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Adaptive Stabilization of a Class of Nonlinear Systems
With Nonparametric Uncertainty

Alexander V. Roup and Dennis S. Bernstein

Abstract—We consider adaptive stabilization for a class of nonlinear
second-order systems. Interpreting the system states as position and ve-
locity, the system is assumed to have unknown, nonparametric position-de-
pendent damping and stiffness coefficients. Lyapunov methods are used to
prove global convergence of the adaptive controller. Furthermore, the con-
troller is shown to be able reject constant disturbances and to asymptoti-
cally track constant commands. For illustration, the controller is used to
stabilize the van der Pol limit cycle, the Duffing oscillator with multiple
equilibria, and several other example systems.

Index Terms—Adaptive stabilization, nonlinear systems, nonparametric
uncertainty.

I. INTRODUCTION

There are many applications of control in which a reliable model of
the dynamical system is not available. This can occur if the system is
not amenable to analytical modeling due to unknown or unpredictably
changing physics, or if identification is not feasible due to instability,
disturbances, sensor noise, poor repeatability, or high cost. Under high
levels of uncertainty, robust control may be ineffective and adaptive
control is warranted.

For implementation, adaptive controllers generally require some
knowledge about the plant in the form of parameter or transfer function
estimates, and this knowledge may be available prior to operation
due to analytical modeling or off-line identification, or it may be
determined during operation through concurrent identification. The
former case is usually termed direct adaptive control, while the latter
constitutes indirect adaptive control. In addition, adaptive control
methods often depend on structural assumptions about the plant, for
example, passivity and relative degree.

In this note we consider the problem of adaptive stabilization and
constant disturbance rejection for a class of second-order nonlinear sys-
tems under full-state feedback. In Section II, we present the adaptive
controller and prove convergence of the plant states. The novel aspect
of this controller is the fact that global convergence is guaranteed under
nonparametric assumptions about the nonlinearities. Interpreting the
system states as position and velocity, the system is assumed to have un-
known, position-dependent damping and stiffness coefficients, which
are assumed only to be continuous and lower bounded. Furthermore,
these lower bounds need not be known. A classical system satisfying
these assumptions is the van der Pol oscillator whose limit cycle is sta-
bilized by our controller without knowledge about the form of the po-
sition-dependent, sign-varying damping.

The form of our controller is similar to direct adaptive controllers
developed for linear systems. Related theory can be found in [1]–[6],
where the emphasis is on model following control. For adaptive stabi-
lization, a self-contained treatment of the relevant ideas and techniques
is given in [7], where the stability of the closed-loop system is proven
for linear plants and the controller is applied to nonlinear plants. In [8],
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the controller presented in [7] is applied to motion control experiments.
The main difference between the controller of this note and [7] is a con-
dition on the sign of the(1; 2) entry of the Lyapunov matrixP . In [7]
this sign condition is implicit in the solution of the Lyapunov equation
for second-order systems in companion form. Numerical experiments
show that violation of this condition can destabilize the closed-loop
system.

Since we assume full-state feedback control in companion coordi-
nates, that is, position and velocity measurements, our controller is a di-
rect adaptive controller, and thus parameter estimates are not needed. In
addition, full-state feedback availability avoids the need for positivity
assumptions. Extensions to output feedback, nonconstant disturbance
rejection, and model reference adaptive control will be considered in
future work.

II. A DAPTIVE STABILIZATION

We wish to determine a feedback control law for the nonlinear
system

m�q(t) + g(q(t)) _q(t) + f(q(t))q(t) = bu(t) + d (1)

wheref : IR ! IR; g : IR ! IR, andm; b; d 2 IR, such thatq(t)! 0
and _q(t) ! 0 ast ! 1. We assume that (1) is uncertain in the fol-
lowing sense. The functionsf andg are known to be locally Lipschitz
on IR and lower bounded but are otherwise uncertain, the constantm is
known to be positive but is otherwise uncertain, the constantb is known
to be nonzero with known sign but is otherwise uncertain, and the con-
stantd is uncertain.

Under the above assumptions, the control law

u(t) = k1(t)q(t) + k2(t) _q(t) + �(t) (2)

where the gainsk1(t); k2(t) and the parameter�(t) are adapted, will
be used to obtainq(t) ! 0 and _q(t) ! 0 ast ! 1. Note that if
u � 0 andd = 0, then(q; _q) = (0; 0) is an equilibrium of (1) but
not necessarily the only equilibrium. Furthermore, ifu � 0 butd 6= 0,
then(q; _q) = (0; 0) is not an equilibrium of (1).

