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Asymptotic Variance Expressions for Estimated
Frequency Functions

Liang-Liang Xie and Lennart Ljund~ellow, IEEE

Abstract—Expressions for the variance of an estimated fre- where the spectra efandv are®,(w) and®,, (w), respectively.
qugncy fUDCtiortl g\re_necissary folr manl)t/_iszl:ets in_mo?ieI validation Then the basic result is that the variance of the estimated fre-
and experiment design. A general result is that a simple expression At (o34 s qi
for this variance can be obtained asymptotically as the model quency functionty (¢’ is given by
order tends to infinity. This expression shows that the variance is &
inversely proportional to the signal-to-noise ratio frequency by Var {é]\,(ejw)} ~ n v(w)
frequency. Still, for low order models the actual variance may be N ¢, (w)
quite different. This has also been pointed out in several recent
publications. In this contribution we derive an exact expression where the expression is asymptotic in both the model angler

for the variance, which is not asymptotic in the model order. This  and the number of datil. For this result to hold, it is essentially

expression applies to a restricted class of models: AR-models, . T
aspwell as ﬁxpe% pole models with a polynomial noise model. It only required that the model parameterization in (1) has a block

brings out the character of the simple approximation and the Shift structure, so that the gradient w.r.t. the parameter btock
convergence rate to the limit as the model order increases. It also @z}, iS @ shifted version of the gradient w.i,, (see [7, p.
provides nonasymptotic lower bounds for the general case. The 293]). This structure is at hand for most of the typical black box

3

calculations are illustrated by numerical examples. model parameterizations, like ARMAX, Box—Jenkins, etc.
Index Terms—Accuracy, asymptotic variance, FIR models, A similar result holds if the frequency function is estimated
system identification. by spectral analysis, [2], [7, Ch. 6]:
A jw W(W) (I)'v(w)
|. INTRODUCTION Va {G r(e?? }z — 4
ar  Gn(e’™) N Bu(w) 4

XPRESSIONS for the accuracy of an estimated frequency

function are important for several purposes. They awmghereWW (v) is a number that depends on the type of window
needed to understand the reliability of the model, e.g., for consed, as well as on its size
trol design. They are also important for various experimental These results are intuitively appealing, and mean that the vari-
design issues. See, e.g., [3]-[5]. For parametric estimatiance of the estimate is inversely proportional to the signal-to-
methods, expressions that are asymptotic in the numberngiise ratio at the frequency in question.
observed data, can always be calculated from the asymptoti¢iowever, it is important to realize that they are asymptotic
parameter covariance matrix for any given estimate. Thegethe model order.. Simulations in [7, Fig. 9.1], indicate that
expressions can easily be plotted or tabulated, but are normaligy may give a reasonable picture of the true variance, also for
not suitable for analytic calculations. It has therefore been ofoderately large:, but that the goodness of the approximation
interest to find analytic expressions for the frequency functidrecomes worse for colored inputs.

accuracy, if necessary at the price of approximations. In the recent paper [12] model parameterizations like (1) with
The basic such expression is as follows [6]-[9]: Considerfexed denominators off are studied. The asymptotic result (3)
parameterized set of transfer function models: applies also to such structures. However, in [12] it is shown that
this simple expression may be quite misleading for low order
y(t) = G(q, Ou(t) + H(g, 6)e(t). (1) models, i.e., that the convergenceritio the right-hand side of

(3) could be quite slow. The authors also derived an alternative
Let the order of the model be, and suppose that theasymptotic expression that shows better accuracy in these cases.

input—output data can be described by See also [11].
In this paper, we will derive exact, nonasymptotic ginex-
y(t) = Gol(q)u(t) + v(t) (2) pressions for the variance for the following special case of (1):
B(g, )
t) = u(t) + CT(q)e(t 5
y(t) F(g) (t) (@e(t) (5)
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This exact expression will bring out the character of the aft-is well known that the covariance matrix of the estiméte
proximation in (3), as well the general convergence rate. It will given by (see, e.g., [7, (9.42)])
also be useful for more exact analytical calculations, involving R
the model accuracy. We will also comment on how the results lm N - Covoy = R 11)
relate to more general parameterizations.

The remainder of the paper is structured as follows. In Seghere the elements of the mati is given by the correlation
tion Il, we give some preliminary observations on the plausiunction ofz
bility and limitation of the asymptotic (im and V) variance A )
expression (3). In Section Ill, a nonasymptotic (in model order (FDw, j = Ra(k = J) = Eu(t)a(t + (k - 7))
n) expression is prese_nted_forthe model structure (5), which imﬁd the elements of the matr& is given by the correlation
proves over (3) especially in the case of low order models. The ™ .
detailed proof is presented in Section IV. In Section V, otheltJnCtIOn ofup
model structures are considered, where normally only lower o N A .
bounds are obtained, except for the AR-model, for which an (F2)r,i = Bup (b = j) = Bup(@ue(t + (k= j))
exact expression can be derived in the same spirit. In Section Yhere
some numerical illustrations are given. Finally, we conclude this

paper in Section VII. up(t) 2 i h(k)u(t + k)
Il. SOME PRELIMINARY OBSERVATIONS with =
Consider the model (5) and assume thitan autoregression Colg) & B
O Ty > h(k)q
u(f) = 7~ vt ™ b=
L¥(q) From this follows immediately one important observation:

