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I New Iterative Algorithm for Algebraic Riccati Equation
Related to H, Control Problem of Singularly Perturbed
Systems

Hiroaki Mukaidani, Hua Xu, and Koichi Mizukami

Abstract—in this note, we present the solution to the algebraic Riccati
equation (ARE) with indefinite sign quadratic term related to the H .. con-
trol problem for singularly perturbed system by means of a Kleinman'’s
type algorithm. The resulting algorithm is very efficient from the numerical
point of view because the ARE is solvable even if the quadratic term has an
indefinite sign. Moreover, the resulting iterative algorithm is quadratically

f gonvergent. We also present a new algorithm for solving the generalized
algebraic Lyapunov equation (GALE) on the basis of the fixed point algo-
rithm.

Index Terms—Fixed point algorithm, H__control, Kleinman algorithm,
singularly perturbed systems.

din
been |. INTRODUCTION

‘i 3Hx control problems for linear singularly perturbed systems were
]eﬁ;qgsidered in many papers [1]-[9]. In particular, a great deal of studies
efin the composite controller design for singularly perturbed systems in
igr%i* sense have been made [2], [3], [6], [8].
: theIn order to obtain the optimal controller, we must solve the alge-
ic Riccati equation (ARE). Various reliable approaches to the theory
‘ he ARE have been well documented in many literatures (see e.g.,
[11]-[14]). These methods consist of the invariant subspace approach
which is based on the Hamiltonian matrix [11], [12] and the general
matrix pencil technique which is based on the extended Hamiltonian
pencil [13], [14] (in particular, the reference [14] is the most complete
wrafgference to date dealing with ARE by means of the matrix pencils).
haldewever, such approaches are not adequate to the singularly perturbed
npyptems because of high dimension and numerical stiffness [10].
slassithe recursive algorithm for the solution of ARE of singularly per-
utedrbed systems have been developed in many literatures (see, e.g., [15]).
higlom a practical point of view, it has been shown that the recursive al-
rarorithm is very effective to solve the ARE when the system matrices
3. are functions of a small perturbation parametdrdowever, the recur-
sive algorithm converge only to the approximation solution. Moreover,
such an algorithm is the linear convergence. On the other hand, the
xact slow—fast decomposition method for solving the singularly per-
turbed systems has been proposed (see, for example, [7] and the ref-
ngrences therein). However, in order to obtain the exact solution, ones
need the same workspace compared with with the full-order ARE for
E“Qfﬁlculating the inverse matrix.
In this paper, we study the numerical solution to the ARE with
indefinite sign quadratic term related to tfie,., control problem of
itpgingularly perturbed systems. The objective of this paper is to extend
the convergence result of [17] to the ARE with indefinite sign quadratic
term. Our new idea is to set the initial condition to the solutions of
the reduced-order ARE. Because of such a choice, we can prove that

our iterative algorithm converges to a unique solution of the ARE
ew
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with indefinite sign quadratic term by using Newton—Kantorovich 2)
theorem [16]. Also, while the classical recursive algorithm is of the

linear convergence property, the new iterative algorithm achieves rank|: shoy — An =4 B]} =n,V¥seCt
the quadratic convergence property since the resulting algorithm is — A2 _A?? B '

based on the Kleinman algorithm [17]. Furthermore, we also present rank { m— Al —An Cﬂ} —n. ¥secCt
a new algorithm for solving the generalized algebraic Lyapunov —Af, —A3y O '

equation (GALE). The proof of the algorithm is based on the fixed
point theorem. As another important feature, it is easy to constructASSumption 3:
an O(=%") high-order approximation controller compared with the 1) The pair( A3,. Cs; ) is stabilizable and G5 . A3 ) is observ-

existing methods (e.qg., [2], [3], [7], [20]). able.
2)
Il. PROBLEM STATEMENT AND PRELIMINARIES [ - AT AT L o vecGt
The AREs of singularly perturbed system correspondinfgiocon- ’ —AT, —AL, CchL T T
trol problem [4], [6] have the following form: I — A Ay G
p (4], [6] g rank |:.5.[n1 A Aia 01:| —n. VseCT,
—As —Asr Gy

