set of global optima.
Similarly, the necessary convergence condition in Theorem 4.1 states if the GHC algorithm
converges to the set of global optima, then the smallest probability of escaping any global
optimum to a local optimum in a macro iteration converges to zero faster than the largest
probability of escaping any local optimum to a global optimum in a macro iteration. These
necessary /sufficient conditions provide an alternative approach to evaluating GHC algorithm
convergence. In order to apply these conditions, a ratio of macro transition probabilities is

calculated. This contrasts previous conditions that focus solely on summations of probabil-

ities ([73]).



Chapter 5

Convergence Result Applications

Chapter 5 presents two illustrations of the convergence results in Chapter 4. Theorem 4.1
applies to a solution space of a discrete optimization problem with ~ global optima, A local
optima, and ¢ hill solutions. The first case restricts the solution space to one global optimum
and one local optimum (i.e., v = 1, A = 1). The second case restricts the solution space to

one global optimum and A local optima (i.e., v = 1).

5.1 Case 1: |G|=1and |L|=1

Consider a solution space with a neighborhood function for which there is one global opti-
mum, v = 1, and one local optimum, A = 1. For this case, the lower bound and upper bound
on the stationary probability of the local optimum are equal. A closed form expression for

the stationary probabilities of the global and local optimum is presented in Corollary 5.1.

Corollary 5.1 Consider a GHC algorithm with macro transition matriz PY; (Lemma 4.3)

for macro iteration k (fized). The stationary probabilities of the global optimum, 11, and

o4
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local optimum, 1% | are

Pk, Tk Pk
I, = LiZ —HE d 5.1
“  PhyTHPE, + PE,THPE o 5:1)
I GHZ ~ HL (5.2)

 PEyT*Pl, + PiyTrPEG

Corollary 5.2 provides necessary/sufficient convergence conditions that follow from Theo-
rem 4.1. Note that for this case, the necessary and the sufficient convergence conditions are

equivalent.

Corollary 5.2 Under the conditions and assumptions of Corollary 5.1,

: kE __ . k _
Jim T =L ond i 11 =0

if and only if
o [BTP]
koo | PEgTFPlig '

5.2 Case 2: |G|=1and |L| =\

Consider a solution space with a neighborhood function for which there is one global opti-
mum, v = 1, and A local optima. From Lemma 4.9, Corollary 5.3 provides lower and upper

bounds on the sum of the stationary probabilities of the local optima.

Corollary 5.3 Consider a GHC algorithm with macro transition matriz Py, (Lemma 4.3)
for macro iteration k (fixred). A lower bound for the sum of the stationary probabilities of
the local optima is

A o > Z?=1 Pc]gHTkPJIfILj
Z L; = ZA Pk Tkpk + . {pk Tkpk }’
i=1 j=14aH Hr; TMaXi—,. 4L H HG

.....

(5.3)
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while an upper bound for this sum is

- ) PhaT Pl
i=1 e Z;\:l P(lﬁHTkPJIfILJ— + ming—; /\{PﬂHTkaIG}

.....

(5.4)

Corollary 5.4 provides necessary/sufficient convergence conditions that follow from Theo-

rem 4.1.

Corollary 5.4 Under the conditions and assumptions of Corollary 5.3,

A) If
lim T8 =0,i=1,...,),
k—+o00 !
then
. Z;\:l Pck:HTkPﬁer
lim T - T =0.
k—+o0 max;—i,..., )\{PLIHTICPHG}
B) If
- S Py TFPg, Ly
k—+o00 Z_]:l PCkTvHTkPII_CILJ + mlnzzl ..... A{PLIZHTkPII‘fIG}
then

lim II¥ =0,i=1,...,\
k—+o00 !

Corollary 5.5 provides a sufficient convergence condition that follows from Corollary 4.1.
Given a GHC algorithm applied to a solution space 2 with neighborhood function 7, this
sufficient convergence condition results if for all macro iterations k, each local optimum of
the solution space is able to reach at least one global optimum by passing only through

solutions of H.
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Corollary 5.5 Under the conditions and assumptions of Corollary 5.3 and Corollary 4.1,

If
> PenT" Py,

=0
MPLaT Prc}

lim -
k—+oo | MIn;—q

.....

then

lim 1I¥ =0,i=1,...,\
k—+4o00 v

Following from Theorem 4.1 and Corollary 4.1, Corollary 5.4 and Corollary 5.5 provide
necessary /sufficient convergence conditions for a GHC algorithm given that the solution

space contains one global optimum and multiple local optima.



Chapter 6

Convergence Results for Particular

Hill Climbing Variable Forms

Chapter 6 presents the convergence results in Chapter 4 for two particular GHC algorithm
formulations. The significance of these results are also discussed. The first section restricts
the solution space to eight elements and the hill climbing random variables to specific ra-
tional functions [102]. The second section restricts the hill climbing random variable to be

exponential (hence SA).

6.1 Hill Climbing Variables as Rational Functions

Consider the eight element solution space in Figure 6.1, where G = {p1,p2}, L = {q1, ¢2},
and H = {ry,re,r3,74}. The neighborhood function is defined by the lines connecting the
solutions. Let the micro transition probabilities be defined (for all macro iterations k > 2)

from the micro transition matrix in Figure 6.2, where the rows are arranged in the order

P1,0P2,41,92,71,T2,7T3,T4.

