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Abstract

This paper considers the problem of determining a finite number of discrete parameters
appearing in a nonlinear partial differential equation describing a curve evolution process.
The method is applied to the plasma etching of thin films for semiconductor manufac-
turing. Results are obtained within the mathematical framework of level set methods.
Here, the evolution of the curve under study is captured through the evolution of a level
set function. The underying physics of the process are completely contained in a scalar
function called the speed function. The degree of difficulty of treating the evolution equa-
tion depends on the functional dependencies of the speed function. This paper presents
optimal estimation and design techniques based on analytical gradient computations for
a class of position and orientation dependent speed functions. The technique is demon-
strated on a plasma etching model taken from the literature. Only simulation results
are presented here, but the model under study has been shown to reproduce experimental
data with reasonable accuracy. In the estimation problem, parameters in the model are fit
to best match the feature shape measured in experiments. In the optimal design problem,
parameter values are selected to most closely attain a desired feature shape.

1 Introduction

Although processes in which shape is the controlled output or measured quantity are of
considerable economic importance, there are relatively few tools available for their estimation
and control. Etching and deposition of surface features for fabrication of microelectronic
devices are an example of such processes. This application is the subject of the present work,
though the techniques described are general. Here the feature shape at the end of the etch
or deposition can be considered to be the output of the process. An estimation problem
might involve inferring information about the underlying physics from the observed shape.
A control problem might consist of determining optimal values for user-specified process
settings in order to achieve a desired shape. In order to proceed with either objective, a



model is needed relating evolution of the shape to the process variables. Although there are
extreme approaches to modeling of these processes, ranging from purely data-based methods
on one hand, to extremely large scale simulation with no adjustable parameters on the other,
this paper is concerned with techniques that combine functional models of the process with
adjustable parameters that must be fit to data. This methodology is sometimes called “semi-
empirical” or “physics-based” modeling.

In such an approach, broad knowledge of the process physics is used to construct a low-
order model. A sampling of models may be found in [14, 15, 49, 23, 34, 36, 50, 53, 54]. These
models are well-suited to real-time or iterative applications, but their usefulness depends
on the ability of the process engineer to choose the parameter values correctly. The values
may be selected based on surface evolution data taken from scanning electron micrographs
of feature cross-sections. For the most part, this calibration process is ad hoc, and relies
heavily on the modeler’s expert knowledge of the system; for examples see [19, 49]. To our
knowledge, only one study has investigated methods to optimize this process systematically
[14]. That work, while successful, used a non-geometric cost function that requires the user
to select points in one-to-one correspondence on the actual and estimated surfaces. This
selection introduces an arbitrary component of unknown significance into the procedure, and
places an undesirable burden on the user. In the present work we apply a coordinate free cost
function that eliminates this arbitrariness. Our ultimate goal is a fully automated procedure
for fitting parameter values in process models, or selecting process control settings, that will be
meaningful and functional over a wide range of morphologies. The key to success is selecting
a cost function that does not depend on specifics of the nominal feature. Such a cost function
may be obtained based on a metric for the space of shapes. Several choices of metrics have
been proposed for the formalization of shape identification, and visual processing in general
[37]. The one used here is the template metric, which is discussed further below.

This work uses level set methods to describe the feature evolution. Level sets are a robust
and flexible mathematical framework for the representation of evolving curves and surfaces.
Their chief advantages are the ability to transparently handle topological transitions such
splitting and merging, and their relatively tractable behavior even in the event of corner
formation. A property of the first-order nonlinear partial differential equations (PDEs) gov-
erning many of the processes we consider is that corners can develop even when the initial
surface is smooth. Sethian and Adalsteinsson apply level set methods to the simulation of
feature development in a variety of semiconductor manufacturing applications [1, 45, 43], us-
ing numerical methods based on hyperbolic conservation laws [31, 38]. Theirs is by no means
the only work in this area. Application of a variety of techniques to simulation of thin film
patterning may be found in [15, 49, 22, 24, 28, 29, 27, 34, 35, 41, 46]. Further comparison
of the various methods is beyond the scope of this paper. It seems clear that, in the right
hands, each can be made to work reasonably well, and that each has its own strengths and
weaknesses. Level set methods are a good fit with the optimization techniques presented here.