The covariance matrix of the estimatg, depends on the poly-
where v is white noise with variance2. Suppose the true nomials, ¥, L, C*, By, and Cy only in the combinations
system can be described by

ToL I A (12)
u(t) = 24D 1) + Co(g)en() (8 and
Fi(g) Co
o (13)

whereBy, Cy are polynomials andy is white noise with vari- . . .
0, 0 are poly 0 The latter expression describes the discrepancy between the true

ances?. In other words, comparing (5) and (8), our assumption . S . !
is that thea priori guess on the poles of the input—output d))jmsg des_crlptlon in _(8) and the noise modelin (5). We shall refer
this ratio as th@oise model errar

namicsF' is correct, while the guess of the noise model coulté) . . .
From the general asymptotic result (3), it follows that the vari-

be wrong, i.e.C%(q) # Co(q). f:
The model (5) is a linear regression for estimatisig ance ol

By(e) =" b(N)e™ ™ = W(“)bn  (14)
k=1

y(t) = B(g, 0)u(t) + e(t) €)
with is asymptotically in’v andn given by
. |Co(e)[?
= L e n o CT()?
y(t) = ) y(t) Var {BN(CJ )} SN p T
y 1 1 IO EH a2 LT (a7 2
W) = —————u(t) = o(t). |CH ()| FH(e7)?| LT (e«
V=G " " cgrgie " (15)
The true system corresponds to Since the transfer function estimates= B/FT, this gives
the asymptotic variance of the frequency function
316) = Bl@)itt) + o ealt). (10) e
~ ] JLA) _ ﬁ g eu.
Var {G(@)} = , |FT(ci=) 2
Apply the LS method to estimate 70 O (=) 2[FT(e7%)2| LT (%) 2
2
n o Jw jw
9= [b17 b27 . bn]T :NU_5|CO(6J )|2|LT(CJ )|2 (16)
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The asymptotic variance thu®es not depend on eithér or
F*. This may be counter-intuitive for two reasons.

» We know that the best choice of noise mod#l is to
let it be equal to the true on€, (see, e.qg., [7, p. 478)).

1889

ance of the frequency function estimate, asymptoticallyVin
but exact inn, is given by

Alim N Var {éAr(ej“)}

This minimizes the variance, and makes it equal to the= p(u)

Cramer—Rao bound. Yet, the asymptotici{irvariance is

independent of'! To understand this paradox, itis neces- =

sary to realize the role of the noise model filter: It weighs
together information about the system from different fre-
guency points to merge it into one model. The noise filter
will make sure that information where there supposedly
is much noise [i.e., frequencieswhereCt(e/*) is large]

carries less weightin the final estimate. As the model ordEie™e . _
+ nisthe order of3, andr is the order of.™ - CF . F'f; (Note

increases, the estimates@fbecome more and more de-
coupled at different frequencies, so this global frequency

weighting becomes less pronounced. As a consequence,® £1(X) for a polynomialK (¢) = [T, (1 -

the influence of the noise model filter on the estimate be-
comes less important.

» The prior knowledge about system poles, represented by

FT should be beneficial for the variance of the estimate
(provided it is correct). However, again as the model order

X [(n—T)—i—Rl(CT AR A=

ot N2 T pdw |2
0—3|Co(e L)

T(pd«)|2
1o s Fal o/
a8)

thatn > »);
kmq 1) is
given by

"1 — |k
RI(K):Z Ll

67% — Jepn ]2

(19)

m=1

increases, the value of this knowledge decreases. In other® R»(3) for a rational function3(q) is given by

words, for largen, the set of models described B/ F'f

as B ranges over ath-order polynomials comes close to R»(3) = —2Re {i ]{
T

describe all “nice” linear systems, regardlesgtf
It is also clear that for small values af the influence of>*
and ' should be more pronounced. The paper [12] contains
several striking examples of how much the variance for small
may differ from the asymptotic expression.
In the next section, we shall demonstrate this by deriving a
nonasymptotic expression for the variance.

Ill. AN EXACT EXPRESSION FOR THEVARIANCE

First, let us explicitly write out the polynomials,, C*, F',
L1 in the following form:

- Plw)y=n

Co(g) = H (1—ceg ™)
gy = [T (1 - teq™)
Fig = [[ (-t

k=ri+1

17

with 0 < 71 <7 < n, maxi<p<, 4] < 1, maxi<p<,, |cx] <
1. Note that sincey, or £ can be zeroC,(g) andC(g) are not
necessarily of the same order.

