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Adaptive Stabilization of a Class of Nonlinear Systems  the controller presented in [7] is applied to motion control experiments.

With Nonparametric Uncertainty The main difference between the controller of this note and [7] is a con-
dition on the sign of thél, 2) entry of the Lyapunov matri®. In [7]
Alexander V. Roup and Dennis S. Bernstein this sign condition is implicit in the solution of the Lyapunov equation

for second-order systems in companion form. Numerical experiments
) ] o ) show that violation of this condition can destabilize the closed-loop
Abstract—We consider adaptive stabilization for a class of nonlinear
! " system.

second-order systems. Interpreting the system states as position and ve- . . . .
locity, the system is assumed to have unknown, nonparametric position-de- ~ SINCe we assume full-state f?edbaCk control in companion C_Oord'_'
pendent damping and stiffness coefficients. Lyapunov methods are used to nates, thatis, position and velocity measurements, our controller is a di-
prove global convergence of the adaptive controller. Furthermore, the con- rect adaptive controller, and thus parameter estimates are not needed. In
troller is shown to be able reject constant disturbances and to asymptoti- 5qgjtion, full-state feedback availability avoids the need for positivity
cally track constant commands. For illustration, the controller is used to ti Ext . ¢ tout feedback tant disturb
stabilize the van der Pol limit cycle, the Duffing oscillator with multiple assunjp 10ns. EXIensIons 1o outpu e_e ack, nongons an !S ur ar_wce
equilibria, and several other example systems. rejection, and model reference adaptive control will be considered in

. S . . future work.
Index Terms—Adaptive stabilization, nonlinear systems, nonparametric

uncertainty.
Il. ADAPTIVE STABILIZATION
I. INTRODUCTION We wish to determine a feedback control law for the nonlinear
system
There are many applications of control in which a reliable model o
the dynamical system is not available. This can occur if the system is md(t) + g(qg())q(t) + F(q())q(t) = bu(t) + d (1)

not amenable to analytical modeling due to unknown or unpredictably

changing physics, or if identification is not feasible due to instabilityvheref : R = R, ¢ : R — R, andm.b,d € R, such thay(t) — 0

disturbances, sensor noise, poor repeatability, or high cost. Under higtl¢(t) — 0 ast — oo. We assume that (1) is uncertain in the fol-

levels of uncertainty, robust control may be ineffective and adaptil@wing sense. The functionsandg are known to be locally Lipschitz

control is warranted. onR and lower bounded but are otherwise uncertain, the constasit
For implementation, adaptive controllers generally require sonkeown to be positive but is otherwise uncertain, the consteknown

knowledge about the plant in the form of parameter or transfer functittbe nonzero with known sign but is otherwise uncertain, and the con-

estimates, and this knowledge may be available prior to operatistantd is uncertain.

due to analytical modeling or off-line identification, or it may be Under the above assumptions, the control law

determined during operation through concurrent identification. The

former case is usually termed direct adaptive control, while the latter u(t) = k1 (t)q(t) + k2 (t)q(t) + o(t) (2

constitutes indirect adaptive control. In addition, adaptive control

methods often depend on structural assumptions about the plant,vf&ere the gaink_1 (0’ k2(t) and t_he parameter(#) are adapted, W_i"
example, passivity and relative degree. be used to obtaig(t) — 0 andg(t) — 0 ast — oc. Note that if

In this note we consider the problem of adaptive stabilization add= Y andd = 0, then(g, ¢) = (0,0) is an equilibrium of (1) but
constant disturbance rejection for a class of second-order nonlinear g‘g%[_necelssarlly the_only equﬂlbrl_u_m._ Furthermorey i 0 butd # 0,
tems under full-state feedback. In Section Il, we present the adapt 8”@’ ¢) = (0,0) is not an equilibrium of (1).
controller and prove convergence of the plant states. The novel aspe&eflne the state
of this controller is the fact that global convergence is guaranteed under =] a [t
nonparametric assumptions about the nonlinearities. Interpreting the 2(t) |::E2(t):| - |:q'(t):| 3)
system states as position and velocity, the system is assumed to have un-
known, position-dependent damping and stiffness coefficients, whigAd the gain matrix
are assumed only to be continuous and lower bounded. Furthermore, A \
these lower bounds need not be known. A classical system satisfying K(t) = [ka(t)  ka2(t)]. (4)
these assumptions is the van der Pol oscillator whose limit cycle is sba— . . . . . .
bilized by our controller without knowledge about the form of the po- ynamic variables wil henceforth be written W'.thOUt a time depen-
sition-dependent, sign-varying damping. dence argument. The state equation for (1), (2) is