Numerous papers have appeared on real-time control of plasma etching and deposition
[13, 21, 25, 32, 33, 40, 48, 52], but relatively few address events at the wafer surface, focusing
instead on the bulk properties of the plasma. Those that do consider the wafer surface



typically consider only planar processes [16, 30, 51]. Earlier work of the first author and co-
workers focused on developing techniques for real-time feature-level estimation and control
of plasma etching [6, 7, 8]. The development of the gradient formulas used in the present
work was begun in [4], and a limited application of these results was made to simple models
of photolithographic development and plasma etching in [3]. The present work presents a
complete scheme for computing gradients, and applies the results to a realistic plasma etching
model, including such necessary effects as shadowing and non-uniform ion energy distribution.
The model used was presented in a series of papers by Jurgensen, Shaqfeh, and co-workers [26,
46, 47]. They initially obtain a sputtering model that successfully reproduced experimental
results from oxygen plasma ion-assisted etching (IAE) of silicon [46]. Ultimately they included
isotropic etch and radical re-emission terms, producing a model that successfully matched
sulfur hexaflouride TAE of silicon over a wide range of process parameters. The current paper
incorporates the sputtering model and an isotropic term, but neglects re-emission. This is
equivalent to the model of [47] with sticking coefficient equal to zero.

We also mention a large body of work on shape optimization, such as [2, 11, 17, 39, 42]. We
note in particular the use of level set functions in [42], and the use of the template metric in [2].
The problem considered by these researchers is that of finding an optimal shape to minimize
a given functional. Much of the challenge in this problem arises from the need to parametrize
the space of all admissible shapes. In the present paper that difficulty is absent, since a model
of the underlying process is considered known. Thus only those shapes which can arise from
that model are considered. Work of more direct relevance to this paper has been reported
in [9, 10, 55, 56]. Here the shapes are captured by relatively few parameters, such as spline
coeflicients, and a functional minimized with respect to those coefficients. However, the goals
and methods of those works are quite different from the present paper. In the case of [9, 10],
the functional to be minimized is not itself based on shape, as it is here. The work in [55, 56]
addresses metalforming and the optimal design of die shapes, and is concerned with shape-
based functionals. Notably, the template metric is used to characterize the distance between
the obtained and desired parts. However, the technical issues addressed in those papers are
driven by the use of the finite element method, and the equations of plastic deformation. In
the present work finite differencing schemes are used, and the underlying PDE is the level set
evolution equation.

2 Level Sets

In this paper we restrict our attention to curves in the plane. Most aspects of our approach
carry over to three dimensions directly, however, a number of important problems may be
treated effectively in two dimensions.

In the level set formulation an oriented curve evolving in time, C(t), is represented by the
zero level set (ZLS) of a level set function (LSF) ®(x,t). That is, C(t) = {z € R? : ®(z) = 0}.
The orientation is recovered by defining the points at which the LSF is negative as the
interior, and requiring that the unit normal point outward. C(t) evolves in time according to
Cr = a(s,t, .. .)7’+[§(s, t,...)v, where 7 and v are, respectively, the unit tangent and outward



(a) Two curves. (b) Error area.

Figure 1: Two curves. One (dashed) is a large ellipse. The other (solid) consists of two simply
connected components, a star and a small ellipse. The distance between the curves is found
by summing the areas of the shaded regions.

pointing unit normal vectors. Now the evolution of the LSF corresponding to C(t) is governed
by the PDE ®; + f(z,t, ...)||V®|| = 0. Note that the component of the velocity along the
tangent plays no part in the evolution of the LSF. Also note an important distinction between
B and (. Namely, 3 is defined only on C (t) itself, but 3 is a function on the entire plane. Of
course on C(t), # must agree with ﬁN . For a derivation of this equation, and for more detail
on its meaning when the LSF fails to be differentiable in space, see [43] and the references
therein.

The process of parameter identification will require that we find the parameter values that
give, in some sense, the closest match to an observed evolution. To make this rigorous, we
must define a metric for LSFs that formalizes the idea of “distance.” A number of appropriate
metrics are discussed by Mumford [37]. All these are of potential interest, but here we
consider only the template metric. Figure 1(a) shows two closed curves, one consisting of a
single connected component, the other consisting of two connected components. In all cases
“inside” is taken to be the bounded component of the plane defined by the curves. Since the
two curves are not identical, there should be a positive distance between them. We define this
distance to be the area of the region between the two curves. This area is shaded light gray
in Fig. 1(b). That is, given a pair of simple closed curves, C; and Co, let the distance from Cy
to Ca, denoted p(Cy,Cs), be the total area of points enclosed by either one curve or the other,
but not both. In three dimensions or higher area is replaced by volume, etc. The definition
is extended to any curve defined by a LSF on a compact domain by including appropriate
portions of the boundary.