The main technical result of the paper is the following one.
Theorem 3.1:Consider the problem of estimating the fre-
quency function in the model structure (5), where the input is
given by (7). Assume that the true system is given by (8). Sup-
pose that the model orderis no less than the order &f, and
also the order of the polynomidl’ - CT - F¥. Then the vari-

2 B (2) d"} (20)

27y (e7@ — 2)? z
where,3*(2) 2 B(z1) is the mirror of3(z) andT is any
simple closed positively oriented curve on the complex
plane with all the poles of(z) inside and the point/*
outside.

Some Observations About the ExpressionHor):
» The factor

030 FON2ILT (092 = 02O (ed@)|2 ol
0—2| o(e?)FLT(?)]7 = a7 |Co(™)] W

v

actually is the noise-to-signal ratio (SNR),(w)/®..(w)
as in (3).

« Note that (18) can be rearranged as

-
CH(e) ;
* ety RO )] @

As the model order increases (and the polynomiaid

and CT remain fixed) the expression for the covariance,
P(w)/n thus converges to the basic expression (3) at the
ratel/n.

WhenC*- Ft. LT = 1, and the noise model is correct, i.e.,
Co/C" = 1, thatis, we have a FIR model with white input
and noise, it follows from (19) and (20) th&y (1) = r,
R,(1) = 0 and (18) reduces to

20 Jwy|2
100
Ty

|[LH(e7<)[?

lim N Var {GA(GJ“)} =

N—oo

which agrees with (3).
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« When the noise model is correct, i.€y/CT = 1, the where,B, (=) is defined as in (22)B’,(») is similarly defined

expression (18) reduces to with &, replaced byy,,.
. , Proof: By Cauchy’s Integral Formula, we have foe A°
Alim N Var {G;\r(e]‘“)}
o . 1 f(Q) 1 f(©)
02|Co(e]‘“')|2 16 2 flz) = 37 d¢ — 5— d¢. (25)
= ZelPO” I m J Jici=p C— 7 275 Jic)=p, € — %
o2 )+ nzl |CM e iCl=p I¢l=p
|Lt(ei«)|2 For [(| = p1, 1/(¢ — z) is analytic on|z| < p;. Hence, by

which basically is the main result in [12]. However, ap[10 Th. 1], we have fofz| < p1
parently it is not realized in that paper that this is the exact oo 1
expression when the noise model is correct and the input = Z <—, Bn(z)> B,(z)
is an autoregression. —Z \C—2

e The main new contribution of (18) is the third term .
(|CT (e3%)2/|Co(ei*)[2) Ra(Co/CT), which obviously Wit
is accounting for noise model error [it is easy to see 77\ 1

(2 B} = (Bl )

that R-(1) = 0]. In Section VI, some interpretations — z
are given on how it depends on the filtered noise spec-
trum |Co(e?*)|?/|CT(e?*)|?. It should be noted that = B,(z) =——— —
this term is bounded sincmax;<x<,, |4 < 1 and 215 Jjz=1 (—z7t 2
mMaxi <kp<r, |Ck| <1 by (17)

1
¢
IV. PROOF OFMAIN RESULTS 1
A. An Extension of Laurent Expansion ¢

First, on a more general orthonormal basis than the trigongence, we have
metric one{z", »n € all integerg, we establish an extension of
the Laurent Expansion, which plays a key role in the proof of 1 ad
Theorem 3.1. C—2z Z
For complex number§s,,, n > 0} with sup,,~¢ |£,] < 1, it
is easy to see that the functiof (z) given by Hence, the first term in RHS of (25) can be written into

[ e o n—1 =

Bn(l/C)Bn(z)' (26)

1= & 1= &z ) i €= 2
(Bo(2), Bu(2)) = 0 for m # n, with ke = 2L j{q . /O?g n(7)
U oen 2 o [ et =3 55§, SOBOE B
= % 29 T = S Q) BulO)Bu(2) (27)

0

n

where ‘" denotes “complex conjugate.” By [10, Th. 1,,(z),
n > 0 form a complete orthonormal basis for the analytic funcvhere the second equation follows from Cauchy’s Integral For-

tions. Specially, i, = 0,Vn > 0, thenB, (z) = 2" mula and¢ = 1/¢ for [¢| = 1. .
Similarly, it is easy to see that ' B, (z~1), n > 0 are also For the second term in the right-hand side of (25), let

orthonormal and ! B,,(z~1) = z~ D if £, = 0,n > 0.