ALP. 4 DA + 9 PGGE P — (PB. + CI' D1
T - . . T It is well known in [3], [4] that a controller which stabilizes the sin-
: (D12D12) (Bs P+ D12C1) +CrCi=0 (1) gularly perturbed system with disturbance attenuation level measured
- VoAl 4wt oW — (Woek T by ~+ does exist if and only if (1) and (2) admit the positive—semidefi-
AW+ Weds +o TWLCL G (W Oz + GED“) nite solutionsP () andW.(~), respectively, such that

. (D21D2Tl)7 (aw 4GB )+p aT (@ @A+ GF + BFwith B = Fi(e) = v 2GIP, By =
Fy(2) = (DT, Do)~ (B.P. + DT, Ch) is stable;
wheres is a small positive parameter. Let us introduce the following b) A. + H;.Ciy + H2.Cs with le =  ~y7W.Ct,
matrices: Hy. = (W.CY + G.DY,) (D21 D%,) ™" is stable;
Pi(e, ) =Pu(z, )" c) p(P-W.) < +*, wherep(-) is the spectral radius.
P. =P.(v) = Lpﬂ(g 5)  2Pu(z, ) } In order to solve the AREs (1) and (2) with indefinite sign quadratic
W ) W (e ) term, we introduce the following useful lemma for the generalized al-
W. =W.(v) = { i (e T ” © } gebraic Riccati equation (GARE) [20].
Wia(e, ) Waa(e, Lemma 1: The AREs (1) and (2) are equivalent to the following
[ A Ay A A GARES (3) and (4), respectively
A.=| ) il A= ’
L _491 [ ‘422 4')1 1-12'_7 T T 5
© B Fi(P)=A"P+ P A—i—ff‘P GG'P
pa— 1 pa—
B, = 6_]BQ:| - |: :| — (PTB—|—CED12>D1 (BTP+D1TZC1>
o T
G. = ﬁl } G:{ } +C101;0 (3a)
Le™ G P.=TI.P =PIl (3b)
Ci=[Cn Ciz] =[Ca Ca]. Fo(W)y =AW" 4 wa +*welfow?
In addition, dimensions of block matrices are as follows: - (WCS + GD%}) D, (CQWT + Dy, Gl)
Py =P,  Wu=W} A, eR"™™M +GGT =0 (4a)
Prz =Py, Waa = Wap W =IL"W =W (4b)
Ay ERMZXM2 ni+n2=n where
Bl eRanp BQ E anxp P PT
Gl ERanq G2 c anXq HE :dia\g([n1 {:‘,I,LQ) P = |: " - 21:|
rXng XNy le P22
Cii €ER Ciz R — Wi Wia
Co eR7M Cor € R7™2. W W

~ - —1 - o\ —
The remaining matrices are constant matrices of appropriate demen- D, = (D}QDm) Dy = (Dm Dé)

sions. For technical simplification, we shall make the following basic T T T T
P 11 =P 11 P 22 = P 22 VVII = VVll "1'722 = VVZZ

assumptions.
Assumption 1: A=II. A, B=1I.B. G=I.G..
1) DY, Dy» and D2y D3, are nonsingular. N . . .
2; ' e g Partitioning for the ARE (3a) and letting= 0, we obtain the following
equations:
A—sl, B _ -+ } :
rauk { o D12:| =npVsed AL Pry+ PiAn + Ay Poy + P Aoy — P ST, P
rank |:A_SI“ G :| =n+g¢,VseCh. — PS5, Py = Py ST, Py — P ST, P+ Qi =0 (5a)
C5 Do, PlAs + A}, Py 4 A3y Py