It is straightforward to compute the template metric when the estimate and the measure-
ment curve are both characterized by LSFs. One way to make this calculation is to multiply
the two LSFs pointwise. The result is a new LSF, which we call the product LSF. The ZLS of
the product LSF defines a curve, and the area of the interior of this curve is exactly the error
area. While forming the product LSF is a convenient way of visualizing the computation



of the error area, the actual method implemented is slightly different. To find the distance
between the zero level sets of level set functions ® and ¥, we define © = max(f, —6), where,
0 = min(®, ¥) and § = max(®, ¥). Now it may be shown [4] that the desired distance is
the area of the interior of ©. We refer to © as the symmetric difference LSF. The symmetric
difference method offers computational advantages over the product method [4]. Given © we
compute the error area by generating C3—the contour corresponding to the ZLS of O(z) (note
that the contour is now composed of oriented curves and is no longer just a set)—and ap-
plying Green’s theorem, to obtain p = % Je,(C3,v) ds, where (-, -) is the vector inner product,
v is the outward pointing unit normal to C3, and s is the arc length parameter [18]. When
convenient we use the notation z -y in place of (z,y).

Consider for a moment the following problem: Given an objective curve, M, which is
the ZLS of a LSF ®(z), and a parametrized family of level set functions, W(z; A) with ZLS
L()), find the value of the parameter vector A such that £(\) is closest to M. Denote the
distance between the parameter-dependent curve defined by ¥(z; A) and the objective curve
defined by ®(z) by p(A). Then p(A) = (1/2) [¢(€,v) ds, where £ is the ZLS of ©(z;\),
defined as in the previous section. In order to apply gradient-based optimization methods,
we must compute p;, where subscript ¢+ denotes partial differentiation with respect to A;.
This problem was addressed in [4]. Briefly summarizing that work, we have for the smooth
segments of the curve p;(A) = [¢(&;,v) ds. To obtain an expression for (&;,v), consider the
change in & corresponding to a change in the i-th parameter A;. We write I'(X (s; A); A) = 0.
So, I'; + (VI', &) = 0. In fact, differentiation with respect to a parameter gives the same
form found in the evolution equation, namely I'; + (&;, v}||VT|| = 0. This time, however, the
terms are arranged as (&;,v) = —I';/||VD||. Making this substitution, we eventually obtain
the following expression [4], which may also be shown to hold when there are corners in £:

pi=— [ sign(@W/ |V ds (1)
L

3 Parametrized Speed Functions

We return now to the problem of interest; that of estimating parameters in the speed function.
The metric determining the distance between the obtained and target shapes is now p(A) :=
p(U(T,z; X)), ®(T, x)), with T a specified time, and V(T z; A) the solution at time ¢t = T to
the evolution equation ¥; + B( - ; A)||V¥| = 0, subject to U(0,z;A) = ¥y(z). Note that
the A dependence of W is no longer due to an explicit parametrization, but arises from the
variation of § with A in the evolution equation. Thus in the event that analytic gradients
are desired, they must be determined somehow from knowledge of 8. One way to accomplish
this is to differentiate both sides of the evolution equation with respect to the i-th parameter.
The result is a PDE for the gradient, coupled to the original evolution equation. This type
of sensitivity equation approach is described further in [9, 10].
We now restrict our attention to the plane, and consider speed functions of the form

B = mpPo(z,y; A) + p2V(z,y; A) - v (2)