Lemma 4.1 (An Extension of the Laurent Expan- g9(z) 2 —% 1<) d¢. (28)
sion): Suppos€é,,, n > 0}, {n., n > 0} are complex num- 20 Jicl=ps € = #
bers withsup,,~ |£] < 1/p1 < 1,andsup,,s [7.] < p2 < 1. Then
Consider the regiomt 2 {z € Clp2 < |#| £ p1}. Let f(z) 1
be analytic on the regiomd. Then, we have the following g(z—l) = 2f(Q) dc. (29)
expansion for € A° (the interior of A) 215 Jicl=pe 1 = €2

oo For|¢| = p2, 1/(1 —(z) is analytic onz| < 1/p>. Hence by

f(z) = Z (f(Q), Ba(Q)Bn(2) [10, Th. 1], we have fotz| < 1/p2

oo

+ Z (FO), B¢y 2B, (271 (29 : —1Cz = Z <$ B;(z)>B;(z)
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with where
1 1 N 1<i<n—r;
, BL(2)) = { Bl(»), > 5 2 ’ ’ 33
(12 By = (B0 2 74(4) {bi_@_,,)(q)qw, EETT
1 1 dz
=_— B.(z) ——— = .
27y j|i|=1 n(?) 1—Cz L 2 with
=B, (). T ke
Hence, we have q—4 o a— fm
) we have the new equivalent (in the sense of frequency function)
= Z B, (C)Bu( (30) model
1 C7
Clg)
/ _ /
Then, by (29) and (30), we have y'(t) = Gla, 0)o(t) + 7 3 () (35)
> 1 _ with
s =3 g b HOB Q) dB()
n=0 “1 Jkl=rs Glg, )2 00q™ 446, b (g
S == & ~(n=1)
= o 74 FOTB, (C) % 28,(2) o+ Obi(a)g (36)
=0 273 Jicl=p ¢

= dc and there exists some linear relationship betweandé’. Note
= Z P j{ FOCIB (¢ = 2Bl (») that#’ could be complex numbers.

=0 2 =1 ! ¢ " By the same reason as deriving (11), applying [7, (9.42)] to
e s e , the model (35) and (36), we have
=D _(f(O). B (¢71)) #BL(2) )
h Aim V- Cov Oy = F "B (37)
where the third equation follows from Cauchy’s Integral For-
mula and¢ = 1/¢ for |[¢| = 1. Hence with
> F{ 2 E Lo o(@)o(t) - T (@)o(®)]
9(z) = Z <f(<)a (B, (C_1)> 2B (27 A (q 1) ClgY)
n=0 F,=F L, qvt-aeiffm,qvt}
which together with (27) lead to (24). o
wherel’,, .(g) is defined in (32)—(34).
B. Proof of Theorem 3.1 By Parseval's formula, we have
It is obvious from (5), (7), (8), and (17) that the true model C(e7)|2
for y/(1) = (1/Cy(t) andu(y) is Ff =My, o(00). Fj=M,, (—| L) a;f‘a?) (38)
'(t) = Bla. 9) v(t) + “la) e(t) (31) whereM, .(f(e/*))is ann x n symmetric Toeplitz matrix for
L{q) L{q) any positive functionf(-):
where A1l T , . .
A M ()2 oo [T (@, ) (07 do
/ - .
L(q) = CY(q)F(q) L' (q) - (39)
. 17—[ (1 v ,1) It follows immediately thatVf,, ..(A) = A - I,, for any constant
o Pt *4 A sincel’,, ,. form an orthonormal basis. Hence, by (35)—(38),
A (o we have
C(q) = Co(@) I (¢)L (@)
- - lim N Var<G,_
= (1 _qu—l) H (1 —qufl) N mr{ y} X '
k=1 k=ri+1 = lim NT7, (¢/%)CovOyT,, (/)
and N=oo »
—1 —2 — * w 1 2 |C(CJL~)|2 2 2
B(Qv 9) = 91q + 92q +- 4+ enq . = F (CJ )Mn r (O—L)Mny"’ W Oe0y
By reparameterization using the orthonormal basis (see [10]) X M;i(mfn,r(@]ﬂ

e ey (DY
Lur(a) = P(0), (@), o @] (32) = S50 (s ) ) 40
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Equation (40) can also be derived by the arguments in [12].Before going further, let us introduce some notations. Corre-
The only difference is that undermodeling is not our concern gponding td,(2) defined in (34), let
this paper sinc®y(q) € {B(q, #): 6 € R™} by our assumption.

Thus, the term containing,, in [12, (38)] will drop out and B NN A Ry
leave the same equation as (40). bi(2) 2 1_72’“' H 7, 1<k<r
So now the left task is to make (40) into a simpler and more K m=l m*
explicit form. The method used in [12] is to apply an asymp- (46)

totic result which holds as the model order— oo. But in and
this paper, to get a nonasymptotic expression, we will exactly
calculate (40), which is feasible due to the specially chosen or- R(z)
thonormal basis (32).
An application of Lemma 4.1 in our problem is as follows.
Foranyl < v < n —r,let