Assumption 2: — PS]) Py — PioSL, P + Q5 =0 (5b)
l) The pair(AQg, BQ) is stabilizable andC12, Aso) is observable. A;F‘ZPQZ =+ pQQfIQQ — PZQS;‘/QPQQ —+ QZQ =0 (50)
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AT ~
where H, :{ A _}?12}
B 5 ‘ A ﬁi ) _{»112 _441'2
A" =A-BD\D},Cy = |21 TP AT, —Ry
4421 4422 H3 = ,‘T o
N o [SI S —Myz — A
§"=BD:B" —77'GG" = [ ot Sﬂ o { AL, —B}
12 22 4 — y 1
Q Q _A[22 _AZZ
T o T 11 12 . ~ "
Q=CT (I = DD}, ) €1 = {QT Q;)J LY =0, 'V LV = -U, '
_ _ _ . 1‘ i U, :‘411 - Wi Ri'zl - 1?11]?1/11
andP, P>y and P, are O-order solutions of the ARE (3a). The ARE U, —A W T R
(5¢) will produce the unique positive—semidefinite stabilizing solution P 2 1152
under assumption 2 i is large enough. Us =Az — W R,
Le_t_ Ny = inf{j,/ > 0] the ARE (5c) has a positive—semidefinite Us =Agy — Wz RY)
stabilizing SO|UtIC?I}_. o . . Us =Uy — UnUL'Us
Then, the matrixiss — 53, s is nonsingular if we choosg > v 5. o a7 T
Therefore, we obtain the following 0-order equations: Viz =WazAip + M.
AT P+ PuAT — PLSIPL QL =0 (62) The AREs (7c) and (7a) will produce the unique positive semidefi-
v T oo ? nite stabilizing solution under assumption 3yifs large enough.
If le - _A“{ +7M B 1 ~ (6b) Lety.y = inf{y > 71| the ARE (7c) has a positive-semidefinite
Ao Pas + Pos Az — P23 S5, Pos + Qo2 = 0 (6¢c) stabilizing solution, ang (P22 W>2) < +*}. Moreover, let us define
v2s = inf{y > y1,| the ARE (7a) has a positive—semidefinite stabi-
where lizing solution, andy (P11 Wi1) < 7°}.
T T _ TT\T A7 -5; As the results, for every > 5 = max{vis, Y1+, 725, 127}, the
o= 2he 487 -Q7 _A;;T ARE'’s (6) and (7) have the positive semidefinite stabilizing solutions
[ Ay =S5 if = > 0 is small enough. Thus, we have the following result.
T = _Qu —A" Lemma 2: Under the Assumptions 1-3, if we select a parameter
- A g7 ] v > 7 = max{7s, 715, Y255 Y27}, then there exists a small> 0
Th = 12 ﬁ“’ such that for al € (0, ), the ARE’s (1) and (2) admits a posi-
;}Q 2 _:9 2 tive—semidefinite solution, which can be written as
=] o Tk ! % 4 0
_—912 — A1, P — { P+ O(e? ey + ()(6‘ )} ®)
T, — [ Ass —53 ] - =Py + O(EZ) ePyo + O(EZ)
QAL

Ny =D;'Qi> N =-D,;'D;
Dy =Ay — 57, Py = 57, P

W. =

|:ﬁ‘711 +0(e) Wiz +0(e) } . 9)

Wi +0(s) e 1 (Waa + 0(2))

Proof: By using the implicit function theorem, Lemma 2 can be

Dy =Asi — S7) Piy — S, Pa proved. The proof is omitted since it is similar to that of the references
D2 :rLQ — SYQPQQ D4 = 4‘122 — Sr_;ngz [4] and [20] ]

Dy =D, —D2D4_1D3 Q12=Q12+A;1P22-

Remark 2: We can prove Lemma 2 by using a method similar to
that given in the proof of [4, Theorems 2.1, 2.2]. Note that the proof

because their matrices can be computed by u&ingm = 1,...,4 note improves the proof of Lemma 2 in the sense that the invertible

which is independent aP, [8], [9], [18]. assumption is not needed.