This restriction is made for convenience in the choice of algorithms for the forward solution
of the evolution equation. The form (2) is sufficiently general to handle the plasma etch-
ing process considered below. The first term in (2) is an isotropic component, where the
parameter-dependent isotropic etch rate y is allowed to vary with position. In the second
term, a parameter-dependent vector V forms an inner product with v, the outward-pointing
unit normal to the surface. Thus this term represents an orientation dependent component,
where the orientation dependence can vary with position. With an eye towards our eventual
chosen application, we refer to this term as the sputtering component. Note that the pa-
rameter vector A has been partitioned into the parameters g1 and po, which determine the
relative contributions of the isotropic and sputtering components, and the process parameters
A. Recall that the outward-pointing unit normal is given by V¥/||V¥||. Thus the evolution
equation corresponding to speed function (2) is Wi+ Bo(z, y; A) || V|| 4+ p2V (2, y; A)- VI = 0.
This is a Hamilton-Jacobi equation with Hamiltonian p150||V¥|| + p2V - V¥, which may be
shown to be convex. The third component of this equation is a linear advection term, in
which the initial data “flows” with velocity p2V. To treat the non-convex case the numerical
update scheme must be adjusted, as in [43].

Now, take the derivative of the LSF evolution equation, exchange the order of differenti-
ation, and denote sensitivity with respect to the p or A by S (@) Then

SH) 4 (1 Bov + paV) - VS = gy V| (3)
S+ (mbov + paV) - VW) = V. VU “)
Slgl\z) + (Mlﬁﬂy + NQV) . VS(AZ) = —(Hlﬁﬂi”v\p” + paV; - V‘II) (5)

where the subscript 7 denotes partial differentiation with respect to parameter A;. In deriving
these equations, repeated use is made of the relation ||VU|, = (1/||V¥|)(VT¥ - V¥,) =
v - V8@, These are first-order linear equations, in which the sensitivity is advected with
velocity (p10ov + poV') and sensitivity is “created” according to the various right-hand side
reaction terms.

Solution of these sensitivity equations requires consideration of initial conditions and
boundary conditions. The initial conditions are easily supplied. At ¢t = 0 the level set func-
tion ¥ is exactly known, therefore all the sensitivities must be zero. The issue of boundary
conditions is more interesting. Boundary conditions become necessary when the advection
direction points into the computational domain from a boundary, since then the domain of
dependence of the solution on the boundary lies outside the computational domain. Nu-
merically this derivative should be computed using upwinding, which requires the use of a
function value outside the computational domain. In theory one should specify the value of
the function at those points. However, the nature of this problem allows a different approach,
which we now describe. Note that these considerations hold true for both the nonlinear level
set function evolution equation and the sensitivity equations.

For both the level set function and the sensitivities, the values obtained must be precise
only in a small portion of the domain. In the case of the LSF, this is in a narrow band around
the zero level set. In the case of the sensitivities, this is the same region, that is, where the LSF



is zero. This can be seen from (1), where the gradient of the metric is computed using a line
integral involving the sensitivity over the zero level contour. Because errors associated with
the boundary may propagate into the computational domain at the advection velocity, they
may be prevented from influencing the solution by moving the boundary away from the free
surface. This is not possible when the free surface intersects the boundary. In the examples
that follow, we specify value periodic boundary conditions on boundaries that intersect the
free surface. On boundaries away from the free surface, we instead hold the normal derivative
constant. Numerically, we set the derivative normal to the surface equal to its inward finite
difference value, even when the direction of advection would otherwise call for an outward
difference approximation.

4 Numerical Implementation and Analytic Gradients

The curve evolution problems considered below are solved using the convex, first-order, scheme
presented in [43]. Plasma etching models involving non-convex sputtering yields will require
the use of a non-convex scheme instead [43]. The update law for the LSF, ¥, is

‘I!?j‘"l = U} — At{max(By;,0) V" + min(B;;,0) V™ + max(U;;,0) D™"W}; + - --
min(Usj, 0) DT W}, + max(Wij,0) D™V}, 4+ min(W;;,0) DYV ¥} (6)
where D™% and D'* (D7Y and DY) are the backward and forward differences in the z

(respectively, y) direction, B = pu18y, U = pao[V]e (W = p[V],) is the z (respectively, y)
component of psV, and

vt = {max(D™"W, 0)2 + min(D"""\Il%, 0)2+---

max(D VP, 0)? + min(D VT, 0)2}/2 1)
V™ = {max(D*¥,0)% + min(D ", 0)% + - -

1r1r1aX(D+y\1/;Lj7 0)2 + min(ny‘l'?j? 0)2}1/2 ()