T T

H 12__2”27 F( )é H 12 —_fm @
m=1 m

m=1 ~ _ tm#%

12

It is not difficult to prove the following two equations for

1<qg<sn
0, 0<i<n—7r—w L . 4,
/ - ) (I9Y = .
é‘zé g —(n—r—uv)> n_7,_v<isn_v; ;bk(EQ)bk(e ) ejw_£q7 (48)
0, t>n—v and
and LA — o eiw
0, 0<i<n—r—v—1 Z ,1111[1 bi(2) R(z)bi (e’ ) R(’) = e _ g " (49)
) — z—ly — 44
U é gi—(n—r—'n—l)v n—r—v—1<i<n—-v-— 1 =
0, t>n—v—1 In fact, for any|z| < 1, |y| < 1, let
in Lemma 4.1. Then it is easy to check that g(x) £ e v
&
. jacr -yl VI-TuP r—y 1-7e
B =mm @iz 0Sisn—u (@) flr) {_ x'y e
Z_IB; (75_1) :7i+'v+l(z)7v(z)7 0<it<n—-v-1
(42) ltis notdifficult to establish the fact thg(z, ) = g(z). Hence
by the definition ofb,(z), we have
with +;(-) defined in (33) and that
Z bk bk GJ‘“
R
Bi(z) =2 H FT R isn—w  (43) .
1— 4z _ T G
=" by)br(e™)
1-7 k=1
713’(71 =z (= ’)HJ t>n—v—1. a—1

z — Kk
(44)

s — 1 — mc’
By (43), (44) and using Cauchy’s Integral Formula, it is obvious + 9(4y) H E E H

thatforanyl < v < n —r ) m=1 bm
.
O = 3 Blly)u(e)
< - 2,Bi(z)>:0, t>n—v k=1
|L(2)| [ RN S Wy e
COP 1y . srten oo T (752 ) T ()
(g B E) =0 iznv-t o) T LG,
q—2
_\"; jw
Hence by (41), (42), and Lemma 4.1 fof(z) = T & Oi(£q)br(e”™)
|C(2)|?/|L(#)|? with z = ¢“, we have foranyl < v < n —r B L
q
b, — L, 1— 2,6
) " +g(£(1) H Z g C’]“‘ _ g
|Ce™) _ 3 [C(2)? () ) (@Y () _ m=1 s m=1 "
L2 =\ L(2)]* Yul2)V0(2) ) yule?)yule ST
z TN~ [ aoN
+ Z <L 27’Yu(z)7'v(z)>’yu(ej )Y (ed). Lo L
w1 |L(2)| which is (48). By similar arguments, we can prove (49).
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Now another application of Lemma 4.1 with

bo=0; &=04;,1<i<r &u=46,1<i<r
§&=0,1>2r; m1=4,1<i<r
Mryio1 =i, 1<i<ry 0 =0,0>2r -1

gives
Bo(2) =1; Bi(2)=bi(»), 1<i<r
Bryi(2) =bi(2) - R(z), 1<i<r
Bi(z) = R(z) - R(z) - 272" i > 2r
B () =bi(2), 1<i <
2Bl () =bi(2) - R(z), 1<i<7r
2Bz = R(2) - R(z) - 27072 +D) i > 2p — 1

with b;(2), b;(2), R(z), R(z) defined in (34), (46) and (47)
Then, for
Clz 2
f(2) |IL8||2 bi(z), 1<k<r

by Cauchy’s Integral Formula, we have

(f(2), Bryi(2)) =0, 1<:<r
(f(2), Bi(»)) =0,  i>2r
(f(z), z7'Bi(z"Y)) =0,  i>2r—1.
Hence, by Lemma 4.1, we have
[C(E) e
e
_ /el . e
= 32 (g o) b))
—~ /1C(z)] VR o
+;<|L(z)|2b (2), bnl(7)R(z)>bm(c YR(7)
P, .
(L )
- M z A 2 7 ejw
+ 30 (T 1 2 Bl

Then it follows from the definition (23) and the summation

of the above equation ovér< & < » that:

> Z< jrp ()b, <>>5k<ew>bm<efw>

k=1 m=1
Fn E (e
|LE iw)|2 4 Z [Br(e7)]

[C(2)1? _ o
|L(2)[? bi(2), bm(Z)>bm(e )

S () Z<

m=1

1893

<|C(2)I2

T 1)

— Z br(e™)
k=1

I CEDY
k=1

m=1

S
Q
X
S

X b (7)Y R(e7%). (50)

Now, to calculate the inner products in the above equation,
first let us supposé,, 1 < ¢ < r; are distinct in order to use
the Residue Theorem for single poles. Let

A TT Emed —az)
( ) kl;[l (Z —gk)(l —Ekz)

in the following calculation. By the definition of inner product,
we have

C)?
<|L< ) )

“ 35 R G Y2 2
: a(2)0x (2) b (z) —

|=1=1 ?

=3 I a(5()n(2) =t
z—ly 4
g=1

z =4y

lim a(z)

z—dl, z

Similarly, we can calculate that

(T ) )

T1 y g
i m(fy) im a(z) G

z—dy z

|
=
=
=
o~
kel
~
IS
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Then, it follows from (50), (48), and (49) that

Sy (o B n() Y )

k=1 m=1
_ IC(Gj‘°')|2 -
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eIw)|2 T )
- —'CECM)L > e

Jw Jw —_
< bae Zq_e - ] x lim a(z) =4

1- KCJ‘“

< ) < ‘Zq ) x lim «(z) il
q=1 ei — ©“ =l 2=l z

Eefw))||2 Z [br (7))