Note that gfj = % for all i € Q, j € n(i), and for all macro iterations £k > 2. Also,

o8
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Py Mg

O f3

Iz P2

Figure 6.1: Solution Space for the Hill Climbing Variables as Rational Functions

1— 2 0 0 0 s 0 0 5

0 1-: 0 0 0 o 507 O

0 0 1— 0 7w g 00
pk 0 0 0 L - # 0 0 213&2 2k1a2
" L 0 L 0 0 0 0 0
0 : ] 0 0o 0 0 0

0 ] 0 ] 0o 0 0 0

: 0 0 3 o 0 0 0

Figure 6.2: The Micro Transition Matrix P¥ (Hill Climbing Variables as Rational Functions)

;7

Ri(pi,r;) = @%}) for all p;,r; € Q, i = 1,2, and j = 1,2,3,4, and Ry(q;,7;) = i)
for all ¢;,r; € Q, i = 1,2, and j = 1,2,3,4, where U is distributed U(0,1). Then
Pr{Ri(pi,rj) > Ap,} = k%, for all i = 1,2, and j = 1,2,3,4, and all macro iterations
k > 2. In addition, Pr{Ry(q;,7;) > Agr;} = # foralli = 1,2 and j = 1,2,3,4, and all
macro iterations k > 2. Therefore, for all macro iterations k finite, all solutions in €2 com-
municate, implying that the micro transition matrix, P¥  is irreducible. The irreducibility of
PF together with (1.1) and (3.3) guarantee that P¥ is aperiodic, since for any two solutions

i,j € Q, j € n(i), such that ¢; < ¢;, the micro transition probability P > 0, which is a
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sufficient criterion for aperiodicity [23].

Corollary 6.1 presents necessary and sufficient convergence conditions for this GHC algo-
rithm. These convergence conditions provide a more efficient means to establish convergence,

as compared to the necessary/sufficient conditions in Theorem 4.1.

Corollary 6.1 Given the solution space depicted in Figure 6.1 and the micro transition

matriz defined in Figure 6.2,

. k . k
kl_lilrloo qu =0 and kl_lilrloo qu =0

if and only if (al —a2) > 0.

Proof:

A) (Necessary) From Theorem 4.1, the necessary condition for convergence of a GHC

algorithm is

lim
k—+o00

[min¢:1,2{zg—1 PZZHTkaIqj} (6.1)

2
maxi— 2{ 7 Py T*PF, }

Since PY; = 0, the matrix 7% = I. Therefore, (6.1) reduces to

. 2 k k
. mini— 2{>5_ Py P, } 0
2 k_pk ’
k—+o00 maX¢:172{Z]’=1 PquPHPj}
For this example,
1 L : ;
pko | 2k 0 0 5 Pk 7w gV 0
k= ) LH — ’
0 1 1 0 0 0 z :
e e 2)a2 2ka2
. 1
3 0 7 0
. 1
Pk 0 3 and P, = | 2 ’
HG — 1 HL = L
0 1 0 3
. 1
3 0 0 2
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It follows that

. 2 k k
' m1n¢:172{2j:1 PpiHPqu}
2
k——+o00 maXi:LQ{ijl PtZHPfIPj}

. 1 1 1

. 1 mln{ 2kals 9fal } o 1 2kal

= L 1m 1 1 = L 11m i
—+0o0 maX{ 2ka2y 9fa2 } —+0o0 2ka2

~ lim #}
o | T(a1—a2)
Therefore,
in;— 2 Pk _TkpE
k—.>+oo [2;1_12??%_11 [%%Z,Tkpg:j =0 if and only if kl—lgloo m} —0.
Lastly,
k1—1>I—|I—1c>o ﬁ} =0 if and only if (al —a2) >0,

hence (al — a2) > 0 is a necessary convergence condition for this GHC algorithm.

B) (Sufficient) From Theorem 4.1, the sufficient condition for convergence of a GHC algo-
rithm is
maxi:172{2§:1 P]iHTkPII—gI%}

lim :
k—-+o00 [maXi:LQ{Z?_I PgﬁHTkalqy} + IIllIli:LQ{Z?:l quiHTkPPkI%}

—0. (6.2

Since PE; = 0, the matrix 7% = I. Therefore, (6.2) reduces to

2
y maX¢:1,2{Zj:1 P;]ZHPI];J(%} 0
im e
. : 2
koo | maxi— o{ X5y By Parg, } + minim1 o{3501 B Py, }
It follows that
2
y maXizl,Q{ijl PZ]:;HP}?Iqj}
im
. . 2
ot maXi:1,2{Zj=1 P;lelflqj} + mlni:LQ{ijl PCZHP.][?[pj}
1 1 !
o max{ 5ot 5pat f T 2k
" it | ma {5, 555} + min{sls, 55 S W —
X\ fat ) Jfal min{ 55, 55 ) T LT T g
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oy 1
e T n k(al—a2)} :
Therefore,
max;— 12{2:] 1 HTkPHq} 0
k—>+00 max;— 12{2] 1PkH’T’“PHq}+m1nZ 12{23 1PkHTkPHp}
f and only if i ! } 0
if and only i m |y | = O
Yy 1+ka1 a2
Lastly,
: 1 4 .
GJm m} =0 if and only if (al —a2) >0,

hence (al —a2) > 0 is a sufficient convergence condition for this GHC algorithm.

Therefore, the necessary /sufficient conditions in Theorem 4.1 reduce to a single necessary
and sufficient condition for the GHC algorithm for this particular solution space and neigh-

borhood function.