Here we have used the notation [V], and [V], to refer to the z and y components of the vector
V. The VT and V™~ terms represent the approximation to the isotropic term developed by
Osher and Sethian [38], and the remaining terms are simply upwind approximations to the
linear advection term. We obtain numerical update laws for the sensitivity equations by
formally differentiating (6) with respect to the parameters p and A. The sensitivity equations
all have the same left-hand side, which is approximated by

T
(1 Bov + paV) - VS(z,y,t) ~ [D1 D2 D3 D4]-[ D=*Sy DTSy DS D+yS}}-] (9)
where

1 —T n
D1 = ﬁmax(ﬂj,O)max(D Ui 0) +- -



1
o= min(F;;, 0) max(D~ ¥}, 0) + max(Uj;, 0) (10)

15
1
D2 = oF max(Fjj, 0) max(DT*W, 0) 4 - -
1
o= min(Fj;,0) max(D"'r\Il?j,O) + min(U;;,0) (11)
1
D3 = ﬁmax(ﬂj,O) max(D™YW,0) +
1 . —ym
= min(Fj;,0) max(D y\IJl-j, 0) + max(W;;,0) (12)
1
D4 = oT max (Fyj, 0) max(DTYUF,0) + - -
. A .
= min(F;,0) max(D"'y\I/ij,O) + min(W;;, 0) (13)
On the right-hand sides we have,
B0,ijVT; Bij >0
VY| = ' 14
ivel ~ { 7T D2y (19
VEDTEUR, Ui >0 VAD™YVO: Wi >0
V-VU =~ W = + Y YooY (15)
{ VZDHWL Uy < 0 } { ViDL Wy < 0
160, VT 5 Bij >0 pVi5, D Uiy 2 0
VA AN vA\ PN iV i J
iV oV ¥ { bV By <0 [T\ Vi D Uy <o
p2Vily; D0 Uiy 2 0 P2V D7V Wiy 20 (16)
paViE DY W Uy < 0 pa Vi DYWL Wi < 0

where fy; is the partial derivative of By, with respect to the i-th parameter A;, and V;*, V
are the partial derivatives of [V],, [V], with respect to the i-th parameter A;.

5 Example: An Ion-Assisted Etch Model

We now present an example of parameter estimation and process optimization for an ion-
assisted etch. Here, a mask has been laid down and patterned, and the objective is to remove
the material under the mask, down to a prescribed depth. This removal is accomplished
through a combination of chemical reactions by neutral radicals and mechanical sputtering
by charged ions. The wafer surface is modeled by three layers. At the lowest level is an
inert planar substrate. Above this is the initially planar “active” layer, which is to be etched.
At the top is the patterned mask, assumed here to be completely inert. The wafer surface
is exposed to a plasma, which is composed of chemically active, but electrically neutral,
radicals, and chemically inactive ions. The ions are accelerated by the sheath potential, and
after various momentum and charge interactions in the sheath, strike the exposed surface.
The energy of impact varies over the points of the free surface, and is a function of position
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Figure 2: Numerical simulation of trench etching with and without model and measurement errors.

and orientation. We consider that two mechanisms may be at work. The first depends only
on the radical concentration, which we assume to be homogeneous. This gives rise to an
isotropic etching component. The second is associated with the incident ion energy, and may
be due to mechanical sputtering or to enhancement of the chemical etch by the ion collision
energy. We apply the following speed function:

1 Bo(z,y) + poV(z,y; A) - v =0 (17)

This speed function is of the form (2), with 5y and V spatially varying, but with [y inde-
pendent of parameters. Here the full estimation problem is to recover the coefficients p; and
1o governing the relative contributions of the isotropic and sputtering terms, respectively,
and the parameters A that determine the vector field V. In this case V' has the physical
meaning of a normalized energy flux. The spatial dependence of the isotropic component is
simple. The isotropic etch rate in the mask and substrate is zero, while in the active layer
it is nominally one, scaled by p1. For a more complex spatial dependency see [3], where a
process model for lithographic development was analyzed. This case included dependence of
(1 on up to three parameters.