Letus defineys = inf{~ > 0| the ARE (6a) has a positive semidef-
inite stabilizing solution}.
By following the similar steps, we obtain the following equations:

Ill. THE NEW ITERATIVE ALGORITHM

In this section, we establish an elegant and simple algorithm which

AW 4+ Wi A2T — W RLWoy + ML =0 (7a) converges globally to the positive—semidefinite symmetric solution

‘/T/vlz = —Lz =+ Vi’rll Ll (7b)

of AREs (1) and (2). The algorithm is given in term of the standard
GALE, which have to be solved iteratively. We present the new

Apy Wy + Wan A3y — Waa R}, Wy + Maz = 0 (7c) iterative algorithm based on the Kleinman algorithm. Here, we note

that the Kleinman algorithm is based on the Newton type algorithm. In

where R R general, the stabilizable-detectable conditions will guarantee the con-
i7" —A— QDY DaCy = A A vergence of the Kleinman algorithm for the standard linear-quadratic
- NE2E2 T A, Agy regulator type ARE to the positive semidefinite solutions. However,
. o R}, R, it is difficult to apply the Kleinman a‘lgorit’hm to the QARES )

R =C, DoCo —y77Cr 1 = T R and (4) because the matri¥” = 7 2GG* — BD.B* andlor

o ‘ 1%\[11 22%2 RY =~72CTC, — C,D,CY are in general indefinite.
M =G (Iq — Dy, Dy Doy ) G' = {‘, T . } We propose the following algorithm for solving the GAREs (3) and

My Mo (4), respectively
AT —Ry ’

—1 w w

Hy=H, — H2H; 'H3 = {—M{;ﬁ —412}

Al —13’1"1}

H =
! {—Mn — A

(1 - Svp(z‘))T PUTD 4 PUEIT (37— 7))

+PIOTSTPY Q=0 (10)
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. plitt) = ptoT Assume that the matrixd,, is nonsingular andd, = A;; —
(Av —_w® Rv) WweHnT | W““)(A“” _ W(”RV)T A2 Ayt Asr and As, are stable. Then
7O R OT 4 A — &k ey =T )
+WORTWOT 4 M =0 == [”3’1‘)(0 T ' 2 o) (14)
weHi, = g weoT Pyl (0)  E39°(0)
:1=0,1,2,3,... (11) where
— . k
) Py &P , Wi Wi =My = 4 Im = 11,21,22.
th P = | ' 22| @) = .TheKI Ein (0) = 2 Zim(e)]e=0 Im =
wi B P | VL T e Kleinman doF

algorithm (10) can be constructed by settiRg*? = P + AP® Proof: Partitioning for the GALE (13), we obtain the following
and neglectingh P®V" 57 A P%) term. By following the similar steps, equations:

we obtain the Kleinman algorithm (11). Kleinman algorithm is well- . .
known and is widely used to find a solution of ARE, and its local con- Az +E0An + Az Ea

vergence properties are well understood. We are concerned with good +EN Aol +27Q1 =0 (15a)
choices of the starting points which guarantee to find a required solu-

. : ! o S A + Ty Aso + Ag; s
tion of a given GARE. Our new idea is to set the initial conditions to e e 21=22

the matrices?® andW(®). Using Lemma 2, the fundamental idea is +eANEn +£/Qi =0 (15b)
based off P— P(?|| = O(e) and||W — W || = O(=). Although the A3oZon + Zos Asy + ¢ (AszEgl + 321,412)
matricesS” and/orz” are in general indefinite, we can get the required .

solution with the rate of quadratic convergence by using the Kleinman +27Q2 =0. (15¢)

algorithm. By using Newton—Kantorovich theorem, we now prove thetting= = 0 for the above (15), sincelo and A, are stable we
existence of the unique solution for the GARE (3a). The main result ggquce thak,,., (0) = =(9(0) = 0, 7m = 11,21,22. We now obtain
this section is as follows. the derivative of (15) at parametems follows:

Theorem 1: Under the assumptions 1-3, if we select a parameter
v > 7 = max{vs, 715, V2s, Y25}, then the new iterative algorithm ATIE(JI)(e) + Eﬂ)(s)/lu + AZTl:fl (g)
(10) converges to the exact solutid? of the GARE (3a) with the + Egﬁ”( Aoy + 770 =0
rate of quadratic convergence. The unique bounded sol#iGhof .