O

To establish convergence using the necessary and sufficient conditions in Corollary 6.1, the
exponents of the rational functions that define the hill climbing random variables need to sat-
isfy a simple inequality (i.e., (al —a2) > 0), compared to the necessary/sufficient conditions
in Theorem 4.1, which require calculating the ratio of the macro transition probabilities. Fur-
thermore, the necessary and the sufficient conditions in Corollary 6.1 are equivalent, hence
the condition determines both convergence or non-convergence. Moreover, Corollary 6.1
provides a condition that is not as computationally intensive as the necessary/sufficient

conditions in Theorem 4.1.
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6.2 Exponential Hill Climbing Variable

This section shows that by restricting a GHC algorithm to an exponential hill climbing
random variable (i.e., SA), the convergence condition in Theorem 4.1 and the sufficient
condition in Corollary 4.1 are equivalent to Hajek’s [58] necessary and sufficient convergence
conditions. Hajek proves that the SA algorithm converges in probability to the set of global
optima, G, if and only if ;7 67% = +00, where t; is a non-increasing cooling schedule
(at iteration k) approaching zero as k — +o0o and d* is the maximum depth of all elements
in L. The depth of an element in L U G is defined to be the smallest difference in objective
function values between the element of L UG and a solution of H, such that another element
in L UG can be reached from this solution in H using local search. Hajek’s result assumes
that the depth of any element of G is positive infinity. Hence, once the SA algorithm reaches
an element in G, the probability that the algorithm will escape and never return to this

global optimum is zero.

Define dg, to be the depth of G;, i = 1,...,7. Therefore,
dGi = min{dGiL, dGiG}; 1= 1, ooy Y (63)

where dg, 1, is defined as the smallest difference in objective function values between G; and
a solution of H, such that another element in L can be reached from this solution in H by

means of local search; dg,¢ is similarly defined.

Similarly,
dLj = min{dLjL, dng}, j = 1, ceey A (64)

The following corollary provides the necessary /sufficient convergence conditions for SA, using

the GHC convergence conditions in Theorem 4.1 and Corollary 4.1.

Corollary 6.2 Consider a GHC algorithm with macro transition matriz PY, (Lemma 4.3)
for macro iteration k (fized), and Ry (i,j) = —ti In(u), i,j € Q, j € n(i), wherew is a U(0, 1)

random variable. Assume that ty is a non-increasing cooling schedule at macro iteration k
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that approaches zero as k — +o0o. Under the conditions and assumptions of Lemma 4.9 and

Corollary 4.1,

A) If
1—1>r—|{loo HL =0,i=1...,4
then
] MgminL
B) If y
lim [%] -0
k—-+00 MmeG
then
1—1>I—|1-’loo HL = 0 1= 1 )\
where
Mt = min {Z Mg} = . min {Z PhuT" Py},
oY [t
Mg,,,r, = ,max {Z Mg} = max {Z Pl T Pl b,
M = Ioin, {Z M},G,} = min {Z P yT" Pl ).
and

MfmmG = max {Z ML G b= max {Z PL HTkPHG }

17 7 7 7

In addz’tz’on,forizl,...,%]:1,...,/\

pk = [ koo o7 Tt ko T T ] j 2a— [ ko o7 Tk ko oT T ]
GH = Y9G, m - 9a,H, v Yoym = 9n,m -0 9LH, 5
Mg ARy, AHy L, AHErL-

ko 1k k - t E_ - - t
Pha, = 9iae ™ ERREE) e I, and PHLj—[ngLje o gge kN
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Proof:

Follows directly by the definition of macro transition probabilities and Theorem 4.1.

¢

The following lemma establishes the order of the macro transition probabilities defined in

Corollary 6.2.

Lemma 6.1 Consider a GHC algorithm with macro transition matriz PY, (Lemma 4.3) for
macro iteration k (fived), and Ry(i,j) = —tgIn(u), i,j € Q, j € n(i), where u is a U(0,1)
random variable. Assume that t;, is a non-increasing cooling schedule at macro iteration k,

that approaches zero as k — +00. At macro iteration k,

Proof:

Since the hill climbing random variable at macro iteration k is exponential with mean t;,

then for alli =1,...,7,
ME = O(P{moving from G; to an element of L})

= O(P{accepting hill climbing moves out of G; to an element of L})

—deq.
G;L

:O(e tg )

for t;. sufficiently close to zero. Similarly,

—dr .G

ijG:O(e S ), for all j=1,...,)

for t; sufficiently close to zero.

%
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Lemma 6.2 proves the relationship between Hajek’s necessary and sufficient conditions and
the necessary condition in Theorem 4.1 and the sufficient condition in Corollary 4.1, given
that the GHC algorithm is restricted to an exponential hill climbing random variable. Hajek’s
necessary condition implies the necessary condition in Theorem 4.1 when the hill climbing
random variable is exponential, hence, the necessary condition generalizes Hajek’s necessary
condition beyond an exponential hill climbing random variable. The sufficient condition
in Corollary 4.1 is equivalent to Hajek’s sufficient condition given the assumptions of the
corollary and the restriction of an exponential hill climbing random variable. Moreover,
the sufficient condition in Corollary 4.1 generalizes Hajek’s sufficient condition beyond an

exponential hill climbing random variable.