The details of the process model for the sputtering component are adapted from [26, 46,
47]. That model incorporates simplified versions of shadowing effects and scattering in the
plasma sheath. The components of the flux vector, for etching of an infinite trench, are given
at any point by

V] = / §(0)E(0) sin® @ cos ¢ dfd¢ (18)
Q



V], = /Q $(0)E(0) cos 0 dodg. (19)

Here the integral is taken over €2, which is the solid angle over which the plasma is visible.
The function j(6) is the flux of particles moving with angle 6 to the local vertical, and E(6) is
the average energy of those particles. Note that all properties are assumed to be symmetric
with respect to the local vertical, that is, independent of the azimuth angle, ¢. Following
[46], we set E(0) = cos?(). Explicit computation of the flux vector is generally not possible,
due to the term j(6). Instead, write (18) and (19) as

/2
V] =/ j(6)X(0)sinfcos 6 db (20)
0

2

V], = /OTr j(O)Y(8) sinb cosf db (21)

where the integration over ¢ is carried out following [46], and the functions X (#) and Y (0)
contain all dependence on the geometry of the trench, while j(6) contains all dependence on
the plasma model. For the infinite trench, X (6) and Y (0) can be computed in closed form,
and are given by,

X(0) = 2(singy —sing,)sinfcosf (22)
Y(0) = 2(7— ¢y — pa)cos’ 6 (23)

¢a and ¢y, are the azimuthal visibility limits, for which formulas are given in [46]. The integrals
(20) and (21) are approximated using the identity

0
/ 7(0) sin6 cos 6dO = 2l exp(—Ady). (24)
0 s

Here A := 25.8E1_5L%2515D, is a single parameter, with § the number density of the plasma, D
the effective thickness of the scattering region, Ej,;, the ion energy in the laboratory frame,
and J is the total particle flux. The function Gy is the normalized total cross section for
collison at angles greater than 6, and may [26] be approximated by

_ 602511 -9/1.3); 0<6<1.3
o0 ~ { 0; 1.3<6< /2 (25)
Then we have in an interval of width A; centered on 6;,
0;+A7;/2 ) ) J
Xi = / J(0)sin@cos 8 db = ——{exp(—AGg,n,/2) — exp(—=AGg,_,/2) }- (26)
0;—A; /2 2

By evaluating the right hand side at intervals using (25), we generate a histogram. The
histogram is used to evaluate (20) and (21) by assuming that X (6) and Y (6) are constant in
the interval [6; — A;/2,0; + A;/2]. Then

V] = ZX(ei)Xi (27)

10
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Figure 3: Cost contours and analytically computed gradients for the two parameter estimation prob-
lem, (a) with and (b) without simulated measurement errors. Contours are evenly spaced, except
dashed contours, which have been added for clarity. Apparent local minima in (a) are artifacts of
coarse gridding. In (a), ‘X’ marks true solution. In (b), ‘X’ marks solution found by optimization
scheme.

V], ~ ZY(9i)Xi (28)

Here the overbar indicates that the constant term .J/27 has been absorbed into the parameter
po in (17). Best numerical results were obtained by using a logscale for A;, thus increasing
resolution at small 8 where Gy changes most rapidly. For further details of these formulas,
and physical interpretation of the values, see [26, 46].

We consider optimal estimation of model parameters from knowledge of the initial and
final feature shape. The model is assumed to be as given above. Thus the parameters are p1,
po, and A. Some of the quantities entering into the parameters are difficult or expensive to
measure precisely. One can think of the parameter estimation problem as an experiment to
determine, if not these values themselves, at least their effect on the evolution of the feature
shape.

As noted in [4], the template metric does not necessarily give a smooth cost function near
the minimizer. For that reason the cost function chosen is J = (1/2)p()\)?. The gradient is
then V.J = pVp. This provides some smoothing when the optimal p is small, and allows us to
use Hessian-based nonlinear programming methods such as sequential quadratic programming
(SQP). The implementation of SQP used for this study was the Matlab Optimization Toolbox
routine fmincon [12]. For a general overview of SQP see [20]. This routine incorporates
general nonlinear constraints. Here only upper and lower bounds were applied. Lower bounds
on the parameters are easily chosen; physical considerations dictate that the plasma parameter
A can never be negative, and validity of the process model cannot be guaranteed if the rates
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w11 and po become negative. Thus the lower bounds for all three parameters were set to zero.
No upper bound was placed on A, but p; and p9 were limited to prevent numerical instability
due to violation of the Courant-Friedrichs-Lewy condition, and to reduce the possibility that
the estimated surface would extend beyond the computational domain. The problem was
scaled so that constraining the sum of p and ps to be less than one would guarantee that the
final feature would lie entirely within the computational domain. The actual upper bounds
on 1 and po were usually set well above this level, but on occasion it was necessary to reduce
them.