The form of our controller is similar to direct adaptive controllers ] o
developed for linear systems. Related theory can be found in [1]-[6], r= (1/m)[pKx + b6 +d — w2g(z1) — 21 f(21) | (5)
where the emphasis is on model following control. For adaptive stabi- ' '
lization, a self-contained treatment of the relevant ideas and technin6é§P A P1 P12
is given in [7], where the stability of the closed-loop system is proven T ipie pe
for linear plants and the controller is applied to nonlinear plants. In [8],

| be positive—definite, witly1> > 0. Let

A 2 A ,
a=inf f(qg) 8= mlg g9(q) (6)
q€ €
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Lemma 1: K, is not empty. Now, let’; = [k1s k2s] € Ks and

definekR € R°**, f :R — R, andj : R — R by

/ PL2 (o — bk ) _;pl
R é m 2 8
—im L2 (8 — bkys) — p12 ®)
Fla) 2 flq) =Dk §(a) 2 g(g) = Dhow. 9)

ThenR is positive—definite, and(¢) > 0 andj(¢) > O forall ¢ € R.
Furthermore, withk' = K, and¢ = —d/b, the origin of (5) is a
globally asymptotically stable equilibrium.

Proof: The first inequality of (7) is an upper bound ok . The
second inequality of (7) is an upper boundidn; in terms ofbk;.
Sincebk,, andbks are only bounded abovg;, is not empty.

The matrixR is positive—definite if and only if

P12

—(O: — bk‘h) > 0, (10)
m
P25 bhye) — pro > 0, (11)
m

1
P2 (0 = bk [P2(8 = bhos) = piz] > 01 (12)
m m 4

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 11, NOVEMBER 2001

wherel' € R, P € R®*?, A € R, and\ € R. LetT > 0, A be
positive—definite A > 0, and defineB, 2 [0 sign(b)]”.
The equilibria set of the closed-loop system (18)—(20) is

E={(z,K.¢) eR®xR"*xR:z=1[0 0],
K eRY?, ¢ =—d/b}. (21)

Define the subset of equilibria
E={(z,K,,9) € E: K, € K.}

Theorem 1: Every element of ; is a Lyapunov stable equilibrium of
the closed-loop system (18)—(20). Furthermore, the functiohs, and
¢ satisfying (18)—(20) are bounded, antt) — [0 0]* and¢(t) —
—d/bast — oc.

Proof: Let ([0 0]", K., —d/b) € &, whereK, = [kis ka.].
Define

(22)

Fr 2k — Fre, ko 2 ko —kos, K2K - K.,

6= o+d/b, (23)

The first inequality of (7) implies (10), while the second inequalityn® Matrix1t as in (8), and the functionf andg as in (9). Note that
of (7) implies (12). Furthermore, (10) and (12) imply (11). Thereforeﬁ'nce[k’ls k2] € K, it follows from Lemma 1 thaf? is positive—def-

sinceK; € K5, R is positive—definite.
To show thatf(q) > 0 andg(g) > 0 for all ¢ € R, note that for all
g €R

fla) = F(q) = bkis > & = bk1s > 0, (13)
and
9(q) = g(q) — bkas > 3 — bkys
2
m mpi
P . R ) 14
P2 <4P12(@’ — b1s) ]hz) (14)

Next we show that i’ = K, € K, and¢ = —d /b, then the origin

inite andf(¢) > 0 andj(q) > O forall ¢ € R.
The closed-loop system (18)—(20) can be written in the form