Lemma 6.2  Consider a GHC algorithm with macro transition matriz P¥, (Lemma 4.3)
for macro iteration k (fized), and Ry (i,j) = —ti In(u), i,j € Q, j € n(i), wherew is a U(0, 1)
random variable. Assume that ty is a non-increasing cooling schedule at macro iteration k
that approaches zero as k — 400 and the depth of any global optima is +o0co. Under the

conditions and assumptions of Lemma 4.9 and Corollary 4.1,

A)
too g o [ME
If kz_:le " =+oo, then  lim [—M’g:ngl = 0.

B)

i M(% I 0 i d i v i =

——mar® | — ty = .

Jm erfmmG of and tf only if 1;16 400

Proof:

A) Tt follows from 7% e % = +oo that

Y
M} o= irllaXA{Z M’L‘“iG]_} >0 for all macro iterations k finite.

J=1
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To see this, by contradiction, suppose that there exists a macro iteration K such that

M }jmwg = 0 for all k£ > K (note that t; non-increasing at macro iteration k and approaching
_dr

zero as k — +oo implies limy_.yoo M} - =0). It then follows that ¢ * =0 for all k > K,

_d*
hence 3725 ¢ * < +o0, which is a contradiction.

Therefore, from Lemma 6.1, there exists a constant ¢ > 0 and a macro iteration kg such that

for all k£ > ky,

—dg, . L
— —mn—
ME . ceT
min <
E = E .
My, ..c = M ..c
Since dg,,,. 1, > dg,,.., then
dGminL dGmin
e <e % |
hence

—d .
man
Mk ce
GminL
e < AT for all k> ky.
LmazG LmaacG

However, since dg, . = +oo under Hajek’s conditions, then

min

i
CJ\Z’E:G —0 for all k> k.
Therefore,
[t o
B)

Mk _d*
M_EMTE:| =0 Zf Zk 1€ % = 4o00.
mwn

Part 1: First show limg_..
d
It follows from >} e * = +oo that

M’L‘“mmG = _Irlun {Z MLG } >0 for all macro iterations k finite.

To see this, by contradiction, suppose that there exists a macro iteration K such that

M fmmG = 0 for all £ > K (note that ¢; non-increasing at macro iteration k and approaching
_dr

zero as k — oo implies limy_ 400 M} = 0). It then follows that e * =0 for all k > K,

i o -
hence /25 ¢ < 400, which is a contradiction.
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Therefore, from Lemma 6.1, there exists a constant ¢ > 0 and a macro iteration kg such that

for all k£ > ko,

GmazL
Mk ce 123
G'maacL <
k — k

Man'nG ML'm.inG

Since dg,,,.1 > da,,.., then
7dGmaa:L 7dG'maac
et <e ‘%

hence
Mk 1?&1&&
Gmasl - €€k
- < Z for all k> ky.

ML'minG ML'minG

However, since dg,,,. = +00 under Hajek’s conditions, then

—dg
L0 for all k>h
LminG
Therefore,
Mk
lim | —Gmael| = .
koo MLmznG

*

k
%ML;} =0 only if Xi%e % = +4oo.

Part 2: Second show limy_, | =%
L

min

By the definition of the macro transition probabilities Mémw 7 and M fmmg,

P{Moving from G, to a solution in L at macro iteration k} B

li =0.
koo P{Moving from L, to a solution in G at macro iteration k}
It then follows that for all £ > 0 finite,
P{Moving from L., to a solution in G at macro iteration k} > 0. (6.5)

Suppose that

+o0o o
Ze U < 400.
k=1

Since d* = min;—y,\{dr,} = min,—; _{min{d,c,dr,.}}, then

dr,.a dr,. a*

_ _ L _dr .
e  <e & <e t fori=1,...,\
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Therefore, for any ¢ > 0,

dr.a

+00 el
Zce % < 4oo for i=1,...,\
k=1

By Lemma 6.1 there exists a ¢ > 0 and an iteration kg such that for all £ > kg,

_dLminG

k

It then follows that
+o0o
Z MlgmmG < +OO,
k=ko
or
+o0o
Z P{Moving from Lp, to a solution in G at macro iteration k} < +oo.
k=ko

By the Borel-Cantelli Lemma [11], the event of moving from L,,;, to a solution in G at a
macro iteration occurs finitely often with probability one. Therefore, there exists a k, such

that

P{Moving from Ly, to a solution in G at macro iteration k} =0 for all k> ké,

which contradicts (6.5). Therefore,

a*

“+o0
Ze I = 400.
k=1

Hence, the sufficient condition in Theorem 4.1 is equivalent to Hajek’s sufficient condition

when the hill climbing random variable is exponential.

O



Chapter 7

Illustrative Examples

This chapter provides four examples that illustrate how a GHC algorithm may or may not
satisfy the necessary or sufficient convergence conditions in Theorem 4.1. The first exam-
ple satisfies the sufficient conditions in Johnson and Jacobson [73], but does not satisfy
the sufficient condition in Theorem 4.1. The second example does not satisfy the sufficient
conditions in Johnson and Jacobson [73], though it satisfies the sufficient condition in Theo-
rem 4.1. The third example satisfies the sufficient conditions in Theorem 4.1 and in Johnson
and Jacobson [73]. Finally, the fourth example does not satisfy the necessary condition in
Theorem 4.1 (i.e., does not converge) and hence, should not satisfy the sufficient conditions

in either Theorem 4.1 or Johnson and Jacobson [73].