Define the state

x(t) =
x1(t)

x2(t)

�
=

q(t)

_q(t)
(3)

and the gain matrix

K(t)
�
= [k1(t) k2(t)]: (4)

Dynamic variables will henceforth be written without a time depen-
dence argument. The state equation for (1), (2) is

_x =
x2

(1=m)[bKx+ b�+ d� x2g(x1)� x1f(x1)
: (5)

Let P
�
= [

p1 p12
p12 p2

] be positive–definite, withp12 > 0. Let

�
�
= inf

q2IR
f(q) �

�
= inf

q2IR
g(q) (6)

and define the set

Ks = [k1s k2s] : bk1s < �;

bk2s < � �
m

p2

mp21
4p12(�� bk1s)

+ p12 : (7)
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Lemma 1: Ks is not empty. Now, letKs = [k1s k2s] 2 Ks and
defineR 2 IR2�2

; ~f : IR ! IR, and~g : IR ! IR by

R
�
=

p

m
(�� bk1s) � 1

2
p1

� 1

2
p1

p

m
(� � bk2s)� p12

; (8)

~f(q)
�
= f(q)� bk1s; ~g(q)

�
= g(q)� bk2s: (9)

ThenR is positive–definite, and~f(q) > 0 and~g(q) > 0 for all q 2 IR.
Furthermore, withK = Ks and� = �d=b, the origin of (5) is a
globally asymptotically stable equilibrium.

Proof: The first inequality of (7) is an upper bound onbk1s. The
second inequality of (7) is an upper bound onbk2s in terms ofbk1s.
Sincebk1s andbk2s are only bounded above,Ks is not empty.

The matrixR is positive–definite if and only if
p12
m

(�� bk1s) > 0; (10)

p2
m

(� � bk2s)� p12 > 0; (11)

p12
m

(�� bk1s)
p2
m

(� � bk2s)� p12 >
1

4
p21: (12)

The first inequality of (7) implies (10), while the second inequality
of (7) implies (12). Furthermore, (10) and (12) imply (11). Therefore,
sinceKs 2 Ks; R is positive–definite.

To show that~f(q) > 0 and~g(q) > 0 for all q 2 IR, note that for all
q 2 IR

~f(q) = f(q)� bk1s � �� bk1s > 0; (13)

and

~g(q) = g(q)� bk2s � � � bk1s

>
m

p2

mp21
4p12(�� bk1s)

+ p12 > 0: (14)

Next we show that ifK = Ks 2 Ks and� = �d=b, then the origin
of (5) is a globally asymptotically stable equilibrium. The closed-loop
system (5) can be written in the form

_x =
x2

(1=m)[�x2~g(x1)� x1 ~f(x1)]
: (15)

Note thatx = 0 is the unique equilibrium of (15) since~f(q) > 0 and
~g(q) > 0 for all q 2 IR. Consider the Lyapunov candidate for (5) given
by

V (x) =
1

2
xTPx +

p2
m

x

0

� ~f(�)d� +
p12
m

x

0

�~g(�)d�

(16)

which is positive–definite and radially unbounded. The derivative ofV
along the system trajectory is

_V (x) = xTP _x+
p2
m
x1 ~f(x1) _x1 +

p12
m

x1~g(x1) _x1

= �
p12
m

~f(x1)x
2

1 + p1x1x2 �
p2
m

~g(x1)� p12 x22

� �
p12
m

(�� bk1s)x
2

1 + p1x1x2

�
p2
m

(� � bk2s)� p12 x22

= �xTRx: (17)

SinceR is positive definite, the origin of (5) is globally asymptotically
stable.

Now, consider the system (5) with the adaptation law

_x =
x2

(1=m)[bKx+ b�+ d� x2g(x1)� x1f(x1)]
(18)

_K = ��BT
0 Pxx

T� (19)
_� = �BT

0 Px� (20)

where� 2 IR; P 2 IR2�2
; � 2 IR2�2, and� 2 IR. Let � > 0;� be

positive–definite,� > 0, and defineB0

�
= [0 sign(b)]T .