=) () Ays + EO0T (o) Ay 4 AT, ZC)
the GARE (3a) is in the neighborhood of the exact solutftn Fur- —11 (“);41“: —21 (S)T‘A (21;11 Az1Z; ( )
thermore PY = m'pH = PO, is positive semidefinite and + ANLEn(2) + AL S (5) + e T Qi =0

7 SQPE” is stable for alk,i = 0,1,2,.... That is, the following AQQZEI))( )+ _(1)( 2) Az +S( }QEEII)T( )+ ~(1)(5)A12>
conditions are satisfied:

+ .Alrz:gl( )+ Eo1(2) Az + j€j71Q22 =0

(%) w|| _ 2
HP — 7| =0E") (123)  ysing =(0) = 0 and the fact that4o and As- are stable, we get
‘ <e< oo E}Q(O) = 0. By following the similar steps, we ha (0) =0,k = _
_ _ ‘ 0,1,2,j — 1. Note that the exact proof is done by usmg mathematical
P“) =II. Py = P(l)THE >0 induction. On the other hand, it is well known that the mafigossess
Re) [;j sopLi )} (12b) @ power series expansionat= 0 as follows:
where = kL [E57(0)  E35°(0)
P—=p" = {Pll el } Substnutmg?}il)(o) =0,k =0,1,2,j—1into=, itis straightforward
Py Py to verify that (14). This is the required result. [ |
pli) Py cpT Now, let us prove Theorem 1.

Py P Proof: The proof of (12b) has been given in [21]. Thus, we will

prove the quadratic convergence property corresponding to (12a) and
Before proving this theorem, we will first establish a followingthe existence of the unique solution of the ARE (1). We first prove

useful lemma. that under the assumptions in Theorem 1 the algorithm (10) converges
Lemma 3: Let us consider the GALE (13) to the desired solution of (3a) with (12a). The proof is done by using
mathematical induction and Lemma 3. Subtracting (3a) from (10), it is
AT24="A4+ 0 =0 (13) easy to derive
. . . T .

i _ "rP(z) P(z+1) _p P(z+1) _p i _ «’,P(l)
where= is the solution of the GALE (13) and and( known matrices ( s ) ( ) + ( ) ( s )
defined by - ( pli) _ p>T g (P“) _ p>

= /=T o ; ;
== {:”(C) t~21(°)} Wheni = 0 for the above equations, by noting thb‘tT’“U - P| =
=21(2)  Ea2(e) O(¢) based on the Lemma 2, we ha(ai"’ - S"‘"P(O)) (P — P)
A= A A Q= Qu Q2 o) T/ v (i) o .
- Aar Ao B Qsz Q22 +HP = P) (AW - ST ) = O(e7). Using
=i =Eh An Qu=Qf eRMM 1 _erpo _ [P D2t O(e)
Zao :E; eArs Q22 = Q;Z eER™X"2, AT = STPT = |:D3 D4+ O( 5)}
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and the known results th&, andD, = D; — DD ' D; are stable, [23]. First, it is most different from [22], [23] that our convergence
it follows from Lemma 3 thaf| P{") — P|| = O(=?). We now assume proof of the iterative algorithm (10) is based on Newton—Kantorovich
that ||[P™Y) — P|| = O (52N)_ Using this assumption, we concludetheorem. Moreover, how to select the initial condition is quite dif-

that ferent. That is, we choose the initial condition as solutions of the re-
duced-order AREs close to the exact solutions using the property of
(A‘f _ S:V/Pm))T (p(N+1) _ p> singularly perturbed system. As a result, while the recursion in [22] has