7.1 Example 1

The purpose of Example 1 is to illustrate that it is possible for a GHC algorithm to not
satisfy the sufficient condition in Theorem 4.1, while satisfying the sufficient condition in
Johnson and Jacobson [73]. This example, taken from Johnson and Jacobson [73], defines

the GHC acceptance criteria as a rational function of macro iteration k.

70
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Consider the eight element solution space depicted in Figure 7.1, where G = {p}, L = {q1, ¢2, ¢3},
and H = {ry,re,rs,r4}. The neighborhood function is defined by the lines connecting the
solutions. Let the micro transition probabilities be defined (for all macro iterations k& > 2)

from the micro transition matrix in Figure 7.2, where the rows are arranged in the order

P,d1,42,43,71,T2,T3,T4.

q; 3

Figure 7.1: Solution Space 1

1-% 0 0 0 52 0 0 54
0 1—-41 0 0 5 3 0 0
0 0 1-1+ 0 0 5% 3 O
PE_ 0 0 0 1-2 0 0 3 3¢
" ! L 0 0 0 0 0 0
0 : 1 0 0 0 0 O
0 0 : 5 0 0 0 0
: 0 0 : 0 0 0 0

Figure 7.2: The Micro Transition Matrix P* (Example 1)

Note that gfj = % for all i € Q, j € n(i), and for all macro iterations k£ > 2. Also,

Ri(p,r;) = % for all p,r; € Q, j = 1,2,3,4, and Ri(gi,7;) =

Aqi Tj

(kU)
i= 1,2,3,and j = 1,2,3,4, where U is distributed U(0,1). Then Pr{Ry(p,7;) > Ap,} = #,

for all ¢;,r; € €,
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and Pr{R(q;,r;) > Dgr,} = % for all i = 1,2,3 and j = 1,2, 3,4, and all macro iterations
k > 2. Therefore, for all macro iterations k finite, all solutions in {2 communicate, implying
that the micro transition matrix, P*  is irreducible. The irreducibility of P together with
(1.1) and (3.3) guarantee that P¥ is aperiodic, since for any two solutions i, j € Q, j € (i),

such that ¢; < ¢;, the micro transition probability ij > 0, which is a sufficient criterion for

aperiodicity [23].

To prove convergence using the sufficient condition in Theorem 4.1, it must be shown that

L, Ph TP,
Z?:1 Pck;HTkP}f(qj + minj:1,2,3{P£-HTkPI]3G}

lim
k——+o00

= 0. (7.1)

Since PP, = 0, the matrix 7% = I. Therefore, (7.1) reduces to

lim
k——+o0

o1 Pl Pl
Zg 1 HPHq + minj— p3{ P, HPHG}

For this example,

11
5 o5 0 0
PgH_(k%OOanQ) PI]?H: 0 ﬁ i 0 ,
o1
0 0 5 =
1 1
2 ) 0 0
0 L 1 9
Pl = and Ph,=|* 2
: 0% 4
1 1
Then
hm PéHPflq _ 1 [ k2 _|_ O + 4k2
k—+oo | Y7 PGHPHq +minj— 2 3{ P} Pl } e L0+ & + min{%,0, &

1

o ]:17&0.

k—+o0 lm +0
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Therefore, the sufficient convergence condition in Theorem 4.1 is not satisfied. However,
Johnson and Jacobson [73] show that their sufficient conditions are satisfied, hence the GHC

algorithm converges in probability to the set of global optima.

7.2 Example 2

Py Mg

O r3

Iz P2

Figure 7.3: Solution Space 2

The purpose of Example 2 is to illustrate that it is possible for a GHC algorithm to satisfy the
sufficient condition in Theorem 4.1, while not satisfying the sufficient condition in Johnson

and Jacobson [73].

Consider the eight element solution space in Figure 7.3, where G = {p1,pa}, L = {q1,¢2},
and H = {ry,ry,rs,r4}. The neighborhood function is defined by the lines connecting the
solutions. Let the micro transition probabilities be defined (for all macro iterations k& > 2)

from the micro transition matrix in Figure 7.4, where the rows are arranged in the order

P1,0P2,41,92,71,T2,7T3,T4.

% for all i € Q, j € n(i), and for all macro iterations k > 2. Also,

Note that gfj =
Ri(pi,7;) = A]:Z]T)j for all p;,r; € Q, ¢ = 1,2, and j = 1,2,3,4, and Ri(q;, ;) = —,—(i:;j)

for all ¢;,r; € Q, i = 1,2, and j = 1,2,3,4, where U is distributed U(0,1). Then

—_

Pr{Ri(pi,r;) > Ap} = %, for all # = 1,2, and j = 1,2,3,4, and all macro iterations



Kelly A. Sullivan Chapter 7. Hlustrative Examples 74

1 1 1
1-1+ 0 0 0 4 0 0 5
0 1-4+ 0 0 0 5% 9z O
0 0 1-—- 0 10 0
k2 2k2  2k2
1 1 1
o I e e e
: 0 : 0 0 0 0 0
0 : ] 0 0 0 0 0
0 : 0 : 0 0 0 0
1 1
1 0 0 . 0 0 0 0

Figure 7.4: The Micro Transition Matrix P (Example 2)

k > 2. In addition, Pr{R(g,r;) > D¢, } = k—l%— foralli = 1,2 and j = 1,2,3,4, and all
macro iterations k > 2. Therefore, all solutions in 2 communicate, implying that the micro
transition matrix, P¥, is irreducible. As with the solution space and neighborhood function
for the first example, the irreducibility of P together with (1.1) and (3.3) guarantee that
PF is aperiodic [23].