Xo

&= - - - 24
T/ m)pE s + b6 — 22g(x1) — w1 f(21)] (24)
K = —TB{ Paa® A, (25)
&= —BJ Px). (26)

The Lyapunov analysis that follows concerns the stability of the equi-
librium point (x, K, ¢) = ([0 0].[0 0],0) of (24)—(26). Note that
the equilibrium poin{z, I, 6) = ([0 0]7,[0 0],0) of (24)—(26) cor-

of (5) is a globally asymptotically stable equilibrium. The closed-loofesponds to the equilibrium poitit, K, ¢) = ([0 0]", K, —d/b) of

system (5) can be written in the form

&=

Ll/wn)[—ng(ﬁfn - mf@ro]} ' (13)

Note thatr = 0 is the unique equilibrium of (15) sinqé(q) > 0 and

g(q) > 0forall¢ € R. Consider the Lyapunov candidate for (5) given

by

_ 1

’ Lopel pan  [TL
V() Q;erP.r + % of(o)do+ a 19 () dn

0 m 0
(16)

which is positive—definite and radially unbounded. The derivatiViE of

along the system trajectory is
Viz)=2"Pi+ %m Fla)in + %ﬂnf](m] )

’) 5 ~ 2 . 2
= —% (x1)a] + praias — (%g(m) —pu) x5

—%(a’ — bku)wf + prai e

_ (12(3 — bkoys) — plz) l’g

m
T
= —u Rux.

IN

17

SinceR is positive definite, the origin of (5) is globally asymptotically

stable. [ |
Now, consider the system (5) with the adaptation law

. xr2

r= |:(1/m)[be+bcﬁ+d—xgg(x1) —xi f(z1)] (18)
K =-TB{Pz2"A (19)
é = —BJ Pz (20)

(18)—(20) through the coordinate transformation given by (23).
Consider the Lyapunov candidate for the system (24)—(26) given by

. Do [FL
of(o)do + Pz / ng(n) dn
m J,

IR Do [F1
Viz,K,0)= 5;171 Px + ‘f—;
- Jo

I O S e L trox ol (27)
2m 2m
which is positive—definite and radially unbounded. The derivativiE of
along the system trajectory is
V'(J}./ I;,, &) = lTpT + ];—;JH f.(lﬁ ).11 =+ }%.’T,]g(l‘] )J}1
- - T ~ T
+ o] ttIT'EAT'R + Mtré/\_ld)
m m
1
= (z1p1 + zapr2)za + ;(Jbﬁpm + zap2)
X (bf{x + bz,g) —w2g(z1) — ;L’1f(l’1))
P2 ; P12 -
+ Z=zixa f(21) + —z12209(21)
m m
~ 2 T - T
+ o] trD'KATYE 4 o] trod 1o
m m
1
= (x1p1 + xopi2)w2 — —(@ipi2 + x2p2)
X (g(z1)xs + arlf(arl)) + %wla:gf(m)
+ Iﬁmmg(m) + M tr IN'{(J:;L'TPBO
m m

2 T - o T
+AT'R T+ 1 tro(a’ PBo + A '¢ )
m
= _1)7;2 f(bzl)lf + prziwe

D2 . 2
- (—g(ébl) - Plz) Z2
m

(28)
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< —%(a — blrs)as + pragas ® i T T T

- (%(5 ~ bhay) — p12) 22 15t ]
= —2"Ra 1o 1
<0 (29)

forall (x, K',¢) € R x R"* x R. Therefore([0 0", K., —d/b)
is a Lyapunov stable equilibrium of (18)—(20). Sinicgz, K, ¢) > 0 o T 1
andV(z, K, ¢) < 0 it follows thatV (z, K, ¢) is bounded. Since, in

addition,V (x, I, ¢) is radially unbounded, it follows that, &', and -5p
¢ are bounded.
Next, to provex(t) — [0 0]" and ¢(t) — —d/b as -1or 1

t — oo, assume(x(0),K(0),6(0)) # ([0 0]7,[0 0],0) and
letp £ V(2(0), K(0),4(0)) > 0 and