. exponential convergence property, the new iterative algorithm achieves
+ (P(N+1) _ P) ! (A“/ _ S“”P(N)) - _0 (SZN“) . the quadratic convergence property stronger than exponential conver-
gence property. Secondly, we have newly proved the existence of the
) (N4D) _ gN+1 unique solution for the GARE with indefinite sign quadratic term.
Thus, using Lemma 3, we hajjé” - P=0{e -Con- e now summarize a perturbation analysis of the GALE (10). Set-

sequently, the (12a) holds for alie N. Secondly, we show that thereting = to zero and using Kronecker products, the GALE (10) can be
exists the unique solution for the ARE (1). This proof is equivalent t@ritten as

the proof of existence of the unique solution for the GARE (3a). Thus,

the proof follows directly by applying Newton—Kantorovich theorem _Vecfﬁﬂ) T VecC:)u
(see [16, p. 155]) for the GARE (3a). We now observe that function V' | vecPiT | = | vecQue
F1(P) is differentiable on a convex sét. Using the fact that | vec P! | veeQas
[An A o Py o }
p T , T T / T — —fl’\’ - S 71} = (i
VAP = (7= 5'P) 9L+ 1,0 (47 - 57P) ] = LIT%J rr

. Ke 212] Py P P} 0
where denotes Kronecker product [19] add (P) = A™' P + g? gl { (1)1 P%’ } s7 {P(’) p(i)} +@Q
PTA" — PTSTP 4 Q, VF(P) = dvecF,(P)/d(vecP)T, where A G 2

vec denotes an ordered stack of the columns of its matrix [19], we haygere V' is given at the bottom of the pagél.,., denotes a
permutation matrix in Kronecker matrix sense [19] ang PU TV

lm

denotes an ordered stack of the columnsf*,ﬁjj“) whene = 0.
It can be shown, after some algebra, that the determinary of
is expressed adet) = det [(1’,72 ® AH)[',,Zn2 + A%y @ I,
~det (I, @ A3p)  -det [(I, @ Ag )Unyn, + Ag @ I,,], where
Ao = Ay = A1 Ayt Aoy Obwously,Azz and. 4, are nonsingular
matrices. Thus, there exisi¢ . Therefore, the condition number
[16] of V, that is, K (V) = ||V]| - ||[V™'|| is given by K (V) = O(1).
SinceK (V) is not large, the matriy%’ + O(¢) is well-conditioned for
= 3. smalle.

We next give the convergence theorem of the algorithm (11) by sim-
On the other hand, sincg, (P“”) = O(e), there existgj such that jjar argument corresponding to the algorithm (10).
H[V]:l p(0)>]—1 H}— (PO)| = O(z) = 7. Thus, there exists Theorem 2: Under the Assumptions 1-3, if we select a parameter

_ = ) v > 7 = max{yis, 1. Y25, Y27 }, then the new iterative algorithm
such thaty = 57 < 27" because off = O(=). Now, let us define (11) converges to the exact solutidii* of the GARE (4a) with the

IVFI(P) = V(P < AP = Pl
wherey = 2||S7||. Moreover, using the fact that

D; D-l—()()

VAP = {DJ Da+0(e)

B 3 T
:| \/)I +I V)|:D1 D2+O(€):|

DJ D4+()(6)

it follows that V£, (P(®)) is nonsingular becaus®, and D, are

stable. Therefore, there existssuch that [V}? (P(O))r

L1 rate of quadratic convergence. The unique bounded solitiéh of
t =7 [1-Vv1-2a the GARE (4a) is in the nelghborhood of the exact solufiBh. Fur-
) 1 thermore, V. ((‘ = WOTHZT = IZ'W® is positive semidefinite
:2||5“"||'||[V7‘"(P(°))]*1|| [1-Vv1-2a]. andA? — WP RY is stableforallz i=0,1,2,.
Proof: Since the proof of Theorem 2 is performed by a dual ar-
gument of Theorem 1, it is omitted. |

— . _ plO * g _
Clearly,5 = {P HIP=PT<t } Is in the convex seb. In the se As aresult of applying the idea of the Kleinman algorithm, we have

quel, sincg| P* — P|| = O(e) holds for smalk, we have shown that managed to replace the computation of the GARES (3) and (4) which
P is the unique solution ity Therefore, the proof is completed®  contain the small parametewith a sequence of the GALEs (10) and
Remark 3: The algorithm (10) which is based on the Kleinman al11).