C‘o

T
- E CJ“' . z—4,
x lim «(z)
1 6»1“’ — z—ly z
a=
™
- Lyei% _ z—4,
x lim a(z) .
1 61“’ — f z— z
(1:

Then, using the Residue Theorem, we have for any simple
closed positively oriented curv® with all the poles ofa(z)

inside and the point’ outside, such that

ZZ<L< P

k=1 m=1

IO S
- B X

2)by, (z)> br(e7* )b ()

1 zed® dz
—2Re{% j’{rma(z)?} (51)

For the case where there are multiple poleg,inl < ¢ < 7y,
we can perturld, a little in order to apply the above analysis.
Then because the complex integrations on both sides of (51) ar

continuous orf,, we have (51) hold for the general case.
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|C(6j‘°')|2 |C(e?)? &
= — . b J‘“
(n—r) |L(e]w)|2 |L(ci=) |2 Z |br(e
1 ' it dv
S S EL &2
2rj Jp (&9« — 2) z

where, the last equation follows from (45) and (51).
At last, Theorem 3.1 follows from (40), (52) and the fact that

Var {éu_)y} = |CT(?)LT(e/*)|? Var {G,U_)yr} .

V. APPLICATIONS TOOTHER MODEL STRUCTURES
A. Estimated Noise Model

Consider again the model structure (5), but assume that the
noise model polynomial’ is estimated, rather than being fixed

0= Fitg

If B andC are estimated by a standard prediction error method,
and the system operates in open loop, the estimat€saofd B

are asymptotically (in the number of dat§ uncorrelated (see,
e.g., [7, (9.42)]). That means that the varianceBofvill be the
same as if” was fixed at the resulting estimate. If the order of
the model polynomial” is at least as large as that of the true
noise descriptior’y, the estimate” will converge toCy. All

this means thahe variance of the estimated frequency function
Be/FT will be given by (18) withz; = 0 in case the noise model
order is sufficiently large.

u(t) + C(q, ne(t). (53)

B. AR-Models

Now we are well prepared to calculate (40). By the definitions

(32) and (39), we have

_ 1 o i N eIw TM
=22l >27r/ ) (L2

«— v« /e e e
+ ] “’;—1< |L Z)|2 ? 7u(*)7u(*)> ’Yu( )’yb( )

| 2

1L()[2° b’“(z)bnl(z)>Ek(ej‘“')bm(ejw)

gonsider now the case of estimating a time-series AR-model
Alg, O)y(t) = c(t). (54)
Assume that the true time series is described by
Ao(q)y(t) = e(?). (55)

Define

An(@@) =14+ ap(N)e 7% = 1+ W(e™)dy  (56)
k=1

where@N contains the LS-estimated AR-parameters. It is well
known that the covariance matrix of these estimated AR-param-
eters is given by

lim N - Cov Oy =o2R ! (57)
whereR is the correlation matrix of:

(R)k,; = Byt — k)y(t — ).

Thus, note that? R~! is the same matrix as the right-hand side
of (11) for Ff = ¢t = ¢y = 1, Lt = Aq, ando, = o.. This
means that the variance of thefunction estimate is the same
as a special case of Theorem 3.1.

We formulate the result as a separate theorem.

Theorem 5.1:Consider the AR-process (55) of orderLet
the A-polynomial be estimated as ath-order AR model (54)
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and assume that > . Then the variance of théN(ej“)-func- Im
tion is given by

. 2 (e
v (i)
— |A (ejw)|2 (7'L _ 7’) + 27: 1-— |Oérn|2 (58)

’ m=1 |el‘~ - arn|2

Re

whereq,,,, 1 < m < r are the roots of thely(z)-polynomial.

C. Lower Bounds for Output Error (OE)-Models

It seems quite difficult to derive an analytic expression of the
variance like (18) for the general model (1), where also the poles
are estimated. However, (18) actually provides a lower bound
for more general models.

Consider first the OE model

B(q)

Fig. 1. T is chosen close to the circle| = 1 and avoiding the singular point

(t) = Fg U +e®) (59)
Suppose the true system can be described by Suppose the true system can be described by
Bo(q) Ao(q)y(t) = Bo(g)u(?) + Co(g)e(?)- (64)
y(t) = S () + oft). (60) | | |
0(9) As above, it follows that the variance of the frequency function

It is easy to see that if we partition a parameter vector into ofgtimate using the model (63) is no less than that using the fol-
part that is estimated and one part that is replaced by the tf@ing model:

values, then the covariance matrix of the estimated part cannot _

be larger than if the whole vector is estimated. This follows from Ao(q)y(t) = Blg. O)ut) + Colg)e(t)- (65)

[7, (9.59)] and the fact that for any € €™, 3 € C", Il € Defineg(t) = Ao(q)y(t) and apply Theorem 3.1 to the esti-

¢mx, and symmetric and positive matricds B € R™*", mation of B in ji(t) = B(q, 0)u(t) + Co(q)e(t). The variance
A4 11t of B according to (18) can then be translated to the variance of
[a*, B*] “|'>p*B 18 the frequency function estimaif/ A, to yield the following re-
7 B p1™ sult.
if [ﬁa 1;] > 0. (Where “*” denotes “conjugate transpose”). Theorem 5.3:Consider the problem of estimating the fre-