15+ 4

NE2{(2.K.8):V(e,K,8)=0.V(x.K.d) < p}l.  (30) 2y > = o ’ 2 3

Note that bﬁca”SR IS pOSItNe_deﬂn,lte} (z, I"(D)T_, 0 implies Fhat Fig. 1. System trajectory in the, ¢ plane for Example 1, the van der Pol

x = [0 0]". Conversely, substituting = [0 0]" into (28) gives qgcillator. Initial conditions arg = —1,4 = 1, k, = 0, ks = 0, andé = 0.
V(x,K, ) = 0.Thereford/ (x, K, ) = Oifand onlyif2 = [0 0]”.  Uncontrolled response is shown with thin line. Controlled response is shown
Hence with thick line.

N={,K,¢):x2=[0 0", V(x,K,0)<p}. (31)

Substitutingz = [0 0]" into (24)—(26) it can be seen that= [0 0]" E
if and only if ¢ = 0. It follows that the largest invariant subset/ofis J
given by 0 y
M={(x,K,0) €N :6=0}. (32) —
g

Now, LaSalle’s theorem ([9, Th. 3.4]) implies that, K, ¢) — M as
t — oco. Itfollows thatx(t) — [0 0]T and¢(t) — —d/b ast — co.m .
Note that the lower bounds andj for f andg defined by (6) are
used only in the proof and need not be known to implement the adaptive
controller (2), (19), (20).
For the case in which (1) is linear, Theorem 1 specializes to [7, Cor.
3.1]. In [7], the matrix” was obtained as the solution to the Lyapunov -105
equation) = ATP + PA, + R, whered, = A + BK, andR is
an arbitrary positive definite matrix. It can be seen that whenis
in canonical form, the (1, 2) entry d? is always positive. Hence the
requiremenpi2 > 0 represents no loss of generality when Theorem
is applied to linear plants.
The adaptive controller (2), (19), (20) can be used to asymptotically

L
95 100 105 t‘O 15 120 125 130

Fig. 2. Time history ofi” for Example 1, the van der Pol oscillator. Control
S£/stem is activated at= 100, which is marked with a vertical dashed line.

III. NUMERICAL EXAMPLES

track constant position references. Define the position error Example 1: Consider the van der Pol oscillator with constant dis-
A turbance given by
e(t) =q(t) —r (33) } o, )
G+10(¢" = 1)¢§+g=u+0.9. (39)
wherer is a constant reference. In terms:afndr, the system equation . ) .
(1) has the form For this systemg(q) = 10(¢° — 1) and f(q) = 1, which
are both bounded from below. Note that with the constant
mé(t) + gle(t) + r)e(t) + f(e(t) +r)(e(t) +r) disturbance termd = 0.9, the open-loop system does not
=bu(t)+d. (34) have an equilibrium point af¢,4) = (0,0). However, the
closed-loop system (39), (2), (19), (20) has the equilibria set
Now defining E={(q¢ 4" K.¢): q=0,=0,K e R*, 6 = -0.9)}.
) Al ) Choose
f]((i):;[f((i—l—?‘)((i-l-?‘)—f(r)r], (35) P 1 05 r \ 1 0 \
’ = =1, A= ., oA=1
g1(e)ég(e+7‘) (36) {0'5 1 } {0 1}
di 2d— fir)r (37) (40)
] Fig. 1 shows the system trajectory in the; plane. The uncontrolled
(34) can be written as system is allowed to approach a limit cycle, and then the adaptive con-
me S — 1 trol system is activated at= 100. V(x, k, ¢) was calculated using
mé(t) + g(e(D)EE) + Ale(®)e(t) = but) + & (38) (27) with the parameters;, = 0 andks; = —15 selected to satisfy

which is identical in form to (1). The adaptive controller (2), (19), (20§7). Fig. 2 shows the time history &f, and Fig. 3 shows the time his-
can be applied to (38) using the state definition= [¢ ] to give tory of k;, k-, andé before and after control system activation. The
g — r and¢ — 0 ast — oc. states; andg of the closed-loop system convergejte- 0 andg = 0.
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Fig. 3. Time history ofc1(-), k2 (- -), andeo (— -) for Example 1, the van der (a)
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) ) ) ~ Fig. 5. Randomly generated piecewise linear functignsnd g used in
Fig. 4. System trajectory in the,¢ plane for Example 2, the Duffing Example 3.

oscillator. Initial conditions arg = —1, ¢ = 1,k; = 0,k = 0, and¢ = 0.
Uncontrolled response is shown with thin line. Controlled response is shown 5 T . T
with thick line.