Given the solution space and the micro transition matrix, the sufficient condition in Corol-
lary 6.1 can be used to establish convergence. From Figure 7.4, (al — a2) > 0, since al =1

1
and a2 = 3

Therefore, from Corollary 6.1

lim II} = 1.

k—4o00
(Hence, solving for the stationary probabilities, see [23], H’;_ = —k  fori=1,2, and
) i U+ 2k7 +4
H’;. = —kX___ for j =1,2. Note that
i Ue+2k% +4
2
2k
lim ZH’;_ = lim ——=1
k—too il T koo 2k 4 2k3 + 4

which validates the convergence result.)

However, this example does not satisfy the sufficient conditions for convergence in Johnson
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and Jacobson [73]. By the neighborhood function defined in Figure 7.3, four positive path

probabilities from global to local optima exist and are equal. It then follows that

+00 400 +00 +oo
ZPk(Maf’?—P@th) = ZPk(pl = q) = ZPk(}h = q3) = Zpk(pz = q1) ZP P2 = q3)
k=2 k= — —

Rl | 1

Z raLr _Z_*_

pira 4613 22k, 2
e

violating the sufficient convergence condition in Johnson and Jacobson [73]. Therefore,
Johnson and Jacobson [73] are unable to establish convergence for the GHC algorithm,
though Theorem 4.1 shows that the GHC algorithm converges in probability to the set of
global optima.

7.3 Example 3

The purpose of Example 3 is to illustrate that it is possible for a GHC algorithm to satisfy the

sufficient condition in Theorem 4.1 and the sufficient conditions in Johnson and Jacobson [73].

Consider the eight element solution space in Figure 7.3, where G = {p1,p2}, L = {q1, ¢2},
and H = {ry,re,r3,74}. The neighborhood function is defined by the lines connecting the
solutions. Let the micro transition probabilities be defined (for all macro iterations k& > 2)
from the micro transition matrix in Figure 7.5, where the rows are arranged in the order

P1,0P2,41,92,71,T2,7T3,T4.

Note that gfj = % for all i € Q, j € n(i), and for all macro iterations k£ > 2. Also,

Ri(pi,r;) = Ak’;l(?) for all p;,r; € Q, ¢ = 1,2, and j = 1,2,3,4, and Ry(g;,r;) = Bayr
for all g;,r;

~]

(kU)
Q, i = 1,2, and j = 1,2,3,4, where U is distributed U(0,1). Then

c
Pr{Ri(pi,7;) > Ap,} = 1, for all i = 1,2, and j = 1,2,3,4, and all macro iterations
k > 2. In addition, Pr{Ry(q;,r;) > Agr,} = ¢ for all i = 1,2 and j = 1,2,3,4, and all



Kelly A. Sullivan Chapter 7. Hlustrative Examples 76

1-% 0 0 0 53 0 0 5z
0 1-% 0 0 0 35 3= 0
0 0 1-1+ 0 3 3 0 0
PE_ 0 0 0 1-2 0 0 4 ==
" L 0 10 0 0 0 0
0 : : o 0 0 0 0
0 : 0 £ 0 0 0 O
: 0 0 £ 0 0 0 0

Figure 7.5: The Micro Transition Matrix P (Example 3)

macro iterations k > 2. Therefore, all solutions in 2 communicate, implying that the micro
transition matrix, P¥, is irreducible. As with the solution space and neighborhood function
for the first example, the irreducibility of P together with (1.1) and (3.3) guarantee that

PF is aperiodic [23].

Given the solution space and the micro transition matrix, the sufficient condition in Corol-
lary 6.1 can be used to establish convergence. From Figure 7.5, (al — a2) > 0, since al = 2

and a2 = 1.

Therefore, from Corollary 6.1

. E
k1—1>1-iI-100HG =1L

The sufficient convergence conditions in Johnson and Jacobson [73] can also prove conver-
gence. Since all of the solutions in {2 communicate, conditions (a) and (b) in Theorem 3.1 are
satisfied. Furthermore, all hill climbing transition probabilities from each solution in L U G
to its neighbors in H are strictly positive, with limit zero as k — +o00, hence conditions (c)
and (d) in Theorem 3.1 are satisfied, and so Theorem 3.1 applies. The sufficient conditions

in Theorem 3.2 are now addressed.

Condition (e) examines the path of minimum positive probability from the set of local optima
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L to solutions in L U G. Six positive path probabilities exist:

() PHav = m) = Py Pl = (0)3) = &

(i) P*q = p2) = 35

(ii) P*(q = q) =1— 5

(iv) PXg2=p1) = 35

(v) Pk(Qz = D2) = 4_1k

(Vi) PHg2=p2) =1— 5

Note that P*(q; = q) = P*(qa = q1) = 0, since either path must visit an intermediate

1
25> and so

P*(Min_Path) = P*(q1 = p1) = P*(q1 = p2) = P¥(qa = p1) = P¥(qa = ps). Hence,

solution in L U G. The minimal value of the six positive path probabilities is

+o0 +o0 1
> PH¥(Min_Path) = > — = +o0,
k=1 i Ak

and therefore condition (e) in Theorem 3.2 holds.