The equilibria set of the closed-loop system (18)–(20) is

E = f(x;K; �) 2 IR2
� IR1�2

� IR : x = [0 0]T ;

K 2 IR1�2
; � = �d=bg: (21)

Define the subset of equilibria

Es = f(x;Ks; �) 2 E : Ks 2 Ksg: (22)

Theorem 1: Every element ofEs is a Lyapunov stable equilibrium of
the closed-loop system (18)–(20). Furthermore, the functionsx;K, and
� satisfying (18)–(20) are bounded, andx(t) ! [0 0]T and�(t) !
�d=b ast ! 1.

Proof: Let ([0 0]T ; Ks;�d=b) 2 Es, whereKs = [k1s k2s].
Define

~k1
�
= k1 � k1s; ~k2

�
= k2 � k2s; ~K

�
= K �Ks;

~�
�
= �+ d=b; (23)

the matrixR as in (8), and the functions~f and~g as in (9). Note that
since[k1s k2s] 2 Ks it follows from Lemma 1 thatR is positive–def-
inite and ~f(q) > 0 and~g(q) > 0 for all q 2 IR.

The closed-loop system (18)–(20) can be written in the form

_x =
x2

(1=m)[b ~Kx+ b~�� x2~g(x1)� x1 ~f(x1)]
; (24)

_~K = ��BT
0 Pxx

T�; (25)
_~� = �BT

0 Px�: (26)

The Lyapunov analysis that follows concerns the stability of the equi-
librium point (x; ~K; ~�) = ([0 0]T ; [0 0]; 0) of (24)–(26). Note that
the equilibrium point(x; ~K; ~�) = ([0 0]T ; [0 0]; 0) of (24)–(26) cor-
responds to the equilibrium point(x;K; �) = ([0 0]T ; Ks;�d=b) of
(18)–(20) through the coordinate transformation given by (23).

Consider the Lyapunov candidate for the system (24)–(26) given by

V (x; ~K; ~�) =
1

2
xTPx +

p2
m

x

0

� ~f(�)d� +
p12
m

x

0

�~g(�)d�

+
jbj

2m
tr ��1 ~K��1 ~KT +

jbj

2m
tr ~���1 ~�T (27)

which is positive–definite and radially unbounded. The derivative ofV
along the system trajectory is

_V (x; ~K; ~�) = xTP _x +
p2
m
x1 ~f(x1) _x1 +

p12
m

x1~g(x1) _x1

+
jbj

m
tr��1 ~K��1 _~K

T

+
jbj

m
tr ~���1

_~�
T

= (x1p1 + x2p12)x2 +
1

m
(x1p12 + x2p2)

� (b ~Kx+ b~�� x2~g(x1)� x1 ~f(x1))

+
p2
m
x1x2 ~f(x1) +

p12
m

x1x2~g(x1)

+
jbj

m
tr��1 ~K��1

_~K
T

+
jbj

m
tr ~���1

_~�
T

= (x1p1 + x2p12)x2 �
1

m
(x1p12 + x2p2)

� (~g(x1)x2 + x1 ~f(x1)) +
p2
m
x1x2 ~f(x1)

+
p12
m

x1x2~g(x1) +
jbj

m
tr ~K(xxTPB0

+��1
_~K
T

��1) +
jbj

m
tr ~�(xTPB0 + ��1

_~�
T

)

= �
p12
m

~f(x1)x
2

1 + p1x1x2

�
p2
m

~g(x1)� p12 x22 (28)
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� �
p12
m

(�� bk1s)x
2

1 + p1x1x2

�
p2
m

(� � bk2s)� p12 x22

= �xTRx

� 0 (29)

for all (x; ~K; ~�) 2 IR2
� IR1�2

� IR. Therefore,([0 0]T ; Ks;�d=b)
is a Lyapunov stable equilibrium of (18)–(20). SinceV (x; ~K; ~�) > 0
and _V (x; ~K; ~�) � 0 it follows thatV (x; ~K; ~�) is bounded. Since, in
addition,V (x; ~K; ~�) is radially unbounded, it follows thatx;K, and
� are bounded.