Example 2: Next, consider the Duffing oscillator with constant dis-
turbance given by -5r

i+ (1/Hi+ (" —g=u+1. (41) ]

The uncontrolled system has stable fodi-at.86,0) and (2.11,0)and "<
asaddle af—0.25, 0). For this systeny(q) = 1/4 andf(q) = ¢*—4,
which are bounded from below.

Choose controller parameters as in (40). Fig. 4 shows the syster
trajectory in they, ¢ plane. The uncontrolled system is allowed to ap-
proach a stable focus, and the adaptive control system is activated :

t = 30. The stateg andq of the closed-loop system convergeyte- 0
andg = 0. % -6 -5 -4 ) 2 A o 1

Example 3: Next consider the nonlinear system with randomly gen-
erated piecewise linear stiffness and damping given by (1) wits
1,0 = 1, andd = 0. The stiffness and damping functiofisandg  Fig. 6. System trajectory in the ¢ plane for Example 3. Initial conditions
are the randomly generated piecewise linear functions shown in Figa&q = —1,¢ = —1,k1 = 0,ks = 0, and¢ = 0. Uncontrolled response is
These nonlinear functions can be viewed as interpolations of look8fpPwn with thin line. Controlled response is shown with thick line.
table data.

Choose controller parameters as in (40). Fig. 6 shows the system &rad the adaptive control system is activated-at0.4. The stateg and
jectory in they, ¢ plane. The uncontrolled system is allowed to divergej of the closed-loop system convergejte= 0 andg = 0.




IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 11, NOVEMBER 2001 1825

3 15 T T T T T T T
25k
2t r 1
15F
05 4
1
—~
(=)
S’
05
> ok ]
o
ok
-as} 4 o5l B
~1p
151 -1 9
-2 L
) -2 -1 1 2 3
5 L . L L . L

Fig. 7. Functiory for Example 4.

Fig. 9. System trajectory in the ¢ plane for Example 5. Initial conditions
4 . , ; . . . . . . areq = 0.1,q = 0.1,k; = 0,k; = 0, and¢ = 0. Uncontrolled response is
shown with thin line. Controlled response is shown with thick line.

2t i —1 andg¢ = 0, the uncontrolled system approaches a limit cycle. The
adaptive control system is activated at 19. The stateg andq of the

i 1 closed-loop system convergedc= 1 andg = 0.

Example 5: Consider the nonlinear system given by

il 1 ('1'—1—/\((12—l—cu_z(j2 —a?)d—l—qu: u. 47)

2
Uncontrolled trajectories of (47) with nonzero initial conditions ap-
proach a sinusoidal limit cycle with amplitudeand frequencw. The
Y . L ‘ L parametei adjusts the rate of convergence to the limit cycle. Theorem

25 -2 -t5 1 05 q° os 1152 2s 1 does not apply to this example becayse a function of; as well as

¢q. For this example choose parameters 1,w = 1, and\ = 0.5.

Fig. 8. System trajectory in thg ¢ plane for Example 4. Initial conditions are Choose controller parameters as in (40). Figure 9 shows the system
q=—-1,§=10,k, =0,k =0, and¢ = 0. Uncontrolled response is shown trajectory in they, ¢ plane. Beginning from the initial conditign= 0.1
with thin line. Controlled response is shown with thick line. and§ = 0.1, the uncontrolled system approaches a limit cycle. Then
the adaptive control system is activated at 35. The state; andq of
the closed-loop system convergegte= 0 andg = 0.

-3k

Example 4: Consider the nonlinear system given by

j+9()i+q=u (42)
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