To address condition (f) in Theorem 3.2, the path probabilities from global to local optima
must be examined. From the neighborhood function, only four positive path probabilities
exists and they are equal. Hence,
+oo +00 . +oo . +oo L +00 L
ZPk(MGI—PGth) = ZP (P = @) = ZP (P11 = @) = ZP (P2 = q1) = ZP (p2 = q2)
k=1 k=1 k=1 k=1 k=1

+o0o 1 1 +o0o

=3 (ga)(5) = X (g7m) < +0

k=1

and so condition (f) holds.

Condition (g) in Theorem 3.2 requires that the vector of stationary probabilities, 6%, be

known for all solutions in L. Hence, solving for the stationary probabilities (see [23]),
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for j = 1,2. Therefore, 6’;1, = F_ for

ko k2 . koo
I, = gy fori= 1,2, and Il = 22k

t=1,2, and 6§j =

2k2+2k+4 )

ka o7t for j = 1,2. The maximal path probability is

P*(Mazx_Prod) = 6y P*(q1 = q2) = 6, P*(qa = q1) = 0,
and hence for condition (g),

+oo
> PF(Maz_Prod) = 0 < +oc.
k=1

Thus, the sufficient convergence conditions in Theorem 3.1 and Theorem 3.2 are satisfied.
(Note that

lim Z = lim 2—162— lim ZHk— lim Q—kQ =1
koo £  hotoo 2k2 + 2k koo  kotoo 2k2 4+ 2k + 4 ’

which validates the convergence result.)

This example illustrates that the sufficient conditions in Theorem 4.1 and in Johnson and
Jacobson [73] prove that the GHC algorithm converges in probability to the set of global

optima.

7.4 Example 4

The purpose of Example 4 is to illustrate that if a GHC algorithm does not satisfy the neces-
sary condition in Theorem 4.1, then the algorithm does not satisfy the sufficient conditions

in Theorem 4.1 and Johnson and in Jacobson [73].

Consider the eight element solution space in Figure 7.1, where G = {p}, L = {q1, ¢2, 3},
and H = {ry,re,rs,r4}. The neighborhood function is defined by the lines connecting the
solutions. Let the micro transition probabilities be defined (for all macro iterations k& > 2)

from the micro transition matrix in Figure 7.6, where the rows are arranged in the order

P,d1,92,43,71,T2,T3,T4.

Note that gfj =
Rk‘(pv rj) =

% for all i € Q, j € n(i), and for all macro iterations k£ > 2. Also,
for all p,r; € Q, 7 = 1,2,3,4, and Ri(g,rj) = Ak’é’UJ for all ¢;,r; € Q,
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1—7 0 0 0 5 0 0 5
0 1-4% 0 0 52 5z 0 0
0 0 1-% 0 0 55 7 0
pE_ 0 0 0 1-% 0 0 55 3=
" ! 1 0 0 0 0 0 0
0 : : O 0 0 0 0
0 0 : £ 0 0 0 0
: 0 0 £ 0 0 0 0

Figure 7.6: The Micro Transition Matrix P (Example 4)

i= 1,2,3,and j = 1,2, 3,4, where U is distributed U(0,1). Then Pr{R(p,7;) > Ay, } = %,
and Pr{Ri(q;, ;) > Dgr,} = % forall i =1,2,3 and j = 1,2, 3,4, and all macro iterations
k > 2. Therefore, all solutions in {2 communicate, implying that the micro transition ma-
trix, P* is irreducible. Once again, the irreducibility of P% together with (1.1) and (3.3)

guarantee that P¥ is aperiodic [23].

To prove non-convergence using Theorem 4.1, it must be shown that

3 E 7k pk
j:lPGHT Pqu

£0. (7.2)

lim
k—+o00

.....

Since Pl = 0, the matrix 7% = I. Therefore, (7.2) reduces to

3
lim j=1 P(lnglljlq_j £0
h—too | max;—1, . 3{ Py Phic}
It then follows that,
3 k pk
- S Pby Pk, _ l =+ 0+ 5 ]
k—+oo | MaX=1, ., 3{P£HPI’}G} k—-00 max{#, 0, ﬁ}

L
= lim [%] = klim 2k =400 # 0.

——+00
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Therefore, since the necessary condition is not satisfied, the GHC algorithm does not converge
to the global optimum. Moreover, this example should not satisfy any sufficient conditions

for convergence. To see this, from Theorem 4.1, it must be shown that

3 k Tk pk
lim =1 FonT PH% #0
k—-+o0 Z?:l PC’gHTkPI]quJ + minj:1,273{qujHTkPI]fIG} ’
which is true since
1 1
7t 0+

3 k k pk
lim j=1 PGHT Pqu
k——+o00

3 5
21 PgHTkPIIfIQj ™ mlnj:172,3{P£HTkalG}

= lim .
k—+00 [ﬁ +0+ 4 + min{ 5,0, 72}

1
= i k| —1+£0.
k_l»rfoo [# 4 0] 7

Therefore, the sufficient condition for convergence in Theorem 4.1 is not satisfied.

In addition, the GHC algorithm should not satisfy the sufficient convergence conditions in
Johnson and Jacobson [73]. By the neighborhood function defined in Figure 7.1, only two
positive path probabilities from global to local optima exist and these probabilities are equal.

By applying the definitions of path probabilities in Johnson and Jacobson [73],

+00 400 400
S PH(Maz_Path) = Pr(p=q)) =3 P*(p = gs)
k=2 k=2 k=2
0 =1 1
= PhPiw =2 57%5
P pra 443 P Qk 2
too 9
e _— = —}—OO,
2 a4k,

which violates the sufficient conditions in Johnson and Jacobson [73].