In the present case, this means that the variance of the egyency function in the model structure (6?.’)' vyhere the input is
mateB/I’ must be at least as large as if the denominator pol ven by (7). Assume thatthe true system is given by (64). Sup-
nomial is fixed to its true value: ose that the order @ is no less than the order &f, and also

the order ofC, - L. Then the variance of the frequency function
y(t) = B(q) u(t) + eft) (61) estimate is bounded from below by

Fo(q) . L
lim N Var {GN(GJ“")}

The variance of the frequency function estimate in (61) is givenv—co , 2t 2
H H Jw Jw
by_l_'l;1heorem 31 wh|qh leads to the following result. > % |Co(e?)] IL ()] X [(n— )+ Ri(Co- L] .
eorem 5.2:Consider the output error model (59), where o2 | Ao (e7+)|2
the input is given by (7). Assume that the true system is given (66)
by (60). Suppose that the order Bfis no less than the order
of By and also the order o}, - L. Then the variance of the

frequency function estimate is bounded from below by VI. NUMERICAL ILLUSTRATION
A. What Does»(Cy/CT) Look Like?
It would be instructive to see howy(Cy/C*) depends on

Algréo N Var {GA(GJ“)}

2 0—2 ILY ()P [(n—7) + Ry (Fo - LY)]  (62) A
N P(n) =

whereR; is defined in Theorem 3.1.

Co(ci™) 2
CT(CM)

which is the filtered noise spectrum. To this end, we’d like to
D. Lower Bounds for ARMAX-Models chooseT as the circlgz| = 1 in the complex integration (20)
Now, consider the ARMAX model since there = ¢/, B(z)3*(z) = |B(e/")]* = ¢(n) and (20)
becomes a weighted integration of the filtered noise spectrum
Alq, 9)y(t) = B(g, u(t) + C(q, 0)c(t). (63) #(n). Butz = ¢/* is a singular point in the complex integration
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Fig. 2. The real part of the weighting functié# (w, ) as a function ofj forw = 0. Left: d = /7. Right:d = 7/14.
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Fig. 3. Two comparisons betweét, (Cy/C*) (top) and(1/7)¢"” (w) (bottom) withg(w) = |Co(e?«)/C(e?«)|?, as functions ofv. Left: Cy zeros: 0.1, 0.6,
0.7,—0.9;C* zeros: 0.2, 0.5, 0.8;-0.85. Right: Two more zeros 6,: 0.7 — 0.6, 0.7+ 0.6; Two more zeros t¢’t: 0.6 — 0.6, 0.6+ 0.6G.

(20). SoT must avoid it by indenting to the inside a little (e.g., invhere, the weighting function is defined as
Fig. 1, where setting’~ = 1). To see how sensitively the value
of the complex integration depends on the local behavig( ¢f
aroundz = ¢’ itis interesting to note that the integration value
willincrease by’ (w) if T instead indents to the outside a little.
[This can easily been proved using the Residue Theorem for théV (w, 1) =
multiple polec’* in (20).]

In the following, we specially choosE as the curve shown
in Fig. 1, which is actually made up of two parts: an arch and a
piece of line. As the anglé tends to zerd[ tends to the circle
|z| = 1. Hence we can nearly regafth(Co/C") as a weighted
integration of the filtered noise spectrydiy(¢’7)/C*(c/7)|?,

1
I ifln—wl>d
Soos(— o) 2 In—w| >
[cosd - &/ + jcosd - tan(n — w)]e’*
[ei“ — cosd - e/« + jcosd - tan(n — w)]?
if |77 — w| < d.
(68)

Since the noise spectrum is real, we only need to consider the

namely, real part of the weighting function, which is plotted in Fig. 2 for
o L Colei) 2 d = w /7 andd = 7 /14 respectively (where setting = 0).

Ry <_0> ~ —2Re { = W(w, 1) ‘ o . } We can see that the graph of the weighting function is quite
ci 2r ) Ci(el) typical, made up of three jumps aroungdthe frequency in ques-

(67) tion. Asd tends to zero, these jumps become more narrow and
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Fig. 4. Variance of the estimated frequency functions, as functions of frequency. The true system is given by sith ¢—*(1 + 0.5¢7 1)1, Co(q) =
1—1.4¢=1 4+ 0.85¢72 andF'* = 1. The model structure is given by (5) with= 12 andC*(¢) = 1 + 1.4¢~! + 0.85¢2. The input is white noise. The
dashed line shows the variance from a Monte Carlo experiment with 500 runs. The solid line is the expression (18). The dotted line is the “classgali exp
(3), while the dash-dotted line is the expression from [12].
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Fig. 5. lllustration of the effect of a bad choice of prefilter. The curves show the frequency function variance as a function of frequency. T éxgresa
by (18)withLt = Ft = 1,02 = 02 = 1 andn = r = 2. Left: C,, has zeros at 0.8, 0.9; whié' has zeros at 0.4, 0.5. Right: The converse situationhas
zeros at 0.4, 0.5; whil€'* has zeros at 0.8, 0.9. Note the different scales of,tagis!