Next, to prove x(t) ! [0 0]T and �(t) ! �d=b as
t ! 1, assume(x(0); ~K(0); ~�(0)) 6= ([0 0]T ; [0 0]; 0) and
let �

�
= V (x(0); ~K(0); ~�(0)) > 0 and

N
�
= f(x; ~K; ~�) : _V (x; ~K; ~�) = 0; V (x; ~K; ~�) � �g: (30)

Note that becauseR is positive–definite,_V (x; ~K; ~�) = 0 implies that
x = [0 0]T . Conversely, substitutingx = [0 0]T into (28) gives
_V (x; ~K; ~�) = 0. Therefore_V (x; ~K; ~�) = 0 if and only ifx = [0 0]T .
Hence

N = f(x; ~K; ~�) : x = [0 0]T ; V (x; ~K; ~�) � �g: (31)

Substitutingx � [0 0]T into (24)–(26) it can be seen that_x = [0 0]T

if and only if ~� = 0. It follows that the largest invariant subset ofN is
given by

M = f(x; ~K; ~�) 2 N : ~� = 0g: (32)

Now, LaSalle’s theorem ([9, Th. 3.4]) implies that(x; ~K; ~�)!M as
t!1. It follows thatx(t)! [0 0]T and�(t)! �d=b ast!1.

Note that the lower bounds� and� for f andg defined by (6) are
used only in the proof and need not be known to implement the adaptive
controller (2), (19), (20).

For the case in which (1) is linear, Theorem 1 specializes to [7, Cor.
3.1]. In [7], the matrixP was obtained as the solution to the Lyapunov
equation0 = AT

s P + PAs + R, whereAs = A + BKs andR is
an arbitrary positive definite matrix. It can be seen that whenAs is
in canonical form, the (1, 2) entry ofP is always positive. Hence the
requirementp12 > 0 represents no loss of generality when Theorem 1
is applied to linear plants.

The adaptive controller (2), (19), (20) can be used to asymptotically
track constant position references. Define the position error

e(t)
�
= q(t)� r (33)

wherer is a constant reference. In terms ofe andr, the system equation
(1) has the form

m�e(t) + g(e(t) + r) _e(t) + f(e(t) + r)(e(t) + r)

= bu(t) + d: (34)

Now defining

f1(e)
�
=

1

e
[f(e+ r)(e+ r)� f(r)r]; (35)

g1(e)
�
= g(e+ r) (36)

d1
�
= d� f(r)r (37)

(34) can be written as

m�e(t) + g1(e(t)) _e(t) + f1(e(t))e(t) = bu(t) + d1 (38)

which is identical in form to (1). The adaptive controller (2), (19), (20)
can be applied to (38) using the state definitionx = [e _q]T to give
q ! r and _q ! 0 ast ! 1.

Fig. 1. System trajectory in theq; _q plane for Example 1, the van der Pol
oscillator. Initial conditions areq = �1; _q = 1; k = 0; k = 0, and� = 0.
Uncontrolled response is shown with thin line. Controlled response is shown
with thick line.

Fig. 2. Time history of _V for Example 1, the van der Pol oscillator. Control
system is activated att = 100, which is marked with a vertical dashed line.

III. N UMERICAL EXAMPLES

Example 1: Consider the van der Pol oscillator with constant dis-
turbance given by

�q + 10(q2 � 1) _q + q = u+ 0:9: (39)

For this system,g(q) = 10(q2 � 1) and f(q) = 1, which
are both bounded from below. Note that with the constant
disturbance termd = 0:9, the open-loop system does not
have an equilibrium point at(q; _q) = (0; 0). However, the
closed-loop system (39), (2), (19), (20) has the equilibria set
E = f([q _q]T ; K; �) : q = 0; _q = 0;K 2 IR1�2

; � = �0:9)g.
Choose

P =
1 0:5

0:5 1
; � = 1; � =

1 0

0 1
; � = 1:

(40)

Fig. 1 shows the system trajectory in theq; _q plane. The uncontrolled
system is allowed to approach a limit cycle, and then the adaptive con-
trol system is activated att = 100. V (x; ~k; ~�) was calculated using
(27) with the parametersk1s = 0 andk2s = �15 selected to satisfy
(7). Fig. 2 shows the time history of_V , and Fig. 3 shows the time his-
tory of k1; k2, and� before and after control system activation. The
statesq and _q of the closed-loop system converge toq = 0 and _q = 0.
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Fig. 3. Time history ofk (–); k (- -), and� (� �) for Example 1, the van der
Pol oscillator. Control system is activated att = 100, which is marked with a
vertical dashed line.