This example illustrates how the necessary convergence condition in Theorem 4.1 can es-
tablish non-convergence of a GHC algorithm. Moreover, it demonstrates that the sufficient
convergence conditions in Theorem 4.1 and in Johnson and Jacobson [73] are not satisfied

when the necessary convergence condition is not satisfied.



Chapter 8

Conclusion

Many discrete optimization (minimization) problems belong to the class of NP-hard opti-
mization problems [43], hence there does not exist a polynomial time algorithm that can solve
such problems, unless P=NP. This has led researchers to develop local search heuristics to
address NP-hard problems, with the hope of finding near-optimal solutions in a reasonable
amount of computing time. One such heuristic approach is GHC algorithms [71, 72, 73],
which include several other local search heuristics as particular formulations, including SA
and TS. It is important to provide theoretical results that determine the effectiveness and
performance of GHC algorithms when applied to specific problems, since many local search

heuristics fall within the GHC algorithm framework.

8.1 Contributions

This dissertation presents necessary /sufficient convergence conditions for GHC algorithms.
The convergence theory is based upon a new iteration classification scheme, where iterations
of GHC algorithms are classified as macro or micro iterations. There are two main con-

tributions from this research: first, the sufficient conditions for convergence, introduced in

81
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Chapter 4, provide an alternative to the sufficient convergence conditions found in the liter-
ature. As illustrated in Chapter 7, it is possible for a GHC algorithm to satisfy the sufficient
condition in Theorem 4.1, but not satisfy the sufficient conditions in Johnson and Jacobson
[73], and visa-versa. Furthermore, it is possible that a GHC algorithm can either satisfy
both sufficient conditions, or satisfy neither. Hence, the sufficient condition in Theorem 4.1
is not a generalization of the sufficient conditions in Johnson and Jacobson [73], but rather,

another means to establish convergence of a GHC algorithm.

Second, a necessary condition for convergence is presented. The necessary convergence condi-
tion is an important contribution since it provides an alternative to the only other necessary
condition in the literature [69]. Furthermore, if the GHC algorithm converges to the set of
globally optimal solutions, then the necessary convergence condition for the macro transition

probabilities provides a means to determine non-convergence of a GHC algorithm.

By restricting the solution space or hill climbing random variable for a GHC algorithm,
the necessary/sufficient convergence conditions can be reduced. For example, the neces-
sary /sufficient convergence conditions of Theorem 4.1 become equivalent when the solution
space of a discrete optimization problem contains only one global optimum and one local op-
timum. This result provides a single condition to determine convergence or non-convergence
of a GHC algorithm. In addition, when the GHC algorithm is restricted to SA, the neces-
sary condition in Theorem 4.1 and the sufficient condition in Corollary 4.1, are related to the
necessary and sufficient convergence conditions of Hajek [58]. Hajek’s necessary condition
implies the necessary condition in Theorem 4.1 when the GHC algorithm is SA. In addition,
the new sufficient condition is equivalent to Hajek’s sufficient condition when the hill climb-
ing random variable is exponential and the assumptions of Corollary 4.1 hold. Moreover,
the new necessary /sufficient conditions can also be viewed as a generalization of Hajek’s
necessary and sufficient conditions since the new convergence conditions do not require an

exponential hill climbing random variable.
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8.2 Future Research

Although Theorem 4.1 advances the convergence theory for GHC algorithms, there are nu-
merous other issues that still need to be addressed. Research is in progress to determine the
finite-time performance of GHC algorithms, making it possible to quantify the value of ad-
ditional iterations, as well as determine optimal termination conditions when applying GHC
algorithms to solve specific discrete optimization problems. Furthermore, finite-time per-
formance results provide a measure to compare different GHC algorithm formulations with
the objective of determining a priori which formulations are more likely to reach a global
optimum with the least number of iterations executed. For each algorithm formulation, a
finite-time performance theory would determine the iteration at which the hill climbing ran-
dom variable has been sufficiently reduced such that the algorithm’s output can be modeled
as a homogeneous Markov chain. At this iteration of the algorithm, it may be possible to
apply variance reduction techniques to improve the performance of the algorithm. When
comparing various GHC algorithm formulations, the formulation that reaches the homoge-
neous state first will be the algorithm of choice, since such algorithms may perform superior

to other formulations, in finite-time.

The performance of a GHC algorithm can also be measured by quantifing the rate at which
the algorithm converges to a global optimum. Once theoretical results exist on the rate
of convergence for a GHC algorithm, then it may be possible to chose a particular GHC
algorithm formulation for a specific discrete optimization problem, such that the rate at

which the algorithm converges to the set of global optima is maximized.

In addition, research is needed to determine necessary /sufficient convergence conditions with
respect to the hill climbing random variable, Ry(i, ), of the GHC algorithm. In Chapter 6,
a particular hill climbing random variable (i.e., rational functions) was examined, and neces-
sary and sufficient convergence conditions were formulated. Additional hill climbing random
variables and the ensuing convergence theory (defined in terms of the hill climbing random

variable) are rich areas of future investigation. The specific convergence theory for each hill
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climbing random variable may provide insight into a unifying convergence theory for numer-
ous GHC algorithm formulations. Hopefully, these conditions will provide a more practical
means by which convergence or non-convergence can be established, compared to the con-
vergence conditions in Theorem 4.1. Furthermore, these conditions should ideally provide
insight into the convergence of TS, as well as other local search heuristics that fall within

the GHC algorithm framework.
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