gorithm might facilitate new approach to the singularly perturbed ARE Now, we consider a method for solving the GALEs (10) and (11).
with indefinite sign quadratic term, that is, conceptually simpler angince the algorithm for solving the GALE (10) is virtually identical to
numerically more efficient than those previously used in [7] and [15fhe GALE (11), we give only the algorithm of the GALE (10). In order
Moreover, by applying the results of this paper, we can get rather easiffteduce the dimension of the workspace, a new algorithm for solving
the solution for various singularly perturbed ARE with indefinite sigfhe GALE which is based on the fixed point algorithm is established.

quadratic term. Let us consider the following GALE (16), in a general form:
Remark 4: Note that our proposed method is not a straightforward
extension to the continuous-time case of the methods given in [22], ATX+X"A+V =0 (16)
(Irn & ATI) [7"_1”1 + AIl @ In1 ( n1 @ ./421) ning + ./4)1 & In1 _ 0
V= (I, @ Aly) Unym, (I, © A35) Unyny AL oI,

0 0 (Iny © A32) Ungny + Ao @ I,
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where X is the solution of the GALE (16) and andV are known Thus, using the standard properties of the algebraic Lyapunov equation
matrices defined by (ALE) [24], we have|| XY™ — x| = 0(eV+1). Consequently,

lm

) Xi1(2) X ()T ) the (19) hold_s for al € N. This completes the proof of the theorem

X = {Xﬂ(s) Xas(e) } =P concerne_d Wlth the fixed point algo_rlthm. _ _ ]
A - \ - , The existing method [7] can obtain the solution by solving the ALEs

A= { o ‘2} .— A7 — 57 pW of lower dimensions which are the same as the slow and fast subsys-
Azi A tems. However, in order to obtain the exact solution of the sign indef-

V= {Vu Vlz} = PO P 4 inite ARE, ones need the same workspace for calculating the inverse
Vib Vao matrix (see [7], equation (3.3)). On the other hand, the resulting algo-

Xy =X A Vii =V, e R ™ rithm is very useful because our proposed algorithm has only to solve

the ALEs of lower dimensions. Moreover, note that the algorithm (18a)
is quite different from the recursive algorithm [15]. As another impor-

In order to solve the GALE (16) in a iterative method, we need af@nt feature, since our proposed algorithm is the quadratic convergence,

Xoo :.X;rz Aoo Voo = ‘/YZE c R"ZX’IZ_

other assumption. while the recursive algorithm is the linear convergence [15], the re-
Assumption 4: The matrixAs; is nonsingular andy, = A,; — Sulting algorithm is also efficient.
A12AZ} Asy and A,y are stable. In the rest of this section, we will present an important implication.
Note that the assumption 4 is satisfied forial N becauséD, and If the state information is available for feedback, then the following
Dy are stable. The GALE (16) can be partitioned into corollary is easily seen in view of Theorem 1. ‘
- - Corollary 1: Assume thatCfD;» = 0 and DLDys = I,.
1\111 X+ XA+ AQﬂ Xo1 Under the assumptions/_ 1-3, the approximate feedback gain
F X A 4TV =0 (7a) K% = —[BI BJ] P guarantees the performance level
3 ; =1 ot
XA+ AY2’I‘1£\22 + A;rlXQQ H (C] + D]z[f(")> (SIn — A, — BEIX’(Z)> G. < v+ 0(62 ),
AT T P H X . o
+eAnXo +Vi2 =0 (17b)  whereP" is defined in the statement of Theorem 1.
ATy Xoo + XooAss + € (J\LXle + X21A12) Proof: It can be carried out via a similar technique used in [7]
4 Voo = 0. (17¢) and [20]. |
The fixed point algorithm for solving (17) is given by IV. NUMERICAL EXAMPLE
AEQX‘(?'*” + XA, In order to demonstrate the efficiency of our proposed algorithm, we
22 - (,\2; 0 have run a simple numerical example. The system matrix is given by
te (AUXQ;) + x4 1\12> Ve =0 (18a) )
) ) ) 0 0.4 0 0
T (2 i4+1) T A =1 (0 A — Ao —
Ao X+ X A0 — s A X A=1y o } e = {0.345 0}
T 7 —1 T A =Ty~ —1 C
—cAy Xéﬂ Asy Aoy + Ag1 Aoy VaoAsy A o 0 —0.524 s — 0 0.262
= VizA%, Aoy = A AS VY, + Vi =0 (18b) Zlo 0o | T lo -1
X2(§+l) = _‘\Z_ZT (AFIIZX1(§+1) +X2(é+l)A21 Bl = (0):| B'_) = |:?:|
+ XA+ 1Y) . 1.0 0 } . {0.2 0.1}
T = T2 = P
xXW=0i=0123,.... (18c) L0 1.0 12 05
_ o _ Di=[0 0 0 0 1] Doy =[1 0.5]
The following theorem indicates the convergence of the algorithm (18). « 100 0 0 . 0010 0
Theorem 3: The algorithm (18) converges to the exact soluflap, Cn = Cr =
of (17) with the rate of convergence 6Xz'), that is 00000 00000
g &) Cor=[1 0] Cor=[1 1]