We consider both the estimation of two parameters, namely ps and A, and estimation
of all three parameters. The primary purpose of the two parameter problem is to visualize
the resulting cost function, and to show that the computed gradients are reasonable. For
the two parameter estimation case, the estimated value of p; was fixed at zero. One case
was run in which the data was generated by the process model with g3 = 0, A = 0.454
and po = 0.73. Here the model can perfectly capture the observed measurement, and the
optimal value of the cost function is zero. We refer to this as the “perfect” model case. In
the second case, to simulate modeling errors, measurement errors, and other inaccuracies,
the truth model was given a significant isotropic component, p; = 0.15, and the resulting
data was then corrupted by a level set function consisting of several sinusoids with random
phasing. The remaining parameters are again A = 0.454, and po = 0.73. We refer to this
as the "imperfect” model. Figure 2 shows the results of an 8 time unit etching with a two
length unit unmasked aperture, and a 0.5 length unit thick mask, for both the perfect and
imperfect truth models. Figure 3 shows cost contours and gradients for the two parameter
estimation problem corresponding to the perfect and imperfect models. The results of several
numerical experiments are summarized in Table 1. Figure 4 shows the resulting estimated
shapes for the perfect model case using four different initial guesses at the parameter values.
Figure 5 shows the resulting estimated shapes for the imperfect model case, and the same
initial guesses.

The analytically computed gradients are consistent with the cost contours, and the results
of the optimization scheme are generally quite good, with the following caveats: 1) The only
sensitivity to pa for A = 0 is due to the position of the trench bottom. But for large values
of p9 the trench extends below the bottom of the computational domain. Thus in these cases
the only parameter dependence is on A, and increasing A causes the sidewalls of the trench to
move outward, which may increase the value of the cost function. This effect can be seen in
the cost contours corresponding to the perfect model, and is present, though not visible, along
portions of the boundary in the imperfect model case. The result is that if the minimization
routine ends up in certain regions of parameter space, it converges to the boundary. When
this occurred, as noted in the table and figures, the constraints were adjusted to keep the
solution in the computational domain. We remark that it will probably be necessary to use
multiple starting points with the algorithm as presently formulated. In the present case, since
most start points give good results, this would be enough to successfully recover the desired
parameter values. 2) The convergence criteria, which require that the gradient be small, was
never satisfied in the “imperfect model” cases, resulting in many unnecessary iterations. We
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Table 1: Results of Model Parameter Estimation

| N, | P/T]| Ao \ Ay | Npg | A J*
2 [ P (1.0,1.5) (2.5, 00) 67 (0.738,0.469) 2.7e—T
2 | P (0.1,0.0) (2.5, 00) 27 (0.763,0.509) 2.1e—4
2 | P (1.5,1.5) (2.5, 00) 86 (0.741,0.474) 8.0e—6
2 | P (1.0,0.1) (1.0, 00) 27 (0.604, 0.201) 8.6e—2
3 | P ](0.0,1.0,0.0) | (2.5,2.5,00) | 155 | (0.149,0.759,0.496) | 1.9¢—5
2 | 1 (1.0,1.5) (2.5, 00) 100 (2.09, 1.49) 1.81
2 | 1 (0.1,0.0) (1.0, 00) 40 (1.00, 0.494) 17.65
2 [ 1 | (1.0,0.4943) (2.5, 00) 100 (2.09, 1.48) 1.814
2 | I (1.5,1.5) (2.5, 00) 100 (2.10, 1.50) 1.8162
2 | 1 (1.0,0.1) (2.5, 00) 100 (2.10,1.50) 1.8158
3 | T [(0.0.1.0,0.0) | (2.5.2.5,00) | 155 | (0.154,0.716,0.443) | 2.3e—3

Legend: N, = number of parameters, P/I = perfect/imperfect model, Ag

initial guess

at parameters, Npg = number of function evaluations (maximum of 100 for N, = 2, 150
for N, = 3), \* = optimal model parameter estimate, J* = cost function at optimum.
For two parameter case, “perfect” truth model is (0.73,0.454) and “imperfect” truth model
is (0.15,0.73,0.454) plus sinusoidal error terms. For three parameter case, “perfect” truth
model is (0.15,0.73,0.454) and “imperfect” truth model adds sinusoidal error terms.

attribute this problem to the lack of smoothness near the optimum, which is not improved
in these cases due to the relatively large residual. However the solutions obtained in these
cases appear to be very good. In future versions, the convergence criteria will be modified
to account for this effect. 3) In the perfect model case, the initial condition (1.0,0.1) gives
noticeably worse results than the others. The reason for this is as yet unclear, but the figure
shows that the shape obtained is still quite close.