steeper and it can be proved that the area above zero is asyBjpSome Comparisons
totically proportional to the area below zero. By the formula for 14 see how much the new result may differ from the existing

the second derivative: ones, we choosera= 12th order model in Fig. 4. It is obvious
that both the existing results [7] and [12] are quite misleading
f”(a:) — lim f(x + h) + f(.’];— h) — 2f($) in this case.
h—0 h From the model structure (10), it is clear that we can re-
gardCT as a prefilter of the input and output data. It has been
one may guess thaR,(Co/C") =~ (1/m)¢"(w), with proved (see, e.g., [7]) that choosiffj = C, will minimize the
P(w) 2 |Co(e?®)/CH(e5*)2. We present two examples invariance, i.e., achieve the Cramer—Rao bound. But the problem
Fig. 3, which shows that the second derivative indeed can catufises of course whef, is not known exactly. In this case, one
the spirit of the complex integration although the fitting is ndbas to guess where the zero<gfare located and then choose
exact and the scaling differs from case to case. Since from (6fHe poles of the prefilter properly. But one must realize that bad
itis quite clear thafz,(Cy/C*) depends on the global behaviompoles of the prefilter will cause much larger variance than bad
of ¢(n), —v < n < =, we cannot expect the local behaviozeros ofCy. For example, suppose that it is believed that some
¢"(w) provide the total information. zeros ofCy are close to the unit circle. Choosing a prefiltel
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Fig. 6. Modification of £) in [7, Fig. 9.1] with the new expression (66).

lines: Normalized true variances far= 2 (solid) andn = 10 (dashed). Thick

lines: Normalized lower bounds far = 2 (solid) andr = 10 (dashed).
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Fig. 7. Comparison between true variance and the lower bound (66) for
“Astrém system” corrupted by a colored noise with two zeros at 0.5. Thick lin
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C. Lower Bounds for ARMAX Models

In the case where both the input and the noise are white, the
expression (66) reduces to the expression (3), i.e., the result in
[7]. Infact, [7, Fig. 9.1] has shown that it is really a lower bound
for the ARMAX model and the true variance approaches the
lower bound as the model order goes to infinity. The grafih “
is an exception because there the input data is not white. Hence,
we need to use the formula (66) instead. The new resultis shown
in Fig. 6. (From now on, we use the log-log scale plot in accor-
dance with that used in [7, Fig. 9.1].) It should be noted that in
Fig. 6 the lower bounds for the second order and the tenth order
are no longer the same due to the new expression (66).

Next, we consider the case where the noise is not white. We
shall compare how much the true variance differs from the lower
bound calculated from (66). Suppose the true system can be
described by (64) withig(q) = 1 —1.5¢71 +0.7¢72, Bo(q) =
gt 05072, Colg) = 1 — g+ 0.25¢72, i.e., the “Astrom
system” corrupted by a colored noise with two zeros at 0.5. We
use the ARMAX model (63) with orden = 2 orn = 10
respectively. The results are shown in Fig. 7.

Thin

VII. CONCLUSION

It is a simple and natural asymptotic result that the covari-
ance of an estimated frequency function is proportional to the
noise-to-signal ratio at the frequency in question. However, due
to erroneous noise models, colored inputs, fixed poles and other
features, the actual variance of the frequency function estimate
may differ substantially from the asymptotic value for low order
models. This has been pointed out clearly in [12]. We have here
developed an exact result for the covariance within a limited
class of models and input spectra. This result points to the fea-
tures that cause the deviations from the limit expression. It also

eﬂgstablishes the convergence rate to the limit to be like 1 over the

normalized lower bounds: thin lines: normalized true variances by Monte Cafldodel order.

estimate. Solid lines: = 2; dashed linesn = 10.

of this kind could however lead to very high variance, if the tru

As a fringe benefit an exact result for the covariance of the
AR-model frequency function is obtained, thus extending the
%Iassical asymptotic result by Berk, [1].

Cy does not have zeros close to the unit circle. The reverse sit-
uation thatCy indeed has zeros close to the unit circle leads
to less variance. In other words, if you choose a prefilter with 1
zeros close to the unit circle, you better be sure that this reflects
a property of the true system. This is illustrated in Fig. 5. 2
This observation becomes more concrete when we conside)
the case when; = 1 in (17), since then by the Residue The-
orem, (18) reduces to (4]

lim N Var Gy (c'®) 5]

N—oo
2
= 25 |Co(e™)PILT ()] x [(n = )+ Ry(F" - LT)] ]
o2 jwy|2 2 2 1 7
+ S L) x A+ DA+ 8) —dhel ;=
P M
69

Itis clear that it is very unfavorable fdg to be close to 1 unless (9]

/1 is also close te;.
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