X(,) - Xlnz

Im

=0(<")

The numerical results are obtained for small parameter 10~*.
i =1,2,3,... Im =11,21,22. (19) Sincedet Ay, = 0, the system is nonstandard singularly perturbed
) ) o . systems. The four basic quantities for the systemaje= vy =
Proof. The proof is done by_ usmg)the math_ematlcal |ndu_ct|orb_255 156, 115 = 425 = 7.359056. Thus, for every boundary value
Wheni = 0 fqr thg (18), the solutlonsl,\m are equivalent to the first Y > 5 = max {717, Yis, J25s 12: } = 7.359056, the AREs (6a), (6¢),
order approximations\’;, corresponding to the smlall parameters 7.) and (7c) have the positive semidefinite stabilizing solutions. On
for the (17). It follows from these equations t%xl(m) —Xim| = the other hand, by using MATLAB, the minimum value®kuch that
O(e), Im = 11,21,22. When: = N (N > 1), we assume that there exists the dynamic feedback controlle} is: 7.468 750.
HX(N) — X1 || = O(=Y). Subtracting (18) from (17) and using the Now, we choose as = 8.0 > 7 to design the controller. We give the

Im

above assumptions, we arrive at the following equations: following solutions of the AREs E.) and (2) andin Table . Table Il shows

- ) ) , the results of the errorsF; (P || and|| . (W()|| periterations. We
Az (Xéflz\drl) - X22) + (XQH) - X22) A2+ 0" =0 find that the solutions of the AREs (1) and (2) converge to the exact
(Xﬁwrl) - Xﬂ) Avz + (XQH) - X21>T Aoy sol_u1tion with .accuraC)./ OH}—.l(P(Z))H N .IO_M andHBG/.V%l)_)H <
10 after 2 iterative iterations, respectively. Moreover, it is interested
AL (XSH) _ X22) n O(€N+1) -0 in pointing out that the result of Table Il shows that the algorithms (10)
T [ (N41) (N41) i Nt and (11) are quadratic convergence. Table Il shows the results of the
Ao (Xu - X11) + (Xn - )&11) Ao+0O(E")=0. number of iterations required to the solution with the same accuracy of
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TABLE |

@ _

€

1.5886644664 x 10 7.1692654025 1.4777259003 x 103
7.1692654025 9.5689292890 7.3774420477 x 10~
1.4777259003 x 1073  7.3774420477 x 10~* 4.8953376479 x 10~*
3.2803557787 x 10~1  1.2062616188 x 10~* 1.0462699908 x 10~
1.7234972390 —9.6975066240 x 10~2 —1.5020487314

3.2803557787 x 1074 ]

1.2062616188 x 10~¢
1.0462699908 x 10~*
2.4621105838 x 10~°

—1.0113300267 x 10~1

1665

—-9.6975066240 x 1072

6.7468422739 x 1071

7.8173878465 x 107!

w® — —1.4273792265
¢ T ~1.5020487314 —1.4273792265 4.8380921965 —1.2998747057
~1.0113300267 x 1071  7.8173878465 x 107!  —1.2998747057  1.9265002490 x 10!
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