Model parameter estimation was performed for the three parameter case using a truth
model of (0.15,0.73,0.454) and an initial guess of (0.0,1.1,0.0).
modeled shapes are shown in Fig. 6, with and without the same sinusoidal measurement
error terms as in the two parameter imperfect model case. In the three parameter problem,
however, no modeling error terms are included. Numerical results are included in Table 1.
Both the numerical and graphical results appear very good.

Next we consider optimal design. Here the target shape is a desired surface feature, and

Data and the resulting

we view the parameters as control knobs which may be adjusted to produce this result. In the
model being used these values are related to pressure, bias voltage, gas pressures, and other
quantities that may indeed be specified by the process designer. The objective is to choose
the settings that approximate the desired shape with minimal error. The desired shape is
known exactly, so measurement noise is not a factor. The same optimization settings were
used here as in the model parameter estimation study.
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Figure 6: Estimation of three model parameters.

Typically the most desirable trench topography is straight sidewalls and a flat bottom.
In this case we know the solution, namely p1 = A = 0, with ps chosen to achieve the desired
etch rate. The case was run to obtain design settings for both two parameters (pus and A)
and three parameters (p1, po and A). The results are shown in Fig. 7. For the two parameter
case, puqp is fixed at zero. The initial guess was (1.0,1.5). The final result is (0.751,0.033).
Despite A not being exactly zero, the small value obtained gives a good match to the desired
shape. For the three parameter case the initial guess was (0.35,0.0,1.0). The final result
was (0.0048,0.724,0.0002), again giving a good match to the desired profile. A somewhat
more involved topography is a channel with sloping sidewalls. Again the case was run for
both two and three parameters. The results are shown in Fig. 8. The two parameter design
does poorly. This is not unexpected, since the target design contains significant undercutting
of the mask. On the other hand, the three parameter design, which includes an isotropic
component capable of producing the desired undercut, does a nearly perfect job of achieving
the target shape.

6 Conclusions and Future Work

This paper constructs a framework for the recovery of parameters appearing in the level set
evolution equation, with the objective of matching an observed measured curve, or sequence
of curves. The key ideas implemented are a metric for quantifying the distance between
estimated and measured curves, and an expression for the gradient of that metric. A mini-
mization scheme based on these elements was used to identify parameters in a certain class
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of spatially and orientation-dependent speed functions. The results show this method to
be highly effective at estimating parameters in low-order models to match measured feature
shapes and in selecting parameters in a design model to obtain a desired feature shape.

The most pressing need for future work is in increasing the efficiency of the algorithm.
This is particularly important in view of the fact that no convexity or other desirable global
properties seem to hold for these problems. Thus, it is likely that multiple trials will be needed
in practice. The best way to speed up the computation would be a narrowband formulation of
the sensitivity equations. This would allow each iteration to solve the evolution and sensitivity
PDEs only in a narrow region of the zero level set (see [43]). The other area with the greatest
potential to improve the performance of the algorithm is to better match the numerical
optimization scheme to the cost function. Some directions to pursue are applying nonsmooth
optimization directly to the template metric, or using a smoother metric.

Some capabilities that will be added to the process model are curvature dependent terms,
integral re-emission models, and time-varying advection. These last two in particular will
enable us to handle realistic deposition problems. A non-convex option will increase the class
of etching that may be considered. The plasma etching model considered in the present work
suggests an interesting extension. That model uses a simplified assumptions about the plasma
sheath to obtain an approximate expression for the energy distribution of the incoming ions.
That distribution was expressed as a histogram. A natural extension of of the present work
would be to consider the histogram levels directly as unknown parameters—in other words,
to solve the inverse problem relating the energy distribution of the ions to the shape of the
resulting feature.
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