Fig. 4. System trajectory in theq; _q plane for Example 2, the Duffing
oscillator. Initial conditions areq = �1; _q = 1; k = 0; k = 0, and� = 0.
Uncontrolled response is shown with thin line. Controlled response is shown
with thick line.

Example 2: Next, consider the Duffing oscillator with constant dis-
turbance given by

�q + (1=4) _q + (q2 � 4)q = u+ 1: (41)

The uncontrolled system has stable foci at(�1:86; 0) and (2.11, 0) and
a saddle at(�0:25; 0). For this system,g(q) = 1=4 andf(q) = q2�4,
which are bounded from below.

Choose controller parameters as in (40). Fig. 4 shows the system
trajectory in theq; _q plane. The uncontrolled system is allowed to ap-
proach a stable focus, and the adaptive control system is activated at
t = 30. The statesq and _q of the closed-loop system converge toq = 0
and _q = 0.

Example 3: Next consider the nonlinear system with randomly gen-
erated piecewise linear stiffness and damping given by (1) withm =
1; b = 1, andd = 0. The stiffness and damping functionsf andg
are the randomly generated piecewise linear functions shown in Fig. 5.
These nonlinear functions can be viewed as interpolations of lookup
table data.

Choose controller parameters as in (40). Fig. 6 shows the system tra-
jectory in theq; _q plane. The uncontrolled system is allowed to diverge,

(a)

(b)

Fig. 5. Randomly generated piecewise linear functionsf and g used in
Example 3.

Fig. 6. System trajectory in theq; _q plane for Example 3. Initial conditions
areq = �1; _q = �1; k = 0; k = 0, and� = 0. Uncontrolled response is
shown with thin line. Controlled response is shown with thick line.

and the adaptive control system is activated att = 0:4. The statesq and
_q of the closed-loop system converge toq = 0 and _q = 0.
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Fig. 7. Functiong for Example 4.

Fig. 8. System trajectory in theq; _q plane for Example 4. Initial conditions are
q = �1; _q = 0; k = 0; k = 0, and� = 0. Uncontrolled response is shown
with thin line. Controlled response is shown with thick line.

Example 4: Consider the nonlinear system given by

�q + g(q) _q + q = u (42)

where

g(q) =
2:2jq3j � 3:3q2 + 0:1; jqj < 1

3:3(jqj � 1)2 � 1; jqj � 1:
(43)

The damping functiong is shown in Fig. 7. We wish to drive the stateq
to q = 1. With the reference inputr = 1, choose controller parameters
as in (40) and use the modified control

u = k1(q � r) + k2 _q + � (44)

_K = ��BT

0 P
q � r

_q
[q � r _q]� (45)

_� = �BT

0 P
q � r

_q
�: (46)

Note that withr � 0, (44)–(46) are identical to (2), (19), (20).
Choose controller parameters as in (40). Fig. 8 shows the system

trajectory in theq; _q plane. Beginning from the initial conditionq =

Fig. 9. System trajectory in theq; _q plane for Example 5. Initial conditions
areq = 0:1; _q = 0:1; k = 0; k = 0, and� = 0. Uncontrolled response is
shown with thin line. Controlled response is shown with thick line.

�1 and _q = 0, the uncontrolled system approaches a limit cycle. The
adaptive control system is activated att = 19. The statesq and _q of the
closed-loop system converge toq = 1 and _q = 0.

Example 5: Consider the nonlinear system given by

�q + �(q2 + !
�2 _q2 � a

2) _q + !
2
q = u: (47)

Uncontrolled trajectories of (47) with nonzero initial conditions ap-
proach a sinusoidal limit cycle with amplitudea and frequency!. The
parameter� adjusts the rate of convergence to the limit cycle. Theorem
1 does not apply to this example becauseg is a function of _q as well as
q. For this example choose parametersa = 1; ! = 1, and� = 0:5.

Choose controller parameters as in (40). Figure 9 shows the system
trajectory in theq; _q plane. Beginning from the initial conditionq = 0:1
and _q = 0:1, the uncontrolled system approaches a limit cycle. Then
the adaptive control system is activated att = 35. The stateq and _q of
the closed-loop system converge toq = 0 and _q = 0.
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